关系代数

关系代数
关系代数

第二章关系代数

教学目的:

本章实际上研究的是关系的运算。

学习目的:

关系运算是设计关系数据库操作语言的基础,因为其中的每一个询问往往表示成一个关系运算表达式,在我们的课程中,数据及联系都是用关系表示的,所以实现数据间的联系也可以用关系运算来完成。

通过本章学习,应重点掌握:

(1)关系数据库的基本概念;

(2)如何用关系代数表达式来表达实际查询问题;

(3)如何用元组演算表达式来表达实际查询问题;

(4)如何用域演算表达式来表达实际查询问题;

(5)如何将关系代数表达式转换为元组演算表达式或转换为域演算表达式。

了解和掌握关系数据结构中涉及到的域、笛卡儿积、关系模式等有关内容的含义;

掌握关系的实体完整性和参照完整性的定义;

掌握关系代数中的并、交、差、笛卡儿积运算,以及选择、投影和连接运算。

教学重点:

关系的实体完整性和参照完整性的定义;

关系代数中的并、交、差、笛卡儿积运算,以及选择、投影和连接运算。

教学难点:关系代数中的并、交、差、笛卡儿积运算,以及选择、投影和连接运算。

教学方法:实例法

教学内容:如下:

关系模型

关系模型是一种简单的二维表格结构,每个二维表称做一个关系,一个二维表的表头,即所有列的标题称为一个元组,每一列数据称为一个属性,列标题称估属性名。同一个关系中不允许出现重复元组和相同属性名的属性。

1.关系模型组成

关系模型由关系数据结构、关系操作集合和关系完整性约束三部分组成。关系操作分为两大部分如图所示。

2.关系操作的特点

关系操作的特点是操作对象和操作结果都是集合。而非关系数据模型的数据操作方式则为一次一个记录的方式。 关系数据语言分为三类: (1)关系代数语言:如ISBL ;

(2)关系演算语言:分为元组关系演算语言(如Alpha ,Quel)、域关系演算语言(如QBE); (3)具有关系代数和关系演算双重特点的语言:如SQL 。

3.关系数据结构及其形式化定义 (1)域

定义 域是一组具有相同数据类型的值的集合。 (2)笛卡尔积

定义 设D 1,D 2,D 3,…,D n ,为任意集合,定义D l ,D 2,D 3,…,D n 的笛卡尔积为 D 1×D 2×D 3×…×D n ={(d1,d2,d3,…dn)[di ∈Di ,i =1,2,3…,n]

其中每一个元素(dl ,d2,d3,…,dn ,)叫做一个n 元组(n 一tuple)或简称为元组(Tuple),每一个值di 叫做一个分量(Component),若Di(i =l ,2,…n)为有限集,其基数(Cardinal number)为mi(i=l ,2,3,…,n), 则D 1×D 2×D 3×…×D n 的基数M 为 M =

∏=n

i 1

mi

笛卡尔积可以用二维表来表示。

例 D1={0,1},D2={a,b,c}

则:D1×D2={(0,a),(0,b),(0,c),(1,a),(1,b),(1,c)}用二维

表来表示,如图2—2所示。

×

(3)关系的形式化定义及相关名词

定义 D1×D2×D3×…×D n的子集叫做在域D1,D2,D3,…,D n上的关系,用R(D1,D2,D3,…,D n),称关系R为n元关系。

候选码若关系中的某一属性组的值能惟一的标识一个元组,则称该属性组为候选码(Candidate Key)。

主码若一个关系有多个候选码,则选定其中一个为主码(PrimaryKey)。主码诸属性称为主属性。不包含在任何候选码中的属性称为非码属性(Non—Key

attribute)。关系模型的所有属性组是这个关系模式的候选码,称为全码(All

—key)

(4)关系的三种类型

基本关系(通常又称为基本表或基表),是实际存在的表,它是实际存储数据的逻辑

表示

查询表,查询结果对应的表

视图表,是由基本表或其他视图表导出的表,也常称为虚表

(5)基本关系有以下五条性质

每一列中的分量必须是同一类型的数据,来自同一个域

属性不能重名

行列的顺序无关

任何两个元组不能完全相同

每一个分量必须是不可再分的数据项

3.关系完整性

关系模型的完整性规则是对关系的某种约束条件。关系的完整性共分为三类:

实体完整性、参照完整性、用户定义完整性。

(1)实体的完整性(Entity Integrity)规定:若属性A是基本关系R的主属性,则属性

A不能取空值。即主属性不能为空。

(2)参照的完整性(Referential Integrity)规定:若F是基本关系R的外码,它与基

本关系S的主码Ks相对应(基本关系R和S不一定是不同的关系)则对于R中每个元组在F上的值必须为:

①或者取空值(F的每个属性值均为空值);即外码可以为空

②或者等于S中某个元组的主码值。

(3)用户定义的完整性(User defined Integrity):就是针对某一具体的关系数据库的

约束条件,由应用的环境决定。

4.关系模式

在数据库中要区分型和值。关系数据库中的型也称为关系数据库模式,是关系数据库的描述。它包括若干域的定义以及在这些域上定义的若干关系模式。关系数据库的值是这些关系模式在某一时刻对应的关系的集合,通常称之为关系数据库。

定义关系的描述称为关系模式(Relation Schema)。可以形式化的表示为

R(U,D,dom,F)

其中,R表示关系名;U是组成该关系的属性名集合;D是属性的域;dom是属性向域的映像集合;F为属性间数据的依赖关系集合。

通常将关系模式简记为:

R(U)或R(Al,A2,A3,…,An。)

其中R为关系名,A1,A2,A3,…,An。为属性名,域名、属性向域的映像常常直接说明属性的类型、长度。

例定义学生与课程关系模式及主码如下:

(1)S(Sno,Sname,SD,SA)

Key(Sno)

(2)C(Cno,Cname,PCno)

Key(Cno) Dom(PCno)=Cno

这里,Pcno是先行课程号,来自Cno域,但由于Pcno属性名不等于Cno值域名,所以要用Dom来定义。

能否将Pcno直接改为Cno呢

不能,因为在关系模型中,各列属性必须取相异的名字。

(3)SC(Sno,Cno,Grade)

Key(Sno,Cno)

其中,SC关系中的Sno、Cno又分别为外码。因为它们分别是S、C关系中的主码。

2.2关系代数

关系代数是一种抽象的查询语言,是关系数据操纵语言的一种传统表达方式。它是用对关系的运算来表达查询的。

关系运算符有四类:集合运算符,专门的关系运算符,算术比较符和逻辑运算符,如图2—3所示。

根据运算符的不同,关系代数运算可分为传统的集合运算和专门的关系运算。

1.传统的集合运算

传统的集合运算是从关系的水平方向进行的,主要包括:并、交、差及广义笛卡尔积。

(1)并(Union);

关系R与S的并记作:

RUS={t∈R V t∈S}

(2)差(Difference);

关系R与S的差记作:

R—S={t∈R ∧ t?S}

(3)交(Intersection);

关系R与S的交记作:

R?S={t∈R ∧ t∈S}

(4)广义笛卡尔积(Extended Cartesian Product);

两个分别为n目和m目的关系R和S的广义笛卡儿积是一个(n+m)列的元组的集合。元组的前n列是关系R的一个元组,后m列是关系S的一个元组。若R有K1个元组,S有K2个元组。则R和S的广义笛卡儿积有 K1×K2 个元组。记作:

R×S={ t r t s | t r∈R ∧ t s∈S}

2.专门的关系运算

专门的关系运算既可以从关系的水平方向进行运算,又可以向关系的垂直方向运算。

1)选择(Selection);

