年产30万吨合成氨脱碳工段工艺设计

年产30万吨合成氨脱碳工段工艺设计
年产30万吨合成氨脱碳工段工艺设计

年产30万吨合成氨脱碳

工艺项目

可行性研究报告

指导教师:姚志湘

学生:魏景棠

目录

第一章总论 (3)

1.1 概述 (3)

1.1.1 项目名称 (3)

1.1.2 合成氨工业概况 (3)

1.2 项目背景及建设必要性 (4)

1.2.1 项目背景 (4)

1.2.2 项目建设的必要性 (4)

1.2.3 建设意义............................................................................. 错误!未定义书签。

1.2.4 建设规模 (4)

第二章市场预测 (6)

2.1国内市场预测 (6)

2.2 产品分析 (6)

第三章脱碳方法及种类.. (7)

3.1 净化工序中脱碳的方法. (7)

3.1.1 化学吸收法 (7)

3.1.2 物理吸收法 (8)

3.1.3 物理化学吸收法................... (8)

3.1.4 固体吸收法 (10)

3.2碳酸丙烯酯(PC)法脱碳基本原理 (10)

3.2.1 PC法脱碳技术国内外的情况 (10)

3.2.2 发展过程 (10)

3.2.3 技术经济 (11)

3.2.4 工艺流程 (11)

3.2.5 存在的问题及解决方法 (12)

3.2.6 PC脱碳法发展趋势 (13)

第一章项目总述

2.1 概述

1.1.1项目名称

年产30万吨合成氨脱碳工段工艺设计

1.1.2合成氨工业概况

1898年,德国A.弗兰克等人发现空气中的氮能被碳化钙固定而生成氰氨化钙(又称石灰氮),进一步与过热水蒸气反应即可获得氨:

CaCN2+3H2O(g)→2NH3(g)+CaCO3

在合成氨工业化生产的历史中,合成氨的生产规模(以合成塔单塔能力为依据)随着机械、设备、仪表、催化剂等相关产业的不断发展而有了极大提高。50年代以前,最大能力为200吨/日,60年代初为400吨/日,美国于1963年和1966年分别出现第一个600t/d 和1000t/d的单系列合成氨装置,在60-70年代出现1500-3000t/d规模的合成氨。

世界上85%的合成氨用做生产化肥,世界上99%的氮肥生产是以合成氨为原料。虽然全球一体化的发展减少了用户的选择范围,但市场的稳定性却相应地增加了,世界化肥生产的发展趋势是越来越集中到那些原料丰富且价格便宜的地区,中国西北部有蕴藏丰富的煤炭资源,为发展合成氨工业提供了极其便利的条件。

2.2 项目背景及建设必要性

1.2.1 项目背景

我国是一个人口大国,农业在国民经济中起着举足轻重的作用,而农业的发展离不开化肥。氮肥是农业生产中需要量最大的化肥之一,合成氨则是氮肥的主要来源,因而合成氨工业在国民经济中占有极为重要的位置。

我国合成氨工业始于20世纪30年代,经过多年的努力,我国的合成氨工业得到很大的发展,建国以来合成氨工业发展十分迅速,从六十年代末、七十年代初至今,我国陆续引进了三十多套现代化大型合成氨装置,已形成我国特有的煤、石油、天然气原料并存和大、中、小规模并存的合成氨生产格局。目前我国合成氨产能和产量己跃居世界前列。

但是,由于在我国合成氨工业中,中小型装置多,技术基础薄弱,国产化水平低,远远不能满足农业生产和发展的迫切需要,因此,开发新技术的同时利用计算机数学模型来提高设汁、生产、操作和管理等的核算能力,促进设计、管理和生产操作的优化,从而推动合成氨工业发展,提升整体技术水平,己成为国内当前化学工程科研、工程设计的重要课题。

1.2.2 项目建设的必要性

我国的合成氨原料主要集中在重油,天然气和煤,到目前为止,中国化肥产量己居世界第一位。但人均耕地面积只有世界平均水平的47%,而人口在本世纪中叶将达到约16亿,粮食始终是至关重要的问题。化肥对农作物的增产作用己为大家所公认,中国施肥水平还有很大的提高空间,尤其是中西部市场。

与国外比较,我国氮肥行业主要存在一些比较严重的问题,集中表现为装置规模小,因而有效生产能力不足,致使行业整体竟争能力差。进入WTO后,氮肥行业这种结构性矛盾日趋显著,成为影响行业发展的一个主要因素。

对原有合成氨装置进行改扩建,利用国家对农业的倾斜政策,节能技术改造见效快、可很快提高企业生产规模,改扩建改造会给企业带来了巨大的经济和社会效益。

1.2.3 建设意义

随着合成氨工业的飞速发展与国际经济的迅速变化,合成氨工业的经济性急需要提高,来降低成本,抵御风险。就碳酸丙烯酯法脱碳工艺进行深入研究,以达到成本最低化,资源有效化。

因此,在国际经济与国家政策的前提下,将合成氨的风险和利润投入到中间工序脱碳工段,对陷入困境的化工行业是一个很好的出路,对内外交困的合成氨行业来说,可以避免风险,降低成本。此工艺能有效缩短流程,降低能源消耗,减少污染排放,在提高产品附加值的同时也填补了脱碳工艺的国内空白,并且为合成氨领域的进步积累了难得经验。

1.2.4 建设规模

全厂应主要包括厂前区、动力区、生产区、仓库区等。

厂前区:包括行政楼、研发楼、职工食堂、医务室等主要建筑。

动力区:包括变电站、锅炉房等。他们尽量靠近其服务的车间。这样可以减少管路的铺设和运输过程的损耗。

生产区:应包括七大车间:原料车间、热电车间、造气车间、压缩车间、碳化车间、合成车间和尿素车间。还应有备件库、机修车间、消防车间等辅助车间。

仓库区:应靠近主干道以便于运输。

企业实行厂长负责制,各部门负责人直接受厂长负责,并实行三级管理,厂、科、车间及人员编制以组织好生产为原则。生产车间实行三班制,每班八小时,机械设备大修每二年一次,机械设备保养每一年一次。

表2.1 合成氨全厂人员编制

工种班制男女总人数

3 3 3

热电岗

原料岗

3 3 3

3 3 3

造气岗

3 3 3

变换岗

3 3 3

脱碳岗

甲烷化

3 3 3

岗位

3 3 3

压缩岗

3 3 3

脱硫岗

3 3 3

尿素岗

3 3 3

司炉岗

技术员 1 3 1 4

安全员 1 2 2

1 5 5

辅助人

车间主

1 4 4

总计32 13 45

第二章市场分析

2.1 国内市场预测

氨是重要的无机化工产品之一,在国民经济中占有重要地位。除液氨可直接作为肥料外,农业上使用的氮肥,例如尿素、硝酸铵、磷酸铵、硫酸铵、氯化铵、氯水以及各种含氮混肥和复肥,都是以氨作为原料的。合成氨是大宗化工产品之一,世界每年合成氨产量已达到1亿吨以上,其中约有80%的氨用来生产化学肥料,20%作为其它化工产品的原料。

氨在工业上主要用来制造炸药和各种化学纤维及塑料。从氨可以制得硝酸,进而再制造硝酸铵、硝化甘油、硝基纤维素等。在化纤和塑料工业中,则以氨、硝酸和尿素等作为氮源,生产己二胺、人造丝等产品。

氨的其它工业用途也十分广泛,例如,用作制冰、空调等系统的制冷济,在冶金工业中用来提炼矿石中的铜等金属,在医药和生物化学方面用作生产磺胺类药物、维生素、蛋氨酸和其它氨基酸等等。所以说合成氨在国民经济中占有十分重要的地位。

2.2 产品分析

解放前我国只有两家规模不大的合成氨厂,解放后合成氨工业有了迅速发展。1949年全国氮肥产量仅0.6万吨,而1982年达到1021.9万吨,成为世界上产量最高的国家之一。近几年来,我国引进了一批年产30万吨氮肥的大型化肥厂设备。我国自行设计和建造的上海吴泾化工厂也是年产30万吨氮肥的大型化肥厂。这些化肥厂以天然气、石油、炼油气等为原料,生产中能量损耗低、产量高,技术和设备都很先进。

第三章脱碳方法及种类

3.1净化工序中脱碳的方法

3.1.1 化学吸收法

化学吸收法即利用CO2是酸性气体的特点,采用含有化学活性物质的溶液对合成气进行洗涤,CO2与之反应生成介稳化合物或者加合物,然后在减压条件下通过加热使生成物分解并释放CO2,解吸后的溶液循环使用。化学吸收法脱碳工艺中,有两类溶剂占主导地位,即烷链醇胺和碳酸钾。化学吸收法常用于CO2分压较低的原料气处理。

(l)烷链醇胺类的脱碳工艺有:

①-乙醇胺(monoethanolamine,H2NCH2CH2OH,MEA)法;

②甲基二乙醇胺(methyl diethanolamine,CH3N(CH2CH2OH)2,MDEA)法;

