双频微带天线设计

双频微带天线设计
双频微带天线设计

2.4G八木天线的制作方法

2.4G八木天线的制作方法 好长时间没有上来更新了。一则单位事儿多,没空;二则,自己心情也不太好,没兴致。上周查单子时突然发现家里的ADSL快到期了,想想邻居家里的AD是2M的,自己用不了怪可惜的,不如我跟他合用,但是距离太原,无法拉网线,从网上得知可以用无线路由器及无线网卡组件无线局域网,时间长距离的无线传输,于是在网上查找资料,研究可行性。网上这方面的资料还真不少,但是国内的资料大部分都是照抄国外的,于是直接上国外网站查找,国外无线电爱好者对于2.4G的网络研究比国内要早好多年,因此各种数据比较准确,图纸资料也比较全。2.4G的定向天线有很多种:罐头盒式,反射板式,八木天线,卫星天线,裂隙天线,螺旋天线,以及厨房用具的简单天线。根据天线的制作难易程度以及取材方面考虑,罐头盒式和反射式太简单,厨房用具的那些玩玩倒可以不实用,螺旋天线还要分左旋和右旋,卫星天线和裂隙天线太专业,手工制作不现实。最后决定制作八木天线,虽然要求精度也很高,制作精度要求不低于0.1MM,但是取材和工艺还是能满足的。 第一步选材;根据图纸计算材料,1根12MM的有机玻璃棒,市场上没有12.7MM的,这个尺寸没有问题。直径3.3的铜棒,宽4MM厚1MM的铜条,50欧--5的电缆,虽然比不上--7的电缆,但是只需要1米,效果还是能保证的。由于没有3.3的规格的铜棒,只好用3.2的铜焊条挂上一层焊锡,尺寸比较接近了。 第二步钻孔:给有机玻璃棒上钻15个孔,根据图纸用游标卡尺在有机玻璃棒上画好线,标注好孔位置,这一步很关键,孔的位置将直接影响到后续的工艺精度,钻孔时也要注意,要用台钻,一气呵成,保证所有孔在一条直线上,孔的间距要满足尺寸要求,并且孔的垂直度要保证,否则装上振子后就会发现振子不在一个平面上了。钻头用3.2MM的。 第三步制作振子:根据图纸用钢锯将振子裁好,注意尺寸稍微留长一点,然后用锉刀和砂轮将振子长度调整到标准尺寸,要求精度不小于0.1MM。主振子用铜条打磨弯形挂锡,焊上电缆待用。 第四步安装振子:由于孔是3.2MM多一点的,振子也是3.2MM多一点,因此有些振子安装上后会发现松动,无法固定在孔内,这是可以将振子上再挂点锡,用锉刀修磨到能紧配安装。主振子安装时要求距离第一个振子的位置要固定,上下位置也要固定,但是还不用用任何金属材料来固定,我是用短有机玻璃棒根据振子尺寸锯上缺口,使主振子卡在两个振子之间。 第五步装外壳:根据天线的尺寸使用相应的PVC管将之套入,两头用PVC堵头封住,电缆孔用密封胶封住。 到此为止,一个2.4G的八木天线算是大功告成,据说增益能达到15dbi,剩下的事儿就是用设备调试了。 因为还没有相中合适的设备,所以实验还要过几天做。先把部分照片放上,完全是个人爱好,不正之处欢迎拍砖。 材料