选择运算是从关系的水平方向进行运算,是从关系R 中选择满足给定条件的诸元组,记作:

σF (R )={t[A]|t ∈R ∧F(t)=’真’ }

(2)投影(Projection);

投影运算是从关系的垂直方向进行运算,在关系R 中选择出若干属性列组成新的关系,记作:

πA (R )={t[A]|t ∈R }

(3) 连接(Join);

连接分为:θ连接、等值连接及自然连接三种,分述如下:

①θ连接:它是从两个关系的笛卡尔积中选取属性间满足一定条件的元组。记作:

{ t r t s

| t r

R ∧ t s

∈S ∧ t r

[A] θ t s

[B] }

其中:θ是比较运算符,A 和B 分别为R 和S 上度数相等,且可比的属性组。 ②等值连接:当θ为“=”时,称之为等值连接,记为: { t r t s

| t r

∈R ∧ t s

∈S ∧ t r

[A] = t s

[B] }

③自然连接:是一种特殊的等值连接,它要求两个关系中进行比较的分量必须是相

同的属性组,并且在结果中将重复属性列去掉。若R 和S 具有相同的属性组B ,则自然连接可以记为:

r t s | t r ∈R ∧ t s ∈S ∧ t r [B] = t s [B] }

④特别需要说明的是:一般连接是从关系的水平方向运算,而自然连接不仅要从关系

的水平方向,而且要从关系的垂直方向运算。因为自然连接要去掉重复属性,如果没有重复属性,那么自然连接就转化为笛卡尔积。 (4)除(Division);

除运算是同时从关系的水平方向和垂直方向进行运算。

给定关系R(X ,Y)和S(Y ,Z),X ,Y ,Z 为属性组。R ÷S 应当满足元组在X 上的分量值

= A θB

A=B

=

x的像集Yx包含S在Y上投影的集合。记作:

R÷S = { t r [X] | t r∈R ∧πy[S]? Y x}

其中:Yx为x在R中的像集,x=t r [X]。且R÷S的结果集的属性组为X。

(5)需要注意的四个问题:

①关系代数的五个基本操作为:并、差、笛卡尔积、投影和选择。其它的操作都可以由5个基本的操作导出,因此它们构成了关系代数完备的操作集。

例如两个关系R与S的交运算等价于:

R?S=R一(R—S)或R?S=S一(S—R)

所以交运算不是一个独立的运算。

②关系代数在使用的过程中对于只涉及选择、投影、连接的查询可用表达式:

πA1,…AK(σF或πA1,…AK(σF(S×R))

③对于否定操作,一般要用差操作表示,例如不学“操作系统”课的学生姓名,通常不要用如下的形式表示:

πSname( σCname≠’操作系统’))

而采用如下形式:

πSname - πSname (σCname =’操作系统’))

④对于检索具有全部特征的操作,一般要用除法操作表示,

例如查询选修全部课程的学生学号。通常不要用如下的形式表示;

πSno,Cno(SC÷πCno(C))

而采用如下形式:

πSno,Cno(SC)÷πCno(C)

2.3关系演算

关系演算分为元组演算和域演算,下面分别介绍。

元组演算

在元组演算中,其元组表达式中的变量是以元组为单位的,其一般形式为:

{t | P(t)}

其中:t 是元组变量,P(t)是关系演算公式。

下面将五种基本的关系运算用元组演算表达式表示如下。 (1)并 RUS ={t | R(t) V S(t)} (2)差R —S ={t | R(t)∧ ?S(t)} (3)笛卡尔积 R ×S ={t

(n+m)

| (?u (n)

) (?v (m)

) ( R(u) ∧ S(v) ∧ t[1]=u[1] ∧ …∧t[n] =u[n]

∧t[n+1] =v[1] ∧…∧t[n+m] =v[m])}

R ×S 后生成的新关系是n+m 目关系。

(4)投影 πi1,i2,…,ik(R) ={ t (k)

| (?u )(R(u) ∧ t[1] =u[i 1] ∧ …t[k] =

u ([ik]))

(5)选择

σ(R)={ t | R(t) ∧ F} 域演算

在域演算中,表达式中的域变量是表示域的变量,可将关系的属性名视为域变量,域演算表达式的一般形式为:

{t 1, ……,t k | P(t 1,……,t k )}

其中,t 1…… t k 是域变量,P(t 1……t k )是域演算公式。

关系代数、元组演算、域演算三类关系运算的表达能力是等价的,可以互相转换。可以证明如下三个结论:

(1)每一个关系代数表达式有一个等价的安全的元组演算表达式; (2)每一个安全的元组演算表达式有一个等价的安全的域演算表达式; (3)每一个安全的域演算表达式有一个等价的关系代数表达式。

例2—R ,S 如图2—4所示。 请求出:RUS ,R —S ,R ?S ,R ×S ,π

A,C

(R),σ

A>B

(R)。

解 RUS,R—S,R?S,R×S,πA,C(R),σA>B(R)如图所示:

R—S

例2—2 设有关系R ,S 如图2—4所示,求:

R S

解 本题的F 公式为<,意为将R 关系中属性A 的值小于

S 关系中属性B 的值的

元组取出来作为结果集的元组。 结果集的前三个属性为:,, 结果集的后三个属性为:,,

结果如图所示。 <

R

R 与S 关系中相同的属性组为AC ,因此,结果中的属性列应为:ABCD 。其结果如图 2—8所示。

分析1 根据除法定义,此题的X 有属性AB ,Y 有属性CD ,那么,R ÷S 应当满足元组在X 上的分量值x 的像集Yx 包含S 在 Y 上投影的集合。而结果集的属性为AB 。

例2-4 设有关系R ,S 如图2-9所示,求:R ÷S

R

S

X 么,R ÷S 应当满足元组在X 上的分量值x 的像集Yx 包含S 在Y 上投影的集合。而结果集的属性为AB 。

分析2 在关系R 中,属性组X(即AB)可以取3个值{(a , b),(b ,d),(c ,k)},其中: (a ,b)的像集为:{(c ,d),(e ,f),(h ,k)} (b ,d)的像集为:{(e ,f),(d ,1)} (c ,k )的像集为:{(c ,d),(e ,f)}

分析3 S 在Y(即CD)的投影为{(c ,d),(e ,f)}

从上分析可以看出,只有(a ,b),(c ,k)包含了S 在Y(即CD)的投影,所以,R ÷S ={(a ,b),(c ,k)}。结果如图所示:

例2—5 设有学生课程数据库中包含三个关系:学生关系S 、课程关系C 、学生选课关系SC ,如图2—11(a),(b),(c)所示。请用关系代数表达式、元组演算表达式查询如下问题:

(1)

姓名

姓名:

①关系代数表达式为:

πSno,Sname(σCname=

因为为自然连接,所以去掉重复列后的结果如图(a),(b)所示。 S

(a ) (b)

从图中可见我们可将上述的关系代数表达式写为: π1,2(σ8=

)) ②元组演算表达式为: ‘

{t |( ?u)( ?v)( ?w)S(u)∧ SC(v) ∧C(w) ∧ u[1] =V[1] ∧v[2]=w[1]∧w[2]=‘数学’ ∧t[l]=u(l) ∧t[2]=u[2]}

例2—6 给定学生数据库,有S ,SC ,C 三个关系如图2—11所示:

S

2.4

几种查询表示:

E1=∏score (σ= “李明”(Student ×SC)) E2=∏score (σ= “李明”(Student SC)) E3=∏score (σ= “李明”(Student) SC) 比较三种查询实现