③活化MDEA法(即aMDEA工艺)。

(2)碳酸钾溶液作吸收剂的脱碳工艺,即热钾碱脱碳工艺有:

①无毒G-V法;②苯菲尔法;③催化热钾碱(Cata carb)法;④Flexsorb法[2]。

3.1.1.1.1MEA法

MEA法是一种比较老的脱碳方法。吸收过程中,MEA与CO2发生反应生成碳酸化合物,经过加热即可将CO2分解出来。该法的最大优点是可以在一个十分简单的装置中,把合成气中的CO2脱除到可以接受的程度。

但它本身存在两个缺点:(1) CO2能与吸收反应生成的碳酸化合物发生进一步反应生成酸式碳酸盐,该盐较稳定,不易再生;(2) CO2能与MEA发生副反应,生成腐蚀性较强的氨基甲酸醋,容易形成污垢。

3.1.1.2甲基二乙醇胺MDEA

MDEA法脱碳过程中,CO2与甲基二乙醇胺(MDEA,一种叔胺)生成的碳酸盐稳定性较差,分解温度低,且无腐蚀性。相对其它工艺,MDEA法有以下优点:(1)能耗和生产费用低;(2)脱碳效率高,净化气中CO2含量可小于100ppm;(3)使用范围广,可用于大、中、小各型合成氨厂;(4)溶剂稳定性好;(5)溶剂无毒、腐蚀性极小;(6)能同时脱硫。由于MDEA具有以上优点,所以不需要毒性防腐剂,设备管道允许采用廉价碳钢材料,不需要钝化过程,耗热低,设备管道不需要伴热盘管,能达到很好的节能效果[3]。

在MDEA溶液中添加少量活化剂即为aMDEA法,活化剂为眯哇、甲基咪哇等,浓度约为2-5%。活性MDEA工艺开发于20世纪60年代末,第一套活化MDEA脱碳工艺装置是1971年在德国BAFS公司氨三厂投入使用在此后的几年里,另有8套装置采用了活化MDEA,这些装置的成功使用,使得aMDEA工艺自1982年后备受欢迎。我国在大型装置中使用MDEA

脱碳工艺,乌鲁木齐石化公司化肥厂属于首例[4]。BAFS公司推出的aMDEA脱碳工艺,主要用于对原来MEA工艺的改造,近几年我国一些研究单位正在对这方面进行积极的研究。

3.1.1.3低热耗苯菲尔法

相对上述脱除CO2的吸收剂溶液,碳酸钾溶液更价廉易得,并具有低腐蚀,操作稳定,吸收CO2能力较强等特性。但碳酸钾溶液本身吸收CO2的速度缓慢,需要添加一些活化剂。其中如无毒G-V法工艺就是由意大利Giammaro-Vetrocoke公司所开发,最初使用的活化剂和缓蚀剂为As2O3,但对人体有毒。后来有人用氨基乙酸取代As2O3,消除了毒性,成为无毒G-V法。我国栖霞山化肥厂就采用了这种工艺。由美国联碳公司开发的低热耗苯菲尔法,用二乙醇胺(DEA)作活化剂,V2O5作为腐蚀防护剂。我国于20世纪90年代相继以布朗工艺建了4套装置,即锦西天然气化工厂、建峰化肥厂、四川天华公司化肥厂和乌鲁木齐石化总厂第二化肥厂,规模都是日产氨1000吨。低热耗苯菲尔工艺是由美国联碳公司在传统苯菲尔工艺基础上开发的,采用了节能新技术。国内在20世纪70年代引进的13套大型化肥装置中,有10套采用苯菲尔脱碳工艺。从1985年起,己有7套进行了用低热耗苯菲尔工艺改造。国内新建的以天然气为原料的大型合成氨装置,脱碳系统也多采用低热耗苯菲尔工艺,如锦天化厂、建峰厂、天华公司等。中海石油化学有限公司合成氨装置脱碳系统采用改良型苯菲尔流程[5]。苯菲尔法可在高温下运行,再生热低,添加的V2O5可防腐蚀,但该工艺需对设备进行钒化处理,要求工人的操作水平较高,并且浪费溶剂,能耗大,特别蒸汽用得多,有效气体损失也大,运行成本高等缺点。

3.1.2 物理吸收法

物理洗涤是CO2被溶剂吸收时不发生化学反应,溶剂减压后释放CO2 (不必加热),解吸后的溶液循环使用。相对化学吸收法,物理洗涤法的最大优点是能耗低, CO2不与溶剂形成化合物,减压后绝大部分CO2被闪蒸出来,然后采用气提或负压实现溶剂的完全再生。这就使得工艺投资省、能耗低、工艺流程简单。物理吸收法主要有Selxeol法、Elour法、变压吸附法及低温甲醇法等[6]。物理吸收法常用于高CO2分压的原料气处理。

3.1.2.1NHD法

NHD法被认为是目前能耗最低的脱碳工艺之一,该法使用的溶剂为聚乙二醇二甲醚的混合物,其分子式为CH3-O-(CH2-CH2-O)n-CH2,式中n=2-8。NHD是兖矿鲁南化肥厂与南京化学工业集团公司研究院、杭州化工研究所共同开发成功的一种物理吸收硫化氢和二氧化碳等酸性气体的高效溶剂[7]。NHD气体净化技术改造系脱除酸性气体的物理吸收新工艺,适合于合成气、天然气、城市煤气等的脱硫脱碳。NHD具有对设备无腐蚀,对CO2、H2S 等酸性气体的吸收能力强、蒸汽压低,挥发性小、热稳定性和化学稳定性好、不会起泡,无腐蚀性等优点,并且该法在NHD的再生过程中几乎不需要能量,通常利用空分装置富余的低压氮气在气提塔进行脱碳富液的气提再生,其优点是减少利用空气气提带来系统内NHD溶液含水量的富集,省去了空气水冷、气水分离及NHD脱水设备,节约了投资,简化了流程[8]。

3.1.2.2碳酸丙烯酯法(PC)法

碳酸丙烯酯法是碳酸丙烯酯为吸收剂的脱碳方法。其原理是利用在同样压力、温度下,二氧化碳、硫化氢等酸性气体在碳酸丙烯酯中的溶解度比氢、氮气在碳酸丙烯酯中的溶解度大得多来脱除二氧化碳和硫化氢而且二氧化碳在碳酸丙烯酯中溶解度是随压力升高和温度的降低而增加的,CO2等酸性气体在碳丙溶剂中溶解量一般可用亨利定律来表达,因而在较高的压力下,碳酸丙烯酯吸收了变换气中的二氧化碳等酸性气体,在较低的压力下二氧化碳能从碳酸丙烯酯溶液中解吸出来,使碳酸丙烯酯溶液再生,重新恢复吸收二氧化碳等酸性气体的能力。碳酸丙烯酯法具有溶解热低、粘度小、蒸汽压低、无毒、化学性质稳定、无腐蚀、流程操作简单等优点。

该法CO2的回收率较高,能耗较低,但投资费用较高。适用于吸收压力较高、CO2净化度不很高的流程,国内主要是小型厂使用。用碳丙液作为溶剂来脱除合成氨变换气中CO2工艺是一项比较适合我国国情的先进技术,与水洗工艺比较,除具有物理吸收过程显著的节能效果外,在现有的脱碳方法中,由于它能同时脱除二氧化碳、硫化氢及有机硫化物,加上再生无需热能,能耗较低等优势,在国外合成氨和制氢工业上已得到广泛应用。

3.1.2.3变压吸附法

变压吸附气体分离净化技术,简称PSA(Pressure Swing Adsorption)。变压吸附法是近几年才用于合成气净化的,它属于干法,采用固体吸附剂在改变压力的情况下,进行(加压)吸附CO2或(减压)解吸。变压吸附法分离气体混合物的基本原理是利用某一种吸附剂能使混合气体中各组份的吸附容量随着压力变化而产生差异的特性,选择吸附和解吸再生两个过程,组成交替切换的循环工艺,吸附和再生在相同温度下进行。可用此法改造小型氨厂,将低能耗,在大型氨厂使用显得困难[9]。

为了达到连续分离的目的,变压吸附脱碳至少需要两个以上的吸附塔交替操作,其中必须有一个吸附塔处于选择吸附阶段,而其它塔则处于解吸再生阶段的不同步骤。在每次循环中,每个吸附塔依次经历吸附、多次压力均衡降、逆向放压、抽空、多次压力均衡升、最终升压等工艺步骤。

目前,此种类型的装置在全国合成氨厂已广泛采用。如四川什邡某氮肥厂为天然气富氧造气,变换气脱碳采用我公司近年来开发的节能型变压吸附脱碳新工艺,多塔进料,多次均压,并实现了吸附塔和真空泵的新组合,同时对吸附剂、程控阀门、控制系统、动力设备的配置都做了较大的改进,从而使H2、N2有效气体回收率大大提高,能耗进一步降低,装置投资也有所减少[10]。

