电压反馈放大器与电流反馈放大器的区别

电压反馈放大器与电流反馈放大器的区别
电压反馈放大器与电流反馈放大器的区别

1.电压反馈放大器与电流反馈放大器的区别:

1.带宽VS增益

电压反馈型放大器的-3DB带宽由R

1、Rf和跨导gm共同决定,这就是所谓的增益帯宽积的概念,增益增大,带宽成比例下降。同时运放的稳定性有输入阻抗R1和反馈阻抗Rf共同决定。而对于电流反馈型运放,它的增益和带宽是相互独立的,其-3DB带宽仅由Rf决定,可以通过设定Rf得到不同的带宽。再设定R1得到不同的增益。同时,其稳定性也仅受Rf影响。

2.反馈电阻的取值

电流型运放的反馈电阻应根据数据手册在一个特定的范围内选取,而电压反馈型的反馈电阻的选取就相对而言宽松许多。需要注意的是电容的阻抗随着频率的升高而降低,因而在电流反馈放大器的反馈回路中应谨慎使用纯电容性回路,一些在电压反馈型放大器中应用广泛的电路在电流反馈型放大器中可能导致振荡。比如在电压反馈型放大器我们常会在反馈电阻Rf上并联一个电容Cf 来限制运放的带宽从而减少运放的带宽噪声(Cf也常常可以帮助电压反馈型放大器稳定),这些如果运用到电流反馈放大器上,则十有八九会使你的电路振荡。

3.压摆率

当信号较大时,压摆率常常比带宽更占据主导地位,比如同样用单位增益为280MHZ的放大器来缓冲10MHZ,5V的信号,电流反馈放大器能轻松完成,而电压反馈放大器的输出将呈现三角波,这是压摆率不足的典型表现。通常来说,电压反馈放大器的压摆率在500V每us,而电流反馈放大器拥有数千V每us.

4.如何选择两类芯片

a,在低速精密信号处理中,基本看不到电流反馈放大器的身影,因为其直流精度远不如精密电压反馈放大器。b.在高速信号处理中,应考虑设计中所需要的压摆率和增益帯宽积;一般而言,电压反馈放大器在10MHZ以下,低增益和小信号条件下会拥有更好的直流精度和失真性能;而电流反馈放大器在10MHZ以

上,高增益和大信号调理中表现出更好的带宽和失真度。当下面两种情况出现一种时,你就需要考虑一下选择电流反馈放大器:1,噪声增益大于4;2,信号频率大于10MHZ。

编辑本段

2.应用时需要注意的问

1、电流反馈型放大器不能用做积分器

2、电流反馈型放大器在反馈电阻两端不能用并联电容的方法消除振荡

3、电流反馈型放大器的输出和反向输入端不能跨接电容

4、电流型反馈放大器的反馈误差量是运放负管脚的电流值,Vout=Zt×In

5、电流型反馈放大器的反馈电阻不能选择过大的值

6、电流型反馈放大器的反馈阻值会影响放大的稳定性和带宽

7、电流型反馈放大器不能用作电压跟随器的接法

8、电流型反馈放大器的压摆率比较高

9、电流型反馈放大器无增益带宽积这一个参数

10、电流型反馈放大器的增益和闭环带宽可以分别的设置

11、反馈电阻有一个最佳值,既可以保证最大带宽,也可以保证稳定的放大的不振荡。

12、电流型反馈放大器的同向输入和反相输入的计算公式和电压型的相同

13、器件资料的参考电路图中,电流型反馈放大器可以做同向放大和反相放大,问题是在反相输入端的输入电阻非常小在此时的应用是否会产生什么问题?答:

我试过反相放大,没问题。

14、电流型反馈放大器的输入端从+到-相当于是一个跟随,+端是输入端,-端是跟随端,那么问题是在反相输入端输入信号时,以上所说的这种跟随作用如何发生?求解!

15、电流型反馈放大器的输入偏置电压和输入偏置电流这几个参数是否和电压型反馈的运放相同?答:

相同

16、用什么方法消除电流反馈型放大器产生的自激?答:

调整反馈电阻的大小或输入端加104等滤波电容

17、是否还存在电压型反馈的虚短和虚断?答:

存在虚断和虚短在使用电流反馈型运放如THS3001时有以下几点需要特别指出:

(1)THS3001的最大闭环增益为5时能表现出最好的性能。

(2)THS3001工作在反相放大状态时的频响比同相放大状态时好。

(3)负反馈电阻RF对频响和波形失真有较大影响,因此应使用PDF所推存的值。

(4)当放大的信号频率较高(在几MHz以上)时,若将示波器探头开关放在1:1状态下去测量输出波形,由于探头的影响将产生约100~200pF的电容量并接入输入端,这对高频信号而言,将呈现出较低的阻抗,共结果将使THS3001的输出发生过载发热甚至烧环,因此,建议把示波器探头开关放在10:1状态,这样,对于THS3001来说,相当于接入了一个较大阻抗的负载。因而可有效防止芯片损坏。

18.运放pdf资料上的反馈电阻的参考取值是有适用条件的。运放资料上的数据一般是对于小信号放大而言的,应对不同的场合是要改变数据的,资料上经常是以smallsignal为参考的,这点要注意。