我们希望在系统开销尽量小的情况下对查询进行尽可能的优化,一般采用以下策略: 1.选择运算尽早进行。

2.投影运算与选择运算同时进行。

3.将笛卡尔积与随后的选择运算合并为连接运算。 4.投影运算与其他运算同时进行。 5.寻找公共子表达式并将结果存储。 6.对文件进行预处理。

关系代数的等价变换

关系代数表达式的优化是查询优化的重要基础。

所谓关系代数表达式的优化,就是要按照一定的等价变换规则将其转换为查询效率更高的表达式。

查询优化步骤

1.把查询转换成一种内部表示

通常采取的内部表示曾经提到的表达树形式。

E1=πScore(σ= AND =’李明’(S╳SC))

可用表达树(又称语法树)来表示

2.利用关系代数等价变换规则以及查询优化的一般策略,将语法树进行优化,选择运算应该尽量先做。根据等价变换规则第6条,E1的关系代数语法树可以优化成如下的形式

3.选择适当的低层存取路径

所谓选择低层存取路径,指的就是要充分利用数据库中已有的索引等信息。假如选择条件或连接条件所涉及的属性上有索引,那么利用该索引进行存取就可以节省很多时间,这也能提高查询的效率。

4.生成一组查询计划,从中选择一个代价最小的。

所谓查询计划就是一个完整的数据库内部查询过程,它按照某种存取路径来计算关系代数表达式的结果。

我们可以有一组查询计划供选择;例如某个关系是无序的,选择条件涉及的属性上也没有索引,那么不同的查询计划可能会有不同的方案:

对该关系进行排序预处理

在选择条件涉及的属性上建索引

这样就必须计算每一种查询计划的代价,以便从中选择一个代价最小(所谓“最优”)的查询计划。

关系代数运算练习答案

关系代数表达式: 由关系代数运算经有限次复合而成的式子称为关系代数表达式。 这种表达式的运算结果仍然是一个关系。可以用关系代数表达式表示对数据库的查询和更新操作。 关系代数(演算)要求掌握各种语句的应用 1:设教学数据库中有3个关系: 学生关系S(SNO,SNAME,AGE,SEX) 学习关系SC(SNO,CNO,GRADE) 课程关系C(CNO,CNAME,TEACHER) 下面用关系代数表达式表达每个查询语句。 (1) 检索学习课程号为C2的学生学号与成绩。 πSNO,GRADE(σCNO='C2'(SC)) (2) 检索学习课程号为C2的学生学号与姓名 πSNO,SNAME(σCNO='C2'(S SC)) 由于这个查询涉及到两个关系S和SC,因此先对这两个关系进行自然连接,同一位学生的有关的信息,然后再执行选择投影操作。

此查询亦可等价地写成: πSNO,SNAME(S)(πSNO(σCNO='C2'(SC))) 这个表达式中自然连接的右分量为"学了C2课的学生学号的集合"。这个表达式比前一个表达式优化,执行起来要省时间,省空间。 (3)检索选修课程名为MATHS的学生学号与姓名。 πSNO,SANME(σCNAME='MATHS'(S SC C)) (4)检索选修课程号为C2或C4的学生学号。 πSNO(σCNO='C2'∨CNO='C4'(SC)) (5)检索选修课程号为C2和C4的学生学号。 π1(σ1=4∧2='C2'∧5='C4'(SC×SC)) 这里(SC×SC)表示关系SC自身相乘的乘积操作,其中数字1,2,4,5都为它的结果关系中的属性序号。 比较这一题与上一题的差别。 (6)检索不学C2课的学生姓名与年龄。 πSNAME,AGE(S)-πSNAME,AGE(σCNO='C2'(S SC))

(完整版)数据库关系代数习题

1.设有如图所示的关系S、SC和C,试用关系代数表达式表示下列查询语句: S C SC S# SNAME AGE SEX 1 李强23 男 2 刘丽22 女5 张友22 男C# CNAME TEACHER k1 C语言王华 k5 数据库原理程军 k8 编译原理程军 S# C# GRADE 1 k1 83 2 k1 85 5 k1 92 2 k5 90 5 k5 84 5 k8 80 (1) 检索”程军”老师所授课的课程号(C#)和课程名(CNAME)。 (2) 检索年龄大于21的男学生学号(S#)和姓名(SNAME)。 (3) 检索至少选修”程军”老师所授全部课程的学生姓名(SNAME)。 (4) 检索”李强”同学不学课程的课程号(C#)。 (5) 检索至少选修两门课程的课程号(S#)。 (6) 检索全部学生都选修的课程的课程号(C#)和课程名(CNAME)。 (7) 检索选修课程包含”程军”老师所授课程之一的学生学号(S#)。 (8) 检索选修课程号为k1和k5的学生学号(S#)。 (9) 检索选修全部课程的学生姓名(SNAME)。 (10) 检索选修课程包含学号为2的学生所选修课程的学生学号(S#)。 (11) 检索选修课程名为”C语言”的学生学号(S#)和姓名(SNAME)。(12)检索没有一门课程成绩不及格的学生学号,姓名。 答:本题各个查询语句对应的关系代数表达式表示如下: (1) ΠC#,CNAME(σTEACHER ='程军'(C)) (2) ΠS#,SNAME(σAGE>21^SEX ='男'(S)) (3) ΠSNAME(S(ΠS#,C#(SC)÷ΠC#(σTEACHER ='程军'(C)))) (4) ΠC#(C)-ΠC#(σSNAME ='李强'(S)∞SC) (5) ΠS# (σ1=4^2≠5 (S C×SC)) (6) ΠC#,CNAME(C∞(ΠS#,C#(SC)÷ΠS#(S))) (7) ΠS# (SC∞ΠC# (σTEACHER ='程军'(C))) (8) ΠS#,C#(SC)÷ΠC#(σC#=’K1’VC#=’K5’ (C)) (9) ΠSNAME(S∞(ΠS#,C#(SC)÷ΠC#(C))) (10) ΠS#,C#(SC)÷ΠC#(σC#=’2’ (S C)) (11) ΠS#,SNAME(S∞ΠS#(SC∞(σCNAME ='C语言'(C)))) (12)П学号,姓名(学生)-П学号,姓名(σ分数<60(学生∞学习))。

关系代数习题3.26

1. 下面的选项不是关系数据库基本特征的是()。 A.不同的列应有不同的数据类型 B.不同的列应有不同的列名 C.与行的次序无关 D.与列的次序无关 2. 一个关系只有一个()。 A.候选码 B. 外码 C. 超码 D. 主码 3. 关系模型中,一个码是()。 A.可以由多个任意属性组成 B.至多由一个属性组成 C.可有多个或者一个其值能够唯一表示该关系模式中任何元组的属性组成 D.以上都不是 4. 现有如下关系: 患者(患者编号,患者姓名,性别,出生日起,所在单位) 医疗(患者编号,患者姓名,医生编号,医生姓名,诊断日期,诊断结果) 其中,医疗关系中的外码是()。 A. 患者编号 B. 患者姓名 C. 患者编号和患者姓名 D. 医生编号和患者编号 5. 现有一个关系:借阅(书号,书名,库存数,读者号,借期,还期),假如同一本书允许一个读者多次借阅,但不能同时对一种书借多本,则该关系模式的外码是()。 A. 书号 B. 读者号 C. 书号+读者号 D. 书号+读者号+借期 6. 关系模型中实现实体间N:M 联系是通过增加一个()。

