平面直角坐标系中的几何综合题

合集下载

平面直角坐标系的综合问题解决

平面直角坐标系的综合问题解决

平面直角坐标系的综合问题解决平面直角坐标系是解决许多几何问题的基本工具之一。

它由两条互相垂直的坐标轴组成,通常以x轴和y轴表示。

本文将介绍平面直角坐标系及其在解决综合问题中的应用。

一、平面直角坐标系的基本原理平面直角坐标系由两条相互垂直的坐标轴组成。

x轴(横轴)与y轴(纵轴)的交点是原点O,任意一点P的坐标用(x, y)表示,其中x表示点P在x轴上的投影,y表示点P在y轴上的投影。

根据坐标系的性质,我们可以计算两点之间的距离、计算角度等。

二、直线方程的表示方法利用平面直角坐标系,我们可以将直线的方程表示为一般式、点斜式和截距式等形式。

1. 一般式:Ax + By + C = 0。

其中A、B、C为常数。

2. 点斜式:y - y1 = k(x - x1)。

其中(x1,y1)为直线上一点的坐标,k为直线的斜率。

3. 截距式:x/a + y/b = 1。

其中a和b分别表示x轴和y轴上的截距。

根据给定的问题所需,我们可以选择合适的直线方程形式。

三、解决坐标系下的综合问题1. 距离问题:给定平面上的两点A(x1,y1)和B(x2,y2),我们可以利用勾股定理计算点A和点B之间的距离。

距离公式:AB = √((x2 - x1)^2 + (y2 - y1)^2)2. 直线问题:给定平面上的两点A(x1,y1)和B(x2,y2),我们可以通过求斜率来确定连线AB是否为直线,以及判断直线的倾斜方向。

斜率公式:k = (y2 - y1) / (x2 - x1)若k > 0,直线向右上倾斜;若k < 0,直线向右下倾斜;若k = 0,直线水平;若k不存在,直线垂直于x轴。