3.1.2.4低温甲醇洗法

低温甲醇洗工艺(Rectisol Process)系由德国林德公司(Linde)和鲁奇公司(Lurgi)开发,是利用甲醇溶剂对各种气体溶解度的显著差别,可同时或分段脱除H2S、CO2和各种有机硫等杂质,具有气体净化度高、选择性好、溶液吸收能力强,操作费用低等特点,是一种技术先进、经济合理的气体净化工艺。自1954年Lurgi公司在南非Sasol建成世界上

第一套工业规模的示范性装置以来,目前有100余套装置投入运行,尤其是大型渣油气化和煤气化装置的气体净化均采用低温甲醇洗工艺。

低温甲醇(Rectisol)法具有一次性脱除CO2,溶液便宜易得,能耗低,适用范围广泛等特点。但该法投资很大,我国镇海炼化厂大化肥等四家以重油和煤为原料的合成氨装置使用了低温甲醇法脱除CO2。

3.1.3 物理化学吸收法

物理化学吸收法脱除CO2工艺主要有环丁砜(Sulfinol)法和常温甲醇(Amisol)法,物理化学吸收法常用于中等CO2分压的原料气处理。环丁砜法中所使用的溶剂由是环丁矾、二异丙醇胺与水组成,能同时吸收CO2和硫的化合物,且吸收速度快,净化度高,但再生耗热多,目前只有一些中小型厂使用。常温甲醇法是在甲醇中加入了二乙醇胺,当CO2分压升高时,以其在甲醇中溶解的物理吸收为主;当CO2分压较低时,以其与二乙醇胺发生化学反应的化学吸收为主,该法应用范围广,净化率高,但对H2S和CO2的选择性较差,己很少使用。

3.1.4 固体吸收法

固体吸附是CO2在加压时被吸附在多孔状固体上,减压时吸附的CO2被解吸,亦称变压吸附。

3.2碳酸丙烯酯(PC)法脱碳基本原理

3.2.1 PC法脱碳技术国内外的情况

PC为环状有机碳酸酯类化合物,分子CH3CHOCO2CH2,该法在国外称Fluor法。PC法是南化集团研究院等单位于20世纪70年代开发的技术,1979年通过化工部鉴定。据初步统计,已有150余家工厂使用PC技术,现有装置160余套,其中大型装置两套,其余为中小型装置。大部分用于氨厂变换气脱碳。总脱碳能力约300万吨合成氨/年,其中配尿素型应用较多,占60%左右,至今该法仍是联碱、尿素、磷铵等合成氨厂使用最广的脱碳方法,其开工装置数为MDEA、NHD法总和的数倍。

3.2.2 发展过程

PC技术的应用,主要经历了两个阶段:第一阶段始于70年代末,两个小氮肥厂用PC 法代替水洗法脱CO2的工业试验装置获得成功,取得了明显的节能效果和经济效益。加之PC法在工艺上与水洗法相似,改造费用低,很快在一些小氮肥企业中推广应用;第二阶段,20世纪90年代以来,随着小化肥改变碳铵单一产品结构,适应市场需要,采用脱碳增氨转产尿素或联醇等方法,以提高经济效益,增强小化肥的竟争能力。为此,需要增设一套

变换气脱碳装置,由于PC技术为典型的物理吸收过程,流程简单,投资少,节能明显,技术易于掌握。因此,很快得到了推广,并扩大了应用范围,技术上也趋于成熟。

3.2.3 技术经济

由于碳丙脱碳纯属物理过程,因而它的能耗主要消耗在输送流体所须的电能。碳丙溶剂对CO2等酸性气体的吸收能力较大,一般为同条件下水吸收能力的4倍。因此,代替水洗法脱除变换气中CO2不但满足铜洗要求,而且回收CO2的浓度和回收率也能满足尿素、联碱生产的要求。与水洗法相比可节省电耗150-250KWh/tNH3,可节省操作费10-25元/t NH3。因而应用碳丙脱碳的厂家均可获得明显的节能效果。但这种效果随着工艺配置、设备、操作状况,处理规模和目的的不同而差异较大。碳丙脱碳与几种脱碳方法的能耗比较如表1.1。

表1.1 几种脱碳方法的能耗比较表

方法名称

加压

水洗

苯菲

尔法

位阻

胺法

改良

MEDA法

NHD

P

C法

能耗2847 3558-

5442

3349-

4187

1884 1047-

1256

1

256

3.2.4 工艺流程

(1)原料气流程

由压缩机三段送来 2.3MPa的变换气首先进入水洗塔底部与水洗泵送来的水在塔内逆流接触,洗去变换气中的大部分油污及部分硫化物,并将气体温度降到30℃以下,同时降低变换气中饱和水蒸汽含量。气体自水洗塔塔顶出来进入分离器,自分离器出来的气体进入二氧化碳吸收塔底部,与塔顶喷淋下来的碳酸丙烯酯溶液逆流接触,将二氧化碳脱至工艺指标内。净化气由吸收塔顶部出来进入净化气洗涤塔底部,与自上而下的稀液(或脱盐水)逆流接触,将净化气中夹带的碳酸丙烯酯液滴与蒸气洗涤下来,净化气由塔顶出来后进入净化气分离器,将净化气夹带的碳酸丙烯酯雾沫进一步分离,净化气由分离器顶部出来回压缩机四段入口总管。根据各厂的具体情况和氨加工产品的不同,相匹配的碳丙脱碳条件及要求亦各异。在使用上,有替代加压水洗型、联碱型、配尿素型、联醇型、生产液氨型以及制氢等各类型;在净化效率上,有的对CO2进行粗脱,而大部分厂家,则进行精脱;对脱碳压力,有采用0.4MPa、1.1-1.3Mpa、1.6-1.8Mpa、2.5-2.8Mpa及4.3Mpa等多种类型。

(2)解吸气体回收流程

由闪蒸槽解吸出来的闪蒸气进入闪蒸气洗涤塔,自下而上与自上而下的稀液逆流接触,将闪蒸气夹带的液滴回收下来。闪蒸气自闪蒸气洗涤段出来后进入闪蒸气分离器,将闪蒸

气夹带的碳酸丙烯酯液滴进一步分离下来,闪蒸气自分离器顶部出来送碳化,脱除二氧化碳并副产碳酸氢铵后,闪蒸气回压缩机一段入口总管。

由常解塔解吸出来的常解气进入常解-汽提气洗涤塔的常解气洗涤段,与自上而下的稀液逆流接触,将常解气中夹带的碳酸丙烯酯液滴与饱和于常解气中的碳酸丙烯酯蒸气回收下来,常解气自常解气洗涤段出来后进入常解气分离器,将常解气中夹带的碳酸丙烯酯液滴进一步分离,常解气自分离器顶部出来送食品二氧化碳工段。

汽提气由汽提塔出来后进入常解-汽提气洗涤塔的汽提气洗涤段,与自上而下的稀液逆流接触,将汽提气中夹带的碳酸丙烯酯液滴和饱和汽提气中的碳酸丙烯酯蒸气回收下来,经洗涤后汽提气由塔顶放空。

(3)液体流程

(a)碳酸丙烯酯脱碳流程简述

贫碳酸丙烯酯溶液从二氧化碳吸收塔塔顶喷淋下来,由塔底排出称为富液。富液经自调阀进入溶液泵-涡轮机组的涡轮,减压后进入闪蒸槽,自闪蒸槽出来的碳酸丙烯酯液一部分进入过滤器,大部分不经过过滤器,二者混合过后进入常解-汽提塔的常解段,碳酸丙烯酯液自常解段底部出来经过两液封槽进入汽提塔顶部,与自下而上的空气逆流接触,将碳酸丙烯酯溶液中的二氧化碳进一步汽提出来,经汽提后的碳酸丙烯酯溶液为贫液,贫液由汽提塔出来进入循环槽,再由循环槽进入溶液泵-涡轮机组的溶液泵,由泵加压后经碳酸丙烯酯溶液冷却器降温,进入二氧化碳吸收塔,从而完成了碳酸丙烯酯溶液的整个解吸过程。

(b)稀液流程循环

稀液(或软水)由常解-汽提气洗涤塔的常解段出来,经稀液泵加压后送往净化气洗涤塔上部自上而下。由塔底出来经自调阀进入闪蒸气洗涤塔的上部自上而下,由底部出来经自调阀进入常解-汽提气洗涤塔的汽提气洗涤段自上而下,由底部出来经一U型液封管进入常解气洗涤段继续循环。

3.2.5 存在的问题及解决方法

综合分析PC法脱碳各厂的使用情况,最具代表性的问题有:

(1)溶剂损耗高。造成这一问题原因有三个因素:

a.PC溶剂蒸汽压高;

b.PC气相回收系统不完善;

c.操作管理水平的影响。

(2)净化气中CO2含量容易跑高,吨氨电耗高。净化气中CO2含量高,原因是多方面的如再生效果不好,系统残碳高或冷却不好等等。

目前,碳丙脱碳技术已提高到一个新的阶段,工业应用的或即将应用的最有吸引力的进展有以下几个方面。

3.2.6 PC脱碳法发展趋势

塔器的优化包括塔径、塔填料、塔内件、塔过程控制的技术改造,改造后往往可提高20%-50%或更高的生产能力,改造主要分两部分进行:一是脱碳塔气液分布器和填料的改造,其目的是提高通气量和强化气液接触效率,加大润湿面积。具体办法是设税全截面均匀分布的气体和液体分布器,部分或全部采用规整填料;二是再生塔的改造。由于传统设计中再生塔常解段均为淋降式,当系统硫含量高时,受逆流及淋降板开孔直径的限制,易造成溶液中的单质硫积累结垢,渐渐堵塞淋降板上的开孔,使其失效故往往生产2年后再生效果会明显不如以前。由此可见,必须对这种结构彻底改造。具体办法是将常解段改为筛板或填料塔型,并增设类似塔型的真空解析段。