A.关系实现 B. 属性实现 C. 关系或一个属性实现 D. 关系和一个属性实现 7. 关系代数运算是以()为基础的运算。 A. 关系运算 B. 谓词演算 C. 集合运算 D. 代数运算 8. 关系数据库管理系统应能实现的专门关系运算包括()。 A. 排序、索引、统计 B. 选择、投影、连接 C. 关联、更新、排序 D. 显示、打印、制表 9. 五种基本关系代数运算是()。 A.∪-× σ π B.∪-σ π C.∪∩× σ π D.∪∩σ π 11. 关系数据库中的投影操作是指从关系中()。 A.抽出特定记录 B. 抽出特定字段 C.建立相应的影像 D. 建立相应的图形 12. 从一个数据库文件中取出满足某个条件的所有记录形成一个新的数据库文件的操作是()操作。 A.投影 B. 联接 C. 选择 D. 复制 13. 关系代数中的联接操作是由()操作组合而成。 A.选择和投影 B. 选择和笛卡尔积 C.投影、选择、笛卡尔积 D. 投影和笛卡尔积 14. 自然联接是构成新关系的有效方法。一般情况下,当对关系R和S是用自然联接时,要求R和S含有一个或者多个共有的()。 A.记录 B. 行 C. 属性 D. 元组 15. 假设有关系R和S,在下列的关系运算中,()运算不要求:“R 和S具有相同的元数,且它们的对应属性的数据类型也相同” 。

关系代数讲解与例题

关系代数 关系代数是关系数据库系统查询语言的理论基础。 关系代数的9种操作: 并、交、差、乘、选择、投影、联接、除、自然联接运算。 五个基本操作: 并(∪) 差(-) 笛卡尔积(×)投影(σ) 选择(π) 四个组合操作: 交(∩) 联接(等值联接)自然联接(RS) 除法(÷) 关系代数表达式: 由关系代数运算经有限次复合而成的式子称为关系代数表达式。这种表达式的运算结果仍然是一个关系。可以用关系代数表达式表示对数据库的查询和更新操作。 关系代数(演算)要求掌握各种语句的应用,多做书中的例题可以帮助自己熟能生巧。 关系代数表达式举例 用关系代数表示数据查询的典型例子 [例]设教学数据库中有3个关系: 学生关系S(SNO,SNAME,AGE,SEX) 学习关系SC(SNO,CNO,GRADE) 课程关系C(CNO,CNAME,TEACHER) 下面用关系代数表达式表达每个查询语句。 (1) 检索学习课程号为C2的学生学号与成绩。 πSNO,GRADE(σCNO='C2'(SC)) (2) 检索学习课程号为C2的学生学号与姓名 πSNO,SNAME(σCNO='C2'(SSC)) 由于这个查询涉及到两个关系S和SC,因此先对这两个关系进行自然连接,同一位学生的有关的信息,然后再执行选择投影操作。 此查询亦可等价地写成: πSNO,SNAME(S)(πSNO(σCNO='C2'(SC))) 这个表达式中自然连接的右分量为"学了C2课的学生学号的集合"。这个表达式比前一个表达式优化,执行起来要省时间,省空间。 (3)检索选修课程名为MATHS的学生学号与姓名。 πSNO,SANME(σCNAME='MATHS'(SSCC)) (4)检索选修课程号为C2或C4的学生学号。 πSNO(σCNO='C2'∨CNO='C4'(SC)) (5)检索至少选修课程号为C2或C4的学生学号。 π1(σ1=4∧2='C2'∧5='C4'(SC×SC)) 这里(SC×SC)表示关系SC自身相乘的乘积操作,其中数字1,2,4,5都为它的结果

数据库关系代数习题

2.现有关系数据库如下: 学生(学号,姓名,性别,专业,奖学金)。 课程(课程号,名称,学分)。 学习(学号,课程号,分数)。 用关系代数表达式实现下列1-4小题: 1. 检索"英语"专业学生所学课程的信息,包括学号、姓名、课程名和分数。 П学号,姓名,课程名,分数(σ专业='英语'(学生∞学习∞课程))。 2. 检索"数据库原理"课程成绩高于90分的所有学生的学号、姓名、专业和分数。 П学号,姓名,专业,分数(σ分数>90∧名称='数据库原理'(学生∞学习∞课程))。 3. 检索不学课程号为"C135"课程的学生信息,包括学号,姓名和专业。 П学号,姓名,专业(学生)-П学号,姓名,专业(σ课程号='C135'(学生∞学习))。 4. 检索没有任何一门课程成绩不及格的所有学生的信息,包括学号、姓名和专业。 П学号,姓名,专业(学生)-П学号,姓名,专业(σ分数<60(学生∞学习))。 5.检索选修全部课程的学生姓名 6.检索至少选修了李强同学所选修的全部课程的学生姓名。

3.现有关系数据库如下: 学生(学号,姓名,性别,专业、奖学金)。 课程(课程号,名称,学分)。 学习(学号,课程号,分数)。 用关系代数表达式实现下列1—4小题: 1. 检索“国际贸易”专业中获得奖学金的学生信息,包括学号、姓名、课程名和分数。 Π学号,姓名,课程名,分数(σ奖学金>0∧专业=国际贸易(学生∞学习∞课程))。 2. 检索学生成绩得过满分(100分)的课程的课程号、名称和学分。 Π课程号,名称,学分(σ分数=100(学习∞课程))。 3. 检索没有获得奖学金、同时至少有一门课程成绩在95分以上的学生信息,包括学号、姓名和专业。 Π学号,姓名,专业(σ奖学金<=0∧分数>95(学生∞学习))。 4. 检索没有任何一门课程成绩在80分以下的学生的信息,包括学号、姓名和专业。 Π学号,姓名,专业(学生)-Π学号,姓名,专业(σ分数<80(学生∞学习))。 4.设有关系S、SC和C,试用关系代数表达式完成下列操作。 S(snum,sname,age,sex),例:(1,“李强”,23,‘男’)是一条数据记录。SC(snum,cnum,score),例:(1,“C1”,83)是一条数据记录。C(cnum,cname,teacher) 例:(“C1”,“数据库原理”,“王华”)是一条数据记录。

关系代数

第二章关系代数 教学目的: 本章实际上研究的是关系的运算。 学习目的: 关系运算是设计关系数据库操作语言的基础,因为其中的每一个询问往往表示成一个关系运算表达式,在我们的课程中,数据及联系都是用关系表示的,所以实现数据间的联系也可以用关系运算来完成。 通过本章学习,应重点掌握: (1)关系数据库的基本概念; (2)如何用关系代数表达式来表达实际查询问题; (3)如何用元组演算表达式来表达实际查询问题; (4)如何用域演算表达式来表达实际查询问题; (5)如何将关系代数表达式转换为元组演算表达式或转换为域演算表达式。 了解和掌握关系数据结构中涉及到的域、笛卡儿积、关系模式等有关内容的含义; 掌握关系的实体完整性和参照完整性的定义; 掌握关系代数中的并、交、差、笛卡儿积运算,以及选择、投影和连接运算。 教学重点: 关系的实体完整性和参照完整性的定义; 关系代数中的并、交、差、笛卡儿积运算,以及选择、投影和连接运算。 教学难点:关系代数中的并、交、差、笛卡儿积运算,以及选择、投影和连接运算。 教学方法:实例法 教学内容:如下: 关系模型 关系模型是一种简单的二维表格结构,每个二维表称做一个关系,一个二维表的表头,即所有列的标题称为一个元组,每一列数据称为一个属性,列标题称估属性名。同一个关系中不允许出现重复元组和相同属性名的属性。 1.关系模型组成 关系模型由关系数据结构、关系操作集合和关系完整性约束三部分组成。关系操作分为两大部分如图所示。