3. 图形问题:利用平面直角坐标系,我们可以绘制各种图形,并通过计算面积和周长等属性来解决相关问题。

- 矩形面积公式:S = ab,其中a和b分别表示矩形的长度和宽度。

- 圆形面积公式:S = πr^2,其中r表示圆的半径。

- 三角形面积公式:S = 1/2 * 底边长 * 高,其中底边长为短边,高为两点之间的垂直距离。

一次函数和几何综合题含答案

一次函数和几何综合题含答案

一次函数和几何综合题含答案1.(2013•天水)如图1,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连接AP,并把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD.(1)求直线AB的解析式;(2)当点P运动到点(,0)时,求此时DP的长及点D的坐标;(3)是否存在点P,使△OPD的面积等于?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.2.(2013•济宁)如图,直线y=﹣x+4与坐标轴分别交于点A、B,与直线y=x交于点C.在线段OA上,动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动,同时动点P从点A出发向点O做匀速运动,当点P、Q其中一点停止运动时,另一点也停止运动.分别过点P、Q作x轴的垂线,交直线AB、OC于点E、F,连接EF.若运动时间为t秒,在运动过程中四边形PEFQ总为矩形(点P、Q重合除外).(1)求点P运动的速度是多少?(2)当t为多少秒时,矩形PEFQ为正方形?(3)当t为多少秒时,矩形PEFQ的面积S最大?并求出最大值.3.(2013•绥化)如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B 点,且OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根.(1)求C点坐标;(2)求直线MN的解析式;(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.4.(2013•齐齐哈尔)如图,平面直角坐标系中,直线l分别交x轴、y轴于A、B两点(OA<OB)且OA、OB的长分别是一元二次方程x2﹣(+1)x+=0的两个根,点C在x轴负半轴上,且AB:AC=1:2(1)求A、C两点的坐标;(2)若点M从C点出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.5.(2013春•屯留县期末)如图,四边形OABC是菱形,点C在x轴上,AB交y轴于点H,AC交y轴于点M.已知点A(﹣3,4).(1)求AO的长;(2)求直线AC的解析式和点M的坐标;(3)点P从点A出发,以每秒2个单位的速度沿折线A﹣B﹣C运动,到达点C终止.设点P的运动时间为t秒,△PMB 的面积为S.①求S与t的函数关系式;②求S的最大值.6.(2012•鞍山)如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标(3,3),将正方形ABCO绕点A顺时针旋转角度α(0°<α<90°),得到正方形ADEF,ED交线段OC于点G,ED的延长线交线段BC于点P,连AP、AG.(1)求证:△AOG≌△ADG;(2)求∠PAG的度数;并判断线段OG、PG、BP之间的数量关系,说明理由;(3)当∠1=∠2时,求直线PE的解析式.7.(2012•桃源县校级自主招生)如图,点A在y轴上,点B在x轴上,且OA=OB=1,经过原点O的直线l交线段AB于点C,过C作OC的垂线,与直线x=1相交于点P,现将直线L绕O点旋转,使交点C从A向B运动,但C点必须在第一象限内,并记AC的长为t,分析此图后,对下列问题作出探究:(1)当△AOC和△BCP全等时,求出t的值;(2)通过动手测量线段OC和CP的长来判断它们之间的大小关系并证明你得到的结论;(3)①设点P的坐标为(1,b),试写出b关于t的函数关系式和变量t的取值范围.②求出当△PBC为等腰三角形时点P的坐标.8.(2012秋•海陵区期末)如图1,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC交于点C.(1)若直线AB解析式为y=﹣2x+12,直线OC解析式为y=x,①求点C的坐标;②求△OAC的面积.(2)如图2,作∠AOC的平分线ON,若AB⊥ON,垂足为E,△OAC的面积为6,且OA=4,P、Q分别为线段OA、OE上的动点,连接AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.9.(2012秋•成都校级期末)如图,在平面直角坐标系xOy中,已知直线PA是一次函数y=x+m(m>0)的图象,直线PB是一次函数y=﹣3x+n(n>m)的图象,点P是两直线的交点,点A、B、C、Q分别是两条直线与坐标轴的交点.(1)用m、n分别表示点A、B、P的坐标及∠PAB的度数;(2)若四边形PQOB的面积是,且CQ:AO=1:2,试求点P的坐标,并求出直线PA与PB的函数表达式;(3)在(2)的条件下,是否存在一点D,使以A、B、P、D为顶点的四边形是平行四边形?若存在,求出点D的坐标;若不存在,请说明理由.10.(2012秋•綦江县校级期末)如图,一次函数的函数图象与x轴、y轴分别交于点A、B,以线段AB 为直角边在第一象限内作Rt△ABC,且使∠ABC=30°.(1)求△ABC的面积;(2)如果在第二象限内有一点P(m,),试用含m的代数式表示△APB的面积,并求当△APB与△ABC面积相等时m的值;(3)是否存在使△QAB是等腰三角形并且在坐标轴上的点Q?若存在,请写出点Q所有可能的坐标;若不存在,请说明理由.参考答案与试题解析一.解答题(共10小题)1.(2013•天水)如图1,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连接AP,并把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD.(1)求直线AB的解析式;(2)当点P运动到点(,0)时,求此时DP的长及点D的坐标;(3)是否存在点P,使△OPD的面积等于?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.考点:一次函数综合题.专题:压轴题.分析:(1)过点B作BE⊥y轴于点E,作BF⊥x轴于点F.依题意得BF=OE=2,利用勾股定理求出OF,然后可得点B的坐标.设直线AB的解析式是y=kx+b,把已知坐标代入可求解.(2)由△ABD由△AOP旋转得到,证明△ABD≌△AOP.AP=AD,∠DAB=∠PAO,∠DAP=∠BAO=60°,△ADP是等边三角形.利用勾股定理求出DP.在Rt△BDG中,∠BGD=90°,∠DBG=60°.利用三角函数求出BG=BD•cos60°,DG=BD•sin60°.然后求出OH,DH,然后求出点D的坐标.(3)本题分三种情况进行讨论,设点P的坐标为(t,0):①当P在x轴正半轴上时,即t>0时,关键是求出D点的纵坐标,方法同(2),在直角三角形DBG中,可根据BD即OP的长和∠DBG的正弦函数求出DG的表达式,即可求出DH的长,根据已知的△OPD的面积可列出一个关于t的方程,即可求出t的值.②当P在x轴负半轴,但D在x轴上方时.即<t≤0时,方法同①类似,也是在直角三角形DBG用BD的长表示出DG,进而求出GF的长,然后同①.③当P在x轴负半轴,D在x轴下方时,即t≤时,方法同②.综合上面三种情况即可求出符合条件的t的值.解答:解:(1)如图1,过点B作BE⊥y轴于点E,作BF⊥x轴于点F.由已知得:BF=OE=2,OF==,∴点B的坐标是(,2)设直线AB的解析式是y=kx+b(k≠0),则有.解得.∴直线AB的解析式是y=x+4;(2)如图2,∵△ABD由△AOP旋转得到,∴△ABD≌△AOP,∴AP=AD,∠DAB=∠PAO,∴∠DAP=∠BAO=60°,∴△ADP是等边三角形,∴DP=AP=.如图2,过点D作DH⊥x轴于点H,延长EB交DH于点G,则BG⊥DH.方法(一)在Rt△BDG中,∠BGD=90°,∠DBG=60°.∴BG=BD•cos60°=×=.DG=BD•sin60°=×=.∴OH=EG=,DH=∴点D的坐标为(,)方法(二)易得∠AEB=∠BGD=90°,∠ABE=∠BDG,∴△ABE∽△BDG,∴;而AE=2,BD=OP=,BE=2,AB=4,则有,解得BG=,DG=;∴OH=,DH=;∴点D的坐标为(,).(3)假设存在点P,在它的运动过程中,使△OPD的面积等于.设点P为(t,0),下面分三种情况讨论:①当t>0时,如图,BD=OP=t,DG=t,∴DH=2+t.∵△OPD的面积等于,∴,解得,(舍去)∴点P1的坐标为(,0).②∵当D在y轴上时,根据勾股定理求出BD==OP,∴当<t≤0时,如图,BD=OP=﹣t,DG=﹣t,∴GH=BF=2﹣(﹣t)=2+t.∵△OPD的面积等于,∴,解得,,∴点P2的坐标为(,0),点P3的坐标为(,0).③当t≤时,如图3,BD=OP=﹣t,DG=﹣t,∴DH=﹣t﹣2.∵△OPD的面积等于,∴(﹣t)[﹣(2+t)]=,解得(舍去),∴点P4的坐标为(,0),综上所述,点P的坐标分别为P1(,0)、P2(,0)、P3(,0)、P4(,0).点评:本题综合考查的是一次函数的应用,包括待定系数法求解析式、旋转的性质、相似三角形的判定和性质、三角形面积公式的应用等,难度较大.2.(2013•济宁)如图,直线y=﹣x+4与坐标轴分别交于点A、B,与直线y=x交于点C.在线段OA上,动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动,同时动点P从点A出发向点O做匀速运动,当点P、Q其中一点停止运动时,另一点也停止运动.分别过点P、Q作x轴的垂线,交直线AB、OC于点E、F,连接EF.若运动时间为t秒,在运动过程中四边形PEFQ总为矩形(点P、Q重合除外).(1)求点P运动的速度是多少?(2)当t为多少秒时,矩形PEFQ为正方形?(3)当t为多少秒时,矩形PEFQ的面积S最大?并求出最大值.考点:一次函数综合题.专题:压轴题.分析:(1)根据直线y=﹣x+4与坐标轴分别交于点A、B,得出A,B点的坐标,再利用EP∥BO,得出==,据此可以求得点P的运动速度;(2)当PQ=PE时,以及当PQ=PE时,矩形PEFQ为正方形,分别求出即可;(3)根据(2)中所求得出s与t的函数关系式,进而利用二次函数性质求出即可.解答:解:(1)∵直线y=﹣x+4与坐标轴分别交于点A、B,∴x=0时,y=4,y=0时,x=8,∴==,当t秒时,QO=FQ=t,则EP=t,∵EP∥BO,∴==,∴AP=2t,∵动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动,∴点P运动的速度是每秒2个单位长度;(2)如图1,当PQ=PE时,矩形PEFQ为正方形,则∵OQ=FQ=t,PA=2t,∴QP=8﹣t﹣2t=8﹣3t,∴8﹣3t=t,解得:t=2;如图2,当PQ=PE时,矩形PEFQ为正方形,∵OQ=t,PA=2t,∴OP=8﹣2t,∴QP=t﹣(8﹣2t)=3t﹣8,∴t=3t﹣8,解得:t=4;(3)如图1,当Q在P点的左边时,∵OQ=t,PA=2t,∴QP=8﹣t﹣2t=8﹣3t,∴S矩形PEFQ=QP•QF=(8﹣3t)•t=8t﹣3t2,当t=﹣=时,S矩形PEFQ的最大值为:=,如图2,当Q在P点的右边时,∵OQ=t,PA=2t,∴2t>8﹣t,∴t,∴QP=t﹣(8﹣2t)=3t﹣8,∴S矩形PEFQ=QP•QF=(3t﹣8)•t=3t2﹣8t,∵当点P、Q其中一点停止运动时,另一点也停止运动,∴<t≤4,当t=﹣=时,S矩形PEFQ的最大,∴t=4时,S矩形PEFQ的最大值为:3×42﹣8×4=16,点评:此题主要考查了二次函数与一次函数的综合应用,得出P,Q不同的位置进行分类讨论得出是解题关键.3.(2013•绥化)如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B 点,且OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根.(1)求C点坐标;(2)求直线MN的解析式;(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.考点:一次函数综合题.专题:压轴题.分析:(1)通过解方程x2﹣14x+48=0可以求得OC=6,OA=8.则C(0,6);(2)设直线MN的解析式是y=kx+b(k≠0).把点A、C的坐标分别代入解析式,列出关于系数k、b的方程组,通过解方程组即可求得它们的值;(3)需要分类讨论:PB为腰,PB为底两种情况下的点P的坐标.根据等腰三角形的性质、两点间的距离公式以及一次函数图象上点的坐标特征进行解答.解答:解:(1)解方程x2﹣14x+48=0得x1=6,x2=8.∵OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根,∴OC=6,OA=8.∴C(0,6);(2)设直线MN的解析式是y=kx+b(k≠0).由(1)知,OA=8,则A(8,0).∵点A、C都在直线MN上,∴,解得,,∴直线MN的解析式为y=﹣x+6;(3)∵A(8,0),C(0,6),∴根据题意知B(8,6).∵点P在直线MNy=﹣x+6上,∴设P(a,﹣a+6)当以点P,B,C三点为顶点的三角形是等腰三角形时,需要分类讨论:①当PC=PB时,点P是线段BC的中垂线与直线MN的交点,则P1(4,3);②当PC=BC时,a2+(﹣a+6﹣6)2=64,解得,a=,则P2(﹣,),P3(,);③当PB=BC时,(a﹣8)2+(a﹣6+6)2=64,解得,a=,则﹣a+6=﹣,∴P4(,﹣).综上所述,符合条件的点P有:P1(4,3),P2(﹣,)P3(,),P4(,﹣).点评:本题考查了一次函数综合题.其中涉及到的知识点有:待定系数法求一次函数解析式,一次函数图象上点的坐标特征,等腰三角形的性质.解答(3)题时,要分类讨论,防止漏解.另外,解答(3)题时,还利用了“数形结合”的数学思想.4.(2013•齐齐哈尔)如图,平面直角坐标系中,直线l分别交x轴、y轴于A、B两点(OA<OB)且OA、OB的长分别是一元二次方程x2﹣(+1)x+=0的两个根,点C在x轴负半轴上,且AB:AC=1:2(1)求A、C两点的坐标;(2)若点M从C点出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.考点:一次函数综合题.专题:压轴题.分析:(1)通过解一元二次方程x2﹣(+1)x+=0,求得方程的两个根,从而得到A、B两点的坐标,再根据两点之间的距离公式可求AB的长,根据AB:AC=1:2,可求AC的长,从而得到C点的坐标;(2)分①当点M在CB边上时;②当点M在CB边的延长线上时;两种情况讨论可求S关于t的函数关系式;(3)分AQ=AB,BQ=BA,BQ=QA三种情况讨论可求Q点的坐标.