改造工作除了塔器以外,还进行了系统工艺优化,具体内容有:(1)调整溶剂泵的扬程,串联1台增压泵;(2)气提流程由原正压气提改为负压气提,有利于提高贫度;(3)降低变换气和循环溶剂的温度,以提高碳丙吸收能力;(4)采取碳丙溶剂半过滤或全过滤方法,杜绝系统堵塞隐患;(5)提高变换气脱硫效果;(6)碳丙稀液回收改造[11]。

3.2.6.1复合溶剂法

用两种或两种以上的物理、化学或物理化学溶剂作为复合溶剂净化酸性气体的研究,多年来一直方兴未艾。复合溶剂法的优点从选择性和吸收能力分析,特别是高分压下,选择合适的复合溶剂,优于纯溶剂,显著地提高了溶剂的吸收能力;另一方面明显地降低了能耗。除此以外,复合溶剂为了达到操作特性要求所作的混合过程,还具有其它方面的灵活性,即复合溶剂的组成。而且,复合溶剂可以优化配方用最低的费用达到所须的分离要求(见表1.2)。

表1.2 两种方法的技术经济比较(以吨氨计)

项目PC法复合溶剂法

CO2净化度(%)0.8 0.5

溶剂损耗(Kg) 1.5 0.75

电耗(KWh)145 100

操作成本(元)85 60

3.2.6.2低温PC法

实践证明,低温碳丙法具有以下优点:(1)气体净化度高;(2)降低溶剂循环量;(3)降低溶剂损耗。

为了在较低操作压力下获得需要的气体净化度、降低溶剂循环量、节省动力消耗、降低溶剂蒸发损失,吸收操作可在低于常温条件下进行,即低温碳酸丙烯酯脱碳技术。CO2在溶剂中的溶解度可用下式表示:lgx*=lgp+B/T+C+lgζ

式中:

x*——CO2在含水溶剂中的饱和溶解度,摩尔分数;p——气相CO2分压,1.01×105Pa;

B、C——常数,B=686.1,C=-4.245;

ζ——溶剂含水量的修正系数,当含水量为2%时,ζ=0.9,lgζ=-0.046;T———吸收温度,K。

合成氨变换工段车间布置图Word版

摘要 变换工段是指一氧化碳与水蒸气反应生成二氧化碳和氢气的过程。一氧化碳变换既是原料气的净化过程,又是原料气制备的继续。目前,变换工段主要采用中变串低变的工艺流程。本设计针对中低温串联变换流程进行设计,对流程中各个设备进行物料、能料衡算、以及设备选型,并绘制了带控制点的流程图。 关键词:合成氨,变换,工艺设计,设备选型

30kt/a Retention Of Ammonia Synthesis Process Preliminary Design Abstact Transform section refers to the reactions that produce carbon dioxide carbon monoxide and hydrogen and water vapor in the process. Carbon monoxide transformation is the gas material purification process, and the preparation of gas material to continue. At present, the transformation mainly by grow string sections of variable process low. This design of low-temperature series transformation process of process design, materials, each device can material calculation, and the equipment selection, and plotted take control in the flow chart and variable furnace equipment assembly drawing. Keywords:ammonia, transformation, process design,equipment choice

年产18万吨合成氨、30万吨尿素项目建议书

一、项目概况 1、项目名称:年产18万吨合成氨、30万吨尿素项目 2、合作方式:独资、合资、合作、贷款等均可 3、建设单位:XX煤业有限责任公司及合作单位 4、建设性质:新建 5、建设范围:内蒙古自治区XX自治旗XX矿区 6、建设内容及规模:以XX矿区丰富的褐煤资源为依托,建设年产合成氨18万吨、尿素 30 万吨的项目。可联产轻质油4752吨/年、煤焦油 14454吨/年,氨水(16%)27720吨/年、粗酚1980吨/年 7、建设期限:项目建设期为4年,即2005年4月-2008年9月。 8、投资估算及资金筹措: 投资规模:总投资为147215万元,其中建设投资 138703万元,流动资金8512万元。 本项目资金来源可以是贷款、风险投资等。 9、经济评价 经济评价一览表

二、项目区基本情况 1.地理位置 XX矿区位于内蒙古自治区呼伦贝尔市XX自治旗境内的东北部,地处大兴安岭西麓。其地理坐标是东经120°24′~120°38′、北纬49°09′~49°16′。矿区西连海拉尔区,东接牙克石市,南临巴彦嵯岗苏木,北至海拉尔河,与陈巴尔虎旗隔河相望,南北宽约13.7Km,东西长约46.1Km,总面积385.7Km2。XX火车站东距牙克石18Km,西距呼伦贝尔市64Km,滨州铁路线由东向西穿过XX矿区,北有301国道,铁路经过牙克石可达齐齐哈尔,哈尔滨乃至全国各地,经海拉尔可达满州里市,民航经海拉尔机场可达北京、呼和浩特等地,交通十分方便。 2.煤炭资源及煤质情况 ⑴资源情况 XX煤业公司拥有XX矿区、扎尼河矿区、伊敏河东区、陈旗巴彦哈达矿区、莫达木吉矿区五大矿区。煤炭储量丰富,XX矿区精查储量17.3亿吨;扎尼河矿区预计储量15.8亿吨;伊敏河东区普查储量58.4亿吨,其中详查储量6.1亿吨,精查储量2.3亿吨;巴彦哈达区预计储量49.0亿吨;莫达木吉矿区普查储量30.0亿吨。煤田内煤层集中,赋存稳定,构造较简单,倾角小,沼气含量低,埋藏较深,适宜于井工大型机械集约化连续生产。 ⑵煤质情况

合成氨工艺流程

合成氨工艺流程标准化管理部编码-[99968T-6889628-J68568-1689N]

将无烟煤(或焦炭)由炉顶加入固定床层煤气发生炉中,并交替向炉内通入空气和水蒸汽,燃料气化所生成的半水煤气经燃烧室、废热锅炉回收热量后送入气柜。 半水煤气由气柜进入电除尘器,除去固体颗粒后依次进入压缩机的Ⅰ、Ⅱ、Ⅲ段,加压到~,送入脱硫塔,用溶液或其他脱硫溶液洗涤,以除去硫化氢,随后,气体经饱和塔进入热交换器,加热升温后进入一氧化碳变换炉,用水蒸汽使气体中的一氧化碳变为氢。变换后的气体,返回热交换器进行降温,并经热水塔的进一步降温后,进入变换器脱硫塔,以除去变换时产生的硫化氢。然后,气体进入二氧化碳吸收塔,用水洗法除去大部分二氧化碳。脱碳后的原料进入压缩机Ⅳ、Ⅴ段,升压到压缩机~后,依次进入铜洗塔和碱洗塔,使气体中残余的一氧化碳和二氧化碳含量进一步降至20(ppm)以下,以满足合成氨的要求。 净化后的原料气进入压缩机的最后一段,升压到~MPa进入滤油器,在此与循环压缩机来的循环气混合,经除油后,进入冷凝塔和氨冷器的管内,再进入冷凝塔的下部,分离出液氨。分离出液氨后的气体进入冷凝塔上部的管间,与管内的气体换热升温后进入氨合成塔。在高温高压并有催化剂存在的条件下,将氮氢气合成氨。出合成塔的气体中,约含氨10~20%,经水冷器与氨冷器将氨液化并分离后,其气体进入循环压缩机循环使用。分离出的液氨进入液氨贮槽。 原料气的制备:制备氢氮比为3:1的半水煤气 即造气。将无烟煤(或焦炭)由炉顶加入固定床层煤气发生炉中,并交替向炉内通入空气和水蒸汽,燃料气化后生成氢氮比为3:1的半水煤气。整个生产过程由煤气发生炉、燃烧室、废热锅炉、气柜等设备组成。 固定床半水煤气制造过程由吹风、上吹制气、下吹制气、二次上吹、空气吹净等5个阶段构成,为了调节氢氮比,在吹风末端要将部分吹风气吹入煤气,这个过程通常称为吹风回收。 吹风阶段:空气从煤气炉的底部吹入,使燃料燃烧,热量贮存于燃料中,为制气阶段碳与水蒸汽的反应提供热量。吹风气经过燃烧室和废热锅炉后放空。上吹制气阶段:从煤气炉的底部通入混有适量空气的水蒸汽,和碳反应生成的半水煤气经过炉的顶部引出。向水蒸汽中加入的空气称为加氮空气。 下吹制气阶段:将水蒸汽和加氮空气由炉顶送入,生成的半水煤气由炉底引出。二次上吹制气阶段:水蒸汽和加氮空气自下而上通过燃料层,将炉底残留的半水煤气排净,为下一步送入空气创造安全条件。 空气吹净阶段:从炉底部吹入空气,所得吹风气为半水煤气中氮的主要来源,并将残留的半水煤气加以回收。 以上五个阶段完成了制造半水煤气的主过程,然后重新转入吹风阶段,进入下一个循环。原料气的净化:除去原料气中的硫化氢、二氧化碳等杂质,将一氧化碳转化为氢气本阶段由原料气脱硫、一氧化碳变换、水洗(脱除二氧化碳)、铜洗(脱除一氧化碳)、碱洗(脱除残余二氧化碳)等几个工段构成,主要设备有除尘器、压缩机、脱硫塔、饱和塔、热水塔、一氧化碳变换炉、二氧化碳吸收塔、铜洗塔、碱洗塔等。 脱硫:原料气中硫化物的存在加剧了管道及设备的腐蚀,而且能引起催化剂中毒,必须予以除去。脱硫方法可分为干法脱硫和湿法脱硫两大类。干法脱硫是用固体硫化剂,当气体通过脱硫剂时硫化物被固体脱硫剂吸附,脱除原料气中的少量硫化氢和有机硫化物。一般先进行湿法脱硫,再采用干法脱硫除去有机物和残余硫化氢。湿法脱硫所用的硫化剂为溶液,当含硫气体通过脱硫剂时,硫化物被液体剂吸收,除去气体中的绝大部分硫化氢。