2.关系操作的特点 关系操作的特点是操作对象和操作结果都是集合。而非关系数据模型的数据操作方式则为一次一个记录的方式。 关系数据语言分为三类: (1)关系代数语言:如ISBL ; (2)关系演算语言:分为元组关系演算语言(如Alpha ,Quel)、域关系演算语言(如QBE); (3)具有关系代数和关系演算双重特点的语言:如SQL 。 3.关系数据结构及其形式化定义 (1)域 定义 域是一组具有相同数据类型的值的集合。 (2)笛卡尔积 定义 设D 1,D 2,D 3,…,D n ,为任意集合,定义D l ,D 2,D 3,…,D n 的笛卡尔积为 D 1×D 2×D 3×…×D n ={(d1,d2,d3,…dn)[di ∈Di ,i =1,2,3…,n] 其中每一个元素(dl ,d2,d3,…,dn ,)叫做一个n 元组(n 一tuple)或简称为元组(Tuple),每一个值di 叫做一个分量(Component),若Di(i =l ,2,…n)为有限集,其基数(Cardinal number)为mi(i=l ,2,3,…,n), 则D 1×D 2×D 3×…×D n 的基数M 为 M = ∏=n i 1 mi

数据库关系代数表达式学习资料

数据库关系代数表达式学习 关系代数是关系数据库系统查询语言的理论基础 一、关系代数的9种操作: 关系代数中包括了:并、交、差、乘、选择、投影、联接、除、自然联接等操作。 五个基本操作: 并(∪)、差(-)、笛卡尔积(×)、投影(σ)、选择(π) 四个组合操作: 交(∩)、联接(等值联接)、自然联接(R S)、除法(÷) 注2:等值连接表示先做笛卡尔积(×)之后,对相应列进行选择或等值关联后的结果(仅筛选行、不筛选列) 注2:自然连接表示两个关系中若有相同名称的属性,则自动作为关联条件,且仅列出一列 二、关系代数表达式: 由关系代数运算经有限次复合而成的式子称为关系代数表达式。这种表达式的运算结果仍然是一个关系。可以用关系代数表达式表示对数据库的查询和更新操作。 三、举例说明: 设教学数据库中有3个关系: 学生关系S(SNO, SNAME,AGE,SEX) 学习关系SC(SNO,CNO,GRADE) 课程关系C(CNO,CNAME,TEACHER) (1) 检索学习课程号为C2的学生学号与成绩 ------------------------------------ SELECT SNO,GRADE FROM SC WHERE CNO='C2' ------------------------------------ π SNO, GRADE (σ CNO='C2' (SC)) ************************************ (2) 检索学习课程号为C2的学生学号与姓名 ------------------------------------ SELECT SC.SNO,S.SNAME

数据库关系代数除法讲解

数据库关系代数除法讲解 This manuscript was revised by JIEK MA on December 15th, 2012.

【数据库原理】关系代数篇——除法讲解 陈宇超编辑总结: 除法运算的一般形式示意图 如何计算R÷S呢,首先我们引进”象集”的概念,具体意义看下面的陈述即可理解 关系R和关系S拥有共同的属性B、C , R÷S得到的属性值就是关系R包含而关系S不包含的属性,即A属性 在R关系中A属性的值可以取{ a1,a2,a3,a4 } a1值对应的象集为 { (b1,c2) , (b2,c1) , (b2,c3) } a2值对应的象集为 { (b3,c7) , (b2,c3) } a3值对应的象集为 { (b4,c6) } a4值对应的象集为 { (b6,c6) } 关系S在B、C上的投影为 { (b1,c2) , (b2,c1) , (b2,c3) } 只有a1值对应的象集包含关系S的投影集,所以只有a1应该包含在A属性中为 设有教学数据库有3个关系(以下四小问均用除法的思想解决) 学生信息关系student(sno,sname,age,sex) 学生选课关系 sc(sno,cno,score) 学校课程关系 course(cno,cname)

S003C00269 S005C00277 S005C00398 有存在量词的谓词。 解决这类的除法问题一般采用双嵌套not exists来实现带全称量词的查询解决所谓forall的问题。 (1)检索所学课程包含了C002课程的学生学号 解关系代数表达式:∏sno ( sc÷∏cno(σcno=’C002’ (course) ) Sql语句 从略 (2)求至少选择了C001和C003两门课程的学生学号 解关系代数表达式:∏sno ( sc÷∏cno(σcno=’C001’ or cno=’C003’(course) ) Sql语句 select distinct sno from sc A where not exists ( select*from course B where cno in('C002','C003')and not exists ( select*from sc C where=and= ) ) 也可以采用自连接 select from (select*from sc where cno='C001')as s1, (select*from sc where cno='C003')as s2 where= (3)求至少学习了学生S003所学课程的学生学号 解关系代数表达式:∏sno ( sc÷∏cno(σsno=’S003’ (sc) ) select distinct sno from sc A where not exists ( select*from sc B where sno='S003'and not exists ( select*from sc C where=and= ) ) (4)求选择了全部课程的学生的学号 解此例的等价自然语义是,输出这样的学号,不存在某门课程在他的选课记录里没有选这门课 关系代数表达式:∏sno (sc÷∏cno(course) ) Sql语句 select distinct sno from sc A where not exists

数据库关系代数除法讲解

【数据库原理】关系代数篇——除法讲解 陈宇超编辑总结: 除法运算的一般形式示意图 如何计算R÷S呢,首先我们引进”象集”的概念,具体意义看下面的陈述即可理解 关系R和关系S拥有共同的属性B、C , R÷S得到的属性值就是关系R包含而关系S不包含的属性,即A属性 在R关系中A属性的值可以取{ a1,a2,a3,a4 } a1值对应的象集为{ (b1,c2) , (b2,c1) , (b2,c3) } a2值对应的象集为{ (b3,c7) , (b2,c3) } a3值对应的象集为{ (b4,c6) } a4值对应的象集为{ (b6,c6) } 关系S在B、C上的投影为{ (b1,c2) , (b2,c1) , (b2,c3) } 只有a1值对应的象集包含关系S的投影集,所以只有a1应该包含在A属性中为 【例题一】为了更好的理解除法的实际作用,请看下面的例题 设有教学数据库有3个关系(以下四小问均用除法的思想解决)

学生信息关系student(sno,sname,age,sex) 学生选课关系sc(sno,cno,score) 学校课程关系course(cno,cname) SQL语言中没有全称量词,具体实现时可以把带有全称量词的谓词转换为等价的带有存在量词的谓词。 解决这类的除法问题一般采用双嵌套not exists 解决所谓forall的问题。 (1)检索所学课程包含了C002课程的学生学号 解关系代数表达式:∏sno ( sc÷∏cno(σcno=’C002’ (course) ) Sql语句 从略 (2)求至少选择了C001和C003两门课程的学生学号 解关系代数表达式:∏sno ( sc÷∏cno(σcno=’C001’ or cno=’C003’(course) ) Sql语句 select distinct sno from sc A where not exists ( select*from course B where cno in('C002','C003')and

关系代数全解

因为关系被解释为某个谓词的外延,关系代数的每个运算在谓词演算中都有对应者。例如,自然连接是逻辑AND()的对应者。如果关系R和S分别表示谓词p1和p2的外延,则R和S的自然连接(R S)是表示谓词p1p2的外延的关系。 认识到 Codd 的代数事实上关于一阶逻辑不完备是很重要的。实现它会引起不可