解答:解:(1)x2﹣(+1)x+=0,(x﹣)(x﹣1)=0,解得x1=,x2=1,∵OA<OB,∴OA=1,OB=,∴A(1,0),B(0,),∴AB=2,又∵AB:AC=1:2,∴AC=4,∴C(﹣3,0);(2)∵AB=2,AC=4,BC=2,∴AB2+BC2=AC2,即∠ABC=90°,由题意得:CM=t,CB=2.①当点M在CB边上时,S=2﹣t(0≤t);②当点M在CB边的延长线上时,S=t﹣2(t>2);(3)存在.①当AB是菱形的边时,如图所示,在菱形AP1Q1B中,Q1O=AO=1,所以Q1点的坐标为(﹣1,0),在菱形ABP2Q2中,AQ2=AB=2,所以Q2点的坐标为(1,2),在菱形ABP3Q3中,AQ3=AB=2,所以Q3点的坐标为(1,﹣2),②当AB为菱形的对角线时,如图所示的菱形AP4BQ4,设菱形的边长为x,则在Rt△AP4O中,AP42=AO2+P4O2,即x2=12+(﹣x)2,解得x=,所以Q4(1,).综上可得,平面内满足条件的Q点的坐标为:Q1(﹣1,0),Q2(1,﹣2),Q3(1,2),Q4(1,).点评:考查了一次函数综合题,涉及的知识点有:解一元二次方程,两点之间的距离公式,三角形面积的计算,函数思想,分类思想的运用,菱形的性质,综合性较强,有一定的难度.5.(2013春•屯留县期末)如图,四边形OABC是菱形,点C在x轴上,AB交y轴于点H,AC交y轴于点M.已知点A(﹣3,4).(1)求AO的长;(2)求直线AC的解析式和点M的坐标;(3)点P从点A出发,以每秒2个单位的速度沿折线A﹣B﹣C运动,到达点C终止.设点P的运动时间为t秒,△PMB 的面积为S.①求S与t的函数关系式;②求S的最大值.考点:一次函数综合题;解二元一次方程组;待定系数法求一次函数解析式;三角形的面积;角平分线的性质;勾股定理;菱形的性质.专题:计算题.分析:(1)根据A的坐标求出AH、OH,根据勾股定理求出即可;(2)根据菱形性质求出B、C的坐标,设直线AC的解析式是y=kx+b,把A(﹣3,4),C(5,0)代入得到方程组,求出即可;(3)①过M作MN⊥BC于N,根据角平分线性质求出MN,P在AB上,根据三角形面积公式求出即可;P 在BC上,根据三角形面积公式求出即可;②求出P在AB的最大值和P在BC上的最大值比较即可得到答案.解答:(1)解:∵A(﹣3,4),∴AH=3,OH=4,由勾股定理得:AO==5,答:OA的长是5.(2)解:∵菱形OABC,∴OA=OC=BC=AB=5,5﹣3=2,∴B(2,4),C(5,0),设直线AC的解析式是y=kx+b,把A(﹣3,4),C(5,0)代入得:,解得:,∴直线AC的解析式为,当x=0时,y=2.5∴M(0,2.5),答:直线AC的解析式是,点M的坐标是(0,2.5).(3)①解:过M作MN⊥BC于N,∵菱形OABC,∴∠BAC=∠OCA,∵MO⊥CO,MN⊥BC,∴OM=MN,当0≤t<2.5时,P在AB上,MH=4﹣2.5=,S=×BP×MH=×(5﹣2t)×=﹣t+,∴,当t=2.5时,P与B重合,△PMB不存在;当2.5<t≤5时,P在BC上,S=×PB×MN=×(2t﹣5)×=t﹣,∴,答:S与t的函数关系式是(0≤t<2.5)或(2.5<t≤5).②解:当P在AB上时,高MH一定,只有BP取最大值即可,即P与A重合,S最大是×5×=,同理在BC上时,P与C重合时,S最大是×5×=,∴S的最大值是,答:S的最大值是.点评:本题主要考查对勾股定理,三角形的面积,菱形的性质,角平分线性质,解二元一次方程组,用待定系数法求一次函数的解析式等知识点的理解和掌握,综合运用这些性质进行计算是解此题的关键.6.(2012•鞍山)如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标(3,3),将正方形ABCO绕点A顺时针旋转角度α(0°<α<90°),得到正方形ADEF,ED交线段OC于点G,ED的延长线交线段BC于点P,连AP、AG.(1)求证:△AOG≌△ADG;(2)求∠PAG的度数;并判断线段OG、PG、BP之间的数量关系,说明理由;(3)当∠1=∠2时,求直线PE的解析式.考点:一次函数综合题.专题:压轴题.分析:(1)由AO=AD,AG=AG,利用“HL”可证△AOG≌△ADG;(2)利用(1)的方法,同理可证△ADP≌△ABP,得出∠1=∠DAG,∠DAP=∠BAP,而∠1+∠DAG+∠DAP+∠BAP=90°,由此可求∠PAG的度数;根据两对全等三角形的性质,可得出线段OG、PG、BP之间的数量关系;(3)由△AOG≌△ADG可知,∠AGO=∠AGD,而∠1+∠AGO=90°,∠2+∠PGC=90°,当∠1=∠2时,可证∠AGO=∠AGD=∠PGC,而∠AGO+∠AGD+∠PGC=180°,得出∠AGO=∠AGD=∠PGC=60°,即∠1=∠2=30°,解直角三角形求OG,PC,确定P、G两点坐标,得出直线PE的解析式.解答:(1)证明:∵∠AOG=∠ADG=90°,∴在Rt△AOG和Rt△ADG中,∵,∴△AOG≌△ADG(HL);(2)解:PG=OG+BP.由(1)同理可证△ADP≌△ABP,则∠DAP=∠BAP,由(1)可知,∠1=∠DAG,又∠1+∠DAG+∠DAP+∠BAP=90°,所以,2∠DAG+2∠DAP=90°,即∠DAG+∠DAP=45°,故∠PAG=∠DAG+∠DAP=45°,∵△AOG≌△ADG,△ADP≌△ABP,∴DG=OG,DP=BP,∴PG=DG+DP=OG+BP;(3)解:∵△AOG≌△ADG,∴∠AGO=∠AGD,又∵∠1+∠AGO=90°,∠2+∠PGC=90°,∠1=∠2,∴∠AGO=∠AGD=∠PGC,又∵∠AGO+∠AGD+∠PGC=180°,∴∠AGO=∠AGD=∠PGC=60°,∴∠1=∠2=30°,在Rt△AOG中,AO=3,AG=2OG,AG2=AO2+OG2,∴OG=,则G点坐标为:(,0),CG=3﹣,在Rt△PCG中,PG=2CG=2(3﹣),PC==3﹣3,则P点坐标为:(3,3﹣3),设直线PE的解析式为y=kx+b,则,解得,所以,直线PE的解析式为y=x﹣3.点评:本题考查了一次函数的综合运用.关键是根据正方形的性质证明三角形全等,根据三角形全等的性质求角、边的关系,利用特殊角解直角三角形,求P、G两点坐标,确定直线解析式.7.(2012•桃源县校级自主招生)如图,点A在y轴上,点B在x轴上,且OA=OB=1,经过原点O的直线l交线段AB于点C,过C作OC的垂线,与直线x=1相交于点P,现将直线L绕O点旋转,使交点C从A向B运动,但C点必须在第一象限内,并记AC的长为t,分析此图后,对下列问题作出探究:(1)当△AOC和△BCP全等时,求出t的值;(2)通过动手测量线段OC和CP的长来判断它们之间的大小关系并证明你得到的结论;(3)①设点P的坐标为(1,b),试写出b关于t的函数关系式和变量t的取值范围.②求出当△PBC为等腰三角形时点P的坐标.考点:一次函数综合题.专题:压轴题;探究型.分析:(1)△AOC和△BCP全等,则AO=BC=1,又∵AB=,t=AB﹣BC=﹣1;(2)过点C作x轴的平行线,交OA与直线BP于点T、H,证△OTC≌△CHP即可;(3)根据题意可直接得出b=1﹣t;当t=0或1时,△PBC为等腰三角形,即P(1,1),P(1,1﹣),但t=0时,点C不在第一象限,所以不符合题意.解答:解:(1)△AOC和△BCP全等,则AO=BC=1,又AB=,所以t=AB﹣BC=﹣1;(2)OC=CP.证明:过点C作x轴的平行线,交OA与直线BP于点T、H.∵PC⊥OC,∴∠OCP=90°,∵OA=OB=1,∴∠OBA=45°,∵TH∥OB,∴∠BCH=45°,又∠CHB=90°,∴△CHB为等腰直角三角形,∴CH=BH,∵∠AOB=∠OBH=∠BHT=90°,∴四边形OBHT为矩形,∴OT=BH,∴OT=CH,∵∠TCO+∠PCH=90°,∠CPH+∠PCH=90°,∴∠TCO=∠CPH,∵HB⊥x轴,TH∥OB,∴∠CTO=∠THB=90°,TO=HC,∠TCO=∠CPH,∴△OTC≌△CHP,∴OC=CP;(3)①∵△OTC≌△CHP,∴CT=PH,∴PH=CT=AT=AC•cos45°=t,∴BH=OT=OA﹣AT=1﹣t,∴BP=BH﹣PH=1﹣t,∴;(0<t<)②t=0时,△PBC是等腰直角三角形,但点C与点A重合,不在第一象限,所以不符合,PB=BC,则﹣t=|1﹣t|,解得t=1或t=﹣1(舍去),∴当t=1时,△PBC为等腰三角形,即P点坐标为:P(1,1﹣).点评:主要考查了函数和几何图形的综合运用.解题的关键是会灵活的运用函数的性质和点的意义表示出相应的线段的长度,再结合三角形全等和等腰三角形的性质求解.试题中贯穿了方程思想和数形结合的思想,请注意体会.8.(2012秋•海陵区期末)如图1,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC交于点C.(1)若直线AB解析式为y=﹣2x+12,直线OC解析式为y=x,①求点C的坐标;②求△OAC的面积.(2)如图2,作∠AOC的平分线ON,若AB⊥ON,垂足为E,△OAC的面积为6,且OA=4,P、Q分别为线段OA、OE上的动点,连接AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.考点:一次函数综合题.专题:综合题;数形结合.分析:(1)①联立两个函数式,求解即可得出交点坐标,即为点C的坐标.②欲求△OAC的面积,结合图形,可知,只要得出点A和点C的坐标即可,点C的坐标已知,利用函数关系式即可求得点A的坐标,代入面积公式即可.(2)在OC上取点M,使OM=OP,连接MQ,易证△POQ≌△MOQ,可推出AQ+PQ=AQ+MQ;若想使得AQ+PQ存在最小值,即使得A、Q、M三点共线,又AB⊥OP,可得∠AEO=∠CEO,即证△AEO≌△CEO(ASA),又OC=OA=4,利用△OAC的面积为6,即可得出AM=3,AQ+PQ存在最小值,最小值为3.解答:解:(1)①由题意,(2分)解得所以C(4,4)(3分)②把y=0代入y=﹣2x+12得,x=6,所以A点坐标为(6,0),(4分)所以.(6分)(2)存在;由题意,在OC上截取OM=OP,连接MQ,∵OQ平分∠AOC,∴∠AOQ=∠COQ,又OQ=OQ,∴△POQ≌△MOQ(SAS),(7分)∴PQ=MQ,∴AQ+PQ=AQ+MQ,当A、Q、M在同一直线上,且AM⊥OC时,AQ+MQ最小.即AQ+PQ存在最小值.∵AB⊥ON,所以∠AEO=∠CEO,∴△AEO≌△CEO(ASA),∴OC=OA=4,∵△OAC的面积为6,所以AM=12÷4=3,∴AQ+PQ存在最小值,最小值为3.(9分)点评:本题主要考查一次函数的综合应用,具有一定的综合性,要求学生具备一定的数学解题能力,有一定难度.9.(2012秋•成都校级期末)如图,在平面直角坐标系xOy中,已知直线PA是一次函数y=x+m(m>0)的图象,直线PB是一次函数y=﹣3x+n(n>m)的图象,点P是两直线的交点,点A、B、C、Q分别是两条直线与坐标轴的交点.(1)用m、n分别表示点A、B、P的坐标及∠PAB的度数;(2)若四边形PQOB的面积是,且CQ:AO=1:2,试求点P的坐标,并求出直线PA与PB的函数表达式;(3)在(2)的条件下,是否存在一点D,使以A、B、P、D为顶点的四边形是平行四边形?若存在,求出点D的坐标;若不存在,请说明理由.考点:一次函数综合题.专题:开放型.分析:(1)已知直线解析式,令y=0,求出x的值,可求出点A,B的坐标.联立方程组求出点P的坐标.推出AO=QO,可得出∠PAB=45°.(2)先根据CQ:AO=1:2得到m、n的关系,然后求出S△AOQ,S△PAB并都用字母m表示,根据S四边形PQOB=S△PAB ﹣S△AOQ积列式求解即可求出m的值,从而也可求出n的值,继而可推出点P的坐标以及直线PA与PB的函数表达式.(3)本题要依靠辅助线的帮助.求证相关图形为平行四边形,继而求出D1,D2,D3的坐标.解答:解:(1)在直线y=x+m中,令y=0,得x=﹣m.∴点A(﹣m,0).在直线y=﹣3x+n中,令y=0,得.∴点B(,0).由,得,∴点P(,).在直线y=x+m中,令x=0,得y=m,∴|﹣m|=|m|,即有AO=QO.又∵∠AOQ=90°,∴△AOQ是等腰直角三角形,∴∠PAB=45°.(2)∵CQ:AO=1:2,∴(n﹣m):m=1:2,整理得3m=2n,∴n=m,∴==m,而S四边形PQOB=S△PAB﹣S△AOQ=(+m)×(m)﹣×m×m=m2=,解得m=±4,∵m>0,∴m=4,∴n=m=6,∴P().∴PA的函数表达式为y=x+4,PB的函数表达式为y=﹣3x+6.(3)存在.过点P作直线PM平行于x轴,过点B作AP的平行线交PM于点D1,过点A作BP的平行线交PM于点D2,过点A、B分别作BP、AP的平行线交于点D3.①∵PD1∥AB且BD1∥AP,∴PABD1是平行四边形.此时PD1=AB,易得;②∵PD2∥AB且AD2∥BP,∴PBAD2是平行四边形.此时PD2=AB,易得;③∵BD3∥AP且AD3∥BP,此时BPAD3是平行四边形.∵BD3∥AP且B(2,O),∴y BD3=x﹣2.同理可得y AD3=﹣3x﹣12,得,∴.点评:本题的综合性强,主要考查的知识点为一次函数的应用,平行四边形的判定以及面积的灵活计算.难度较大.10.(2012秋•綦江县校级期末)如图,一次函数的函数图象与x轴、y轴分别交于点A、B,以线段AB 为直角边在第一象限内作Rt△ABC,且使∠ABC=30°.(1)求△ABC的面积;(2)如果在第二象限内有一点P(m,),试用含m的代数式表示△APB的面积,并求当△APB与△ABC面积相等时m的值;(3)是否存在使△QAB是等腰三角形并且在坐标轴上的点Q?若存在,请写出点Q所有可能的坐标;若不存在,请说明理由.考点:一次函数综合题.专题:综合题.分析:(1)先求出A、B两点的坐标,再由一个角等于30°,求出AC的长,从而计算出面积;(2)过P作PD⊥x轴,垂足为D,先求出梯形ODPB的面积和△AOB的面积之和,再减去△APD的面积,即是△APB的面积;根据△APB与△ABC面积相等,求得m的值;(3)假设存在点Q,使△QAB是等腰三角形,求出Q点的坐标即可.解答:解:(1)∵一次函数的解析式为函数图象与x轴、y轴分别交于点A、B,∴A(1,0),B(0,),∴AB=2,设AC=x,则BC=2x,由勾股定理得,4x2﹣x2=4,解得x=,S△ABC==;(2)过P作PD⊥x轴,垂足为D,S△APB=S梯形ODPB+S△AOB﹣S△APD==,﹣=,解得m=;(3)∵AB==2,∴当AQ=AB时,点Q1(3,0),Q2(﹣1,0),Q3(0,﹣);当AB=BQ时,点Q4(0,+2),Q2(0,﹣2),Q2(﹣1,0);当AQ=BQ时,点Q6(0,),Q2(﹣1,0),综上可得:(0,),(0,),(﹣1,0)(3,0),(0,),(0,)点评:此题主要考查平面直角坐标系中图形的面积的求法.解答此题的关键是根据一次函数的特点,分别求出各点的坐标再计算.。