基于HFSS的4_24微带阵列天线的研究与设计_惠鹏飞

第26卷第5期 齐 齐 哈 尔 大 学 学 报 Vol.26,No.5 2010年9月 Journal of Qiqihar University Sep.,2010 基于HFSS 的4×24微带阵列天线的研究与设计 惠鹏飞,夏颖,周喜权,陶佰睿,苗凤娟 (齐齐哈尔大学 通信与电子工程学院,黑龙江 齐齐哈尔 161006) 摘要:微带阵列天线的馈电方式有微带线馈电和同轴馈电两种方式,本文利用HFSS软件对微带阵列天线进行了研 究,分析了两种馈电方式的传输损耗及其对天线方向图的影响,利用模块化的设计方法实现了一种基于同轴线馈 电结构的多元矩形微带阵列天线。在HFSS仿真设计环境里对天线进行了物理建模,该微带阵列天线的方向图特性 良好,工程上实现比较方便。 关键词:微带阵列天线;模块化设计;HFSS 仿真;物理建模;方向图 中图分类号:TN820.1 文献标识码:A 文章编号:1007-984X(2010)05-0009-04 随着无线电技术的发展,微带天线在许多领域得到了越来越广泛的应用,主要应用场合包括:卫星通信、多普勒雷达及其它制式雷达、导弹遥测系统、复杂天线中的馈电单元等[1] 。微带天线通常采用天线阵列的形式,由馈电网络控制对天线子阵的激励幅度和相位,以获得高增益、强方向性等特点。 微带阵列天线的馈电方式主要有微带线馈电和同轴线馈电方式两种。利用微带线馈电时,馈线与微带贴片是共面的,因此可以方便地光刻,但缺点是损耗较大,在高效率的天馈系统里的应用受到较大限制[2]。本文首先对微带馈电网络产生的损耗进行了详细分析,利用HFSS 软件设计了2×4结构的微带子阵,采用同轴馈电的方式,利用模块化设计方法和方向图叠加原理最终实现了4×24矩形微带阵列天线,仿真设计结果表明,该大型矩形微带阵列天线的各项指标参数良好,设计思想得到了很好的验证。 1 微带阵列及馈电网络损耗分析 1.1 微带阵列理论 微带天线单元的增益较小,一般单个贴片单元的辐射增益只有6~8 dB,为了实现远距离传输和获得更大的增益,尤其是对天线的方向性要求比较苛刻的场合,常采用由微带辐射单元组成的微带阵列天线,如果对增益要求较高,可采用大型微带阵列天线结构[3]。 首先分析平面微带阵列天线的激励电流与电场分布情况,无论是线天线还是面天线,其辐射源都是高频电流源,天线系统将高频电流源的能量转换成电磁波的形式发射出去,讨论电流源的辐射场是分析天线的基础。假设由若干相同的微带天线元组成的平面阵结构,建立三维坐标系分析阵列天线的场量分布情况。以阵列的中心为坐标原点,天线在x 轴方向和y 轴方向的单元编号分别用m 和n 表示。以原点天线单元为相位参考点,为了简化分析,假设阵列中各单元间互耦影响可以忽略不计,各单元激励电流为 j()e xs ys m n mn I ψψ?+,天线阵在远区的辐射总场(,)E θ?为 ()(,)(,)E f S θ?θ?θ??,= 式中,(,)f θ?为阵元的方向性函数,(,)S θ?为平面阵的阵方向性函数。平面阵因子是两个线阵因子的乘积,可以利用线阵方向性分析的结论来分析平面阵列的方向性。 1.2 馈电网络及损耗分析 天线只有承载高频电流才能有电磁波辐射,馈线指将高频交流电能从电路的某一段传送到另一段所用 的设备,对天线的馈电包括对单元天线的馈电和阵列天线的馈电两种形式。当利用传输线对阵列结构进行 收稿日期:2010-06-06 基金项目:齐齐哈尔市科技局工业攻关项目(GYGG-09011-2) 作者简介:惠鹏飞(1980-),男,辽宁凌源人,讲师,硕士,主要从事雷达极化信息处理的研究,weibo505@https://www.360docs.net/doc/104343275.html,。

八木天线的原理和制作

八木天線的原理和製作 八木天线(YaGi Antenna)也叫引向天线或波导天线,因为八木秀次(YaGi)教授首先用详细的理论去解释了这种天线的工作原理,所以叫做八木天线,它是由HF,到VHF,UHF波段中最常用的方向性天线。 八木天线是由一个有源激励振子(Driver Element)和若干无源振子组成,所有振子都平行装制在同一平面上,其中心通常用一铅通(也可用非金属──木方)固定。有源振子就是一个基本半波偶极天线(Dipole),商品八木天线──尤其是用在电视接收时,则多用折合式半段偶极天线做有源振子,好处是阻抗较高,匹配容易频率亦较宽阔,适合电视讯号的8MHz通频带。但折合式振子在业余条件下,制作较难,而宽带带亦会引入较大噪音,因此常见的八木天线多用基本半波偶极型式的有源振子。至于无源振子根据它的功能可以分为反射器(Reflector)和导向器(Director)两种。通常反射器的长度比有源振子长4~5%,而导向器可以有多个,第1~4个导向器的长度通常比有源振子顺序递减2~5%。 由反射器至最前的一个导向器的距离叫做这个八木天线长度。通常收发机的天线输出端,都只是接到八木天线的有源振子。反射器和导向器通常与收发机没有任何电气连接,但在有源振子作用下,两者都会产生感应电压表,电流,其幅度各相位则与无源振子间的距离有关,亦和无源振子的长度有关。因为当振子间的距离不同时,电源走过的途径距离也不同,就会形成不同的相位差。当无源振子的长度不同时,呈现的阻抗也不同。适当地安排反射器的长度,和它与有源振子的距离,便可使反射器和有源振子产生的电磁场在反射器后方相互抵消,而在有源振子前方上相加。同样,适当地安排导向器的长度和它到有源振子的距离,可以使导向器和有源振子在主方向上产生的电磁场相加。这样由有源振子幅射的电波,在加入反射器和导向器后,将沿着导各器的方向形成较强的电磁场,亦即单方向的幅射了。导向器的长度相同,间距相等的八木天线称为均匀导向八木天线,特点是天线的主办窄,方向系数大,整个频带内增益均匀。而当八木天线各个导向器的长度不同,间距亦不等时叫做非均匀导向八木天线,特点是天线的主瓣较宽,方向系数较少,工作频带内增益不均匀(但在UHF以上波段并不明显),但工作频带较宽。但如果将非均匀的导向八木天线的结构设计合理,则可以显著地压缩副瓣,又不致太大扩宽主瓣和降低方向系数。