19.电流反馈型运放的输出电流较大,为几十毫安不等,当大电压供电时,比如17V供电,芯片发烫是必然的,也不必太紧张,尽量减小它的负荷就行了

开关电源拓扑电压模式与电流模式的比较

开关电源拓扑电压模式与电流模式的比较 作者:罗伯特.曼诺 Unitrode公司的IC公司拥有自成立以来一直活跃在前沿的发展控制电路来实现国家的最先进的级数在电源技术。在多年来许多新产品已推出使设计人员能够在易于应用新的创新电路拓扑结构。由于每一种新的拓扑声称提供改进过的这以前是可用的,它是合理的期望一些混乱将与引进的UCC3570的生成 - 一种新的电压模式控制器介绍我们告诉了近10年后世界上目前的模式是这样的优越方法。 但事实却是,没有一个统一的拓扑结构是最适合所有的应用程序。此外,电压模式控制如果更新了现代化的电路和工艺的发展 - 大有作为今天的高性能用品的设计师和是一个可行的竞争者为电源设计人员的重视。要回答的问题是,它的电路拓扑结构最好是为一个特定的应用程序时,必须从的每一种方法的两个优点和缺点的认识。下面的讨论尝试这样做以一致的方式为这两个电源的控制算法。 电压模式控制这是用于在第一开关的方法调节器的设计和它服务的行业以及为多年本电压模式配置。这种设计的主要特点是:有一个单一的电压反馈路径,以脉冲宽度调制,通过比较所执行的以恒定的倾斜波形电压误差信号。电流限制必须分开进行。 电压模式控制的优点有: 1.单个反馈回路更易于设计和分析。 2.大振幅锯齿波为一个稳定的调制过程提供良好的噪声容限。 3. 低阻抗功率输出为多路输出电源提供更佳交叉调整。 电压模式控制的缺点: 1.任何改变线路或负载必须首先被检测作为输出的变化,然后由校正反馈回路。 这通常意味着响应速度慢。 2.输出滤波器将两个极点的控制循环要求无论是占主导地位的极低频滚降在误 差放大器或在补偿加零。 3.补偿是通过进一步复杂化,即环增益随输入电压而变化。 电流模式控制上述的缺点是相对显著,因为,设计师们在它的介绍非常积极地考虑所有被缓解电流模式控制这种拓扑结构。如可以看到的从图2中,基本电流模式的图 控制使用振荡器只能作为一个固定频率时钟和斜坡波形被替换为从输出电感电流产生的信号。 而这种控制技术提供的优点包括以下内容: 1. 由于电感电流上升与输入电压 - 武定一个斜坡,这个波形会回应马上到线电压的变化,消除双方的延迟反应和增益变化与输入电压变化。 2. 由于误差放大器现在用命令的输出电流而不是电压,输出电感的影响被最小化现在的过滤器只提供一个单极到反馈回路(至少在感兴趣的正常区域)。这允许在可比的电压模式电路更简单补偿和更高的增益带宽。 3. 电流模式电路额外的好处包括固有的脉冲逐脉冲限流仅仅通过钳位误差放大器的命令,当多个功率单元并联共享以及提供方便的负荷。 而改进提供了电流模式令人印象深刻的是,这项技术在设计过程中还带有其独特的一套必须解决的问题。一些这些清单已概述如下:

如何判断电压反馈与电流反馈(1)

如何判断电压反馈与电流反馈? 若反馈量与输出电压成正比则为电压反馈;若反馈量与输出电流成正比则为电流反馈。通常可以采用负载短路法来判断。 从概念上说,若反馈量与输出电压(有时不一定是输出电压,而是取样处的电压)成正比则为电压反馈;若反馈量与输出电流(有时不一定是输出电流,而是取样处的电流)成正比则为电流反馈。在判断电压反馈和电流反馈时,除了上述方法外,也可以采用负载短路法。负载短路法实际上是一种反向推理法,假设将放大电路的负载电阻RL短路(此时,),若输入回路中仍然 存在反馈量,即,则为电流反馈;若输入回路中已不存在反馈,即则为电压反馈。 判断电压反馈和电流反馈更直观的方法是根据负载电阻与反馈网络的连接方式来区分电 压反馈与电流反馈。将负载电阻与反馈网络看作双端网络(在反馈放大电路中其中一端通常为公共接地端),若负载电阻与反馈网络并联,则反馈量对输出电压采样,为电压反馈。否则,反馈量无法直接对输出电压进行采样,则只能对输出电流进行采样,即为电流反馈。 电压负反馈可以稳定输出电压;而电流负反馈则可以稳定输出电流。区分电压反馈与电流反馈只有在负载电阻RL变动时才有意义。如果RL固定不变,因输出电压与输出电流成正比,所以,在稳定输出电压的同时也必然稳定输出电流,反之亦然,二者效果相同。但是当负载电阻 RL改变时,二者的效果则完全不同,电压负反馈在稳定输出电压时,输出电流将更不稳定; 而电流负反馈在稳定输出电流时,输出电压将更不稳定。 图6 电压反馈与电流反馈的判断 如图5(a),反馈电压,反馈量与输出电压成正比,故为电压反馈。

图6(a),反馈电压,反馈量与输出电流成正比,故为电流反馈。 图6 (b),反馈电流,反馈量与输出电流成正比,故为电流反馈。也可用负载短路法来判断,如图5(a)中,将RL短路时(此时,),如图7(a)所示。由于输 入回路中不存在反馈(),所以图5(a)电路为电压反馈。将图6(a) 中RL短路时(此 时,,如图7(b)所示,输入回路中仍然存在反馈量(),说明反馈对输出电流取样,所以图6(a)电路应为电流反馈。 图7 负载短路法判断电压反馈与电流反馈

分析电流控制型开关电源方案

分析电流控制型开关电源方案 随着电力电子技术的高速发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。开关电源是利用现代电力电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。线性电源成本在某一输出功率点上,反而高于开关电源,这一成本反转点。随着电力电子技术的发展和创新,使得开关电源技术在不断地创新,这一成本反转点日益向低输出电力端移动,这为开关电源提供了广泛的发展空间。 电压控制型开关电源会对开关电流失控,不便于过流保护,并且响应慢、稳定性差。与之相比,电流控制型开关电源是一个电压、电流双闭环控制系统,能克服电流失控的缺点,并且性能可靠、电路简单。据此,我们用UC3842芯片设计了一个电流控制型开关电源。为了提高输出电压的精度,系统没有采用离线式结构,而采用直接反馈式结构。本系统在设计上充分考虑了电磁兼容性和安全性,可广泛应用于

工业、家电、视听和照明设备。 电流控制型开关电源的原理框图 电流型控制是针对电压型控制的缺点而发展起来的,在保留了电压控制型的输出电压反馈控制部分外,又增加了一个电流反馈环节,其原理框如图1所示。 图1 电流控制型开关电源的原理框图 电流控制型开关电源是一个电压、电流双闭环控制系统,内环为电流控制环,外环为电压控制环。当U O变化导致UF变化,或I变化导致US变化时,从而改变UO,达到输出电压稳定的目的。 电流型控制芯片UC3842 UC3842 采用固定工作频率脉冲宽度可控调制方式,共有8 个引脚,各脚功能如下:①脚是误差放大器的输出端,外接阻容元件用于改善误差放大器的增益和频率特性;②脚是反馈电压输入端,此脚电压与误差放大器同相端的2.5V 基准电压进行比较,产生误差电压,从而