几何综合(含答案)

几何综合(含答案)

几何综合(通用版)一、单选题(共12道,每道8分)1.如图,在△ABC中,AD是BC边上的中线,E在AC边上,且AE:EC=1:2,BE交AD于点P,则AP:PD的值为( )A. B.C. D.答案:A解题思路:如图,过点D作DF∥BE,交AC于点F,∵BD=CD,∴EF=CF.∵,∴AE=EF=CF,∴,∴.故选A.试题难度:三颗星知识点:平行线分线段成比例2.如图,已知AD为等腰三角形ABC底边上的高,且tan∠B=.AC上有一点E,满足AE:EC=2:3.则tan∠ADE是( )A. B.C. D.答案:C解题思路:如图,过点E作EF⊥AD于点F,∵△ABC为以BC为底边的等腰三角形,,∴.∵AD⊥BC,∴EF∥BC.设AD=4t,则DC=3t,AC=5t,∴,.∵,∴AE=2t,EC=3t,,∴,∴.故选C.试题难度:三颗星知识点:相似三角形的判定和性质3.已知△ABC中,∠C=90°,,D是AC上一点,∠CBD=∠A,则sin∠ABD=( )A. B.C. D.答案:A解题思路:如图,过点D作DE⊥AB于点E,在Rt△ABC中,,设BC=a,则AC=2a,∴.∵∠CBD=∠A,∴,∴,,∴在Rt△CBD中,.易得△ADE∽△ABC,∴,∴,∴.故选A.试题难度:三颗星知识点:相似三角形的判定和性质4.如图,在Rt△ABC中,∠C=90°,AD是角平分线,点E在AC上,AB=12,,AE=6,∠BAC=50°.则∠CDE的度数为( )A.25°B.40°C.50°D.65°答案:A解题思路:∵Rt△ABC中,∠C=90°,∠BAC=50°,∴∠B=40°.∵AD平分∠CAB,∴∠EAD=∠DAB=25°.∵AB=12,,AE=6,∴.∴△AED∽△ADB.∴∠EDA=∠B.∵∠CDE+∠EDA=∠B+∠DAB,∴∠CDE=∠DAB=25°.故选A.试题难度:三颗星知识点:三角形外角的性质5.如图,在四边形ABCD中,M为BC边的中点.若∠B=∠AMD=∠C=45°,AB=8,CD=9,则AD的长为( )A.3B.4C.5D.6答案:C解题思路:如图,延长BA,CD交于点E,∵∠B=∠AMD=∠C,∴∠DMC=∠BAM,∴△ABM∽△MCD,∴.又MC=BM,AB=8,CD=9,∴MC=,∴BC=2MC=.∵∠B=∠C=45°,∴∠E=90°,BE=CE=12,∴AE=4,DE=3,∴AD=5.故选C.试题难度:三颗星知识点:相似三角形的判定与性质6.如图,在平面直角坐标系中,点A的坐标为(2,0),以OA为边在第四象限内作等边三角形AOB,C为x轴正半轴上的一动点(),连接BC,以BC为边在第四象限内作等边三角形CBD,直线DA交y轴于点E.则点E的坐标为( )A. B.(0,2)C. D.(0,4)答案:A解题思路:∵△OAB与△BCD均为等边三角形,∴OB=AB,∠OBA=∠OAB=∠AOB=60°,BC=BD,∠CBD=60°,∴∠OBA+∠ABC=∠CBD+∠ABC,即∠OBC=∠ABD,∴△OBC≌△ABD(SAS),∴∠BAD=∠BOC=60°,∴∠OAE=180°-∠OAB-∠BAD=60°.在Rt△AOE中,∠OAE=60°,OA=2,∴,∴点E的坐标为.故选A.试题难度:三颗星知识点:一次函数综合题7.如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,点O是AC边中点,连接BO交AD于点F,OE⊥OB交BC边于点E.当时,的值为( )A. B.C. D.答案:C解题思路:如图,过点O作OG⊥AC交BC于点G,∴∠GOA=90°,即∠FOA+∠GOF=90°.∵OE⊥OB,∴∠EOG+∠GOF=90°,∴∠FOA=∠EOG.∵AD⊥BC,∴∠OAF+∠C=90°,∵∠OGE+∠C=90°,∴∠OGE=∠OAF,∴△OGE∽△OAF,∴.设AB=a,则AC=3a,OG=0.5a,OA=1.5a,∴,即.故选C.试题难度:三颗星知识点:相似三角形的判定与性质8.如图,在Rt△ABC中,∠A=90°,AB=AC=,点E为AC的中点,点F在底边BC上,且FE⊥BE,则△CEF的面积是( )A.16B.18C. D.答案:A解题思路:如图,过点F作FD⊥AC于点D,∴∠EDF=∠A=90°,∴∠ABE+∠AEB=90°.∵EF⊥BE,∴∠BEF=90°,∴∠FED+∠AEB=90°,∴∠ABE=∠FED,∴Rt△ABE∽Rt△DEF,∴.∵AB=AC=,点E为AC的中点,∴,.设DF=t,则DE=2t,在Rt△CDF中,∠C=45°,∴DC=DF=t,∴,解得.∴.故选A.试题难度:三颗星知识点:相似三角形的判定和性质9.如图,在中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=,则△CEF的周长为( )A.8B.9.5C.10D.11.5答案:A解题思路:∵四边形ABCD为平行四边形,AB=6,AD=9,∴AB∥CD,AD∥BC,BC=9,∴∠DAE=∠AEB.∵AE平分∠DAB,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE=6,∴EC=3.∵∠ABE=∠ECF,∠CEF=∠AEB,∴△ABE∽△FCE,∴.∵BG⊥AE,∴∠AGB=90°,AG=GE.在Rt△ABG中,AB=6,BG=,∴,∴,∴.故选A.试题难度:三颗星知识点:相似三角形的性质及判定10.如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,∠C=60°,BC=2AD=,点E是BC边的中点,△DEF是等边三角形,DF交AB于点G,连接BF,则△BFG的周长为( )A. B.C. D.4答案:B解题思路:由题意,易得四边形ABED为矩形,AD=BE=EC=,∴∠DEC=∠ADE=90°.在Rt△DEC中,∠C=60°,,∴DE=AB=3.∵△DEF为等边三角形,∴DE=DF=EF=3,∠FDE=60°,∴∠ADG=30°,∴在Rt△AGD中,AG=1,GD=2,∴GB=AB-AG=2,GF=DF-GD=3-2=1.∵∠AGD=∠FGB,∴△FGB≌△AGD,∴FB=AD=,∴.故选B.试题难度:三颗星知识点:解直角三角形11.如图,CB,CD分别是钝角三角形AEC和锐角三角形ABC的中线,且AC=AB,给出下列结论:①AE=2AC;②CE=2CD;③∠ACD=∠BCE;④CB平分∠DCE.其中一定正确的结论为( )A.①②③B.①②④C.②③④D.①③④答案:B解题思路:①由题意得,AE=2AB=2AC.故结论①正确.②由题意得,AE=2AB=2AC=4AD,∴.又∵∠EAC=∠CAD,∴△EAC∽△CAD,∴,∴CE=2CD.故结论②正确.③由②中△EAC∽△CAD得,∠ACD=∠E,若∠ACD=∠BCE,则∠E=∠BCE,可得BC=BE,进而得到AC=AB=BC,即△ABC为等边三角形.而由题干条件只能说明△ABC为等腰三角形,并不能得到△ABC为等边三角形.故结论③不一定正确.④由AC=AB得,∠ACB=∠ABC,∴∠ACD+∠DCB=∠E+∠BCE.∵∠ACD=∠E,∴∠DCB=∠BCE,∴CB平分∠DCE.故结论④正确.故选B.试题难度:三颗星知识点:三角形的中线12.如图,在边长为的正方形ABCD中,E是AB边上的一点,G是AD延长线上一点,BE=DG,连接EG,CF⊥EG于点H,交AD于点F,连接CE,BH.若BH=8,则FG=( )A. B.C. D.答案:B解题思路:如图,过点H作MN⊥AD,交AD于点N,交BC于点M,延长BC至点P,使CP=BE,连接HP,∵四边形ABCD是正方形,∴BC=CD,∠EBC=∠CDG=∠BCD=90°.∵BE=DG,∴Rt△CBE≌Rt△CDG,∴CE=CG,∠ECB=∠GCD,∠BEC=∠DGC,∴∠ECG=∠BCD=90°.∵CF⊥EG,∴CH=HE,∠CEH=∠HCG=45°.∵∠DGC=∠GCP,∴∠HEC+∠BEC=∠HCG+∠GCP,即∠HEB=∠HCP.∵BE=CP,∴△HEB≌△HCP(SAS),∴HB=HP,∠EHB=∠CHP.∵∠EHC=90°,∴∠BHP=90°,∴△BHP为等腰直角三角形.∵BH=8,MN⊥AD,∴.∵,∴.易得Rt△HNF∽Rt△HMC∽Rt△GNH,∴∴,∴.故选B.试题难度:三颗星知识点:旋转结构。

平面直角坐标系练习题及答案

平面直角坐标系练习题及答案

平面直角坐标系练习题及答案6.1.2 平面直角坐标系基础过关作业1.点 P(3,2) 在第一象限。

2.如图,矩形 ABCD 中,A(-4,1),B(2,1),C(2,3),则点D 的坐标为(-4,3)。

3.以点 M(-3,0) 为圆心,以5为半径画圆,分别交 x 轴的正半轴,负半轴于 P、Q 两点,则点 P 的坐标为(4,0),点 Q 的坐标为(-2,0)。

4.点 M(-3,5) 关于 x 轴的对称点 M1 的坐标是(-3,-5);关于y 轴的对称点 M2 的坐标是(3,5)。

5.已知 x 轴上的点 P 到 y 轴的距离为3,则点 P 的坐标为(C) (0,3) 或 (0,-3)。

6.在平面直角坐标系中,点(-1,m2+1) 一定在第二象限。

7.在直角坐标系中,点 P(2x-6,x-5) 在第四象限中,则 x 的取值范围是(B) -3<x<5.8.如图,在所给的坐标系中描出下列各点的位置:A(-4,4)、B(-2,2)、C(3,-3)、D(5,-5)、E(-3,3)、F(0,0)。