R S = {r s| r R, s S} 主条目:投影 (关系代数) 投影是写为的一元运算,这里的是属性名字的集合。这种投影的结果定义为当所有在中的元组被限制为集合的时候所获得的集合。

广义选择是写为 的一元运算,这里的 是由正常选择中所允许的原子 和逻辑算子 (与)、(或) 和 (非)构成的命题公式。这种选择选出 中使 成立的所有元组。 主条目:重命名 (关系代数) 重命名是写为 的一元运算,这里的结果同一于 ,除了在所有元组中 的 字段被重命名为 字段之外。它被简单的用来重命名关系的属性或关系自身。 连接和类似连接的运算 自然连接 (?) 自然连接是写为 (R ? S ) 的二元运算,这里的 R 和 S 是关系。[1]自然连接的结果是在 R 和 S 中的在它们的公共属性名字上相等的所有元组的组合。例如下面是表格“雇员”和“部门”和它们的自然连接: 雇员 Name EmpI d DeptNa me Harry 3415 财务 Sally 2241 销售 George 3401 财务 Harrie t 2202 销售 部门 DeptNa me Manage r 财务 George 销售 Harrie t 生产 Charle s 雇员 ? 部门 Name EmpI d DeptNa me Manage r Harry 3415 财务 George Sally 2241 销售 Harrie t George 3401 财务 George Harrie t 2202 销售 Harrie t

数据库关系代数

关系代数是一种抽象的查询语言,用对关系的运算来表达查询,作为研究关系数据语言的数学工具。 关系代数的运算对象是关系,运算结果亦为关系。关系代数用到的运算符包括四类:集合运算符、专门的关系运算符、算术比较符和逻辑运算符 比较运算符和逻辑运算符是用来辅助专门的关系运算符进行操作的,所以按照运算符的不同,主要将关系代数分为传统的集合运算和专门的关系运算两类。 传统的集合运算是二目运算,包括并、交、差、广义笛卡尔积四种运算。 ⒈并(Union) 设关系R和关系S具有相同的目n(即两个关系都有n个属性),且相应的属性取自同一个域,则关系R与关系S的并由属于R或属于S的元组组成。其结果关系仍为n目关系。记作: R∪S={t|t∈R∨t∈S} ⒉差(Difference) 设关系R和关系S具有相同的目n,且相应的属性取自同一个域,则关系R与关系S的差由属于R而不属于S的所有元组组成。其结果关系仍为n目关系。记作: R-S={t|t∈R∧t?S} ⒊交(Intersection Referential integrity) 设关系R和关系S具有相同的目n,且相应的属性取自同一个域,

则关系R与关系S的交由既属于R又属于S的元组组成。其结果关系仍为n目关系。记作: R∩S={t|t∈R∧t∈S} ⒋广义笛卡尔积(Extended cartesian product) 两个分别为n目和m目的关系R和S的广义笛卡尔积是一个(n+m)列的元组的集合。元组的前n列是关系R的一个元组,后m 列是关系S的一个元组。若R有k1个元组,S有k2个元组,则关系R和关系S的广义笛卡尔积有k1×k2个元组。

关系代数表达式总结-数据库

关系代数表达式总结 一、并 例1 求选修了课程号为1或2的课程的学生学号。 分析:可以先求出选修了课程号为1的课程的学生学号,再求出选修了课程号为2的课程的学生学号,最后使用并运算的方法求出选修课程号为1或2的课程的学生学号。本 例也可以使用或条件来表示。 n Sno ( o Cno二’1' (SC)) U n Sno ( o Cno二'2 ' (SC))或n Sno ( oCno= ' 1 'V Cno= ' 2' (SC)) 例2检索至少选修课程号为 2和3的课程的学生学号。 分析: 方法一:只涉及到一个表,但不能直接用人(为什么?) 特别注意,本例不能写为: n Sno( oCno= ' 2' A Cno=' 3' (SC)) 因为选择运算为行运算,在同一行中Cno不可能既为2,又为3。 第一步:转换(SC X SC) 笛卡尔积将垂直的条件展开为水平的条件。

选修课程号为2和3的学生: (71=4 人2= ' 2'人5= ' 3' (SC X SC) 最后取出学生的学号: n i( 01=4 人2= ' 2 '人5= ' 3' (SC X SC)) 方法二:n Sno( oCno= ' 2' (SC)) Qn no ( o Cno= ' 3' (SC)) 三、差 例3将学生信息(‘ 95001 ','李勇’,‘男’,20,‘ CS')从Student表删除。 分析:可以将这行数据看成由一个元组构成的表,将Student表与该表进行差运算。 因此,该删除操作可表示为: Student-{ '95001 '李勇',’男',20 , ‘ CS' } 注意:但是当查询涉及到否定或全部值时,上述形式就不能表达了,就要用到差操作或除操作。 例4求没有选修课程号为 2的课程的学生学号。 分析:可以认为是在全部学号中去掉选修课程号为2的课程的学生学号,就得出没有 选修课程号为 2的学生学号。由于在并、交、差运算中,参加运算的关系要求是兼容的,故应当先投影,再进行差运算。 n Sno (Stude nt)- n Sno ( o Cno=' 2' (SC)) 特别注意,本题不能写为:n Sno ( o Cno ±2 ' (SC))。因为,选择运算为行运算,并且SC 表中包含的只是选修了课程的学生学号,对那些没选任何课程的学生学号,在SC中找不到。 根据题意,要查询没有选修课程号为’2'课程的学生学号,显然包括没选任何课程的学生 学号。

关系代数习题

习题四 1. 试述关系模型的三个组成部分。 关系结构、关系操作、关系完整性约束.关系是由(R,U,D,dom,F )组成,R 为关系名,U 位组成关系的元组属性集合, D 为属性集合U 来自的域,dom 为对象关系的映像集合, F 为属性依赖关系集合。关系操作为关系代数、关系演算、关系映象操作,此语言表达能和功能强大,约束:参照完整性约束,用户自定义约束,实体完整性约束。 2. 试述关系数据语言的特点和分类。 关系操作语言灵活方便、语言表达能力和功能强,其特点:操作一体化,操作方式一次一集 合,高度的非过程化的操作,关系操作语言包括:关系代数语言、关系演算语言、基于映像 的语言,关系代数语言是对关系的运算来表达查询的语言,关系演算语言查询元组的应该满 足的谓词条件的运算查询语言,基于映像的语言具有关系代数与关系演算的语言的双重特点 语言查询! 3. 定义并解释下列术语,说明它们之间的联系与区别。 1)主码、候选码、外码。 在一个关系中某个属性(或属性组)能够唯一标识一个元组,则称该属性为候选码,选择其 中一个为主码,在关系R 中属性 F 不是R 的码,h 为K 关系的主码,如果 F 与h 相对应,则称 F 为管系R 的外码 2)笛卡尔积、关系、元组、属性、域。 给定一组域D1,D2,D3 3) 关系、关系模式、关系数据库。 4. 试述关系模型的完整性规则。在参照完整性中,为什么外码属性的值也可以为空?什么 情况下才可以为空? 5. 试述等值连接与自然连接的区别和联系。 6. 对于学生选课关系,其关系模式为: 学生(学号,姓名,年龄,所在系); 课程(课程名,课程号,先行课); 选课(学号,课程号成绩)。 用关系代数完成如下查询。 1)求学过数据库课程的学生的姓名和学号。 2)求学过数据库和数据结构的学生姓名和学号。 3)求没学过数据库课程的学生学号。 4)求学过数据库的先行课的学生学号。