反馈控制电路

反馈控制电路 一、自动增益控制(AGC) 1、AGC电路的作用与组成 (1) 作用 当输入信号变化时,保证输出信号幅度基本恒定。包括: ①能够产生一个随输入信号大小而变化的控制电压,即AGC电压(±UAGC); ②利用AGC电压去控制某些级的增益,实现AGC。 (2) 组成——具有AGC电路的接收机框图 2、AGC电压的产生 (1) 平均值式AGC电路 中频信号电压经检波后,除得到所需音频信号之外,还得到一个平

均直流分量。音频信号由RL2两端取出。平均直流分量(反映了输入信号的幅度)从C3两端取出,经低通后,作为AGC电压,加到中放管上去控制中放的增益。

(2) 延迟式AGC电路 V1、R7和C4组成AGC检波电路,运放A为直流放大器,UREF为延迟电平。当输入信号较小时,AGC不起作用。当输入信号较大时,AGC将起作用。可见,该AGC电路具有延迟功能

3、实现AGC的方法 (1) 改变发射极电流IE 正向AGC 反向AGC (2) 改变放大器负载 由于放大器的增益与负载密切相关,因此通过改变负载就可以控制放大器的增益 。 (3) 改变放大器的负反馈深度 通过控制负反馈的深度来控制放大器的增益。

6.2 自动频率控制(AFC) 1、AFC的工作原理 2、组成 3、工作原理 4、AFC的应用:调幅接收机中的AFC系统 具有AFC电路的调频发射机一、AFC——电路组成

作用:自动控制振荡器频率稳定 组成:鉴相器、低通滤波器和压控振荡器 标准频率fr;输出频率fo;误差电压uD(t) ;直流控制电压 uC(t)。 二、AFC——工作原理 压控振荡器的输出频率fo与标准频率fr在鉴频器中进行比较,当fo=fr时,鉴频器无输出,压控振荡器不受影响;当fo≠fr时,鉴频器即有误差电压输出,其大小正比于(fo-fr),经低通滤波器滤除交流成分后,输出的直流控制电压uc(t),加到压控振荡器上,迫使压控振荡器的振荡频率fo与fr接近,而后在新的振荡频率基础上,再经历上述同样的过程,使误差频率进一步减小,如此循环下去,最后fo和fr的误差减小到某一最小值△f时,自动微调过程停止,环路

电压电流反馈控制模式

电压、电流的反馈控制模式 现在的高频开关稳压电源主要有五种PWM反馈控制模式。电源的输入电压、电流等信号在作为取样控制信号时,大多需经过处理。针对不同的控制模式其处理方式也不同。下面以由VDMOS开关器件构成的稳压正激型降压斩波器为例,讲述五种PWM反馈控制模式的发展过程、基本工作原理、电路原理示意图、波形、特点及应用要`氪,以利于选择应用及仿真建模研究。 (1)电压反馈控制模式 电压反馈控制模式是20世纪60年代后期高频开关稳压电源刚刚开始发展而采用的一种控制方法。该方法与一些必要的过电流保护电路相结合,至今仍然在工业界被广泛应用。如图1(a)所示为Buck降压斩波器的电压模式控制原理图。电压反馈控制模式只有一个电压反馈闭环,且采用的是脉冲宽度调制法,即将经电压误差放大器放大的慢变化的直流采样信号与恒定频率的三角波上斜坡信号相比较,经脉冲宽度调制得到一定宽度的脉冲控制信号,电路的各点波形如图1(a)所示。逐个脉冲的限流保护电路必须另外附加。电压反馈控制模式的优点如下。 ①PWM三角波幅值较大,脉冲宽度调节时具有较好的抗噪声裕量。 ②占空比调节不受限制。 ③对于多路输出电源而言,它们之间的交互调节特性较好。 ④单一反馈电压闭环的设计、调试比较容易。 ⑤对输出负载的变化有较好的响应调节。 电压反馈控制模式的缺点如下。 ①对输入电压的变化动态响应较慢。当输入电压突然变小或负载阻抗突然变小时,因为主电路中的输出电容C及电感L有较大的相移延时作用,输出电压的变小也延时滞后,而输出电压变小的信息还要经过电压误差放大器的补偿电路延时滞后,才能传至PWM比较器将脉宽展宽。这两个延时滞后作用是动态响应慢的主要原因。 ②补偿网络设计本来就较为复杂,闭环增益随输入电压而变化的现象使其更为复杂。 ③输出端的LC滤波器给控制环增加了双极点,在补偿设计误差放大器时,需要将主极点低频衰减,或者增加一个零点进行补偿。 ④在控制磁芯饱和故障状态方面较为麻烦和复杂。 改善及加快电压模式控制动态响应速度的方法有两种:一种是增加电压误差放大器的带宽,以保证其具有一定的高频增益。但是这样容易受高频开关噪声干扰的影响,需要在主电路及反馈控制电路上采取措施进行抑制或同相位衰减平滑处理。另一种是采用电压前馈控制模式。电压前馈控制模式的原理图如图1(b)所示。用输入电压对电阻、电容(Rt、Ctt)充电,以产生具有可变化的上斜坡的三角波,并且用它取代传统电压反馈控制模式中振荡器产生的固定三角波。此时输入电压变化能立刻在脉冲宽度的变化上反映出来,因此该方法明显提高了由输入电压的变化引起的动态响应速度。在该方法中对输入电压的前馈控

电压负反馈和电流正反馈自动调速系统的选择

电压负反馈和电流正反馈自动调速系统的选择 转速负反馈自动调速系统,其调速指标是很好的,但是它需要一个测速发电机,增加了设备投资,维修较麻烦,有时安装也困难。从A-G-M开环系统中可以看出,当负载电流增加时,由于发电机端电压的下降以及发电机、电动机换向绕组压降及电动机电枢压降的增加,使电动机反电动势及转速下降,可用发电机端电压作为负反馈以维持发电机电压近似不变;可用负载电流作为正反馈以补偿换向绕组及电动机电枢绕组压降。这样既可得到近似转速负反馈的性能。 下图为电压负反馈调速系统电路图。 图2.5.1电压负反馈系统电路图 Figure 2.5 .1 negative feedback system voltage circuit 发电机电枢两端并联电阻RV,从中引出反馈电压UV,此即为信号引出点。Rv的选择应使流进其电流而引起发电机内部压降可略而不计。UV与给定电压Us是反向的,因而构成了电压负反馈环节。由于是电压反馈,故应选择高阻控制绕组作为CI。图中Rsa是给定回路附加电阻。 式中, 为给定电位器分压比;