这些点没有明显的关系。

综合创新作业9.(综合题) 在如图所示的平面直角坐标系中描出 A(2,3)、B(-3,-2)、C(4,1) 三点,并用线段将 A、B、C 三点依次连接起来,其面积为 12.5.10.如图,是儿童乐园平面图。

建立适当的平面直角坐标系,各娱乐设施的坐标为:滑梯(5,5)、秋千(2,2)、跷跷板(-3,-3)、摇摆(0,0)。

11.(创新题) 在平面直角坐标系中,画出点 A(0,2)、B(-1,0),过点 A 作直线 L1 ∥x轴,过点 B 作 L2 ∥y轴,分析 L1、L2上点的坐标特点,由此,可以总结出在平面直角坐标系中,如果一条直线平行于 x 轴,那么这条直线上的点的 y 坐标相等;如果一条直线平行于 y 轴,那么这条直线上的点的 x 坐标相等。

12.(1) 已知点 P1(a,3) 与 P2(-2,-3) 关于原点对称,则a=2.(2) 在一次科学探测活动中,探测人员发现一目标在如图所示的阴影区域内,则目标的坐标可能是(D) (-2,-800)。

平面直角坐标系与几何图形的综合(解析版)

平面直角坐标系与几何图形的综合(解析版)

【期末复习】浙教版八年级上册提分专题:平面直角坐标系与几何图形的综合各问题归纳总结若点()11y x A ,、()22y x B ,、()b a P ,问题一:若点P 在x 轴上,则b=0; 若点P 在y 轴上,则a=0;若点P 在第一象限,则a >0,b >0; 若点P 在第二象限,则a <0,b >0; 若点P 在第三象限,则a <0,b <0; 若点P 在第四象限,则a >0,b <0;问题二:若点A 、B 在同一水平线上,则21y y =; 若点A 、B 在同一竖直线上,则21x x =; 若点P 在第一、三象限角平分线上,则b a =;若点P 在第二、四象限角平分线上,则b a -=;问题三:点()b a P ,关于x 轴对称的点P 1坐标为()b a P -,1; 点()b a P ,关于y 轴对称的点P 2坐标为()b a P ,-2;点()b a P ,关于原点对称的点P 3坐标为()b a P --,3; 问题四:点的平移口诀“左减右加,上加下减”; 问题五:线段AB 的中点公式:⎪⎭⎫⎝⎛++222121y y x x ,;若点A 、B 在同一水平线上,则AB=21x x -;若点A 、B 在同一竖直线上,则AB=21y y -;若点A 、B 所在直线是倾斜的,则AB=()()221221y y x x AB -+-=(两点间距离公式)问题六:点()b a P ,到x 轴的距离=|b|;点()b a P ,到y 轴的距离=|a|;问题七:割补法,优先分割,然后才是补全 问题八:周期型:①判断周期数(一般3到4个);②总数÷周期数=整周期……余数(余数是谁就和每周期的第几个规律一样) 注意横纵坐标的规律可能不同。

【类题训练】1.如图,A (8,0),B (0,6),以点A 为圆心,AC 长为半径画弧,交y 轴正半轴于点B ,则点C 的坐标为( )A .(10,0)B .(0,10)C .(﹣2,0)D .(0,﹣2)【分析】根据勾股定理求出AB ,根据坐标与图形性质解答即可. 【解答】解:由题意得,OB =6,OA =8, ∴AB ==10,则AC =10, ∴OC =AC ﹣OA =2, ∴点C 坐标为(﹣2,0), 故选:C .2.在平面直角坐标系中,点A 的坐标为(﹣1,3),点B 的坐标为(5,3),则线段AB 上任意一点的坐标可表示为( )A.(3,x)(﹣1≤x≤5)B.(x,3)(﹣1≤x≤5)C.(3,x)(﹣5≤x≤1)D.(x,3)(﹣5≤x≤1)【分析】根据A、B两点纵坐标相等,可确定AB与x轴平行,即可求解.【解答】解:∵点A的坐标为(﹣1,3),点B的坐标为(5,3),A、B两点纵坐标都为3,∴AB∥x轴,∴线段AB上任意一点的坐标可表示为(x,3)(﹣1≤x≤5),故选:B.3.如图,在四边形ABCD中,AD∥BC∥x轴,下列说法中正确的是()A.点A与点D的纵坐标相同B.点A与点B的横坐标相同C.点A与点C的纵坐标相同D.点B与点D的横坐标相同【分析】根据与x轴平行的直线上点的坐标特征计算判断.【解答】解:∵平行四边形ABCD中,AD∥BC∥x轴,∴点A与D的纵坐标相同,点B与C的纵坐标相同.故选:A.4.如图,已知∠AOB=30°,∠AOC=60°,∠AOD=90°,∠AOE=120°,∠AOF=150°,若点B可表示为点B(2,30),点C可表示为点C(1,60),点E可表示为点E(3,120),点F可表示为点F(4,150),点B 可表示为点B(2,30),则D点可表示为()A.D(0,90)B.D(90,0)C.D(90,5)D.D(5,90)【分析】根据题干得出规律,从而得出答案.【解答】解:根据题意知:横坐标表示长度,纵坐标表示角度,从而得出D点可表示为(5,90),故选:D.5.在平面直角坐标系中,若A(m+3,m﹣1),B(1﹣m,3﹣m),且直线AB∥x轴,则m的值是()A.﹣1B.1C.2D.3【分析】根据平行于x轴的直线上的点的纵坐标相等,建立方程求解即可求得答案.【解答】解:∵直线AB∥x轴,∴m﹣1=3﹣m,解得:m=2,故选:C.6.如图,在平面直角坐标系中,半径均为1个单位长度的半圆组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2022秒时,点P的坐标是()A.(2021,0)B.(2022,﹣1)C.(2021,﹣1)D.(2022,0)【分析】利用坐标与图形的关系,结合路程问题求解.【解答】解:一个半圆的周长是π,速度是每秒,所以走一个半圆需要2秒,2022秒正好可以走1011个半圆,故选:D.7.如图,在平面直角坐标系中,点A(1,1),B(3,1),C(3,3),D(1,3),动点P从点A出发,以每秒1个单位长度的速度沿AB﹣BC﹣CD﹣DA﹣AB﹣…路线运动,当运动到2022秒时,点P的坐标为()A.(1,1)B.(3,1)C.(3,3)D.(1,3)【分析】利用路程找规律,看最后的路脚点,再求解.【解答】解:由题意得:四边形ABCD是正方形,且边长是2,点P运动一周需要8秒,2022÷8商252余6,结果到点D处,故坐标为(1,3),故选:D.8.如图,在平面直角坐标系中,三角形ABC三个顶点A、B、C的坐标A(0,4),B(﹣1,b),C(2,c),BC 经过原点O,且CD⊥AB,垂足为点D,则AB•CD的值为()A.10B.11C.12D.14【分析】AB•CD可以联想到△ABC的面积公式,根据S△ABO+S△ACO=S△ABC即可求解.【解答】解:∵A(0,4),∴OA=4,∵B(﹣1,b),C(2,c),∴点B,C到y轴的距离分别为1,2,∵S△ABO+S△ACO=S△ABC,∴×4×1+×4×2=×AB•CD,∴AB•CD=12,故答案为:C.9.如图,在平面直角坐标系中,A,B,C三点坐标分别为(0,a),(0,3﹣a),(1,2),且点A在点B的下方,连接AC,BC,若在AB,BC,AC若所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为5个,那么a的取值范围是()A.﹣1<a≤0B.﹣1≤a≤1C.1≤a<2D.0<a≤1【分析】根据题意得出除了点C外,其它三个横纵坐标为整数的点落在所围区域的边界上,即线段AB上,从而求出a的取值范围.【解答】解:∵点A(0,a),点B(0,3﹣a),且A在B的下方,∴a<3﹣a,解得:a<1.5,若在AB,BC,AC所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为5个,∵点A,B,C的坐标分别是(0,a),(0,3﹣a),(1,2),∴区域内部(不含边界)没有横纵坐标都为整数的点,∴已知的5个横纵坐标都为整数的点都在区域的边界上,∵点C(1,2)的横纵坐标都为整数且在区域的边界上,∴其他的4个都在线段AB上,∴3≤3﹣a<4.解得:﹣1<a≤0,故选:A.10.如图,在平面直角坐标系中,OABC是正方形,点A的坐标是(4,0),点P为边AB上一点,∠CPB=60°,沿CP折叠正方形,折叠后,点B落在平面内点B′处,则B′点的坐标为()A.(2,2)B.(,)C.(2,)D.(,)【分析】过点B′作B′D⊥OC,因为∠CPB=60°,CB′=OC=OA=4,所以∠B′CD=30°,B′D=2,根据勾股定理得DC=2,故OD=4﹣2,即B′点的坐标为(2,).【解答】解:过点B′作B′D⊥OC∵∠CPB=60°,CB′=OC=OA=4∴∠B′CD=30°,B′D=2根据勾股定理得DC=2∴OD=4﹣2,即B′点的坐标为(2,)故选:C.11.如图,在x轴,y轴上分别截取OA,OB,使OA=OB,再分别以点A,B为圆心,以大于AB长为半径画弧,两弧交于点P.若点P的坐标为(a,2a﹣3),则a的值为.【分析】根据作图方法可知点P在∠BOA的角平分线上,由角平分线的性质可知点P到x轴和y轴的距离相等,可得关于a的方程,求解即可.【解答】解:∵OA=OB,分别以点A,B为圆心,以大于AB长为半径画弧,两弧交于点P,∴点P在∠BOA的角平分线上,∴点P到x轴和y轴的距离相等,又∵点P的坐标为(a,2a﹣3),∴a=2a﹣3,∴a=3.故答案为:3.12.如图,△ABC中,点A的坐标为(0,1),点C的坐标为(4,3),如果要使△ABD与△ABC全等,那么点D的坐标是.【分析】因为△ABD与△ABC有一条公共边AB,故本题应从点D在AB的上边、点D在AB的下边两种情况入手进行讨论,计算即可得出答案.【解答】解:△ABD与△ABC有一条公共边AB,当点D在AB的下边时,点D有两种情况:①坐标是(4,﹣1);②坐标为(﹣1,﹣1);当点D在AB的上边时,坐标为(﹣1,3);点D的坐标是(4,﹣1)或(﹣1,3)或(﹣1,﹣1).13.教材上曾让同学们探索过线段的中点坐标:在平面直角坐标系中,有两点A(x1,y1)、B(x2,y2),所连线段AB的中点是M,则M的坐标为(,),如:点A(1,2)、点B(3,6),则线段AB的中点M 的坐标为(,),即M(2,4).利用以上结论解决问题:平面直角坐标系中,若E(a﹣1,a),F(b,a﹣b),线段EF的中点G恰好位于y轴上,且到x轴的距离是1,则4a+b的值等于.【分析】根据中点坐标公式求出点G的坐标,根据线段EF的中点G恰好位于y轴上,且到x轴的距离是1,得到点G的横坐标等于0,纵坐标的绝对值为1,列出方程组求解即可.【解答】解:根据题意得:G(,),∵线段EF的中点G恰好位于y轴上,且到x轴的距离是1,∴,解得:4a+b=4或0.故答案为:4或0.14.在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”给出如下定义:若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,则点P1与点P2的“非常距离”为|y1﹣y2|,例如:点P1(1,2),点P2(3,5),因为|1﹣3|<|2﹣5|,所以点P1与点P2的“非常距离”为|2﹣5|=3,也就是图中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q的交点).已知点,B为y轴上的一个动点.(1)若点A与点B的“非常距离”为2,写出一个满足条件的点B的坐标;(2)直接写出点A与点B的“非常距离”的最小值.【分析】(1)根据点B位于y轴上,可以设点B的坐标为(0,y).由“非常距离”的定义可以确定|0﹣y|=2,据此可以求得y的值;(2)设点B的坐标为(0,y).因为|﹣﹣0|≥|0﹣y|,所以点A与点B的“非常距离”最小值为|﹣﹣0|=.【解答】解:(1)∵B为y轴上的一个动点,∴设点B的坐标为(0,y).∵|﹣﹣0|=≠4,∴|0﹣y|=2,解得y=2或y=﹣2;∴点B的坐标是(0,2)或(0,﹣2);故答案为:(0,2)或(0,﹣2);(2)∵|﹣﹣0|≥|0﹣y|,∴点A与点B的“非常距离”最小值为|﹣﹣0|=;∴点A与点B的“非常距离”的最小值为.故答案为:.15.如图,在平面直角坐标系中,已知三点的坐标分别为A(0,4),B(2,0),C(2,5),连接AB,AC,BC.(1)求AC,AB的长;(2)∠CAB是直角吗?请说明理由.【分析】(1 )过点A作AH⊥BC于点H,再利用勾股定理求解即可;(2 )利用勾股定理的逆定理即可得出结论.【解答】解:(1)如图,∵A(0,4),B(2,0),C(2,5),∴OA=4,OB=2,BC=5,过点A作AH⊥BC于点H,∴BH=OA=4,AH=OB=2,∴CH=BC﹣BH=5﹣4=1,在Rt△OAB中,AB=,在Rt△ACH中,AC=;(2)∠CAB是直角,理由:由(1)得,AC=,AB=2,BC=5,∵,∴AC2+AB2=BC2,∴∠CAB是直角.16.对于某些三角形或四边形,我们可以直接用面积公式或者用割补法来求它们的面积.下面我们再研究一种求某些三角形或四边形面积的新方法:如图1,2所示,分别过三角形或四边形的顶点A,C作水平线的铅垂线l1,l2,l1,l2之间的距离d叫做水平宽;如图1所示,过点B作水平线的铅垂线交AC于点D,称线段BD的长叫做这个三角形的铅垂高;如图2所示,分别过四边形的顶点B,D作水平线l3,l4,l3,l4之间的距离h叫做四边形的铅垂高.【结论提炼】容易证明:“三角形的面积等于水平宽与铅垂高乘积的一半”,即“S=dh”【结论应用】为了便于计算水平宽和铅垂高,我们不妨借助平面直角坐标系.已知:如图3,点A(﹣5,2),B(5,0),C(0,5),则△ABC的水平宽为10,铅垂高为,所以△ABC 面积的大小为.【再探新知】三角形的面积可以用“水平宽与铅垂高乘积的一半”来求,那四边形的面积是不是也可以这样求呢?带着这个问题,我们进行如下探索:(1)在图4所示的平面直角坐标系中,取A(﹣4,2),B(1,5),C(4,1),D(﹣2,﹣4)四个点,得到四边形ABCD.运用“水平宽与铅垂高乘积的一半”进行计算得到四边形ABCD面积的大小是;用其它的方法进行计算得到其面积的大小是,由此发现:用“S=dh”这一方法对求图4中四边形的面积.(填“适合”或“不适合”)(2)在图5所示的平面直角坐标系中,取A(﹣5,2),B(1,5),C(4,2),D(﹣2,﹣3)四个点,得到了四边形ABCD.运用“水平宽与铅垂高乘积的一半”进行计算得到四边形ABCD面积的大小是,用其它的方法进行计算得到面积的大小是,由此发现:用“S=dh”这一方法对求图5中四边形的面积.(“适合”或“不适合”)(3)在图6所示的平面直角坐标系中,取A(﹣4,2),B(1,5),C(5,1),D(﹣1,﹣5)四个点,得到了四边形ABCD.通过计算发现:用“S=dh”这一方法对求图6中四边形的面积.(填“适合”或“不适合”)【归纳总结】我们经历上面的探索过程,通过猜想、归纳,验证,便可得到:当四边形满足某些条件时,可以用“S=dh”来求面积.那么,可以用“S=dh”来求面积的四边形应满足的条件是:.【分析】【结论应用】直接代入公式即可;【再探新知】(1)求出水平宽,铅垂高,代入公式求出面积,再利用矩形面积减去周围四个三角形面积可得答案;(2)(3)与(1)同理;【归纳总结】当四边形满足一条对角线等于水平宽或铅垂高时,四边形可以用“S=dh”来求面积.【解答】解:【结论应用】由图形知,铅垂高为4,S△ABC==20,故答案为:4,20;【再探新知】(1)∵四边形ABCD的水平宽为8,铅垂高为9,∴运用“水平宽与铅垂高乘积的一半”进行计算得到四边形ABCD面积的大小为36,利用四边形ABCD所在的矩形面积减去周围四个三角形面积为8×9﹣=37.5,∴用“S=dh”这一方法对求图4中四边形的面积不合适,故答案为:36,37.5,不合适;(2)∵四边形ABCD的水平宽为9,铅垂高为8,∴运用“水平宽与铅垂高乘积的一半”进行计算得到四边形ABCD面积的大小为36,利用四边形ABCD所在的矩形面积减去周围四个三角形面积为8×9﹣=36,∴用“S=dh”这一方法对求图4中四边形的面积,合适,故答案为:36,36,合适;(3)∵四边形ABCD的水平宽为9,铅垂高为10,∴运用“水平宽与铅垂高乘积的一半”进行计算得到四边形ABCD面积的大小为45,利用四边形ABCD所在的矩形面积减去周围四个三角形面积为10×9﹣=45,∴用“S=dh”这一方法对求图4中四边形的面积,合适,故答案为:合适;【归纳总结】当四边形满足一条对角线等于水平宽或铅垂高时,四边形可以用“S=dh”来求面积,故答案为:一条对角线等于水平宽或铅垂高.17.如图所示,在平面直角坐标系中,P(2,2),(1)点A在x的正半轴运动,点B在y的正半轴上,且P A=PB,①求证:P A⊥PB;②求OA+OB的值;(2)点A在x的正半轴运动,点B在y的负半轴上,且P A=PB,③求OA﹣OB的值;④点A的坐标为(8,0),求点B的坐标.【分析】(1)①过点P作PE⊥x轴于E,作PF⊥y轴于F,根据点P的坐标可得PE=PF=2,然后利用“HL”证明Rt△APE和Rt△BPF全等,根据全等三角形对应角相等可得∠APE=∠BPF,然后求出∠APB=∠EPF=90°,再根据垂直的定义证明;②根据全等三角形对应边相等可得AE=BF,再表示出OA、OB,然后列出方程整理即可得解;(2)③根据全等三角形对应边相等可得AE=BF,再表示出PE、PF,然后列出方程整理即可得解;④求出AE的长度,再根据全等三角形对应边相等可得AE=BF,然后求出OB,再写出点B的坐标即可.【解答】(1)①证明:如图1,过点P作PE⊥x轴于E,作PF⊥y轴于F,∵P(2,2),∴PE=PF=2,在Rt△APE和Rt△BPF中,,∴Rt△APE≌Rt△BPF(HL),∴∠APE=∠BPF,∴∠APB=∠APE+∠BPE=∠BPF+∠BPE=∠EPF=90°,∴P A⊥PB;②解:∵Rt△APE≌Rt△BPF,∴BF=AE,∵OA=OE+AE,OB=OF﹣BF,∴OA+OB=OE+AE+OF﹣BF=OE+OF=2+2=4;(2)解:③如图2,∵Rt△APE≌Rt△BPF,∴AE=BF,∵AE=OA﹣OE=OA﹣2,BF=OB+OF=OB+2,∴OA﹣2=OB+2,∴OA﹣OB=4;④∵PE=PF=2,PE⊥x轴于E,作PF⊥y轴于F,∴四边形OEPF是正方形,∴OE=OF=2,∵A(8,0),∴OA=8,∴AE=OA﹣OE=8﹣2=6,∵Rt△APE≌Rt△BPF,∴AE=BF=6,∴OB=BF﹣OF=6﹣2=4,∴点B的坐标为(0,﹣4).18.如图,在平面直角坐标系xOy中,点B(1,0),点C(5,0),以BC为边在x轴的上方作正方形ABCD,点M(﹣5,0),N(0,5).(1)点A的坐标为;点D的坐标为;(2)将正方形ABCD向左平移m个单位,得到正方形A'B'C'D',记正方形A'B'C'D'与△OMN重叠的区域(不含边界)为W:①当m=3时,区域内整点(横,纵坐标都是整数)的个数为;②若区域W内恰好有3个整点,请直接写出m的取值范围.【分析】(1)先求出正方形的边长为BC=4,再求点的坐标即可;(2)①画出正方形A'B'C'D',结合图形求解即可;②在△OMN中共有6个整数点,在平移正方形ABCD,找到恰好有3个整数解的情况即可.【解答】解:(1)∵点B(1,0),点C(5,0),∴BC=4,∵四边形ABCD是正方形,∴A(1,4),D(5,4),故答案为:(1,4),(5,4);(2)①如图:共有3个,故答案为:3;②在△OMN中共有6个整数点,分别是(﹣1,1),(﹣1,2),(﹣1,3),(﹣2,1),(﹣2,2),(﹣3,1),∵区域W内恰好有3个整点,∴2<m≤3或6≤m<7.19.类比学习是知识内化的有效途径,认真读题是正确审题的第一步:对于平面直角坐标系xOy中的点P(a,b),若点P'的坐标为(其中k为常数,且k≠0),则称点P'为点P的“k系好友点”;例如:P(1,2)的“3系好友点”为即.请完成下列各题.(1)点P(﹣3,1)的“2系好友点”P'的坐标为.(2)若点P在y轴的正半轴上,点P的“k系好友点”为P'点,若在三角形OPP'中,pp′=3OP,求k的值.(3)已知点A(x,y)在第四象限,且满足xy=﹣8;点A是点B(m,n)的“﹣2系好友点”,求m﹣2n的值.【分析】(1)根据“k系好友点”的定义列式计算求解;(2)设P(0,t)(t>0),根据定义得点P′(kt,t),则PP′=|kt|=3OP=3t,即可求解;(3)点A是点B(m,n)的“﹣2系好有点”,可得点A(m﹣2n,n﹣),由xy=﹣8得到(m﹣2n)2=16,即可求解.【解答】解:(1)点P(﹣3,1),根据“k系好友点”的求法可知,k=2,∵﹣3+2×1=﹣1,1+=﹣,∴P′的坐标为(﹣1,﹣),故答案为(﹣1,﹣);(2)设P(0,t)其中t>0,根据“k系好友点”的求法可知,P′(kt,t),∴PP'∥x轴,∴PP'=|kt|,又∵OP=t,PP'=3OP,∴|kt|=3t,∴k=±3;(3)∵B(m,n)的﹣3系好有点A为(m﹣2n,n﹣),∴x=m﹣2n,y=n﹣,又∵xy=﹣8,∴(m﹣2n)•(n﹣)=﹣8,∴m﹣2n=±4,∵点A在第四象限,∴x>0,即m﹣2n=4.20.如图,在以点O为原点的平面直角坐标系中点A,B的坐标分别为(a,0),(a,b),点C在y轴上,且BC∥x轴,a,b满足|a﹣3|+=0.点P从原点出发,以每秒2个单位长度的速度沿着O﹣A﹣B﹣C﹣O的路线运动(回到O为止).(1)直接写出点A,B,C的坐标;(2)当点P运动3秒时,连接PC,PO,求出点P的坐标,并直接写出∠CPO,∠BCP,∠AOP之间满足的数量关系;(3)点P运动t秒后(t≠0),是否存在点P到x轴的距离为t个单位长度的情况.若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)利用绝对值和二次根式的非负性即可求得;(2)当P运动3秒时,点P运动了6个单位长度,根据AO=3,即可得点P在线段AB上且AP=3,写出P 的坐标即可;作PE∥AO.利用平行线的性质证明即可;(3)由t≠0得点P可能运动到AB或BC或OC上.再分类讨论列出一元一次方程解得t即可.【解答】解:(1)∵|a﹣3|+=0且|a﹣3|≥0,≥0,∴|a﹣3|=0,=0,∴a=3,b=4,∴A(3,0),B(3,4),C(0,4);(2)如图,当P运动3秒时,点P运动了6个单位长度,∵AO=3,∴点P运动3秒时,点P在线段AB上,且AP=3,∴点P的坐标是(3,3);如图,作PE∥AO.∵CB∥AO,PE∥AO,∴CB∥PE,∴∠BCP=∠EPC,∠AOP=∠EPO,∴∠CPO=∠BCP+∠AOP;(3)存在.∵t≠0,∴点P可能运动到AB或BC或OC上.①当点P运动到AB上时,2t≤7,∵0<t≤,P A=2t﹣OA=2t﹣3,∴2t﹣3=t,解得:t=2,∴P A=2×2﹣3=1,∴点P的坐标为(3,1);②当点P运动到BC上时,7≤2t≤10,即≤t≤5,∵点P到x轴的距离为4,∴t=4,解得t=8,∵≤t≤5,∴此种情况不符合题意;③当点P运动到OC上时,10≤2t≤14,即5≤t≤7,∵PO=OA+AB+BC+OC﹣2t=14﹣2t,∴14﹣2t=t,解得:t=,∴PO=﹣2×+14=,∴点P的坐标为(0,).综上所述,点P运动t秒后,存在点P到x轴的距离为t个单位长度的情况,点P的坐标为(3,1)或(0,).。