(完整版)射频微带阵列天线设计毕业设计

射频微带阵列天线设计 摘要 微带天线是一种具有体积小、重量轻、剖面低、易于载体共形、易于与微波集成电路一起集成等诸多优点的天线形式,目前已在无线通信、遥感、雷达等诸多领域得到了广泛应用。同时研究也发现由于微带天线其自身结构特点,存在一些缺点,例如频带窄、增益低、方向性差等。通常将若干单个微带天线单元按照一定规律排列起来组成微带阵列天线,来增强天线的方向性,提高天线的增益。 本文在学习微带天线和天线阵的原理和基本理论,加以分析,利用Ansoft 公司的高频电磁场仿真软件HFSS,设计了中心频率在10GHz的4元均匀直线微带阵列,优化和调整了相关参数,然后分别对单个阵元和天线阵进行仿真,对仿真结果进行分析,对比两者在相关参数的差异。最后得到的研究结果表明,微带天线阵列相较于单个微带天线,由于阵元间存在互耦效应以及存在馈电网络的影响,微带阵列天线的回波损耗要大于单个阵元。但是天线阵列增益明显大于单个微带天线,且阵列天线比单个阵元具有更好的方向性。

关键词:微带天线微带阵列天线方向性增益 HFSS仿真 Design of Radio-Frequency Microstrip Array Antenna ABSTRACT Microstrip antenna is a kind of antenna form with many advantages like,small size, light weight, low profile, easy-to-carrier conformal, easy integration with many other of microwave integrated circuits and so on. Now microstrip array wildly applied in the filed of wireless

实验一:微带天线的设计与仿真

实验一:微带天线的设计与仿真 一、实验步骤、仿真结果分析及优化 1、原理分析: 本微带天线采用矩形微带贴片来进行设计。 假设要设计一个在2.5GHz 附近工作的微带天线。我采用的介质基片, εr= 9.8, h=1.27mm 。理由是它的介电系数和厚度适中,在2.5GHz 附近能达到较高的天线效率。并且带宽相对较高。 由公式:2 /1212-?? ? ??+= r r f c W ε=25.82mm 贴片宽度经计算为25.82mm 。 2 /1121212 1-?? ? ?? +-+ += w h r r e εεε=8.889; ()()()()8.0/258.0264.0/3.0412.0+-++=?h w h w h l e e εε ?l=0.543mm ; 可以得到矩形贴片长度为: l f c L e r ?-= 22ε=18.08mm 馈电点距上边角的距离z 计算如下: ) 2( cos 2 ) (cos 2)(5010 22z R z G z Y e r in ?===λεπβ 2 20 90W R r λ= (0λ<

计算结果:在这类介质板上,2.5GHz 时候50Ω传输线的宽度为1.212mm 。 2、计算 基于ADS 系统的一个比较大的弱点:计算仿真速度慢。特别是在layout 下的速度令人 无法承受,所以先在sonnet 下来进行初步快速仿真。判断计算值是否能符合事实。 sonnet 中的仿真电路图如下: S11图象如下: 可见,按照公式计算出来的数据大致符合事实上模拟出来的结果。但是发现中心频率发生了偏移,这主要是由于公式中很多的近似引起的。主要的近似是下面公式引起 2 20 90W R r λ= (0λ<

高增益微带八木天线的设计

高增益微带八木天线的设计

高增益微带八木天线的设计 【摘要】本文基于八木天线的结构设计并制作了一个准八木高增益微带天线,利用电磁仿真软件CST进行仿真设计。通过增加引向器的个数来增加增益随着引向器的增加,增益由4.15dBi增加到8.2dBi;通过增加x方向的单元数,压缩E 面的方向性进而提高增益,其增益由8.2dBi提高到12.7dBi。最终设计出一款工作于5.8GHz,增益约为12.7dBi,前后比为26dB的天线,实测与仿真结果基本吻合。 1、微带八木天线的设计原理 随着微波技术的发展,微带准八木天线由于其结构简单易于加工实现而成为国内外的一个研究热点。微带准八木天线的工作原理如图,采用180°相位差的微带传输线作为馈线,馈入八木天线的两臂的信号刚好等幅反向。八木天线可看作是端射式行波天线,其波瓣图可近似为间距λ/4,相位递减90°的电源端射阵。在微带八木中要实现输入端的阻抗匹配很关键,2单元6元阵子在馈电微带的阻抗匹配计算如图1所示 图1 阻抗匹配计算 八木天线的地板作为反射器,馈电后的主阵子向空间辐射电磁波,同时引向阵子由于耦合作用产生了感应电流,也向外辐射电磁波,引向器和反射器的相互作用能将有源振子辐射的能量集中到主辐射方向。引向器的数目在一定的范围内越多,方向性越强,增益就越高。有源振子的长度一般取半波长,通过调整阵子间的间距以及无源振子的长度,可以改变无源振子上产生的交变感应电流的相位和幅度,使得电磁场在主方向上叠加,从而达到增强天线辐射方向性的目的,进而提高天线的增益和辐射效率。不同数量引向阵子对应增益增量如表1所示。 表1 不同单元八木天线的增益值