数据库原理作业(关系代数)

设有如下表所示的三个关系S 、C 和SC 。试用关系代数表达式表示下列查询语句: (1)检索“程军”老师所授课程的课程号(C #)和课程名(CNAME )。 (l )ΠC #,CNAME (σTEACHER=’程军’(C )) (2)检索年龄大于21岁男学生的学号(S #)和姓名(SNAME )。 (2)ΠS #,SNAME (σAGE>21∧SEX=’男’(S )) (3)检索至少选修“程军”老师所授全部课程的学生姓名(SNAME )。 (3)ΠSNAME (S (ΠS #,C #(SC )÷ΠC #(σTEACHER=’程军’(C )))) (4)检索“李强”同学不学课程的课程号(C #)。 (4)ΠC #(C )-ΠC #(σS NAME=’李强’(S )SC ) (5)检索至少选修两门课程的学生学号(S #)。 (5)ΠS #(σ[1]=[4]∧[2]≠[5](SC×SC ))

(6)检索全部学生都选修的课程的课程号(C#)和课程名(CNAME)。(6)ΠC#,CNAME(C(ΠS#,C#(SC)÷ΠS#(S))) (7)检索选修课程包含“程军”老师所授课程之一的学生学号(S#)。(7)ΠS#(SCΠC#(σTEACHER=’程军’(C))) (8)检索选修课程号为k1和k5的学生学号(S#)。 (8)ΠS#,C#(SC)÷ΠC#(σC#=’k1’∨C#=’k5’(C)) (9)检索选修全部课程的学生姓名(SNAME)。 (9)ΠSNAME(S(ΠS#,C#(SC)÷ΠC#(C))) (10)检索选修课程包含课程号为k2的学生学号(S#)。 (10)ΠS#,C#(SC)÷ΠC#(σC#=’k2’(C)) 或ΠS#(σC#=’k2’(SC)) (11)检索选修课程名为“C语言”的学生学号(S#)和姓名(SNAME)。(11)ΠS#,SNAME(SΠS#(SC(σCNAME=’C语言’(C)))

关系代数运算习题

一、选择题 1关系代数运算可以分为两类:传统的集合运算和专门的关系运算?下面列出的操作符中,属于传统的集合运算是( A ) I .n(交)n .u(并)『x(广义笛卡儿积)w?一(差)v.n(投影)w选择) A)I、n、川和w B)川、w、V和w C)I、川、V和w D)都是 2、关系数据库管理系统能实现的专门关系操作包括(B) A、显来,打印和制表 B、选择,投影和连接 C、关联、更新和排序 D、排序、索引和统计 3、在关系数据基本操作中,从表中选项出满足某种条件的记录的操作称为( A ) A、选择 B、投影 C、连接 D、扫描 4、元组的集合在关系数据库中称为关系,一般来说,表示元组的属性或者最小属性组称为D A、字段 B、索引 C、标记 D、主键 5、在下面3个关系中 学生S (SNO , SNAME , SEX, AGE )课程 C (CNO , CNAME , CREDIT )学生选课SC (SNO, CNO , GRADE ) 要查找选修“数据库”课程的女学生的姓名,将涉及到关系(D) A、S B、C, SC C、S, SC DS, C, SC 6、对于关系数据库来讲,下面(C)说法是错误的。 A、每一列的分量是同一种类型数据,来自同一个域 B、不同列的数据可以出自同一个域 C、行的顺序可以任意交换,但列的顺序不能任意交换 关系中的任意两个元组不能完全相同 7、关系数据库中有3种基本操作,从表中取出满足条件的属性的操作是(A) A、选择 B、投影 C、连接 D、扫描 8、关系数据库在有3种基本操作,将具有共同属性的两个关系中的元组连接到一起,构成新表的操作称为(C ) A、选择 B、投影 C、连接 D、扫描 9 若D1={a1,a2,a3} , D2={b1,b2,b3},贝U D1*D2 集合中共有元组(C)个 A、 6 B、8 C、9 D、12 10下列(C)运算不是专门的关系运算 A、选择 B、投影 C、笛卡尔积 D、连接 11、如下两个关系R1和R2,它们进行运算后得到R3。(D ) R1 R2 B D E 1M I 2N J A__M R3 A 1 X M I D 1 Y M I

数据库关系代数

登入 约翰·贝克 关系数据库关系代数 当我学习数据库时,我接触过关系代数,但是在长时间不使用它之后,我无法很快将知识转移出我的大脑。今天,我再次学习以加深我的印象。 关系代数:是一种抽象查询语言,使用关系操作来表达查询。关系代数在关系上进行运算,运算结果即为关系。关系代数的基本关系包括并,交,差,笛卡尔积,选择,投影,连接和除法。由于合并,相交和求差的操作非常简单,因此在此不再赘述,仅说明一些容易忘记和混淆的操作。 1.笛卡尔积 计算两个关系R和S的笛卡尔积。如果R的元素数为R而S的元素数为s,则R×s是(R + s)个元素的元组集,如以下示例:结果: 从结果分析:笛卡尔积的结果元素数为R + s,即:3 + 3 = 6;记录数为:R中的记录数乘以s中的记录数,即:3×2 = 6。 2.选择 选择是根据某些条件(例如δ2>'4'(R))在水平方向上切断该关系,这意味着从R中选择第二个成分的值(即R中的B列的值)大于4的元组。。 结果:

与选择相反,投影是关系的垂直切割,它消除了列并对其进行了重新排序。投影用(π)表示。例如,π3,1(R)的结果如下:从结果中,我们可以看到查询表达式中的下标可以用数字,列名称和返回列的名称表示。其他列将从结果关系中删除,并且关系的排列可以通过投影进行重新排列。 4.连接 连接运算:从两个关系的笛卡尔积中选择满足属性之间特定条件的元组,并用(R s)表示它们。连接可以分为两种类型,一种是等效连接(有些书写连接),另一种是自然连接。等效连接:在条件θB中θ为'='的连接;自然连接:关系R和s选择a和B的属性值相等的那些元组。 很容易看到一个例子 等效连接:关于R和S,以下是什么? 结果: 自然连接:自然连接通常在R和s具有共同属性时使用。如果没有公共属性,则自然联接将转换为笛卡尔乘积运算。 例如,如果R和s相关,那么自然连接的结果是什么? 结果: 5.师 例:R△s R:S:

计算机二级:关系代数运算

公共基础专题探究——关系代数运算 1 自然连接:一种特殊的等值连接,它要求两个关系中进行比较的分量必须 是相同的属性组,并且在结果中把重复的属性列去掉 自然连接满足下面的条件: ①两关系间有公共域;②通过公共域的等值进行连接, 例1:一般情况下,当对关系R和S进行自然连接时,要求R和S含有一个或者多个共有的(属性) 例2:有三个关系R、S和T如下: 由关系R和S通过运算得到关系T,则所使用的运算为(自然连接)。 例3:有三个关系R、S和T如下: 则关系R和关系S得到关系T的操作是(自然连接) 例4:有三个关系R、S和T如下:

则由关系R和S得到关系T的操作是(自然连接)。 2 差的运算:关系T中的元组是R关系中有而S关系中没有的元组的集合。 例1:有三个关系R、S和T如下: 则由关系R和S得到关系T的操作是(差)。 例2:由关系R和S得到关系T的操作是(差) 3