初中七年级数学《平面直角坐标系中几何综合题》

初中七年级数学《平面直角坐标系中几何综合题》

七年级下学期期末备考之《平面直角坐标系中几何综合题》一.解答题(共17小题)1.(春•玉环县期中)如图在平面直角坐标系中,A(a,0),B(b,0),(﹣1,2).且|2a+b+1|+=0.(1)求a、b的值;(2)①在y轴的正半轴上存在一点M,使S△COM=S△ABC,求点M的坐标.(标注:三角形ABC的面积表示为S△ABC)②在坐标轴的其他位置是否存在点M,使S△COM=S△ABC仍成立?若存在,请直接写出符合条件的点M的坐标.2.(春•汕头校级期中)如图,在下面直角坐标系中,已知A(0,a),B(b,0),C(3,c)三点,其中a、b、c满足关系式:|a﹣2|+(b﹣3)2+=0.(1)求a、b、c的值;(2)如果在第二象限内有一点P(m,),请用含m的式子表示四边形ABOP的面积;(3)在(2)的条件下,是否存在负整数m,使四边形ABOP的面积不小于△AOP面积的两倍?若存在,求出所有满足条件的点P的坐标,若不存在,请说明理由.3.(春•鄂城区期中)如图,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a、b满足a=+﹣1,现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,CD.(1)求点C,D的坐标及四边形ABDC的面积S四边形ABDC.(2)在y轴上是否存在一点P,连接PA,PB,使S△PAB=S四边形ABDC?若存在这样一点,求出点P的坐标;若不存在,试说明理由.(3)点P是线段BD上的一个动点,连接PC,PO,当点P在BD上移动时(不与B,D重合)的值是否发生变化,并说明理由.4.(春•富顺县校级期末)在平面直角坐标系中,A(a,0),B(b,0),C(﹣1,2)(见图1),且|2a+b+1|+=0(1)求a、b的值;(2)①在x轴的正半轴上存在一点M,使△COM的面积=△ABC的面积,求出点M的坐标;②在坐标轴的其它位置是否存在点M,使△COM的面积=△ABC的面积仍然成立?若存在,请直接写出符合条件的点M的坐标;(3)如图2,过点C作CD⊥y轴交y轴于点D,点P为线段CD延长线上的一动点,连接OP,OE平分∠AOP,OF⊥OE.当点P运动时,的值是否会改变?若不变,求其值;若改变,说明理由.5.(春•泰兴市校级期末)已知:如图①,直线MN⊥直线PQ,垂足为O,点A在射线OP 上,点B在射线OQ上(A、B不与O点重合),点C在射线ON上且OC=2,过点C作直线l∥PQ,点D在点C的左边且CD=3.(1)直接写出△BCD的面积.(2)如图②,若AC⊥BC,作∠CBA的平分线交OC于E,交AC于F,求证:∠CEF=∠CFE.(3)如图③,若∠ADC=∠DAC,点B在射线OQ上运动,∠ACB的平分线交DA的延长线于点H,在点B运动过程中的值是否变化?若不变,求出其值;若变化,求出变化范围.6.(春•江岸区期末)如图1,在平面直角坐标系中,A(a,0),B(b,3),C(4,0),且满足(a+b)2+|a﹣b+6|=0,线段AB交y轴于F点.(1)求点A、B的坐标.(2)点D为y轴正半轴上一点,若ED∥AB,且AM,DM分别平分∠CAB,∠ODE,如图2,求∠AMD的度数.(3)如图3,(也可以利用图1)①求点F的坐标;②点P为坐标轴上一点,若△ABP的三角形和△ABC的面积相等?若存在,求出P点坐标.7.(春•黄陂区期末)在直角坐标系中,已知点A、B的坐标是(a,0)(b,0),a,b满足方程组,c为y轴正半轴上一点,且S△ABC=6.(1)求A、B、C三点的坐标;(2)是否存在点P(t,t),使S△PAB=S△ABC?若存在,请求出P点坐标;若不存在,请说明理由;(3)若M是AC的中点,N是BC上一点,CN=2BN,连AN、BM相交于点D,求四边形CMDN的面积是.8.(春•海珠区期末)在平面直角坐标系中,点A(a,b)是第四象限内一点,AB⊥y轴于B,且B(0,b)是y轴负半轴上一点,b2=16,S△AOB=12.(1)求点A和点B的坐标;(2)如图1,点D为线段OA(端点除外)上某一点,过点D作AO垂线交x轴于E,交直线AB于F,∠EOD、∠AFD的平分线相交于N,求∠ONF的度数.(3)如图2,点D为线段OA(端点除外)上某一点,当点D在线段上运动时,过点D作直线EF交x轴正半轴于E,交直线AB于F,∠EOD,∠AFD的平分线相交于点N.若记∠ODF=α,请用α的式子表示∠ONF的大小,并说明理由.9.(春•黄梅县校级期中)如图,在下面的直角坐标系中,已知A(0,a),B(b,0),C(b,4)三点,其中a,b满足关系式.(1)求a,b的值;(2)如果在第二象限内有一点P(m,),请用含m的式子表示四边形ABOP的面积;(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标;若不存在,请说明理由.10.(春•通州区校级期中)在如图直角坐标系中,已知A(0,a),B(b,0),C(b,c)三点,其中a、b、c满足关系式+(b﹣3)2=0,(c﹣4)2≤0.(1)求a、b、c的值;(2)如果点P(m,n)在第二象限,四边形CBOP的面积为y,请你用含m,n的式子表示y;(3)如果点P在第二象限坐标轴的夹角平分线上,并且y=2S四边形CBOA,求P点的坐标.11.(春•鄂州校级期中)如图,A、B两点坐标分别为A(a,4),B(b,0),且a,b满足(a﹣2b+8)2+=0,E是y轴正半轴上一点.(1)求A、B两点坐标;(2)若C为y轴上一点且S△AOC=S△AOB,求C点的坐标;(3)过B作BD∥y轴,∠DBF=∠DBA,∠EOF=∠EOA,求∠F与∠A间的数量关系.12.(春•东湖区期中)如图,平面直角坐标系中A(﹣1,0),B(3,0),现同时将A、B 分别向上平移2个单位,再向右平移1个单位,分别得到A、B的对应点C、D,连接AC、BD(1)直接写出C、D的坐标:C D及四边形ABCD的面积:(2)在y轴负半轴上是否存在点M,连接MA、MB使得S△MAB>S四边形ABCD?若存在,求出M点纵坐标的取值范围;若不存在说明理由(3)点P为线段BD上一动点,连PC、PO,当点P在BD上移动(不含端点)现给出①的值不变,②的值不变,其中有且只有一个正确,请你找出这个结论并求其值.13.(春•台州月考)如图,在平面直角坐标系中,点A,B的坐标分别为A(0,α),B(b,α),且α、b满足(a﹣2)2+|b﹣4|=0,现同时将点A,B分别向下平移2个单位,再向左平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,AB.(1)求点C,D的坐标及四边形ABDC的面积S四边形ABCD(2)在y轴上是否存在一点M,连接MC,MD,使S△MCD=S四边形ABDC?若存在这样一点,求出点M的坐标,若不存在,试说明理由.(3)点P是线段BD上的一个动点,连接PA,PO,当点P在BD上移动时(不与B,D重合)的值是否发生变化,并说明理由.14.(春•海安县月考)如图,在平面直角坐标系中,点A,B,C的坐标分别为(﹣1,0),(3,0),(0,2),图中的线段BD是由线段AC平移得到.(1)线段AC经过怎样的平移可得到线段BD,所得四边形是什么图形,并求出所得的四边形ABDC的面积S四边形ABDC;(2)在y轴上是否存在点P,连接PA,PB,使S△PAB=S四边形ABDC?若存在,求出点P的坐标;若不存在,试说明理由;(3)点P是线段BD上的一个动点,连接PC、PO,当点P在BD上移动时(不与B,D重合)给出下列结论:①的值不变;②的值不变,其中有且只有一个是正确的,请你找出这个结论并求其值.15.(春•武汉月考)已知,在平面直角坐标系中,点A(0,m),点B(n,0),m、n满足(m﹣3)2=﹣;(1)求A、B的坐标;(2)如图1,E为第二象限内直线AB上一点,且满足S△AOE=S△AOB,求E的坐标.(3)如图2,平移线段BA至OC,B与O是对应点,A与C对应,连AC.E为BA的延长线上一动点,连EO.OF平分∠COE,AF平分∠EAC,OF交AF于F点.若∠ABO+∠OEB=α,请在图2中将图形补充完整,并求∠F(用含α的式子表示).16.(2013秋•江岸区校级月考)如图,已知点A(﹣m,n),B(0,m),且m、n满足+(n﹣5)2=0,点C在y轴上,将△ABC沿y轴折叠,使点A落在点D处.(1)写出D点坐标并求A、D两点间的距离;(2)若EF平分∠AED,若∠ACF﹣∠AEF=20°,求∠EFB的度数;(3)过点C作QH平行于AB交x轴于点H,点Q在HC的延长线上,AB交x轴于点R,CP、RP分别平分∠BCQ和∠ARX,当点C在y轴上运动时,∠CPR的度数是否发生变化?若不变,求其度数;若变化,求其变化范围.17.(2013春•武汉校级月考)如图,在平面直角坐标系中,点A,B的坐标分别为A(﹣1,0)、B(3,0).现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C、D,连接AC,BD.(1)直接写出点C、D的坐标,求四边形ABDC的面积S四边形ABDC;(2)在坐标轴上是否存在一点P,使S△PAC=S四边形ABDC?若存在这样一点,求出点P的坐标;若不存在,试说明理由.(3)如图3,在线段CO上取一点G,使OG=3CG,在线段OB上取一点F,使OF=2BF,CF与BG交于点H,求四边形OGHF的面积S四边形OGHF.。

七(下)培优训练(三)平面直角坐标系综合问题(压轴题)

七(下)培优训练(三)平面直角坐标系综合问题(压轴题)

培优训练三:平面直角坐标系(压轴题)一、坐标与面积:【例1】如图,在平面直角坐标中,A (0,1),B (2,0),C (2,1.5). (1)求△AB C的面积;(2)如果在第二象限内有一点P(a ,0.5),试用a 的式子表示四边形ABOP 的面积;(3)在(2)的条件下,是否存在这样的点P ,使四边形ABOP 的面积与△AB C的面积相等?若存在,求出点P 的坐标,若不存在,请说明理由.yxPOCBA【例2】在平面直角坐标系中,已知A (-3,0),B (-2,-2),将线段AB 平移至线段CD .图1y xDO CB A图2y xDOCB AyxOBAyxOBA(1)如图1,直接写出图中相等的线段,平行的线段;(2)如图2,若线段AB 移动到CD ,C 、D 两点恰好都在坐标轴上,求C 、D 的坐标;(3)若点C 在y 轴的正半轴上,点D在第一象限内,且S△ACD =5,求C、D 的坐标;(4)在y 轴上是否存在一点P ,使线段AB 平移至线段PQ 时,由A 、B 、P、Q 构成的四边形是平行四边形面积为10,若存在,求出P 、Q的坐标,若不存在,说明理由;【例3】如图,△ABC 的三个顶点位置分别是A (1,0),B (-2,3),C (-3,0).(1)求△ABC 的面积;(2)若把△AB C向下平移2个单位长度,再向右平移3个单位长度,得到△A B C ''',请你在图中画出△A B C '''; (3)若点A、C的位置不变,当点P 在y 轴上什么位置时,使2ACPABCS S=;(4)若点B 、C的位置不变,当点Q在x 轴上什么位置时,使2BCQABCS S=.【例4】如图1,在平面直角坐标系中,A (a ,0),C (b,2),且满足2(2)20a b ++-=,过C 作CB ⊥x 轴于B.(1)求三角形ABC 的面积;(2)若过B作BD ∥AC 交y 轴于D,且AE ,D E分别平分∠CA B,∠ODB ,如图2,求∠AE D的度数;(3)在y 轴上是否存在点P ,使得三角形ABC 和三角形A CP 的面积相等,若存在,求出P 点坐标;若不存在,请说明理由.【例5】如图,在平面直角坐标系中,四边形AB CD 各顶点的坐标分别是A(0,0),B(7,0),C (9,5),D (2,7)(1)在坐标系中,画出此四边形; (2)求此四边形的面积;(3)在坐标轴上,你能否找一个点P ,使S △PBC =50, 若能,求出P 点坐标,若不能,说明理由.【例6】如图,A点坐标为(-2, 0), B 点坐标为(0, -3). (1)作图,将△ABO沿x轴正方向平移4个单位, 得到△DEF , 延长ED 交y 轴于C点, 过O点作O G⊥C E, 垂足为G ;(2) 在(1)的条件下, 求证: ∠C OG =∠E DF ; (3)求运动过程中线段A B扫过的图形的面积.【例7】在平面直角坐标系中,点B (0,4),C(-5,4),点A 是x轴负半轴上一点,S四边形A OBC =24.图1yxHOFEDAC B(1)线段B C的长为 ,点A的坐标为 ;(2)如图1,EA 平分∠CAO ,DA 平分∠CA H,CF ⊥A E点F,试给出∠ECF 与∠DAH 之间满足的数量关系式,并说明理由;(3)若点P 是在直线C B与直线AO 之间的一点,连接BP 、OP ,BN 平分CBP ∠,ON平分AOP ∠,BN 交ON 于N,请依题意画出图形,给出BPO ∠与BNO ∠之间满足的数量关系式,并说明理由. 【例8】在平面直角坐标系中,OA=4,O C=8,四边形ABC O是平行四边形.A(-2,0)B(0,-3)y x 0(1)求点B 的坐标及的面积ABCO S 四边形;(2)若点P 从点C以2单位长度/秒的速度沿CO 方向移动,同时点Q 从点O 以1单位长度/秒的速度沿OA 方向移动,设移动的时间为t 秒,△AQ B与△BPC 的面积分别记为AQB S ∆,BPC S ∆,是否存在某个时间,使AQB S ∆=3OQBPS 四边形,若存在,求出t 的值,若不存在,试说明理由;(3)在(2)的条件下,四边形Q BPO 的面积是否发生变化,若不变,求出并证明你的结论,若变化,求出变化的范围.【例9】如图,在平面直角坐标系中,点A ,B的坐标分别为(-1,0),(3,0),现同时将点A,B 分别向上平移2个单位,再向右平移1个单位,分别得到点A,B 的对应点C,D 连结AC ,B D. (1)求点C ,D 的坐标及四边形ABD C的面积S 四边形ABDC ;(2)在y轴上是否存在一点P ,连结P A ,PB ,使S △PAB =S △明理由;(3)若点Q自O 点以0.5个单位/s 的速度在线段AB上移动,运动到B点就停止,设移动的时间为t 秒,(1)是否是否存在一个时刻,使得梯形CDQB 的面积是四边形ABCD 面积的三分之一?(4)是否是否存在一个时刻,使得梯形CDQB 的面积等于△ACO 面积的二分之一?【例10】在直角坐标系中,△AB C的顶点A (—2,0),B (2,4),C (5,0). (1)求△ABC 的面积(2)点D 为y负半轴上一动点,连BD 交x 轴于E ,是否存在点D 使得ADE BCE S S ∆∆=?若存在,请求出点D 的坐标;若不存在,请说明理由.(3)点F (5,n )是第一象限内一点,,连BF ,CF ,G 是x轴上一点,若△ABG 的面积等于四边形ABDC 的面积,则点G 的坐标为 (用含n 的式子表示)二、坐标与几何:【例1】如图,已知A (0,a),B (0,b),C (m ,b)且(a -4)2+|b+3|=0,S △ABC =14. (1)求C点坐标(2)作DE ⊥DC,交y 轴于E点,EF 为∠AED 的平分线,且∠DF E=900.求证:FD 平分∠ADO;(3)E 在y 轴负半轴上运动时,连E C,点P为A C延长线上一点,EM 平分∠AEC,且PM ⊥EM,PN ⊥x 轴于N点,PQ 平分∠APN,交x轴于Q点,则E 在运动过程中,错误!的大小是否发生变化,若不变,求出其值.【例2】如图,在平面直角坐标系中,已知点A(-5,0),B(5.0),D(2,7), (1)求C点的坐标;(2)动点P 从B 点出发以每秒1个单位的速度沿BA 方向运动,同时动点Q从C 点出发也以每秒1位的速度沿y轴正半轴方向运动(当P 点运动到A 点时,两点都停止运动)。

函数与几何综合问题专练2023中考真题分类汇编(共25题)(解析版)

函数与几何综合问题专练2023中考真题分类汇编(共25题)(解析版)