微带天线设计

08通信 陆静晔0828401034

微带天线设计 一、实验目的: ● 利用电磁软件Ansoft HFSS 设计一款微带天线 ? 微带天线的要求:工作频率为2.5GHz ,带宽(S11<-10dB )大于5%。 ● 在仿真实验的帮助下对各种微波元件有个具体形象的了解。 二、实验原理: 微带天线的概念首先是由Deschamps 于1953年提出来的,经过20年左右的发展,Munson 和Howell 于20世纪70年代初期制造出了实际的微带天线。微带天线由于具有质量轻、体积小、易于制造等优点,现今已经广泛应用于个人无线通信中。 图1-1是一个简单的微带贴片天线的结构,由辐射源、介质层和参考地三部分组成。与天线性能相关的参数包括辐射源的长度L 、辐射源的宽度W 、介质层的厚度h 、介质的相 对介电常数εr 和损耗正切tan δ、介质层的长度LG 和宽度WG 。图1-1 所示的微带贴片天线是采用微带线来馈电的,本次将要设计的矩形微带贴片天线采用的是同轴线馈电,也就是将同轴线接头的内芯线穿过参考地和介质层 与辐射源相连接。 对于矩形贴片微带天线,理论分析时可以采用传输线模型来分析其性能。矩形贴片微带天线的工作主模式是TM 10模,意味着电场在长度L 方向上有λg /2的改变,而在宽度W 方向上保持不变,如图1-2(a )所示,在长度L 方向上可以看作成有两个终端开路的缝隙辐射出电磁能量,在宽度W 方向的边缘由于终端开路,所以电压值最大电流值最小。从图1-2(b )可以看出,微带线边缘的电场可以分解成垂直于参考地的分量和平行于参考地的分量两部分,两个边缘的垂直分量大小相等、方向相反,平行电场分量大小相等、方向相反;因此,远区辐射电场垂直分量相互抵消,辐射电场平行于天线表面。 图1-1

基于HFSS的双频微带天线仿真及设计

基于HFSS的双频微带天线仿真及设计 随着无线通信技术的快速发展,无线通信已经广泛应用到雷达"移动通信"卫星定位"无线局域网络"卫星电视等诸多领域!而天线则是无线通信系统中信号发射和接收的关键部分,它直接影响着无线通信的性。随着移动通信中跳频"扩频等通信技术的发展,同时为了满足与多个终端的通信要求,实现多系统共用和收发共用等功能,这就要求天线在不同频段下工作。因此天线的多频段通信技术成为现代无线通信领域迫切需要研究的问题。 微带天线有多种馈电方式,其中同轴线馈电是一种最常用的馈电方式!同轴线馈电是将同轴插座安装在接地板上,本文在一种常用的2.45GHz同轴馈电微带天线的基础上,利用HFSS三维电磁仿真软件合理设计同轴馈电的位置及改变辐射贴片的尺寸,使天线获得一个新的谐振频率,大小为 1.9GHz,且输入阻抗为50Ω左右,并且对仿真结果进行了详细的分析。最后根据仿真结果制作天线实物,在实际的电磁环境下对天线的驻波比进行测试,得到较好的效果。 1 2. 45 GHz同轴馈电微带天线参数 一种常用的2. 45 GHz同轴馈电微带天线的原理图如图1和图2所示

图1 中L0为辐射贴片X轴长度,L0= 27.9 mm; W0为辐射贴片Y 轴长度宽度,W0= 40 mm; L1为同轴馈电点离辐射贴片中心距离,L1 = 6.6 mm。图 2 中介质基片厚度H = 1. 6 mm; 介质基片介电常数ε = 4.4。 2双频微带天线设计 在 2. 45 GHz 微带天线中的辐射贴片在 X 轴方向的长度为 27. 9 mm,同轴线馈电点( A 点) 离辐射贴片中心距离为 6. 6 mm。只需在此基础上分析给出微带天线的辐射贴片在Y轴方向的长度和同轴线馈电点 ( B 点) 的位置,能够使天线能够工作于9 GHz,然后过 A 点和 B 点的垂直相交点( C 点) 即为需要找到的双频馈电点。X轴上的 A 点为激发2. 45 GHz 工作频率的馈电点,其输入阻抗为 50 Ω左右,由于 A 点位于辐射贴片Y轴方向的中心线上,因此不会激发Y轴上的工作频率。同时,Y轴上的 B 点为激发 1. 9 GHz 工作频率的馈电点,其输入阻抗为50 Ω左右,由于位于辐射贴片X方向的中心线上,因此不会激发X轴上的工作频率。如果将馈电点放置于C点位置,此时天线可以同时激发X轴的工作频率和Y轴的工作频率,且在这两种模式下均能得到50 Ω左右的输入阻抗,那么此时天线就可以实现双频工作。 扩展1. 95 GHz谐振频率后的馈电点(C点)位置如图3所示。