年产五万吨合成氨合成工段工艺设计设计

年产五万吨合成氨合成工段工艺设计设计

目录 中文摘要 (1) 英文摘要 (2) 1 引言 (2) 1.1 氨的基本用途 (2) 1.2 合成氨技术的发展趋势 (2) 1.3 合成氨常见工艺方法 (2) 1.3.1 高压法 (2) 1.3.2 中压法 (2) 1.3.3 低压法 (2) 1.4 设计条件 (2) 1.5 物料流程示意图 (2) 2 物料衡算 (2) 2.1 合成塔入口气组成 (2) 2.2 合成塔出口气组成 (2) 2.3 合成率计算 (2) 2.4 氨分离器出口气液组成计算 (2) 2.5 冷交换器分离出的液体组成 (2) 2.6 液氨贮槽驰放气和液相组成的计算 (2) 2.7 液氨贮槽物料衡算 (2) 2.8 合成循环回路总物料衡算 (2) 3 能量衡算 (2) 3.1 合成塔能量衡算 (2) 3.2废热锅炉能量衡算 (2) 3.3 热交换器能量衡算 (2) 3.4 软水预热器能量衡算 (2) 3.5 水冷却器和氨分离器能量衡算 (2) 3.6 循环压缩机能量衡算 (2) 3.7 冷交换器与氨冷器能量衡算 (2) 3.8 合成全系统能量平衡汇总 (2) 4 设备选型及管道计算 (2) 4.1 管道计算 (2) 4.2 设备选型 (2) 结论 (2) 致谢 (2) 参考文献 (2)

年产五万吨合成氨合成工段工艺设计 摘要:本次课程设计任务为年产五万吨合成氨工厂合成工段的工艺设计,氨合成工艺流程一般包括分离和再循环、氨的合成、惰性气体排放等基本步 骤,上述基本步骤组合成为氨合成循环反应的工艺流程。其中氨合成工 段是合成氨工艺的中心环节。新鲜原料气的摩尔分数组成如下:H 2 73.25%,N 2 25.59%, CH 4 1.65%,Ar 0.51%合成操作压力为31MPa, 合成塔入口气的组成为NH 3(3.0%),CH 4 +Ar(15.5%),要求合成塔出口气中 氨的摩尔分数达到17%。通过查阅相关文献和资料,设计了年产五万吨 合成氨厂合成工段的工艺流程,并借助CAD技术绘制了该工艺的管道及 仪表流程图和设备布置图。最后对该工艺流程进行了物料衡算、能量衡 算,并根据设计任务及操作温度、压力按相关标准对工艺管道的尺寸和 材质进行了选择。 关键词:物料衡算,氨合成,能量衡算

生产管理--年产五万吨合成氨变换工段工艺初步 精品

四川理工学院 毕业设计 题目年产五万吨合成氨变换工段工艺初步设计 系别化学工程与工艺 专业无机化工 011 指导教师 教研室主任 学生姓名 接受任务日期 20XX年2月28日 完成任务日期 20XX年6月1日

四川理工学院 毕业论文任务书 材料与化学工程系无机化工专业2001-1 班题目年产五万吨合成氨变换工段工艺初步设计 起迄日期20XX年 2 月25 日起至20XX 年 6 月1日止 指导老师 教研室主任(签名) 系主任(签名) 学生姓名 批准日期20XX 年 2 月25 日 接受任务日期20XX 年 2 月25 日 完成任务日期20XX 年 6 月 1 日

一、设计(论文)的要求: 1、说明书包括前言,合成氨变换工段工序原理,工艺条件及工艺流 程确定,以及主要设备的选择说明,对本设计的评述。 2、计算部分包括物料衡算,热量衡算,有效能利用率计算,主要设备 计算。 3、图纸带控制点的工艺流程图。 二、设计(论文)的原始数据: 天然气成分:以鸿化厂的实际工作数据为依据来进行。 年工作日330天,其余数据自定。 三、参考资料及说明: 《化工工艺设计手册》(上、下册)、《氮肥工艺设计手册》理化数据、《化肥企业产品能平衡》、《小合成氨厂工艺技术与设计手册》、《合成氨工学》、《化工制图》、《化工原理》、《化学工程》、《化工设计概论》以及关于氮肥的其他相关杂志。

目录 1.前言 (4) 2.工艺原理 (4) 3.工艺条件 (5) 4.工艺流程的确定 (6) 5.主要设备的选择说明 (6) 6.对本设计的综述 (6) 第一章变换工段物料及热量衡算 (8) 第一节中变物料及热量衡算 (8) 1.确定转化气组成 (8) 2.水汽比的确定 (8) 3.中变炉一段催化床层的物料衡算 (9) 4.中变炉一段催化床层的热量衡算 (11) 5.中变炉催化剂平衡曲线 (13) 6. 最佳温度曲线的计算 (14) 7.操作线计算 (15) 8.中间冷淋过程的物料和热量计算 (16) 9.中变炉二段催化床层的物料衡算 (17) 10.中变炉二段催化床层的热量衡算 (18) 第二节低变炉的物料与热量计算 (19) 第三节废热锅炉的热量和物料计算 (24) 第四节主换热器的物料与热量的计算 (26) 第五节调温水加热器的物料与热量计算 (28) 第二章设备的计算 (29) 1. 低温变换炉计算 (29) 2. 中变废热锅炉 (31) 及致谢 (35)

年产30万吨合成氨脱碳工段工艺设计

年产30万吨合成氨脱碳 工艺项目 可行性研究报告 指导教师:姚志湘 学生:魏景棠

目录 第一章总论 (3) 1.1 概述 (3) 1.1.1 项目名称 (3) 1.1.2 合成氨工业概况 (3) 1.2 项目背景及建设必要性 (4) 1.2.1 项目背景 (4) 1.2.2 项目建设的必要性 (4) 1.2.3 建设意义............................................................................. 错误!未定义书签。 1.2.4 建设规模 (4) 第二章市场预测 (6) 2.1国内市场预测 (6) 2.2 产品分析 (6) 第三章脱碳方法及种类.. (7) 3.1 净化工序中脱碳的方法. (7) 3.1.1 化学吸收法 (7) 3.1.2 物理吸收法 (8) 3.1.3 物理化学吸收法................... (8) 3.1.4 固体吸收法 (10) 3.2碳酸丙烯酯(PC)法脱碳基本原理 (10) 3.2.1 PC法脱碳技术国内外的情况 (10) 3.2.2 发展过程 (10) 3.2.3 技术经济 (11) 3.2.4 工艺流程 (11) 3.2.5 存在的问题及解决方法 (12) 3.2.6 PC脱碳法发展趋势 (13)