为电压负反馈系数; 上图中各环节的电压平衡方程式为 式中,分别为发电机及电动机电枢绕组及换向绕组电阻; 为主回路换向绕组的电阻和。 根据框图,写出电压负反馈调速系统静特性方程: 式中,KV为电压负反馈闭环系统开环放大倍数

图2.5.2具有电压负反馈及电流正反馈系统电路图 Figure 2.5 .2 a negative feedback voltage and current positive feedback system circuit 从图2.5(b)可得静特性方程式

DCDC电流反馈

DCDC电流反馈 电流模式最常见的方法就是采样Nmos管的正向压降,(或者用一个采样电阻和他串联),这个采样电压经过电流采样放大器后就得到电压斜坡,即电压越大,斜坡越大;电压越小,斜坡越小;(这个怎么有点类似于电压前馈的作用)。PWM比较器的另一个引脚接误差放大器的输出; 注意上面是一个锯齿波,因此从P管才电流,只有D的时间导通,所以是锯齿波不是三角波。另外还要在加上Vramp,这个会改变,电压变化的斜率。保持稳定。 当斜坡电压达到控制电压是,PWM比较器输出低电平;从而将上管关闭,进而减小上管导通的时间,从而减小电流流过的大小; 从这个上面的过程可以看到,这个过程中LC二阶网络不参与整个环路,因此电感L并不存在于二阶滤波网络中,就已发挥控制作用了。所以这个电流反馈的网络控制形式和电压反馈还是有区别的,特别是在电流环路中,没有了LC二阶的谐振点; 电感/开关管的斜坡电流和PWM比较器的输入电压斜坡成比例,因此电压和电流可以相互转换; 次谐波不稳定的发生条件:占空比接近或者大于50%,变换器工作在CCM模式,通常在最小输入电压时,尽力排除发生次谐波不稳定的可能性; 增益图中有个莫名的尖峰,这就是次谐波不稳定所导致的。这一点远大于穿越频率。 从电路上分析:那么需要引入的就是foundamentals of power eclectrics chapter 11.

那么之所以选择上面的电流模式分解, 第一步是说明在电流连续模式,且稳定的模式下,是怎么的情况,得到斜率和占空比的关系;第二步是说明在电流连续的模式,且不稳定的模式下,是怎么情况,由于电流反馈是在电流不稳定有扰动的情况下,那么就是在第二种情况下,所以要求D小于0.5; 所以从这个地方可以看出来,如果在电压输输出高的情况下,比如1.6V的时候,可能出现 不稳定的情况,通常电压都是在低压的情况0.9,1.8v,一般不会出现这种情况。

电压串联反馈原理

放大电路负反馈的原理特点 一、提高放大倍数的稳定性 引入负反馈以后,放大电路放大倍数稳定性的提高通常用相对变化量来衡量。 因为: 所以求导得: 即: 二、减小非线性失真和抑制噪声 由于电路中存在非线性器件,会导致输出波形产生一定的非线性失真。如果在放大电路中引入负反馈后,其非线性失真就可以减小。 需要指出的是:负反馈只能减小放大电路自身产生的非线性失真,而对输入信号的非线性失真,负反馈是无能为力的。 放大电路的噪声是由放大电路中各元器件内部载流子不规则的热运动引起的。而干扰来自于外界因素的影响,如高压电网、雷电等的影响。负反馈的引入可以减小噪声和干扰,但输出端的信号也将按同样规律减小,结果输出端的信号与噪声的比值(称为信噪比)并没有提高。 三、负反馈对输入电阻的影响 由于负反馈可以提高放大倍数的稳定性,所以引入负反馈后,在低频区和高频区放大倍数的下降程度将减小,从而使通频带展宽。 引入负反馈后,可使通频带展宽约(1+AF)倍。 四、负反馈对输入电阻的影响 (a)串联反馈(b)并联反馈

图1 求输入电阻 1、串联负反馈使输入电阻提高 引入串联负反馈后,输入电阻可以提高(1+AF)倍。即: 式中:ri为开环输入电阻 rif为闭环输入电阻 2、并连负反馈使输入电阻减小引入并联负反馈后,输入电阻减小为开环输入电阻的 1/(1+AF )倍。 即: 五、负反馈对输出电阻的影响 1、电压负反馈使输出电阻减小 放大电路引入电压负反馈后,输出电压的稳定性提高了,即电路具有恒压特性。 引入电压负反馈后,输出电阻rof减小到原来的1/(1+AF)倍。 2、电流负反馈使输出电阻增大 放大电路引入电流负反馈后,输出电流的稳定性提高了,即电路具有恒流特性。 引入电流负反馈后,使输出电阻rof增大到原来的(1+AF)倍。 3、负反馈选取的原则 (1)要稳定静态工作点,应引入直流负反馈。 (2)要改善交流性能,应引入交流负反馈。 (3)要稳定输出电压,应引入电压负反馈; 要稳定输出电流,应引入电流负反馈。 (4)要提高输入电阻,应引入串联负反馈; 要减小输入电阻,应引入并联负反馈。 六、深度负反馈的特点 1、串联负反馈的估算条件 反馈深度(1+AF)>>1的负反馈,称为深度负反馈。通常,只要是多级负反馈放大电路,都可以认为是深度负反馈.此时有: 因为:, 所以:xi≈xf 估算条件:

逆变器的两种电流型控制方式

逆变器的两种电流型控制方式 摘要:研究分析了逆变器的两种双环瞬时反馈控制方式——电流型准PWM控制方式和三态DPM电流滞环跟踪控制方式,介绍其工作原理,分析比较其动态和静态性能,并给出具体实现电路及系统仿真结果。 关键词:PWM逆变器功率变换器控制 On Two Types of Current Programmed Control Topologies for Inverters Abstract:This paper presents a comparative study on two types of current programmed instant control modes for inverters, PWM and hysteresis type.Principle, static and dynamic performance are discussed. Realization circuits and simulation results are presented. Keywords:PWM, Inverter, Power converter, Control 中图法分类号:TN86文献标识码:A文章编号:0219 2713(2000)12-642-03 电流型双环控制技术在DC/DC变换器中广泛应用,较单电压环控制可以获得更优良的动态和静态性能[3]。其基本思路是以外环电压调节器的输出作为内环电流给定,检测电感(或开关)电流与之比较,再由比较器的输出控制功率开关,使电感和功率开关的峰值电流直接跟随电压调节器的输出而变化。如此构成的电流、电压双闭环变换器系统瞬态性能好、稳态精度高,特别是具有内在的对功率开关电流的限流能力。逆变器(DC/AC变换器)由于交流输出,其控制较DC/DC变换器复杂得多,早期采用开关点预置的开环控制方式[1],近年来瞬时反馈控制方式被广泛研究,多种各具特色的实现方案被提出,其中三态DPM(离散脉冲调制)电流滞环跟踪控制方式性能优良,易于实现。本文将电流型PWM控制方式成功用于逆变器控制,介绍其工作原理,与电流滞环跟踪控制方式比较动态和静态性能,并给出仿真结果。 1三态DPM电流滞环跟踪控制方式 电流滞环跟踪控制方式有多种实现形式[1,2,4,5],其中三态DPM电流滞环跟踪控制性能较好且易于实现[1]。参照图1,它的基本工作原理是:检测滤波电感电流iL,产生电流反馈信号if。if与给定电流ig相比较,根据两个电流瞬时值之差来决定单相逆变桥的4个开关在下一个开关周期中的导通情况:ig-if>h时(h见图1,为电流滞环宽度,可按参考文献[1]P64式5 2选取)S1、S4导通,UAB=+E,+1状态;ig-if-h时S2、S3导通,UAB="-"E,-1状态;|ig-if|h时S1、S3或S2、S4导通,UAB="0,"0状态。两个D触发器使S1~S4的开关状态变化只能发生在周期性脉冲信号CLK(频率2f)的上升沿,也就是说开关点在时间轴上是离散的,且最高开关频率为f。 仿真和实验表明,iL正半周,逆变器基本上在+1和0状态间切换,而iL负半周,逆变器基本上在-1和0状态间切换,只有U0过零点附近才有少量的+1和-1之间的状态跳变,从而使输出脉动减小。 2电流型准PWM控制方式

反馈电路详解

第六章反馈放大电路 第一节反馈的概念和分类 1. 反馈的基本概念 2. 负反馈放大电路的类型 1.1 反馈的基本概念基本概念反馈是指把输出电压或输出电流的一部分或全部通过反馈网络,用一定的方式送回到放大电路的输入回路,以影响输入电量的过程。 1.2 反馈的基本类型反馈的分类: ( 1)反馈产生的途径:内部反馈和外部反馈。 2)反馈信号:直流反馈和交流反馈 反馈信号中只含有直流分量的称为直流反馈,反馈信号中只含有交流分量的称为交流反馈。 3)反馈的作用效果:负反馈与正反馈 反馈信号X F送回到输入回路与原输入信号X I 共同作用后,使净输入信号X ID比没有引入反馈时减小,有X ID=X I -X F, 称这种反馈为负反馈;另一种是使净输入信号X ID比没有引入反馈时增加了,有 X ID=X I- X F,称这种反馈为正反馈。 反馈极性的判定——瞬时极性法, 步骤: (1)首先在基本放大器输入端设定一个递增( 或递减) 的净输入信号, (2)在上述设定下, 推演出反馈信号的变化极性。 (3)判定在反馈信号的影响下, 净输入信号的变化极性。若该极性与前面设定的变化极性相反则为负反馈;若相同, 则为正反馈。 (4)反馈的信号取样的方式:电压反馈与电流反馈 (a) 电压反馈反馈信号是输出电压的一部分或全部,即反馈信号与输出电压成正比,称为电压反馈, (b) 电流反馈如果反馈信号是输出电流的一部分或全部,即反馈信号与输出电流成正比,称为电流反馈,。 (c) 判断是电压反馈还是电流反馈的方法判断是电压反馈还是电流反馈时,常用“输出短路法”,即假设负载短路 ( R L=0),使输出电压 v o=0,看反馈信号是否还反馈信号还存在。若存在,则说明反馈信号与输出电压成比例,是电压反馈;若反馈信号不存在了,则说明反馈信号不是与输出电压成比例,而是和输出电流成比例,是电流反馈。 判定方法之二——按电路结构判定:在交流通路中, 若放大器的输出端和反馈网络的取样端处在同一个放大器件的同一个电极上, 则为电压反馈;否则是电流反馈。

电压反馈放大器与电流反馈放大器的区别

1.电压反馈放大器与电流反馈放大器的区别: 1.带宽VS增益 电压反馈型放大器的-3DB带宽由R1、Rf和跨导gm共同决定,这就是所谓的增益帯宽积的概念,增益增大,带宽成比例下降。同时运放的稳定性有输入阻抗R1和反馈阻抗Rf共同决定。而对于电流反馈型运放,它的增益和带宽是相互独立的,其-3DB带宽仅由Rf决定,可以通过设定Rf得到不同的带宽。再设定R1得到不同的增益。同时,其稳定性也仅受Rf影响。 2.反馈电阻的取值 电流型运放的反馈电阻应根据数据手册在一个特定的范围内选取,而电压反馈型的反馈电阻的选取就相对而言宽松许多。需要注意的是电容的阻抗随着频率的升高而降低,因而在电流反馈放大器的反馈回路中应谨慎使用纯电容性回路,一些在电压反馈型放大器中应用广泛的电路在电流反馈型放大器中可能导致振荡。比如在电压反馈型放大器我们常会在反馈电阻Rf上并联一个电容Cf来限制运放的带宽从而减少运放的带宽噪声(Cf也常常可以帮助电压反馈型放大器稳定),这些如果运用到电流反馈放大器上,则十有八九会使你的电路振荡。 3.压摆率 当信号较大时,压摆率常常比带宽更占据主导地位,比如同样用单位增益为280MHZ的放大器来缓冲10MHZ,5V的信号,电流反馈放大器能轻松完成,而电压反馈放大器的输出将呈现三角波,这是压

摆率不足的典型表现。通常来说,电压反馈放大器的压摆率在500V每us,而电流反馈放大器拥有数千V每us. 4.如何选择两类芯片 a,在低速精密信号处理中,基本看不到电流反馈放大器的身影,因为其直流精度远不如精密电压反馈放大器。 b.在高速信号处理中,应考虑设计中所需要的压摆率和增益帯宽积;一般而言,电压反馈放大器在10MHZ以下,低增益和小信号条件下会拥有更好的直流精度和失真性能;而电流反馈放大器在10MHZ以上,高增益和大信号调理中表现出更好的带宽和失真度。当下面两种情况出现一种时,你就需要考虑一下选择电流反馈放大器:1,噪声增益大于4;2,信号频率大于10MHZ。 编辑本段2.应用时需要注意的问 1、电流反馈型放大器不能用做积分器 2、电流反馈型放大器在反馈电阻两端不能用并联电容的方法消除振荡 3、电流反馈型放大器的输出和反向输入端不能跨接电容 4、电流型反馈放大器的反馈误差量是运放负管脚的电流值,Vout=Zt×In 5、电流型反馈放大器的反馈电阻不能选择过大的值 6、电流型反馈放大器的反馈阻值会影响放大的稳定性和带宽 7、电流型反馈放大器不能用作电压跟随器的接法 8、电流型反馈放大器的压摆率比较高 9、电流型反馈放大器无增益带宽积这一个参数10、电流型反馈放大器的增益和闭环带宽可以分别的设置11、反馈电阻有一个最佳值,既可以保证最大带宽,也可以保证稳定的放大的不振荡。