微波课设八木天线设计

微波课设八木天线设计文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

课设报告 课程名称:微波技术与天线 课设题目:八木天线的仿真设计 课设地点:电机馆跨越机房 专业班级:信息1002班 学号: 学生姓名: 指导教师: 2013/6/27 目录 1、设计摘要 2、设计原理 3、八木天线参数选择及设计要求 4、八木天线的HFSS10仿真 (1)建立模型 (2)确认设计 (3) S参数(反射参数) (4)2D辐射远区场方向图 (5)3D Polar 5、仿真结果分析 6、实验中的问题 7、心得体会

一、设计摘要 八木天线又称引向天线,它由一个有源振子及若干无源振子组成的线形端射天线。其结构示意图如下,在无源振子中较长的一个为反射器,其余的均为引向器,它被广泛应用于米波、分米波波段的通信、雷达、电视、及其它无线电系统中。 六元八木天线示意图 八木天线中,有源振子可以是半波振子,也可以是折合振子一般常用折合振子,以提高八木天线的输入阻抗,以便和馈电线匹配。主要作用是提高辐射能量。无源振子是若干孤立的金属杆,它与馈线和有源振子不直接相连,作用是使辐射的能量集中到天线的端向。 二、设计原理: 八木天线的工作原理是:有源振子被馈电后,向空间辐射电磁波,使无源振子中的产生感应电流,从而也产生辐射。改变无源振子的长度及其与有源振子之间的距离,无源振子上的感应电流的幅度和相位也随着改变,从而影响有源振子的方向图。若无源振子与有源振子之间的距离小于λ/4,无源振子比有源振子短时,整个电磁波能量将在无源振子方向增强;无源振子比有源振子长时,将在无源振子方向减弱。比有源振子稍长一点的称反射器,它在有源振子的一侧,起着消弱从这个方向传来的电波或从本天线发射去的电波的作用;比有源振子略短的称引向器,它位于有源振子的另一侧,它能增强从这一侧方向传来的或向这个方向发射出去的电波。通常反射器的长度比有源振子长4%~5%,而引向器可以有多个,第1~4个引向器的长度通常比有源振子顺序递减2%~5%。 本设计就是基于八木天线的基本理论的基础上,设计一个六元八木天线。三、八木天线参数选择及设计要求

线极化微带天线阵列的设计

线极化微带天线阵列的设计 摘要 微带、微波起源于上世纪中期,在上世纪末就已经展开了对实用天线的研究并制成了第一批实用天线,现在微带天线方面,无论在理论还是应用,都已经取得了很大进展,并在深度和广度上都获得了进一步发展。微带天线技术越来越成熟,其应用与我们的生活、军事、科技都息息相关。体积小、重量轻、剖面薄是微带天线优于普通天线的特点,并且它适合用于印刷电路技术大批量生产,所以能够制成与导弹、卫星表面相共型的结构。因此微带天线在军事、无线通信、遥感、雷达等领域得到了广泛的应用。但是根据微带天线自身的结构特点,仍存在一些缺点,例如频带窄、效率低、增益低、方向性差。解决这些问题的方法就是:将若干个天线单元有规律的排列起来,通过利用这些天线单元构成天线阵列,从而来提高天线的增益、增强天线的方向性。 本文在学习微带天线理论及微带天线阵列基本理论的基础上,利用高频电磁仿真软件HFSS对阵列天线进行仿真设计。设计了中心频率在5.8GHz的阵列天线,对天线的特性进行了深入细致的研究。分别对单个天线阵元和天线阵列进行了仿真,天线阵列的增益明显大于单个微带天线,且方向性更好。因此采用天线阵列的形式进行仿真并对结果中各相关参数进行对比分析差异,优化调整了相关参数。仿真天线的各项指标均达到要求,进行了对实物的加工,在微波暗室内测试出天线的相关参数并与设计指标、仿真结果进行比较,最终达到了设计要求。 关键词:微带天线天线阵方向性增益 HFSS仿真