第一章项目总述 2.1 概述 1.1.1项目名称 年产30万吨合成氨脱碳工段工艺设计 1.1.2合成氨工业概况 1898年,德国A.弗兰克等人发现空气中的氮能被碳化钙固定而生成氰氨化钙(又称石灰氮),进一步与过热水蒸气反应即可获得氨: CaCN2+3H2O(g)→2NH3(g)+CaCO3 在合成氨工业化生产的历史中,合成氨的生产规模(以合成塔单塔能力为依据)随着机械、设备、仪表、催化剂等相关产业的不断发展而有了极大提高。50年代以前,最大能力为200吨/日,60年代初为400吨/日,美国于1963年和1966年分别出现第一个600t/d 和1000t/d的单系列合成氨装置,在60-70年代出现1500-3000t/d规模的合成氨。 世界上85%的合成氨用做生产化肥,世界上99%的氮肥生产是以合成氨为原料。虽然全球一体化的发展减少了用户的选择范围,但市场的稳定性却相应地增加了,世界化肥生产的发展趋势是越来越集中到那些原料丰富且价格便宜的地区,中国西北部有蕴藏丰富的煤炭资源,为发展合成氨工业提供了极其便利的条件。 2.2 项目背景及建设必要性 1.2.1 项目背景 我国是一个人口大国,农业在国民经济中起着举足轻重的作用,而农业的发展离不开化肥。氮肥是农业生产中需要量最大的化肥之一,合成氨则是氮肥的主要来源,因而合成氨工业在国民经济中占有极为重要的位置。 我国合成氨工业始于20世纪30年代,经过多年的努力,我国的合成氨工业得到很大的发展,建国以来合成氨工业发展十分迅速,从六十年代末、七十年代初至今,我国陆续引进了三十多套现代化大型合成氨装置,已形成我国特有的煤、石油、天然气原料并存和大、中、小规模并存的合成氨生产格局。目前我国合成氨产能和产量己跃居世界前列。 但是,由于在我国合成氨工业中,中小型装置多,技术基础薄弱,国产化水平低,远远不能满足农业生产和发展的迫切需要,因此,开发新技术的同时利用计算机数学模型来提高设汁、生产、操作和管理等的核算能力,促进设计、管理和生产操作的优化,从而推动合成氨工业发展,提升整体技术水平,己成为国内当前化学工程科研、工程设计的重要课题。

年产40万吨合成氨合成工段工艺设计

目录 摘要 (3) ABSTRACT (4) 第一章总论 (5) 1.1 概述 (5) 1.2 氨的性质 (5) 1.2.1 氨的物理性质 (5) 1.2.2氨的化学性质 (6) 1.3 原料气来源 (6) 1.4 文献综述 (6) 1.4.1 合成氨工业的发展 (7) 1.4.2我国合成氨工业的现状 (7) 1.4.3合成氨工业的发展趋势 (7) 1.5 设计任务的项目来源 (8) 第二章流程方案的确定 (9) 2.1生产原理 (9) 2.2各生产方法及特点 (9) 2.3工艺条件的选择 (10) 2.4合成塔进口气的组成 (11) 第三章工艺流程简述 (13) 3.1 合成工段工艺流程简述 (13) 3.2 工艺流程方框图 (14) 第四章工艺计算 (15) 4.1 物料衡算 (15) 4.1.1设计要求 (15) 4.1.2计算物料点流程图 (16) 4.1.3合成塔入口气组分 (16) 4.1.4合成塔出口气组分 (17) 4.1.5合成率 (18)

4.1.6氨分离器气液平衡计算 (18) 4.1.7冷交换器气液平衡计算 (20) 4.1.8液氨贮槽气液平衡计算 (21) 4.1.9合成系统物料计算 (24) 4.1.10合成塔物料计算 (25) 4.1.11水冷器物料计算 (26) 4.1.12氨分离器物料计算 (27) 4.1.13冷交换器物料计算 (27) 4.1.15氨冷器物料计算 (30) 4.1.17液氨贮槽物料计算 (30) 4.2 热量衡算 (30) 4.2.1冷交换器热量计算 (30) 4.2.2 氨冷凝器热量衡算 (33) 4.2.3循环机热量计算 (33) 4.2.4合成塔热量衡算 (35) 4.2.5废热锅炉热量计算 (37) 4.2.6热交换器热量计算 (38) 4.2.7水冷器热量衡算 (39) 第五章设备选型及设计计算 (40) 5.1 合成塔催化剂层设计 (40) 5.2 废热锅炉设备工艺计算 (42) 5.2.1计算条件 (42) 5.2.2管内给热系数的计算 (42) 5.2.3管外给热系数 (46) 5.2.4传热总系数K (46) 5.2.5传热温差 (47) 5.2.6传热面积 (47) 参考文献 (50) 致谢 (51)

-合成氨原料气的制备方法

年产五十万吨合成氨的原料气制备工艺筛选 合成氨生产工艺流程简介 合成氨因采用的工艺不同其生产流程也有一定的差别,但基本的生产过程都大同小异,基本上由原料气的生产、原料气的净化、合成气的压缩以及氨合成四个部分组成。 ●原料气的合成 固体燃料生产原料气:焦炭、煤 液体燃料生产原料气:石脑油、重油 气体燃料生产原料气:天然气 ●原料气的净化 CO变换 ●合成气的压缩 ●氨的合成 工业上因所用原料制备与净化方法不同,而组成不同的工艺流程,各种原料制氨的典型流程如下: 1)以焦炭(无烟煤)为原料的流程 50年代以前,世界上大多数合成氨厂采用哈伯-博施法流程。以焦炭为原料的吨氨能耗为88GJ,比理论能耗高4倍多。 我国在哈伯-博施流程基础上于50年代末60年代初开发了碳化工艺和三催化剂净化流程: ◆碳化工艺流程将加压水洗改用氨水脱除CO2得到的碳酸氢铵经结晶,分离后作 为产品。所以,流程的特点是气体净化与氨加工结合起来。 ◆三催化剂净化流程采用脱硫、低温变换及甲烷化三种催化剂来净化气体,以替代 传统的铜氨液洗涤工艺。 2)以天然气为原料的流程 天然气先要经过钴钼加氢催化剂将有机硫化物转化成无机硫,再用脱硫剂将硫含量脱除到以下,这样不仅保护了转化催化剂的正常使用,也为易受硫毒害的低温变换催化剂应用提供了条件。 3)以重油为原料的流程 以重油作为制氨原料时,采用部分氧化法造气。从气化炉出来的原料气先清除炭黑,经CO耐硫变换,低温甲醇洗和氮洗,再压缩和合成而得氨。 二、合成氨原料气的制备方法简述 天然气、油田气、炼厂气、焦炉气、石脑油、重油、焦炭和煤,都是生产合成氨的原料。除焦炭成分用C表示外,其他原料均可用C n H m来表示。它们呢在高温下与蒸汽作用生成以H2和CO为主要组分的粗原料气, 这些反应都应在高温条件下发生,而且为强吸热反应,工业生产中必须供给热量才能使其进行。 按原料不同分为如下几种制备方法: ●以煤为原料的合成氨工艺 各种工艺流程的区别主要在煤气化过程。 典型的大型煤气化工艺主要包括固定床碎煤加压气化工艺、德士古水煤浆加压气化工艺以及壳牌干煤粉加压气化工艺。 ①固定床碎煤气化

合成氨工艺流程

工艺流程说明: 将无烟煤(或焦炭)由炉顶加入固定床层煤气发生炉中,并交替向炉内通入空气和水蒸汽,燃料气化所生成的半水煤气经燃烧室、废热锅炉回收热量后送入气柜。 半水煤气由气柜进入电除尘器,除去固体颗粒后依次进入压缩机的Ⅰ、Ⅱ、Ⅲ段,加压到1.9~2.0Mpa,送入脱硫塔,用A.D.A.溶液或其他脱硫溶液洗涤,以除去硫化氢,随后,气体经饱和塔进入热交换器,加热升温后进入一氧化碳变换炉,用水蒸汽使气体中的一氧化碳变为氢。变换后的气体,返回热交换器进行降温,并经热水塔的进一步降温后,进入变换器脱硫塔,以除去变换时产生的硫化氢。然后,气体进入二氧化碳吸收塔,用水洗法除去大部分二氧化碳。脱碳后的原料进入压缩机Ⅳ、Ⅴ段,升压到压缩机12.09~13.0Mpa后,依次进入铜洗塔和碱洗塔,使气体中残余的一氧化碳和二氧化碳含量进一步降至20(ppm)以下,以满足合成氨的要求。 净化后的原料气进入压缩机的最后一段,升压到30.0~32.0 MPa进入滤油器,在此与循环压缩机来的循环气混合,经除油后,进入冷凝塔和氨冷器的管内,再进入冷凝塔的下部,分离出液氨。分离出液氨后的气体进入冷凝塔上部的管间,与管内的气体换热升温后进入氨合成塔。在高温高压并有催化剂存在的条件下,将氮氢气合成氨。出合成塔的气体中,约含氨10~20%,经水冷器与氨冷器将氨液化并分离后,其气体进入循环压缩机循环使用。分离出的液氨进入液氨贮槽。 原料气的制备:制备氢氮比为3:1的半水煤气 即造气。将无烟煤(或焦炭)由炉顶加入固定床层煤气发生炉中,并交替向炉内通入空气和水蒸汽,燃料气化后生成氢氮比为3:1的半水煤气。整个生产过程由煤气发生炉、燃烧室、废热锅炉、气柜等设备组成。 固定床半水煤气制造过程由吹风、上吹制气、下吹制气、二次上吹、空气吹净等5个阶段构成,为了调节氢氮比,在吹风末端要将部分吹风气吹入煤气,这个过程通常称为吹风回收。 吹风阶段:空气从煤气炉的底部吹入,使燃料燃烧,热量贮存于燃料中,为制气阶段碳与水蒸汽的反应提供热量。吹风气经过燃烧室和废热锅炉后放空。 上吹制气阶段:从煤气炉的底部通入混有适量空气的水蒸汽,和碳反应生成的半水煤气经过炉的顶部引出。向水蒸汽中加入的空气称为加氮空气。 下吹制气阶段:将水蒸汽和加氮空气由炉顶送入,生成的半水煤气由炉底引出。 二次上吹制气阶段:水蒸汽和加氮空气自下而上通过燃料层,将炉底残留的半水煤气排净,为下一步送入空气创造安全条件。 空气吹净阶段:从炉底部吹入空气,所得吹风气为半水煤气中氮的主要来源,并将残留的半水煤气加以回收。 以上五个阶段完成了制造半水煤气的主过程,然后重新转入吹风阶段,进入下一个循环。原料气的净化:除去原料气中的硫化氢、二氧化碳等杂质,将一氧化碳转化为氢气本阶段由原料气脱硫、一氧化碳变换、水洗(脱除二氧化碳)、铜洗(脱除一氧化碳)、碱洗(脱除残余二氧化碳)等几个工段构成,主要设备有除尘器、压缩机、脱硫塔、饱和塔、热水塔、一氧化碳变换炉、二氧化碳吸收塔、铜洗塔、碱洗塔等。 脱硫:原料气中硫化物的存在加剧了管道及设备的腐蚀,而且能引起催化剂中毒,必须予以除去。脱硫方法可分为干法脱硫和湿法脱硫两大类。干法脱硫是用固体硫化剂,当气体通过脱硫剂时硫化物被固体脱硫剂吸附,脱除原料气中的少量硫化氢和有机硫化物。一般先进行湿法脱硫,再采用干法脱硫除去有机物和残余硫化氢。湿法脱硫所用的硫化剂为溶液,当含硫气体通过脱硫剂时,硫化物被液体剂吸收,除去气体中的绝大部分硫化氢。 CO变换:一氧化碳对氨催化剂有毒害,因此在原料气进入合成氨工序之前必须将一氧