电流电压串联并联负反馈分析

一.电压串联负反馈: 图Z0303(a)为两级电压串联负反馈放大电路,图(b)是它的交流等效电路方框图。 1.反馈类型的判断 (1)找出联系输出回路与输入回路的反馈元件。图Z0303(a)中Rf、Cf、Re1是联系输出回路与输入回路的元件,故Rf、Cf、Re1是反馈元件,它们组成反馈网络,引入级间反馈。 (2)判断是电压反馈还是电流反馈。 可用两种方法来判别,一是反馈网络直接接在放大电路电压输出端,故为电压反馈;二是令Uo = 0,因Uf由Rf、Re1 对Uo分压而得,故Uf= 0反馈消失,所以为电压反馈; (3)判别是串联反馈还是并联反馈。 由图Z0303(a)可以看出:Ube = Ui - Uf 即输入端反馈信号与输入信号以电压形式相迭加,故为串联反馈,也可令Ui=0,此时Uf仍能作用到放大电路输入端,故为串联反馈;还可以根据反馈信号引至共射电路发射极则为串联反馈。 (4)判别反馈极性。 假定Ui为+,则经两级共射电路放大后,Uo为+,经Rf与Re1 分压得到的Uf也为+,结果使得放大电路有效输入信号减弱,故为负反馈。 综上判断结果、该电路为电压串联负反馈放大电路。 2、反馈对输出电量的稳定作用 放大电路引入电压负反馈后,能够使输出电压稳定。任何外界因素引起输出电压不稳时,输出电压的变化将通过反馈网络立即回送到放大电路的输入端,并与原输入信号进行比较,得出与前一变化相反的有效输人信号,从而使输出电压的变化量得到削弱,输出电压便趋于稳定。 可见,负反馈使放大电路具有了自动调节能力。电压负反馈能够稳定输出电压。 3、信号源内阻对串联反馈效果的影响 由上面的讨论可见,对串联反馈Ube = Ui - Uf ,显然,UI越稳定,Uf 对Ube 的影响就越强,控制作用就越灵敏。当信号源内阻Rs = 0时,信号源为恒压源,Us就为恒定值,则Uf的增加量就全部转化为Ube 的减小量,此时,反馈效果最强。因此,串联反馈时,Rs 越小越好,或者说串联反馈适用于信号源内阻Rs 小的场合。 4、放大倍数及反馈系数的含义 对电压串联负反馈电路, Xi = Ui, Xo = Uo,Xf = Uf 故: AUf、FU,分别称为闭环电压放大倍数和电压反馈系数。

运动控制系统仿真实验报告——转速电流反馈控制直流调速系统的仿真

运动控制系统仿真实验报告 ——转速、电流反馈控制直流调速系统的仿真

双闭环直流调速系统仿真 对例题3.8设计的双闭环系统进行设计和仿真分析,仿真时间10s 。具体要求如下: 在一个由三相零式晶闸管供电的转速、电流双闭环调速系统中,已知电动机的额定数据为:60=N P kW , 220=N U V , 308=N I A , 1000=N n r/min , 电动势系数e C =0.196 V·min/r , 主回路总电阻R =0.18Ω,变换器的放大倍数s K =35。电磁时间常数l T =0.012s,机电时间常数m T =0.12s,电流反馈滤波时间常数i T 0=0.0025s,转速反馈滤波时间常数n T 0=0.015s 。额定转速时的给定电压(U n * )N =10V,调节器ASR ,ACR 饱和输出电压U im * =8V,U cm =7.2V 。 系统的静、动态指标为:稳态无静差,调速范围D=10,电流超调量i σ≤5% ,空载起动到额定转速时的转速超调量n σ≤10%。试求: (1)确定电流反馈系数β(假设起动电流限制在1.3N I 以内)和转速反馈系数α。 (2)试设计电流调节器ACR.和转速调节器ASR 。 (3)在matlab/simulink 仿真平台下搭建系统仿真模型。给出空载起动到额定转速过程中转速调节器积分部分不限幅与限幅时的仿真波形(包括转速、电流、转速调节器输出、转速调节器积分部分输出),指出空载起动时转速波形的区别,并分析原因。 (4)计算电动机带40%额定负载起动到最低转速时的转速超调量σn 。并与仿真结果进行对比分析。 (5)估算空载起动到额定转速的时间,并与仿真结果进行对比分析。 (6)在5s 突加40%额定负载,给出转速调节器限幅后的仿真波形(包括转速、电流、转速调节器输出、转速调节器积分部分输出),并对波形变化加以分析。

反馈控制电路

第九章 反馈控制电路 9.1 锁相环路由 鉴相器 、 环路滤波器 和 压控振荡器 组成,它的主要作用是 用于实现两个电信号相位同步,即可实现无频率误差的频率跟踪 。 9.2 实现AGC 的方法主要有改变发射级电流I E 和改变放大器的负载两种。 9.3 简述AGC 电路的作用。 解:AGC 的作用是当输入信号变化很大时,保持接收机的输出信号基本稳定。即当输入信号很弱时,接收机的增益高;当输入信号很强时,接收机的增益低。 9.4 图1所示的锁相环路,已知鉴相器具有线性鉴相特性,试述用它实现调相信号解调的工作原理。 图1 锁相环路 解:调相波信号加到鉴相器输入端,当环路滤波器(LF )带宽足够窄,调制信号不能通过LF ,则压控振荡器(VCO )只能跟踪输入调相波的中心频率c ω,所以()o c t t ?ω=,而 Ωm ()cos ()()()cos ()()cos cos i c p e i o p D d e d p t t m t t t t m t u t A t A m t U t ?ω????=+Ω=-=Ω==Ω=Ω 所以,从鉴相器输出端便可获得解调电压输出。 9.5 锁相直接调频电路组成如图2所示。由于锁相环路为无频差的自动控制系统,具有精确的频率跟踪特性,故它有很高的中心频率稳定度。试分析该电路的工作原理。 图2 锁相直接调频电路组成图