ABSTRACT Microstrip, microwave, originated in the middle of the last century, in the end of la st century has launched the research of practical antenna and made the first batch of pra ctical antenna, the microstrip antenna has made breakthrough progress now, no matter in theory or application on the depth and width of further development, this new antenna has been increasingly mature, its application to our daily life, military, science and techn ology are closely related. Compared with the common antenna microstrip antenna with small volume, light weight, the characteristics of thin section, it can be made with missil e and satellite surface phase structure, and suitable for mass production printed circuit te chnology. Therefore, microstrip antenna has been widely used in wireless communicatio n, remote sensing and radar. However, according to the structure of microstrip antenna, t here are still some shortcomings, such as narrow band, low efficiency, low gain and poo r directivity. The way to solve these problems is to arrange a number of antenna element s in a regular arrangement, and make up the antenna array to improve the gain and direc tion of the antenna. Based on the theory of microstrip antenna and basic theory of microstrip antenna ar ray, HFSS is used to analyze the array antenna. The array antenna with the center freque ncy of 5.8GHZ is designed, and the characteristics of the antenna are studied in detail. T he gain of antenna array is obviously larger than that of single microstrip antenna, and t he direction is better. Therefore, the antenna array was used for simulation and the corr elation parameters in the results were compared and analyzed, and the correlation param eters were optimized and adjusted. Simulation of the antenna of the indicators are up to par, the physical processing, and testing in microwave dark room to the related paramete rs of the antenna, and comparing with design index, the simulation results, finally reach ed the design requirements. Keywords: miccrostrip antennas antenna array directivity gain HFSS simulation

HFSS双频微带天线设计说明

一设计容简介 双频工作是微带天线设计的重要课题之一,相关的设计包括使用多层金属片,具槽孔负载之矩形金属片,具矩形缺口的正方形金属片,具短金负载的金属片,倾斜槽孔耦合馈入的矩形金属片等。其中,获得双频工作的一种最简单的方法是辐射贴片的长度对应一个频率谐振,其宽度对应另一个频率谐振,然后从对角线的一角馈电,就能使同一个辐射贴片工作于两个频率上。其结构如图1所示。 图1 故在这个设计中,L1是表示馈电点长度方向的x坐标的变量,其值为7mm,表示的中心频率为2.45GHZ,输入阻抗为50欧姆。L2是表示馈电点的y坐标的变量,其值为10mm,表示的中心频率为1.7GHZ。输入阻抗为50欧姆。 设计模型的中心在坐标原点上,辐射贴片的长度方向是沿着x轴方向,宽度 方向是沿着y方向的。介质基片的大小是辐射贴片的两倍,参考地面辐射贴片使用理想薄导体。因为使用50欧姆的同轴线馈电,这里使用半径为0.6mm的材质 为pec的圆柱体模型。而与圆柱体相接的参考地面需挖出一个半径为1.5mm的圆孔,将其作为信号输入输出端口,该端口的激励方式设置为集总端口激励,端口归一化阻抗为50欧姆。 HFSS仿真设计过程 1.新建工程文件 (1)运行HFSS并新建工程:双击快捷图标,启动HFSS软件。新建一个工程文件,工程名为Dual_Patch.hfss文件。 (2)设置求解类型:选择hfss→Solution Type,选中Driven Modal,然后点击OK。(3)设置模型长度:选择Modeler→Units选项设置为mm。点击OK。

2.添加和定义设计变量 在HF SS →Design Propertied 命令,打开设计属性对话框,然后单击对话框。在Name文本框中输入第一个变量名称H,在value文本框中输入该变量的初始值为1.6mm。 使用相同的方法,分别定义变量L0,W0,L1,length,L2。其初始值分别为28mm,37.26mm,7mm,30mm,10mm点击确定。设计属性对话框如图所示。 3.设计建模 (1)创建介质基片:在主菜单中选择Draw→Box命令,进入创建长方体的状态,然后三维模型窗口创建任意一个长方体。打开新建长方体属性对话框,把长方体的名称修改为Substrate,设置材质为FR4_epoxy,设置透明度为0.6.再双击历史树Substrate下的CreateBox选项,打开Command选项卡,在position文本框中输入顶点位置坐标为(-L0,-W0,0),在Xsize,Ysize和Zsize文本框中分别输入长方体的长宽高为2*L0,2*W0,H。如图3-1所示。这时就创建好了名称为Substrate 的介质基片模型。然后按Ctrl+D 全屏显示物体模型。 图3-1介质基片模型 (2)创建辐射贴片:在主菜单中选择Draw →rectangle命令,进入创建矩形面的状态,然后任意创建一个矩形面。双击Solids节点下的rectangle1选项,打开新建矩形面属性对话框的Attribute选项卡,把矩形面的名称修改为Patch,设置透明度为0.4.再双击历史树Substrate下的Createrectangle选项,打开Command 选项卡,在position文本框中输入顶点位置坐标为(-L0/2,-W0/2,H),在Xsize,Ysize文本框中分别输入矩形面的长宽为L0,W0。如图3-2所示。这时就创建好了名称为patch辐射贴片模型。然后按Ctrl D 全屏显示物体。