专题32函数与几何综合问题(25题)一、填空题1.(2023·四川眉山·统考中考真题)如图,在平面直角坐标系xOy 中,点B 的坐标为()86-,,过点B 分别作x 轴、y 轴的垂线,垂足分别为点C 、点A ,直线26y x =--与AB 交于点D .与y 轴交于点E .动点M 在线段BC 上,动点N 在直线26y x =--上,若AMN 是以点N 为直角顶点的等腰直角三角形,则点M 的坐标为【答案】()8,6M -或28,3M ⎛⎫- ⎪⎝⎭【分析】如图,由AMN 是以点N 为直角顶点的等腰直角三角形,可得N 在以AM 为直径的圆H 上,MN AN =,可得N 是圆H 与直线26y x =--的交点,当,M B 重合时,符合题意,可得()8,6M -,当N 在AM 的上方时,如图,过N 作NJ y ⊥轴于J ,延长MB 交BJ 于K ,则90NJA MKN ∠=∠=︒,8JK AB ==,证明MNK NAJ ≌,设(),26N x x --,可得MK NJ x ==-,266212KN AJ x x ==---=--,而8KJ AB ==,则2128x x ---=,再解方程可得答案.【详解】解:如图,∵AMN 是以点N 为直角顶点的等腰直角三角形,∴N 在以AM 为直径的圆H 上,MN AN =,∴N 是圆H 与直线26y x =--的交点,当,M B 重合时,∵()8,6B -,则()4,3H -,∴4MH AH NH ===,符合题意,∴()8,6M -,当N 在AM 的上方时,如图,过N 作NJ y ⊥轴于J ,延长MB 交BJ 于K ,则90NJA MKN ∠=∠=︒,8JK AB ==,∴90NAJ ANJ ∠+∠=︒,【答案】392【分析】作出点()32C -,,作CD 直角三角形求得1103F ⎛⎫ ⎪⎝⎭,,利用待定系数法求得直线DG y ⊥轴于点G ,此时35BH +【详解】解:∵直线123y x =-+则2CP =,3OP =,∵CFP AFD ∠=∠,∴FCP FAD ∠=∠,∴tan tan FCP FAD ∠=∠,∴PF OB PC OA=,即226PF =,∴23PF =,则1103F ⎛⎫ ⎪⎝⎭,,设直线CD 的解析式为y kx =+则321103k b k b +=-⎧⎪⎨+=⎪⎩,解得311k b =⎧⎨=-⎩∴直线CD 的解析式为3y x =联立,311123y x y x =-⎧⎪⎨=-+⎪⎩,解得⎧⎪⎪⎨⎪⎪⎩即3971010D ⎛⎫ ⎪⎝⎭,;过点D 作DG y ⊥轴于点G ,②如图2,直线BM过AC中点,直线BM解析式为1522y x=-+,AC中点坐标为910a=;③如图3,直线CM过AB中点,AB中点坐标为()3,0,5⑤如图5,直线ME ∥AC ,MN CO ∥,则EMN ACO∽∴12BE AB =,又4AB =,∴22BE =,∵53222BN =-=<,∴不成立;⑥如图6,直线ME ∥BC ,同理可得12AE AB =,∴22AE =,222NE =-,tan tan MEN CBO ∠∠=,∴155222a =-,解得212a +=;综上所述,910a =或225+或212+.【点睛】本题考查了二次函数的综合问题,解直角三角形,相似三角形的性质与判定,熟练掌握以上知识,并分类讨论是解题的关键.二、解答题4.(2023·黑龙江牡丹江·统考中考真题)如图,在平面直角坐标系中,ABCD Y 的顶点B ,C 在x 轴上,D(1)求点B 的坐标;(2)若:2:1OD OC =,直线y x b =-+分别交x DC 延长线于点N ,求tan MND ∠的值;(3)在(2)的条件下,点P 在y 轴上,在直线存在,请直接写出等腰三角形的个数和其中两个点【答案】(1)()4,0B -(2)1tan 3MND ∠=(3)存在,等腰三角形的个数是8个,1652Q ⎛- ⎝【分析】(1)解方程得到OB ,OC 的长,从而得到点(2)由:2:1OD OC =,2OC =,得4OD =线y x b =-+中,求得b 的值,从而得到直线的解析式,进而求得点45FEO ∠=︒.过点C 作CH EN ⊥于H ,过点::2:1DO OC NK CK ==,进而得到2NK CK =EC CK =,由211EC OC OE =-=-=可得CK 得到22cos EK EN KEN ==∠,在Rt ECH △中,322NH EN EH =-=,最终可得结果tan MND ∠(3)分PN PQ =,PN NQ =,PQ NQ =三大类求解,共有【详解】(1)解方程2680x x -+=,得14x =OB OC > ,(3)解:由(2)知:直线EF 解析式为设()0,P p ,(),1Q q q -+,①当5PN QN ==时,()()2223025p -+--=,()23q -+解得6p =-或2p =,6522q +=或∴1652524,22Q ⎛⎫-- ⎪ ⎪⎝⎭,2652Q ⎛+ ⎝如图,11PQ N 、12PQ N 、21P Q N ;②当5PQ QN ==时,由①知:1652524,22Q ⎛⎫-- ⎪ ⎪⎝⎭,2652,2Q ⎛+ ⎝;③当5PN PQ ==时,由①知:()10,6P -,()20,2P ,当()10,6P -时,()()22061q q -+-+-解得13q =(舍去),24q =,∴()34,3Q -,如图,当()20,2P 时,()()220215q q -++-=解得13q =(舍去),24q =-,综上,等腰三角形的个数是8个,符合题意的Q 坐标为16525,2Q ⎛- ⎝【点睛】本题考查了一次函数的图像与性质,一次函数与平行四边形,等腰三角形的综合问题,数形结合思想是解题的关键.5.(2023·湖南·统考中考真题)如图,点使得DBC CAB ∠=∠,点E 是弦AC 上一动点(不与点交BC 的延长线于点N ,交O 于点M (1)BD 是O 的切线吗?请作出你的判断并给出证明;(2)记BDC ABC ADB ,,的面积分别为(3)若O 的半径为1,设FM x =,FE 自变量x 的取值范围.【答案】(1)BD 是O 的切线,证明见解析(2)152+∴在Rt OFM △中,2OF OM =∴211BF BO OF x =+=+-,AF2②若a c=,则A、B关于y轴对称,以综上,以A,B,C,D为顶点的四边形能构成正方形,此时【点睛】本题主要考查了二次函数的综合应用、正方形的性质等知识点,解题的关键是利用分类讨论的思想解决问题.(1)当45QPB ∠=︒时,求四边形(2)当点P 在线段AB 上移动时,设【答案】(1)438+(2)23234312x S x =++【分析】(1)连接BD 、可得PBQ 为等腰直角三角形,则 四边形ABCD 为菱形,∠PB x=,23BQ=,PBQ(1)求点,A B 的坐标;(2)随着点E 在线段BC 上运动.①EDA ∠的大小是否发生变化?请说明理由;②线段BF 的长度是否存在最大值?若存在,求出最大值;若不存在,请说明理由;(3)当线段DE 的中点在该二次函数的因象的对称轴上时,【答案】(1)()20A ,,()13B ,;∵()2313y x =--+,∴抛物线对称轴为1x =,即1ON =,∵将线段AB 绕点A 按顺时针方向旋转∵2OA OB AC BC ====,∴四边形OACB 是菱形,∴BC OA ∥,∵DH BN ⊥,AN BN ⊥,∴DH BC OA ∥∥,∴MBE MHD ∠∠=,MEB MDH ∠∠=∵DE 的中点为点M ,∴MD ME =,∴MBE MHD ≌,∴DH BE =,∵90ANM ∠=︒,∴1809090MBE ANM ∠∠=︒-︒=︒=,∵DE 的中点为点M ,DAE 是等边三角形,∴AM DE ⊥,∴90AME ∠=︒,∴180BME NMA ∠∠+=︒,∴BME NAM ∠∠=,(1)求点,,D E C 的坐标;(2)F 是线段OE 上一点()OF EF <,连接,AF DF ①求证:DFC △是直角三角形;②DFC ∠的平分线FK 交线段DC 于点,K P 是直线坐标.【答案】(1)(3,1)C ,(0,2)D ,(6,0)E (2)①证明见解析,②点P 的坐标为(1,3)或(7,3【分析】(1)根据一次函数与坐标轴的交点及一次函数与二次函数的交点求解即可;(2)①设(,0),F m 然后利用勾股定理求解,m-①抛物线231y x x =-++交y 轴于点A ,当0x =时,1,y =.(0,1),A ∴1OA ∴=,在Rt AOF 中,90AOF ∠=︒,由勾股定理得222AF OA OF +=,设(,0),F m ,OF m ∴=221AF m ∴=+,(6,0),E .6,OE ∴=6EF OE OF m ∴=-=-,2221,AF EF += 221(6)21,m m ∴++-=122,4m m ∴==,,OF EF < 2,m ∴=2OF ∴=,(2,0)F ∴.(0,2),D 2OD ∴=,OD OF ∴=.DOF ∴ 是等腰直角三角形,45OFD ∴∠=︒.过点C 作CG x ⊥轴,垂足为G .(3,1),C 1,3CG OG ∴==,1,GF OG OF =-= ,CG GF ∴=CGF ∴ 是等腰直角三角形,45,GFC ∴∠︒=90,DFC ∴∠=︒DFC ∴ 是直角三角形.②FK 平分,90,DFC DFC ∠∠=︒(1)BP 的长为__________,CM 的长为_________(2)求y 关于x 的函数解析式,并写出自变量x 的取值范围.(3)当四边形PQMN 是轴对称图形时,直接写出x 【答案】(1)()4x -;x(2)()(241216024162x x y x x ⎧-+⎪=⎨-+<≤⎪⎩(3)43x =或83x =【分析】(1)根据正方形中心对称的性质得出OM ANP CQM ≌即可;(2)分02x <≤,2<两种情况分别画出图形,根据正方形的面积,以及平行四边形的性质即可求解;(3)根据(2)的图形,分类讨论即可求解.【详解】(1)解:依题意,1AP x x =⨯=()cm ,则∵四边形ABCD 是正方形,∴,90AD BC DAB ∠=∠=︒∥,∵点O 是正方形对角线的中点,∴,OM OP OQ ON ==,则四边形PQMN 是平行四边形,∴MQ PN =,MQ NP ∥∴PNQ MQN ∠=∠,又AD BC ∥,∴ANQ CQN ∠=∠,∴ANP MQC ∠=∠,在,ANP CQM 中,ANP MQC NAP QCM NP MQ ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ANP CQM ≌,∴()cm MC AP x ==故答案为:()4x -;x .(2)解:当02x <≤时,点Q 在BC 上,由(1)可得ANP CQM ≌,同理可得PBQ MDN ≌,∵4,2,PB x QB x MC x =-==,42QC x =-,则222MCQ BPQy AB S S =-- ()()164242x x x x =--⨯--241216x x =-+;当24x <≤时,如图所示,则AP x =,224AN CQ x CB x ==-=-,()244PN AP AN x x x =-=--=-+,∴()44416y x x =-+⨯=-+;综上所述,()()2412160241624x x x y x x ⎧-+<≤⎪=⎨-+<≤⎪⎩;当四边形PQMN 是菱形时,则∴()()2242x x x -+=解得:0x =(舍去)②如图所示,当PB =424x x -=-,解得x 当四边形PQMN 是菱形时,则综上所述,当四边形【点睛】本题考查了正方形的性质,动点问题,全等三角形的性质与判定,矩形的性质,平行四边形的性质与判定,菱形的性质,轴对称图形,熟练掌握以上知识是解题的关键.(1)当旋转角COF ∠为多少度时,OE OF =;(直接写出结果,不要求写解答过程)(2)若点(4,3)A ,求FC 的长;(3)如图3,对角线AC 交y 轴于点M ,交直线y x =于点N ,连接FN ,将OFN △1S 与2S ,设12S S S =-,AN n =,求S 关于n 的函数表达式.【答案】(1)22.5︒(2)154FC =(3)212S n =【分析】(1)根据正方形的性质及直角三角形全等的判定及性质得出AOG ∠=45EOG ∠=︒,即可求解;(2)过点A 作AP x ⊥轴,根据勾股定理及点的坐标得出5OA =,再由相似三角形的判定和性质求解即可;(3)根据正方形的性质及四点共圆条件得出O 、C 、F 、N 四点共圆,再由圆周角定理及等腰直角三角形的判定和性质得出FN ON =,90FNO ∠=︒,过点N 作GQ BC ⊥于点G ,交OA 于点形的判定和性质得出,CG OQ CO QG ==,结合图形分别表示出1S ,2S ,得出(2)过点A 作AP x ⊥轴,如图所示:∵(4,3)A ,∴3,4AP OP ==,∴5OA =,∵正方形OABC ,∴5OC OA ==,90C ∠=∴90C APO ∠∠==︒,∵AOP COF ∠∠=,∴OCF OPA ∽ ,∴OC FC OP AP=即543FC =,∴154FC =;(3)∵正方形OABC ,∵BC OA ∥,∴GQ OA ⊥,∵90FNO ∠=︒,∴1290∠∠+=︒,∵1390∠∠+=︒,∴23∠∠=,∴(AAS)FGN NQO ≌ ∴,GN OQ FG QN ==,∵GQ BC ⊥,FCO COQ ∠∠=∴四边形COQG 为矩形,∴,CG OQ CO QG ==,∴(211S S ON OQ ===(1)直接写出结果;b =_____,c =_____,点A 的坐标为_____,tan ABC ∠=______(2)如图1,当2PCB OCA ∠=∠时,求点P 的坐标;(3)如图2,点D 在y 轴负半轴上,OD OB =,点Q 为抛物线上一点,90QBD ∠=︒,点的边,DQ DB 上的动点,QE DF =,记BE Q F +的最小值为m .①求m 的值;②设PCB 的面积为S ,若214S m k =-,请直接写出k 的取值范围.【答案】(1)32,2,()1,0-,12(2)()2,3(3)解:①如图2,作DH ⊥∵90BQD BDQ ︒∠+∠=,HDF ∠∴QD HDF ∠=∠,∵QE DF =,DH BQ =,∴(SAS)BQE HDF ≌,∴BE FH =,∴BE QF FH QF QH +=+≥,∴Q ,F ,H 共线时,BE Q F +②如图3,作PT y ∥轴,交设22,1T a a ⎛⎫-+ ⎪⎝⎭,,P a ⎛ ⎝则21132222S a a ⎛=-+++ ⎝∴04S <≤,∴21044m k <-≤,∴0174k <-≤,∴1317k ≤<.【点睛】本题考查用待定系数法求函数解析式、二次函数与几何综合、二次函数与(1)直接判断AOB 的形状:AOB 是_________三角形;(2)求证:AOE BOD △≌△;(3)直线EA 交x 轴于点(,0),2C t t >.