解:用调制信号控制压控振荡器的频率,便可获得调频信号输出。在实际应用中,要求调制信号的频谱要处于低通滤波器通带之外,并且调制指数不能太大。这样调制信号不能通过低通滤波器,故调制信号频率对锁相环路无影响,锁相环路只对VCO平均中心频率不稳定所引起的分量(处于低通滤波器之内)起作用,使它的中心频率锁定在晶体振荡频率上。 9.6 如图例3所示为某晶体管收音机检波电路,问: 1. 电阻R L1、R L2是什么电阻?为什么要采用这种连接方式? 2. 电路中的元件R、C是什么滤波器,其输出的U AGC电压有何作用? 3. 若检波二极管VD开路,对收音机将会产生什么样的结果,为什么? 图3 晶体管收音机检波电路 图3具有AGC的收音机检波电路 解:1. 电阻R L1、R L2是检波器得直流负载电阻,采用这种连接方式目的是减小检波器交、直流负载电阻值得差别,避免产生负峰切割失真。 2. R、C构成低通滤波器,其输出的U AGC电压送到收音机前级控制调谐放大器的增益,实现自动增益控制。 3. 若检波二极管VD开路,则收音机收不到任何电台。 9.7 锁相环路与自动频率控制电路实现稳频功能时,哪种性能优越?原因是什么? 解:锁相环路稳频效果优越。这是由于一般的AFC技术存在着固有频率误差问题(因为AFC是利用误差来减小误差),往往达不到所要求的频率精度,而采用锁相技术进行稳频时,可实现零偏差跟踪。 9.8 画出锁相环路的组成框图并简述各部分的作用。 解:锁相环路的系统框图如图4所示。 图4 锁相环路的组成框图

电流模式与电压模式

电源变换器中电流模式和电压模式相互转化 adlsong 摘要摘要::本文先简单的介绍了电流模式和电压模式的工作原理和这两种工作模式它们各自的优缺点;然后探讨了理想的电压模式利用输出电容ESR 取样加入平均电流模式和通过输入电压前馈加入电流模式的工作过程。也讨论了电流模式在输出轻载或无负载时,在使用大的电感或在占比大于0.5加入斜坡补偿后,系统会从电流模式进入电压模式工作过程。 关键词关键词::电流模式,电压模式,转化,斜坡补偿 Mutual Variation between Current Mode and V oltage Mode in Power Supply Converter (AOS Semiconductor Co., Ltd., Shanghai 201203) Abstract: The operation principle and features of current mode and voltage mode are introduced in this paper. The converter at voltage mode will own good dynamic performances of current mode when current signal via ESR of output capacitance or input voltage forward feedback is imposed into control loop of voltage mode. The converter at current mode will go into cycle. Key words: 目前,电压模式和电流模式是开关电源系统中常用的两种控制类型。通常在讨论这两种工作模式的时候,所指的是理想的电压模式和电流模式。电流模式具有动态响应快、稳定性好和反馈环容易设计的优点,其原因在于电流取样信号参与反馈,抵消了由电感产生的双极点中的一个极点,从而形成单阶的系统;但正因为有了电流取样信号,系统容易受到电流噪声的干扰而误动作。电压模式由于没有电流取样信号参与反馈,系统也就不容易受到电流噪声的干扰。 然而,在实际的应用中,通常看似为电压模式的开关电源系统,即系统没有使用电流取样电阻检测电流信号,但也会采用其它的方式引入一定程度的电流反馈,从而提高系统动态响,如:利用输出电容ESR 取样加入平均电流模式,通过输入电压前馈加入电流模式。另一方面,看似为电流模式的开关电源系统,在输出轻载或无负载时,系统会从电流模式进入电压模式。在使用大的电感时,或在占比大于0.5加入斜坡补偿后,系统会从电流模式向电压模式过渡。本文将讨论这些问题,从而帮助工程师在遇到系统不稳定的时候从理论上分析,找到解决问题的办法。 1 电压模式的工作原理电压模式的工作原理 电压模式的控制系统如图1所示。反馈环路只有一个电压环,电压外环包括电压误差放大器,反馈电阻分压器和反馈补偿环节。电压误差放大器的同相端接到一个参考电压Vref,反馈电阻分压器连接到电压误差放大器反相端V FB ,反馈环节连接到V FB 和电压误差放大器的输出端V C 。输出电压微小的变化反映到V FB 管脚,V FB 管脚电压与参考电压的差值被电压误差放大器放大,然后输出,输出值为V C 。

电流反馈运放的一些问题

电流反馈运放大器工作原理的问题 问:与普通运放相比,我不太明白电流反馈运放如何工作?我听说电流反馈运放带宽恒定,不随增益变化而改变,那是怎么实现的?它与互阻放大器是否一样? 答:在考察电路之前,我们先给电压反馈运放(VFA)、电流反馈运放(CFA)和互阻放大器这三个概念下定义。顾名思义,电压反馈是指一种误差信号为电压形式的闭环结构。传统运放都用电压反馈,即它们的输入对电压变化有响应,从而产生一个相应的输出电压。电流反馈是指用作反馈的误差信号为电流形式的闭环结构。CFA其中一个输入端对误差电流有响应,而不是对误差电压有响应,最后产生相应的输出电压。应该注意的是两种运放的开环结构具有相同的闭环结果:差动输入电压为0,输入电流为0。理想的电压反馈运放有两个高阻抗输入端,从而使输入电流为0,用电压反馈来保持输入电压为0。相反,CFA 有一个低阻抗输入端,从而使输入电压为0,用电流反馈来保持输入电流为0。互阻放大器的传递函数表示为输出电压对输入电流之比,从而表明开环增益 Vo/Iin用欧姆(Ω)表示。因此,CFA可称作互阻放大器。有趣的是,利用VFA 闭环结构也可构成互阻特性,只要用电流(如来自光电二极管的电流)驱动低阻求和节点,就可产生一个电压输出,其输出电压等于输入电流与反馈电阻的乘积。更有趣的是,既然理想情况下,任何一个运放应用电路都可以用电压反馈或电流反馈来实现,那么用电流反馈也能实现上面的I V变换。所以在用互阻放大器这一概念时,要理解电流反馈运放与普通运放闭环I V变换电路之间的差别,因为后者也可表现出类似的互阻特性先看VFA的简化模型(见图1),同相增益放大器电路以开环增益A(s)放大同相放大原理图 波特图图1 VFA的简化模型差模电压(VIN+-VIN-),通过RF和RG构成的分压电路把输出电压的一部分反馈到反相输入端。为推导出该电路的闭环传递函数VO/VIN+,假设流入运放输入端的电流为0(输入阻抗无穷大);两个输入端民位近似相等(接成负反馈且开环增益很高)。这样可得: VO=(VIN+-VIN-)A(s),