则由关系R和S得到关系T的操作是(交)。 5 投影:指对于关系内的域指定可引入新的运算。S是在原有关系R的内部 进行的,是由R中原有的那些域的列所组成的关系 例:有两个关系R,S如下: 由关系R通过运算得到关系S,则所使用的运算为(投影)。 【注】本题中S是在原有关系R的内部进行的,是由R中原有的那些域的列所组成的关系。 6 选择:关系S是关系R的一部分,是通过选择之后的结果,从关系中找出 满足给定条件的元组的操作。 例:有两个关系R和S如下: 则由关系R得到关系S的操作是(选择) 7

例:有三个关系R、S和T如下 则由关系R和S得到T的操作是(并) 8 除运算:如果S=T/R,则S称为T除以R的商。在除运算中S的域由T 中那些不出现在R中的域所组成,对于S中的任一有序组,由它与关系R 中每个有序组所构成的有序组均出现在关系T中。 例1:有三个关系R、S和T如下: 则由关系R和S得到关系T的操作是(除)。 例2:有三个关系R、S和T如下: 则由关系R和S得到关系T的操作是(除)。 9 等值连接:

关系代数习题与详解

1. 先做习题 2(1~3 题) 1. (1)简述关系代数中并、交、差、选择、投影、连接、除的定义。答:并:关系 R 与关系 S的并由属于 R 或属于 S的所有元素组成。 差:关系 R 与关系 S 的差由属于 R 而不属于 S 的所有元素组成。交:关系 R 与关系 S的交即属于 R 又属于 S的所有元素组成。选择:选择是从行的角度进行的运算,选出满足条件的那些记录构成原关系的一个子集。 投影:投影是从列的角度进行运算,所得到属性列个数通常比原关系少,或者属性列 的排列顺序不同。 连接:两个关系中的记录按一定条件横向结合,生成一个新的关系。除:R中的属性包含 S中的属性, R 中的有些属性不出现在 S中。 (2) (3) 等值连接:当算术比较值为“ =”时,是一种特殊的也是最为常用的θ 连接,等值连接是从关系 R 与关系 S 的广义笛卡尔积中选取 i,j 属性值相等的元组。自然连接是一种特殊的等值连接,它要求二个关系中进行比较分量i, j 必须是相同属 性组,并且在结果中去掉了重复的属性列。 2. 设教学库中有三个关系:学生关系 S(S#,SNAME ,AGE ,SEX)学习关系 SC(S#, C#, GRADE)课程关系 C(C# , CNAME ,TEACHER) 请用关系代数表达式表达各个查 询语句 1.检索学习课程号为 C2 的学生学号与成绩。 答:∏ s#,grade(σ c=c2(SC × C)) 2.检索学习课程号为 C2 的学生学号与姓名。 答:∏ s#,sname(σ c=c2(S× C)); 3,检索选修课程 答:∏ c 选修( C 3 已知 R 关系与 S 关系

关系代数

一、关系代数的9种操作: 关系代数中包括了:并、交、差、乘、选择、投影、联接、除、自然联接等操作。 五个基本操作: 并(∪)、差(-)、笛卡尔积(×)、投影(σ)、选择(π) 四个组合操作: 交(∩)、联接(等值联接)、自然联接(R S)、除法(÷) 注2:等值连接表示先做笛卡尔积(×)之后,对相应列进行选择或等值关联后的结果(仅筛选行、不筛选列) 注2:自然连接表示两个关系中若有相同名称的属性,则自动作为关联条件,且仅列出一列 二、关系代数表达式: 由关系代数运算经有限次复合而成的式子称为关系代数表达式。这种表达式的运算结果仍然是一个关系。可以用关系代数表达式表示对数据库的查询和更新操作。 三、举例说明: 设教学数据库中有3个关系: 学生关系S(SNO,SNAME,AGE,SEX) 学习关系SC(SNO,CNO,GRADE) 课程关系C(CNO,CNAME,TEACHER) (1) 检索学习课程号为C2的学生学号与成绩 ------------------------------------ SELECT SNO,GRADE FROM SC WHERE CNO='C2'

πSNO,GRADE(σCNO='C2'(SC)) ************************************ (2) 检索学习课程号为C2的学生学号与姓名 ------------------------------------ SELECT SC.SNO,S.SNAME FROM SC,S WHERE SC.SNO=S.SNO AND https://www.360docs.net/doc/0c4202018.html,O='C2' ------------------------------------ πSNO,SNAME(σCNO='C2'(S SC)) 此查询涉及S和SC,先进行自然连接,然后再执行选择投影操作。---- πSNO,SNAME(S)(πSNO(σCNO='C2'(SC))) 自然连接的右分量为"学了C2课的学生学号的集合"。 此表达式比前一个表达式优化,执行起来要省时间、省空间。 ************************************ (3) 检索选修课程名为MATHS的学生学号与姓名 ------------------------------------ SELECT SC.SNO,S.SNAME FROM SC,S,C WHERE SC.SNO=S.SNO AND https://www.360docs.net/doc/0c4202018.html,O=https://www.360docs.net/doc/0c4202018.html,O AND https://www.360docs.net/doc/0c4202018.html,AME='MATHS' ------------------------------------ πSNO,SANME(σCNAME='MATHS'(S SC C)) ************************************ (4) 检索选修课程号为C2或C4的学生学号

数据库关系代数

关系代数是关系数据库系统查询语言的理论基础 一、关系代数的9种操作: 关系代数中包括了:并、交、差、乘、选择、投影、联接、除、自然联接等操作。 五个基本操作: 并(∪)、差(-)、笛卡尔积(×)、投影(σ)、选择(π) 四个组合操作: 交(∩)、联接(等值联接)、自然联接(R S)、除法(÷) 注2:等值连接表示先做笛卡尔积(×)之后,对相应列进行选择或等值关联后的结果(仅筛选行、不筛选列) 注2:自然连接表示两个关系中若有相同名称的属性,则自动作为关联条件,且仅列出一列二、关系代数表达式: 由关系代数运算经有限次复合而成的式子称为关系代数表达式。这种表达式的运算结果仍然是一个关系。可以用关系代数表达式表示对数据库的查询和更新操作。 三、举例说明: 设教学数据库中有3个关系: 学生关系S(SNO, SNAME,AGE,SEX) 学习关系SC(SNO,CNO,GRADE) 课程关系C(CNO,CNAME,TEACHER) (1) 检索学习课程号为C2的学生学号与成绩

------------------------------------ SELECT SNO,GRADE FROM SC WHERE CNO='C2' ------------------------------------ π SNO, GRADE (σ CNO='C2' (SC)) ************************************ (2) 检索学习课程号为C2的学生学号与姓名 ------------------------------------ SELECT SC.SNO,S.SNAME FROM SC,S WHERE SC.SNO=S.SNO AND https://www.360docs.net/doc/0c4202018.html,O='C2' ------------------------------------ π SNO,SNAME (σ CNO='C2' (S SC)) 此查询涉及S和SC,先进行自然连接,然后再执行选择投影操作。---- π SNO,SNAME (S)(π SNO (σ CNO='C2' (SC))) 自然连接的右分量为"学了C2课的学生学号的集合"。 此表达式比前一个表达式优化,执行起来要省时间、省空间。 ************************************ (3) 检索选修课程名为MATHS的学生学号与姓名 ------------------------------------ SELECT SC.SNO,S.SNAME FROM SC,S,C WHERE SC.SNO=S.SNO AND https://www.360docs.net/doc/0c4202018.html,O=https://www.360docs.net/doc/0c4202018.html,O AND https://www.360docs.net/doc/0c4202018.html,AME='MATHS' ------------------------------------ π SNO, SANME (σ CNAME='MATHS' (S SC C)) ************************************

相关文档
最新文档