将经过B ,C 两点的抛物线21y ax =物线2y .①若直线EA 与抛物线1y 有唯一交点,求t 的值;②若抛物线2y 的顶点P 在直线EA 上,求t 的值;③将抛物线2y 再向下平移,22(1)t -个单位,得到抛物线3y .若点D 在抛物线【答案】(1)等腰直角三角形(2)详见解析(3)①3t =;②6t =;③126,55D ⎛⎫ ⎪⎝⎭【分析】(1)由(0,2),(2,0)A B 得到2OA OB ==,又由90AOB ∠=︒,即可得到结论;(2)由90EOD ∠=︒,90AOB ∠=︒得到AOE BOD ∠=∠,又有AO OB =AOE BOD △≌△;(3)①求出直线AC 的解析式和抛物线1y 的解析式,联立得()23x t -+22(3)43(3)0t t t ∆=+-⨯=-=即可得到t 的值;∵90EOD ∠=︒,90AOB ∠=︒,AOB AOD DOE ∴∠-∠=∠-∠AOE BOD ∴∠=∠,∵,AO OB OD OE ==,(SAS)AOE BOD ∴△≌△;(3)①设直线AC 的解析式为(0,2),(,0)A C t ,∴90EMO OND ∠=∠=︒,90DOE ∠=︒ ,∴EOM MEO EOM NOD ∠+∠=∠+∠∴MEO NOD ∠=∠,∵OD OE =,∴(AAS)ODN EOM ≌,∴,ON EM DN OM ==,∵OE 的解析式为2y x =-,∴设22EM OM m ==,∴DN OM m ==,EM x ⊥ 轴,∴OA EM ∥,∴~CAO CEM ,::OC CM OA EM ∴=,22t t m m∴=+,1t m t ∴=-,∴2221t EM ON OM m t ====-,DN 2,11t t D t t ⎛⎫∴ ⎪--⎝⎭, 抛物线2y 再向下平移22(1)t -个单位,得到抛物线2222(2)y x t x(1)求S 关于x 的函数解析式;(2)当x 取何值时,S 的值最大?请求出最大值.【答案】(1)23232S x x =-+(2)当2x =时,S 的最大值为23∵顶点A 的坐标为()2,23,∴()222234OA =+=,2OG =,∴1cos 2OG AOG AO ∠==,①如图②,当边E F ''与AB 相交于点M 、边G H ''与BC 相交于点N ,且矩形E F G H ''''与菱形为五边形时,试用含有t 的式子表示S ,并直接写出t 的取值范围:②当2311334t ≤≤时,求S 的取值范围(直接写出结果即可).【答案】(1)()3,2,33,2⎛⎫- ⎪⎝⎭(2)①332t <≤;②3316S ≤≤【分析】(1)根据矩形及菱形的性质可进行求解;(2)①由题意易得3,1EF E F EH E H ''''====,然后可得60ABO ∠=︒,则有32EM =,进而根据割补∵四边形ABCD 是菱形,且(3,0),(0,1),(2A B D ∴()()2230012AB AD ==-+-=,AC BD ⊥∴2AC =,∴()3,2C ,故答案为()3,2,33,2⎛⎫- ⎪⎝⎭;(2)解:①∵点10,2E ⎛⎫ ⎪⎝⎭,点13,2F ⎛⎫- ⎪⎝⎭,点∴矩形EFGH 中,EF x ∥轴,EH x ⊥轴,EF ∴矩形E F G H ''''中,E F x ''∥轴,E H x ''⊥轴,由点()3,0A ,点()0,1B ,得3,1OA OB ==.在Rt ABO △中,tan 3OA ABO OB ∠==,得ABO ∠在Rt BME △中,由1tan 60,12EM EB EB =⋅︒=-此时面积S 最大,最大值为133S =⨯=当1134t =时,矩形E F G H ''''和菱形ABCD 由(1)可知B 、D 之间的水平距离为23,则有点由①可知:60D B ∠=∠=︒,(1)求CE的长和y关于x的函数表达式.(2)当PH PN<,且长度分别等于PH,PN,a的三条线段组成的三角形与(3)延长PN交半圆O于点Q,当1534NQ x=-时,求【答案】(1)165CE=,25412y x=-+(2)1615或2740或6041(3)17 8【分析】(1)如图1,连接OD,根据切线的性质得出出165CE=;证明四边形APMC是平行四边形,得出MN(2)根据BCE三边之比为3:4:5,可分为三种情况.当:3:4PH PN=时,分别列出比例式,进而即可求解.∵CD 切半圆O 于点D ,∴OD CE ⊥.∵32OA =,1AC =,∴52OC =,∴2CD =.∵BE CE ⊥,∴OD BE ∥,∴CD CO CE CB=,即5224CE =,∴165CE =.∵MN CB ∥,∴四边形APMC 是平行四边形,∴sin 1sin PH PH CM PA ===∠∵MN ME BC CE =,则90AQB AGQ ∠=∠=︒,∴QAB BQG ∠=∠.∵1534NQ x =-,PN y =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年七年级下学期期末备考之《平面直角坐标系中几何综合
题》
2015-06-15一.解答题(共17小题)
1.(2015春•玉环县期中)如图在平面直角坐标系中,A(a,0),B(b,0),(﹣1,2).且|2a+b+1|+=0.
(1)求a、b的值;
(2)①在y轴的正半轴上存在一点M,使S△COM=S△ABC,求点M的坐标.(标注:三角形ABC 的面积表示为S△ABC)
②在坐标轴的其他位置是否存在点M,使S△COM=S△ABC仍成立若存在,请直接写出符合条件的点M的坐标.
2.(2015春•汕头校级期中)如图,在下面直角坐标系中,已知A(0,a),B(b,0),C (3,c)三点,其中a、b、c满足关系式:|a﹣2|+(b﹣3)2+=0.
(1)求a、b、c的值;
(2)如果在第二象限内有一点P(m,),请用含m的式子表示四边形ABOP的面积;(3)在(2)的条件下,是否存在负整数m,使四边形ABOP的面积不小于△AOP面积的两倍若存在,求出所有满足条件的点P的坐标,若不存在,请说明理由.
3.(2015春•鄂城区期中)如图,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a、b满足a=+﹣1,现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,CD.
(1)求点C,D的坐标及四边形ABDC的面积S四边形ABDC.
(2)在y轴上是否存在一点P,连接PA,PB,使S△PAB=S四边形ABDC若存在这样一点,求出点P 的坐标;若不存在,试说明理由.
(3)点P是线段BD上的一个动点,连接PC,PO,当点P在BD上移动时(不与B,D重合)的值是否发生变化,并说明理由.
4.(2014春•富顺县校级期末)在平面直角坐标系中,A(a,0),B(b,0),C(﹣1,2)(见图1),且|2a+b+1|+=0
(1)求a、b的值;
(2)①在x轴的正半轴上存在一点M,使△COM的面积=△ABC的面积,求出点M的坐标;
②在坐标轴的其它位置是否存在点M,使△COM的面积=△ABC的面积仍然成立若存在,请直接写出符合条件的点M的坐标;
(3)如图2,过点C作CD⊥y轴交y轴于点D,点P为线段CD延长线上的一动点,连接OP,OE平分∠AOP,OF⊥OE.当点P运动时,的值是否会改变若不变,求其值;若改变,说明理由.
5.(2014春•泰兴市校级期末)已知:如图①,直线MN⊥直线PQ,垂足为O,点A在射线OP上,点B在射线OQ上(A、B不与O点重合),点C在射线ON上且OC=2,过点C作直线l∥PQ,点D在点C的左边且CD=3.
(1)直接写出△BCD的面积.
(2)如图②,若AC⊥BC,作∠CBA的平分线交OC于E,交AC于F,求证:∠CEF=∠CFE.(3)如图③,若∠ADC=∠DAC,点B在射线OQ上运动,∠ACB的平分线交DA的延长线于点H,在点B运动过程中的值是否变化若不变,求出其值;若变化,求出变化范围.
6.(2014春•江岸区期末)如图1,在平面直角坐标系中,A(a,0),B(b,3),C(4,0),且满足(a+b)2+|a﹣b+6|=0,线段AB交y轴于F点.
(1)求点A、B的坐标.
(2)点D为y轴正半轴上一点,若ED∥AB,且AM,DM分别平分∠CAB,∠ODE,如图2,求∠AMD的度数.
(3)如图3,(也可以利用图1)
①求点F的坐标;
②点P为坐标轴上一点,若△ABP的三角形和△ABC的面积相等若存在,求出P点坐标.
7.(2014春•黄陂区期末)在直角坐标系中,已知点A、B的坐标是(a,0)(b,0),a,b 满足方程组,c为y轴正半轴上一点,且S△ABC=6.
(1)求A、B、C三点的坐标;
(2)是否存在点P(t,t),使S△PAB=S△ABC若存在,请求出P点坐标;若不存在,请说明理由;
(3)若M是AC的中点,N是BC上一点,CN=2BN,连AN、BM相交于点D,求四边形CMDN 的面积是.
8.(2014春•海珠区期末)在平面直角坐标系中,点A(a,b)是第四象限内一点,AB⊥y 轴于B,且B(0,b)是y轴负半轴上一点,b2=16,S△AOB=12.
(1)求点A和点B的坐标;
(2)如图1,点D为线段OA(端点除外)上某一点,过点D作AO垂线交x轴于E,交直线AB于F,∠EOD、∠AFD的平分线相交于N,求∠ONF的度数.
(3)如图2,点D为线段OA(端点除外)上某一点,当点D在线段上运动时,过点D作直线EF交x轴正半轴于E,交直线AB于F,∠EOD,∠AFD的平分线相交于点N.若记∠ODF=α,请用α的式子表示∠ONF的大小,并说明理由.
9.(2014春•黄梅县校级期中)如图,在下面的直角坐标系中,已知A(0,a),B(b,0),C(b,4)三点,其中a,b满足关系式.
(1)求a,b的值;
(2)如果在第二象限内有一点P(m,),请用含m的式子表示四边形ABOP的面积;(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积与△ABC的面积相等若存在,求出点P的坐标;若不存在,请说明理由.
10.(2014春•通州区校级期中)在如图直角坐标系中,已知A(0,a),B(b,0),C(b,c)三点,其中a、b、c满足关系式+(b﹣3)2=0,(c﹣4)2≤0.
(1)求a、b、c的值;
(2)如果点P(m,n)在第二象限,四边形CBOP的面积为y,请你用含m,n的式子表示y;(3)如果点P在第二象限坐标轴的夹角平分线上,并且y=2S四边形CBOA,求P点的坐标.
11.(2014春•鄂州校级期中)如图,A、B两点坐标分别为A(a,4),B(b,0),且a,b 满足(a﹣2b+8)2+=0,E是y轴正半轴上一点.
(1)求A、B两点坐标;
(2)若C为y轴上一点且S△AOC=S△AOB,求C点的坐标;
(3)过B作BD∥y轴,∠DBF=∠DBA,∠EOF=∠EOA,求∠F与∠A间的数量关系.
12.(2014春•东湖区期中)如图,平面直角坐标系中A(﹣1,0),B(3,0),现同时将A、B分别向上平移2个单位,再向右平移1个单位,分别得到A、B的对应点C、D,连接AC、BD
(1)直接写出C、D的坐标:C D 及四边形ABCD的面积:(2)在y轴负半轴上是否存在点M,连接MA、MB使得S△MAB>S四边形ABCD若存在,求出M点纵坐标的取值范围;若不存在说明理由
(3)点P为线段BD上一动点,连PC、PO,当点P在BD上移动(不含端点)现给出
①的值不变,②的值不变,
其中有且只有一个正确,请你找出这个结论并求其值.
13.(2014春•台州月考)如图,在平面直角坐标系中,点A,B的坐标分别为A(0,α),B(b,α),且α、b满足(a﹣2)2+|b﹣4|=0,现同时将点A,B分别向下平移2个单位,再向左平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,AB.
(1)求点C,D的坐标及四边形ABDC的面积S四边形ABCD
(2)在y轴上是否存在一点M,连接MC,MD,使S△MCD=S四边形ABDC若存在这样一点,求出点M 的坐标,若不存在,试说明理由.
(3)点P是线段BD上的一个动点,连接PA,PO,当点P在BD上移动时(不与B,D重合)的值是否发生变化,并说明理由.
14.(2014春•海安县月考)如图,在平面直角坐标系中,点A,B,C的坐标分别为(﹣1,0),(3,0),(0,2),图中的线段BD是由线段AC平移得到.
(1)线段AC经过怎样的平移可得到线段BD,所得四边形是什么图形,并求出所得的四边形ABDC的面积S四边形ABDC;
(2)在y轴上是否存在点P,连接PA,PB,使S△PAB=S四边形ABDC若存在,求出点P的坐标;若不存在,试说明理由;
(3)点P是线段BD上的一个动点,连接PC、PO,当点P在BD上移动时(不与B,D重合)给出下列结论:
①的值不变;②的值不变,
其中有且只有一个是正确的,请你找出这个结论并求其值.
15.(2014春•武汉月考)已知,在平面直角坐标系中,点A(0,m),点B(n,0),m、n 满足(m﹣3)2=﹣;
(1)求A、B的坐标;
(2)如图1,E为第二象限内直线AB上一点,且满足S△AOE=S△AOB,求E的坐标.
(3)如图2,平移线段BA至OC,B与O是对应点,A与C对应,连AC.E为BA的延长线上一动点,连EO.OF平分∠COE,AF平分∠EAC,OF交AF于F点.若∠ABO+∠OEB=α,请在图2中将图形补充完整,并求∠F(用含α的式子表示).
16.(2013秋•江岸区校级月考)如图,已知点A(﹣m,n),B(0,m),且m、n满足+(n﹣5)2=0,点C在y轴上,将△ABC沿y轴折叠,使点A落在点D处.
(1)写出D点坐标并求A、D两点间的距离;
(2)若EF平分∠AED,若∠ACF﹣∠AEF=20°,求∠EFB的度数;
(3)过点C作QH平行于AB交x轴于点H,点Q在HC的延长线上,AB交x轴于点R,CP、RP分别平分∠BCQ和∠ARX,当点C在y轴上运动时,∠CPR的度数是否发生变化若不变,求其度数;若变化,求其变化范围.
17.(2013春•武汉校级月考)如图,在平面直角坐标系中,点A,B的坐标分别为A(﹣1,0)、B(3,0).现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C、D,连接AC,BD.
(1)直接写出点C、D的坐标,求四边形ABDC的面积S四边形ABDC;
(2)在坐标轴上是否存在一点P,使S△PAC=S四边形ABDC若存在这样一点,求出点P的坐标;若不存在,试说明理由.
(3)如图3,在线段CO上取一点G,使OG=3CG,在线段OB上取一点F,使OF=2BF,CF与BG交于点H,求四边形OGHF的面积S四边形OGHF.。

相关文档
最新文档