年产合成氨30万吨

目录 一、绪论 (1) 、概述 (3) 、设计任务的依据 (1) 二、装置流程及说明 (2) 、生产工艺流程说明 (2) 、粗苯洗涤 (4) 、粗苯蒸馏 (4) 三、吸收工段工艺计算 (7) 、物料衡算 (7) 、气液平衡曲线 (8) 、吸收剂的用量 (9) 、塔底吸收液 (10) 、操作线 (10) 、塔径计算 (10) 、填料层高度计算 (13) 、填料层压降计算 (16) 四、脱苯工段工艺计算 (17) 、管式炉 (17) 、物料衡算 (18) 、热量衡算 (22)

五、主要符号说明 (25) 六、设计心得 (26) 七、参考文献 (27)

一、绪论 概述 氨是重要的化工产品之一,用途很广。在农业方面,以氨为主要原料可以生产各种氮素肥料,如尿素、硝酸铵、碳酸氢氨、氯化铵等,以及各种含氮复合肥料。液氨本身就是一种高效氮素肥料,可以直接施用。目前,世界上氨产量的85%—90%用于生产各和氮肥。因此,合成氨工业是氮肥工业的基础,对农业增产起着重要的作用。合成氨工业对农业的作用实质是将空气中游离氮转化为能被植物吸收利用的化合态氮,这一过程称为固定氮。 氨也是重要的工业原料,广泛用于制药、炼油、纯碱、合成纤维、合成树脂、含氮无机盐等工业。将氨氧化可以制成硝酸,而硝酸又是生产炸药、染料等产品的重要原料。生产火箭的推进剂和氧化剂,同样也离不开氨。此外,氨还是常用的冷嘲热讽冻剂。 合成氨的工业的迅速发展,也促进了高压、催化、特殊金属材料、固体燃料气化、低温等科学技术的发展。同时尿素的甲醇的合成、石油加氢、高压聚合等工业,也是在合成氨工业的基础上发展起来的。所以合成氨工业在国民经济中占有十分重要的地位,氨及氨加工工业已成为现代化学工业的一个重要部门。 在合成氨工业中,脱硫倍受重视。合成氨所需的原料气,无论是天然气、油田气还是焦炉气、半水煤气都人含有硫化物,这些硫化物主要是硫化氢(S H 2)、二硫化碳(2CS )、硫氧化碳(COS )、硫醇(SH -R )和噻吩(S H C 44)等。其中硫化氢属于无机化合物,常称为“无机硫”。 合成氨在生产原料气中硫化物虽含量不高,但对生产的危害极大。 ①腐蚀设备、管道。含有S H 2的原料气,在水分存在时,就形成硫氢酸(HSH ),腐蚀金属设备。其腐蚀程度随原料气中S H 2的含量增高而加剧。 ②使催化剂中毒、失活。当原料气中的硫化物含量超过一定指标时,硫化物与催化剂活性中心结合,就能使以金属原子或金属氧化物为活性中心的催化剂中毒、失活。包括转化催化剂、高温变换催化剂、低温变换催化剂、合成氨催化剂

(工艺技术)合成氨工艺简介

合成氨工艺控制方案总结 一合成氨工艺简介 中小型氮肥厂是以煤为主要原料,采用固定层间歇气化法制造合成氨原料气。从原料气的制备、净化到氨的合成,经过造气、脱硫、变换、碳化、压缩、精炼、合成等工段。工艺流程简图如下所示: 该装置主要的控制回路有:(1)洗涤塔液位; (2)洗涤气流量; (3)合成塔触媒温度; (4)中置锅炉液位; (5)中置锅炉压力; (6)冷凝塔液位; (7)分离器液位; (8)蒸发器液位。 其中触媒温度控制可采用全系数法自适应控制,其他回路采用PID控制。 二主要控制方案 (一)造气工段控制 工艺简介: 固定床间歇气化法生产水煤气过程是以无烟煤为原料,周期循环操作,在每一循环时间里具体分为五个阶段;(1)吹风阶段约37s;(2)上吹阶段约39s;(3)下吹阶段约56s;(4)二上吹阶段约12s;(5)吹净阶段约6s. l、吹风阶段 此阶段是为了提高炉温为制气作准备的。这一阶段时间的长短决定炉温的高低, 时间过长,炉温过高;时间过短,炉温偏低并且都影响发气量,炉温主要由这一阶段控制。般工艺要求此阶段的操作时间约为整个循环周期的18%左右。 2、上吹加氮制气阶段 在此阶段是将水蒸汽和空气同时加入。空气的加入增加了气体中的氮气含量,是调节H2/N2的主要手段。但是为了保证造气炉的安全该段时间最多不超过整个循环周期的26%。 3、上吹制气阶段 该阶段与上吹加氯制气总时间为整个循环的32%,随着上吹制气的进行下部炉温逐渐下降,为了保证炉况和提高发气量,在此阶段蒸汽的流量最好能得以控制。 4、下吹制气阶段 为了充分地利用炉顶部高温、提高发气量,下吹制气也是很重要的一个阶段。这段时间

年产5万吨合成氨变换工段工艺初步讲解

毕业设计 题目年产五万吨合成氨变换工段工艺初步设计 系别化学工程与工艺 专业 指导教师 教研室主任 学生姓名 接受任务日期 完成任务日期

四川理工学院 毕业论文任务书 指导老师 教研室主任(签名) 系主任(签名) 学生姓名 批准日期2005 年 2 月25 日接受任务日期2005 年 2 月25 日完成任务日期2005 年 6 月 1 日

一、设计(论文)的要求: 1、说明书包括前言,合成氨变换工段工序原理,工艺条件及工艺流 程确定,以及主要设备的选择说明,对本设计的评述。 2、计算部分包括物料衡算,热量衡算,有效能利用率计算,主要设备 计算。 3、图纸带控制点的工艺流程图。 二、设计(论文)的原始数据: 天然气成分:以鸿化厂的实际工作数据为依据来进行。 年工作日330天,其余数据自定。 三、参考资料及说明: 《化工工艺设计手册》(上、下册)、《氮肥工艺设计手册》理化数据、《化肥企业产品能平衡》、《小合成氨厂工艺技术与设计手册》、《合成氨工学》、《化工制图》、《化工原理》、《化学工程》、《化工设计概论》以及关于氮肥的其他相关杂志。

目录 1.前言 (4) 2.工艺原理 (4) 3.工艺条件 (5) 4.工艺流程的确定 (6) 5.主要设备的选择说明 (6) 6.对本设计的综述 (6) 第一章变换工段物料及热量衡算 (8) 第一节中变物料及热量衡算 (8) 1.确定转化气组成 (8) 2.水汽比的确定 (8) 3.中变炉一段催化床层的物料衡算 (9) 4.中变炉一段催化床层的热量衡算 (11) 5.中变炉催化剂平衡曲线 (13) 6. 最佳温度曲线的计算 (14) 7.操作线计算 (15) 8.中间冷淋过程的物料和热量计算 (16) 9.中变炉二段催化床层的物料衡算 (17) 10.中变炉二段催化床层的热量衡算 (18) 第二节低变炉的物料与热量计算 (19) 第三节废热锅炉的热量和物料计算 (24) 第四节主换热器的物料与热量的计算 (26) 第五节调温水加热器的物料与热量计算 (28) 第二章设备的计算 (29) 1. 低温变换炉计算 (29) 2. 中变废热锅炉 (31) 参考文献及致谢 (35)