引向天线研究与设计

引向天线的研究与设计 摘要:天线是一种变换器,它把传输线上传播的导行波,变换成在无界媒介(通常是自由空间)中传播的电磁波,或者进行相反的变换,它是发射和接收电磁波的重要的无线电设备,没有天线也就没有无线电通信。本文主要介绍引向天线的设计以及其MATLAB 仿真,并且讲解了天线的基础知识以及引向天线的重要参数等,让大家对引向天线有更多的认识。 关键词:引向天线、方向系数、方向图 To the antenna's research and design Abstract: the antenna is a kind of converter, it spread on a transmission of guided wave, transform into in the unbounded media (usually free space) propagation of electromagnetic waves, or opposite transformation, it is the transmission and reception of electromagnetic wave important radio equipment, no antenna there would be no radio communication. This paper mainly introduces to the antenna design and the MATLAB simulation, and explained the basic knowledge of antenna and the important parameters to antenna, giving you the right to antenna have more understanding. Keywords: to antenna, direction coefficient, direction chart 一 、天线的基础知识 1.1 基本振子的辐射 1.1.1 电基本振子的辐射 电基本振子(Electric Short Dipole )又称电流元,它是指一段理想的高频电流直导线,其长度l 远小于波长λ,其半径a 远小于l ,同时振子沿线的电流I 处处等幅同相。用这样的电流元可以构成实际的更复杂的天线,因而电基本振子的辐射特性是研究更复杂天线辐射特性的基础。 在电磁场理论中,已给出了在球坐标系原点O 沿z 轴放置的电基本振子在无限大自由空间中场强的表达式为 (1―1―1) (1―1―2) 式中,E 为电场强度,单位为V /m ;H 为磁场强度,单位为A/m ;场强的下标r 、θ、φ表示球坐标系中矢量的各分量;e r,e θ,e φ分别为球坐标系中沿r 、θ、φ增大方向的单位矢量;ε0=10-9/(36π)(F/m),为自由空间的介电常数;μ0=4π×10-7(H/m),为自由空间导磁率; 为自由空间相移常数,λ为自由空间波长。式中略去了时间因子e j ωt 。 1.1.2 磁基本振子的辐射 22302 2300 1sin ()421cos()411sin ()40r jkr jkr r jkr H H Il k H j e r r Il k E j e r r Il k k E A j j e r r r E θ?θ?θππωεθπωε---=?? =??=+? ???=-???=+-?? =?? r r E E e E e H H e θθ?? =+? ?=? 2/k ωπλ==

实验五 微带天线设计

实验五 微带天线设计、仿真、制作与测试 一.实验目的 1.了解描述天线性能的主要参数及天线类型 2.了解微带天线的辐射机理和设计方法 3.掌握用ADS 进行微带天线优化仿真的方法与步骤 二.天线的基本原理 1.天线的辐射原理: 将传输线中的高频电磁能转成为自由空间的电磁波 将自由空间中的电磁波转化为传输线中的高频电磁能 2.电磁波辐射与场区的划分 (a) 感应近场 (b) 辐射近场 (c) 辐射远场 天线实际使用区域为辐射远场区 3.天线的分类 从方向性分:有强方向性天线、弱方向性天线、定向天线、全向天线、针状波束天线、扇形波束天线等。 从极化特性分:有线极化天线、圆极化天线和椭圆极化天线。线极化天线又分为垂直极化和水平极化天线。 从频带特性分:有窄频带天线、宽频带天线和超宽频带天线。 按天线上电流分布分: 有行波天线、驻波天线。 按使用波段分类: 有长波、超长波天线、中波天线、短波天线、超短波天线和微波天线。 按天线外形分类 : 有鞭状天线、T 形天线、Γ形天线、V 形天线、菱形天线、环天线、螺旋天线、波导口天线、波导缝隙天线、喇叭天线、反射面天线等。还有八木天线,对数周期天线、阵列天线。阵列天线又有直线阵天线、平面阵天线、附在某些载体表面的共形阵列天线等。 4.天线的技术指标 (1)天线的方向性因子 方向性因子 归一化方向性因子 λ/62.031D R <λ/222D R >1(,)jkr E f e r θφ-→max ) ,(),(f f F ?θ?θ=