高频电子线路最新版课后习题解答第八章--反馈控制电路答案

第八章 思考题与习题 8.1 反馈控制电路中的比较器根据输入比较信号参量的不同,可分为 自动电平控制电路 、 自动频率控制电路 和 自动相位控制电路 三种。 8.2 自动增益控制电路又称AGC ,比较器比较的参量是 电压 。自动增益控制电路的核心电 路是 可变增益放大器 。 8.3自动相位控制电路又称 锁相环,比较器比较的参量是 相位 。基本的锁相环路由 鉴相 器 、 环路低通滤波器和 压控振荡器 三部分组成。锁相环再锁定时,只有剩余相位 误差,而没有剩余 频率误差。 8.4 锁相环实际上是一个 相位反馈控制系统,当环路达到锁定状态时,输出信号与输入参考 信号两者的频率相等。 8.5 AGC 的作用是什么?主要的性能指标包括哪些? 答: AGC 电路可用于控制接收通道的增益,它以特性增益为代价,换取输入信号动态范围的扩大使输出几乎不随输入信号的强弱变化而变化。 其性能指标有两个:动态范围和响应时间。 8.6 AFC 的组成包括哪几部分,其工作原理是什么? 答:AFC 由以下几部分组成:频率比较器、可控频率电路、中频放大器、鉴频器、滤波器。 工作原理:在正常情况下,接收信号的载波为s f ,本振频率L f ,频输出的中频为I f 。若由于某种不稳定因素使本振发生了一个偏移+L f ?。混频后的中频也发生同样的偏移,成为I f +L f ?,中频输出加到鉴频器的中心频率I f ,鉴频器就产生了一个误差电压,低通滤波器去控制压控振荡器,使压控振荡器的频率降低从而使中频频率减小,达到稳定中频的目的 8.7 比较AFC 和AGC 系统,指出它们之间的异同。 解:二者都属于反馈控制系统,但AFC 是采用鉴频器,将输入的两个信号的频率进行比较,它所输出的误差电压与两个比较的频率源之间的频率差成正比,所以达到最后稳定状态时,两个频率之间存在稳态频率误差。而AGC 是将输出电压经过处理后反送到某一前端放大器控制该放大器的增益,以达到使输出电压基本不变的目的。 8.8 锁相与自动频率微调有何区别?为什么说锁相环路相当于一个窄带跟踪滤波器? 解:二者都是利用误差信号的反馈作用来控制被稳定的振荡器的振荡频率。但二者之间有着根本的区别,在锁相环路中,采用的是鉴相器,它所输出的误差电压与两个相互比较的频率源之间的相位差成正比,所以达到最后稳定(锁定)状态时,被稳定(锁定)的频率等于标准频率,但有稳态相位误差(剩余相差);在自动频率微调系统中,采用的是鉴频器,它所输出的误差电压与两个比较的频率源之间的频率差成正比,所以达到最后稳定状态时,两个频率之间存在稳态频率误差,即两个频率源的频率不能完全相等。从这一点来看,利用锁相环可以实现较为理想的频率控制。 之所以说“锁相环路相当于一个窄带跟踪滤波器”,是因为锁相环路的传递函数具有窄带低通特性,且锁相环具有理想的频率跟踪特性。 8.9 PLL 的主要性能指标有哪些?其物理意义是什么? 答:我们可以用“稳”、“准”、“快”、“可控”、“抗扰”五大指标衡量PLL 的优劣。(a )“稳”是指环的稳定性。PLL 的稳定是它工作的前提条件,若环路由负反馈变成了正反馈,就不稳定了。理论分析表明,一、二阶环路是无条件千金之子环。(b )“准”是指环路的锁定

转速、电流反馈控制地直流调速系统设计

《转速、电流反馈控制的直流调速系统 设计》论文 院(系)自动化学院 专业班级 姓名 学号 指导教师

摘要: 针对直流调速系统理论设计与实际要求相差较大的现象,利用matlab/simulink 仿真平台对直流调速系统的理论设计结果进行仿真;通过系统仿真以灵活调节各项参数,从而获得理想的设计结果;实践表明,利用仿真技术可以大大地减少直流双闭环调速系统的设计和调试强度。 关键词:直流调速 理论设计 系统仿真 一、直流调速系统的理论设计 1.1 系统组成及要求 双闭环直流调速系统采用晶闸管三相桥式整流装置供电,基本参数如下: 1、直流电动机:额定转速nN = 1200 r/min ,额定电压UN = 220V ,额定电流IN = 180A ,电动势系数Ce = 0.196V ·min/r ,电流允许过载倍数 λ =1.25;电动机电枢电阻Ra = 0.2Ω,回路总电感L = 20 mH ; 2、晶闸管整流装置放大倍数:Ks = 36; 3、电枢回路总电阻:R = 0.6 Ω; 4、机电时间常数:Tm = 0.22 s 。 设计要求:(1)稳态指标:无静差;(2)动态指标:电流超调量σi ≤5%,启 动到额定转速时的转速超调量σ n ≤10%; 1.2、 电流调节器设计 1、确定时间常数。 (1)整流装置滞后时间常数 s T 三相桥式电路的平均失控时间 s T s 0017.0=;(2)

电流滤波时间常数oi T 三相桥式电路每个波头的时间是3.33ms ,为了基本滤平 波头,应该有 ms T oi 33.3)2~1(=,因此取 s T oi 002.0=;(3)电流环小时间常数 i T ∑ 按小时间常数近似处理,取 s T T T oi s i 0037.0=+=∑。 图1直流双闭环调速系统动态结构图 图2转速和电流双闭环直流调速系统原理图 2、确定将电流环设计成何种典型系统 根据设计要求:%5≤i σ,而且 1011.80037.0/03.0/<==∑i l T T ,因此设计成 典型I 型系统。 3、电流调节器的结构选择 电流调节器选用比例积分调节器(PI ),其传递函数为

相关文档
最新文档