年产30万吨合成氨脱硫工段设计

目录 1. 总论......................................... 错误!未定义书签。 1.1.1栲胶的组成及性质............................................................................. 错误!未定义书签。 1.1.2栲胶脱硫的反应机理............................................................................ 错误!未定义书签。 1.1.3生产中副产品硫磺的应用 .................................................................... 错误!未定义书签。 2. 流程方案的确定............................... 错误!未定义书签。 2.1栲胶脱硫法的理论依据................................................. 错误!未定义书签。 2.2工艺流程方框图.............................................................. 错误!未定义书签。 3. 生产流程的简述............................... 错误!未定义书签。 3.1简述物料流程 ............................................................... 错误!未定义书签。 3.1.1气体流程................................................................................................ 错误!未定义书签。 3.1.2溶液流程................................................................................................ 错误!未定义书签。 3.1.3硫磺回收流程........................................................................................ 错误!未定义书签。 3.2工艺的化学过程.............................................................. 错误!未定义书签。 3.3反应条件对反应的影响 ............................................... 错误!未定义书签。 3.3.1 影响栲胶溶液吸收的因素 ................................................................... 错误!未定义书签。 3.3.2 影响溶液再生的因素 ........................................................................... 错误!未定义书签。 3.4工艺条件的确定............................................................. 错误!未定义书签。 3.4.1 溶液的组成........................................................................................... 错误!未定义书签。 3.4.2 喷淋密度和液气比的控制 ................................................................... 错误!未定义书签。 3.4.3 温度....................................................................................................... 错误!未定义书签。 3.4.4再生空气量............................................................................................ 错误!未定义书签。 4. 物料衡算和热量衡算........................... 错误!未定义书签。 4.1物料衡算[6-10] ............................................................... 错误!未定义书签。 4.2热量衡算(以0℃为计算基准) ................................. 错误!未定义书签。 5. 车间布置说明.................................. 错误!未定义书签。 6. 三废治理及利用............................... 错误!未定义书签。 6.1废水的处理 ................................................................... 错误!未定义书签。 6.1.1废水的来源及特点................................................................................ 错误!未定义书签。 6.1.2废水处理工艺........................................................................................ 错误!未定义书签。

合成氨生产工艺介绍

1、合成氨生产工艺介绍 1)造气工段 造气实质上是碳与氧气和蒸汽的反应,主要过程为吹风和制气。具体分为吹风、上吹、下吹、二次上吹和空气吹净五个阶段。原料煤间歇送入固定层煤气发生炉内,先鼓入空气,提高炉温,然后加入水蒸气与加氮空气进行制气。所制的半水煤气进入洗涤塔进行除尘降温,最后送入半水煤气气柜。 造气工艺流程示意图 2)脱硫工段 煤中的硫在造气过程中大多以H2S的形式进入气相,它不仅会腐蚀工艺管道和设备,而且会使变换催化剂和合成催化剂中毒,因此脱硫工段的主要目的就是利用DDS脱硫剂脱出气体中的硫。气柜中的半水煤气经过静电除焦、罗茨风机增压冷却降温后进入半水煤气脱硫塔,脱除硫化氢后经过二次除焦、清洗降温送往压缩机一段入口。脱硫液再生后循环使用。

脱硫工艺流程图 3)变换工段 变换工段的主要任务是将半水煤气中的CO在催化剂的作用下与水蒸气发生放热反应,生成CO2和H2。河南中科化工有限责任公司采用的是中变串低变工艺流程。经过两段压缩后的半水煤气进入饱和塔升温增湿,并补充蒸汽后,经水分离器、预腐蚀器、热交换器升温后进入中变炉回收热量并降温后,进入低变炉,反应后的工艺气体经回收热量和冷却降温后作为变换气送往压缩机三段入口。

变换工艺流程图 4)变换气脱硫与脱碳 经变换后,气体中的有机硫转化为H2S,需要进行二次脱硫,使气体中的硫含量在25mg/m3。脱碳的主要任务是将变换气中的CO2脱除,对气体进行净化,河南中科化工有限责任公司采用变压吸附脱碳工艺。来自变换工段压力约为1.3MPa左右的变换气,进入水分离器,分离出来的水排到地沟。变换气进入吸附塔进行吸附,吸附后送往精脱硫工段。 被吸附剂吸附的杂质和少量氢氮气在减压和抽真空的状态下,将从吸附塔下端释放出来,这部分气体称为解析气,解析气分两步减压脱附,其中压力较高的部分在顺放阶段经管道进入气柜回收,低于常 压的解吸气经阻火器排入大气。

小合成氨厂低温变换工段工艺设计资料

《化工工艺设计任务书》

变换工艺设计说明书 设计题目小合成氨厂低温变换工段工艺设计 课题来源小合成氨厂低温变换工段工艺设计变换工段化学工艺设计标准变换工段在合成氨生产起的作用既是气体净化工序,又是原料气的再制造工序,经过变换工段后的气体中的CO含量大幅度下降,符合进入甲烷化或者铜洗工段气质要求。 要求:1.绘制带控制点的工艺流程图 2.系统物料、能量衡算 3.系统主要设备能力及触媒装填量核算 4?该工段设备多,工艺计算复杂,分变换炉能力及触媒装填量核算、系统热量核算和系统水循环设备及能力核算。 变换工艺流程 低压机四段来的半水煤气压力 2.0 MPa,温度40C的半脱气经热水洗涤塔除去气体中的油 污、杂质,进入饱和塔下部与上部喷淋下来的166?175 C的热水逆流接触,进行传质传热, 使气体中的水汽含量接近饱和,从塔顶出来到蒸汽喷射器,补入外管来的高压蒸汽,进一步 提高气体的温度和水气比,使出0/干气=0.6?0.7。达到变换所需的液气比值。接着气体进 入半水煤气换热器I,半水煤气换热器n管内加热,温度升至300 C,经过加压电炉进入中 变炉内。中变炉触媒分三段,每段各装一层触媒,上段出口变换气CO含量13?15%,温度 437C,通过甲烷化加热器壳程换热和增湿器降温,增湿温度降至370C进入中变二段,二 段出口CO变换率8?9%,温度403 C进入增温器,三段出口变换气中,CO 3?3.5%,温度386C,经过半水煤气换热器n和半水煤气换热器I的管间,加热进中变的半水煤气,温度降至285C 然后进入一水加热器被管内的循环热水降温至185C,进入低变炉进行低温变换。 低变炉触媒分上、下两段,每段各层一层耐硫变换催化剂,上段出口变换气温度222C,含CO 0.5?0.6%,进入段间冷却器管间,温度降至190C,进入低变炉下段反应,出口变换气 温度232 C,含CO 0.2?0.3%,进入二水加热器降温后,温度170 C进入热水塔与饱和塔底 出来的热水逆流接触,进行传质传热,进一步降温并回收热量,147C的变换气接着又进入 脱盐水预热器管内与来自脱盐水站的脱盐水换热后进入变换气水冷器管间,出来后温度降至 40 C,在变换气水分离器内,分离冷凝水后去变脱工段。 变换工段化学工艺设计原则 1.入工序气体流量:6000kmol/h (干基)压力: 2.47Mpa温度:40 C 2.入口气体组分:CO%=2.01% CO2%=10.95% 出%=41.49% 2%=1 3.93% CH4%=0.21% H2O%=31.23% Ar=0.18 %(体积比) 3.出口气体组分:CO% < 0.34% (体积比) 目录

年产30万吨合成氨工艺设计毕业论文

年产30万吨合成氨工艺设计毕业论文 目录 摘要........................................................................ I Abstract................................................................... II ...................................................................... IV 1 综述.................................................................. - 1 - 1.1 氨的性质、用途及重要性.......................................... - 1 - 1.1.1 氨的性质................................................... - 1 - 1.1.2 氨的用途及在国民生产中的作用............................... - 1 - 1.2 合成氨生产技术的发展............................................ - 2 - 1.2.1世界合成氨技术的发展....................................... - 2 - 1.2.2中国合成氨工业的发展概况................................... - 4 - 1.3合成氨转变工序的工艺原理......................................... - 6 - 1.3.1 合成氨的典型工艺流程介绍................................... - 6 - 1.3.2 合成氨转化工序的工艺原理................................... - 8 - 1.3.3合成氨变换工序的工艺原理................................... - 8 - 1.4 设计方案的确定.................................................. - 9 - 1.4.1 原料的选择................................................. - 9 - 1.4.2 工艺流程的选择............................................. - 9 - 1.4.3 工艺参数的确定............................................ - 10 - 1.4.4 工厂的选址................................................ - 11 - 2 设计工艺计算......................................................... - 1 3 -

相关文档
最新文档