(2)E 面和H 面方向图 工程上常采用通过最大辐射方向的两个正交平面上的剖面图来描述天线的方向图。这两个相互正交的平面称之为主面,对于线极化天线来说通常取为E 面和H 面。 E 面:指通过天线最大辐射方向并平行于电场矢量的平面。 H 面:指通过天线最大辐射方向并平行于磁场矢量的平面。 (3)主瓣宽度 方向图主瓣上两个半功率点之间的夹角,记为2θ0.5。又称为半功率波束宽度或3dB 波束宽度。一般情况下,天线的E 面和H 面方向图的主瓣宽度不等,可分别记为2θ0.5E 和2θ0.5H 。可以描述天线波束在空间的覆盖范围,主瓣瓣宽越窄,则方向性越好,抗干扰能力越强。 (4)天线方向性系数 Pr :被测天线距离R 处所接收到的功率密度,单位为W/m2; Pi :为全向性天线距离R 处所接收到的功率密度, 单位为W/m2 (5)天线增益G Pr :被测天线距离R 处所接收到的功率密度,单位为W/m2; Pi :为全向性天线距离R 处所接收到的功率密度, 单位为W /m2 一个天线与对称振子相比较的增益用“dBd ”表示 一个天线与各向同性辐射器相比较的增益用“dBi ”表示 (6)辐射效率 Pr 为天线辐射出的功率;Pin 为馈入天线的功率。 天线增益、方向性系数和辐射效率的关系: (7)天线输入阻抗 (8)天线的极化 无线电波在空间传播时,其电场方向是按一定的规律而变化的,这种现象称为无线电波的极化。无线电波的电场方向称为电波的极化方向。如果电波的电场方向垂直于地面,我们就称它为垂直极化波。如果电波的电场方向与地面平行,则称它为水平极化波。 天线辐射的电磁场的电场方向就是天线的极化方向 (9)天线带宽 有几种不同的定义:一种是指天线增益下降三分贝时的频带宽度;一种是指在规定的驻波比下天线的工作频带宽度。在移动通信系统中是按后一种定义的,具体的说,就是当天线的输入驻波比ρ≤1.4时,天线的工作带宽。 三.微带天线 1.微带天线优点: 相同辐射功率 i r P P D =相同输入功率 i r P P G =in r P P =ηD G η=I U Z in =

(完整版)基于HFSS的微带天线设计毕业设计论文

烟台大学 毕业论文(设计) 基于HFSS的微带天线设计 Microstrip antenna design based on HFSS 申请学位:工学学士学位 院系:光电科学技术与信息学院

烟台大学毕业论文(设计)任务书院(系):光电信息科学技术学院

[摘要]天线作为无线收发系统的一部分,其性能对一个系统的整体性能有着重要影响。近年来内置天线在移动终端数量日益庞大的同时功能也日益强大,对天线的网络覆盖及小型化也有了更高的要求。由于不同的通信网络间的频段差异较大,所以怎样使天线能够覆盖多波段并且同时拥有足够小的尺寸是设计内置天线的主要问题。微带天线具有体积小,重量轻,剖面薄,易于加工等诸多优点,得到广泛的研究与应用。微带天线的带宽通常小于3%,在无线通信技术中,对天线的带宽有了更高的要求;而电路集成度提高,系统对天线的体积有了更高的要求。 随着技术的进步,在不同领域对于天线的各个要求越来越高,所以对微带天线的尺寸与性能的分析有着重要的作用。对此,本文使用HFSS 软件研究了微带天线的设计方法,论文介绍及分析了天线的基本概念和相关性能参数,重点对微带天线进行了研究。 本文介绍了微带天线的分析方法,并使用HFSS 软件的天线仿真功能,对简单的微带天线进行了仿真和分析。 [关键词] 微带天线设计分析HFSS [Abstract]Antenna as part of the wireless transceiver system, its performance important impact on the overall performance of a system. Internal antenna in recent years an increasingly large number of mobile terminals while also increasingly powerful, and also network coverage and miniaturization of the antenna Band differences between the different communication networks, cover band and also problem of the design built-in antenna. Microstrip antenna with small size, light weight, thin profile, easy to process many advantages, extensive research and application. Microstrip antenna bandwidth is typically less than 3% the bandwidth of the antenna in wireless communication technology; improve the integration of the circuit the size of the antenna. As technology advances in different areas for various requirements of the antenna important role. Article uses HFSS microstrip antenna design, the paper introduces and analyzes the basic concepts and performance parameters of the antenna, with emphasis on the microstrip antenna. This article describes the analysis of the microstrip antenna and antenna simulation in HFSS simulation and analysis functions, simple microstrip antenna. [Key Words]Microstrip antenna design analysis HFSS

HFSS双频微带天线设计

一设计内容简介 双频工作是微带天线设计的重要课题之一,相关的设计包括使用多层金属片,具槽孔负载之矩形金属片,具矩形缺口的正方形金属片,具短金负载的金属片,倾斜槽孔耦合馈入的矩形金属片等。其中,获得双频工作的一种最简单的方法是辐射贴片的长度对应一个频率谐振,其宽度对应另一个频率谐振,然后从对角线的一角馈电,就能使同一个辐射贴片工作于两个频率上。其结构如图1所示。 图1 故在这个设计中,L1是表示馈电点长度方向的x坐标的变量,其值为7mm,表示的中心频率为2.45GHZ,输入阻抗为50欧姆。L2是表示馈电点的y坐标的变量,其值为10mm,表示的中心频率为1.7GHZ。输入阻抗为50欧姆。 设计模型的中心在坐标原点上,辐射贴片的长度方向是沿着x轴方向,宽度 方向是沿着y方向的。介质基片的大小是辐射贴片的两倍,参考地面辐射贴片使 用理想薄导体。因为使用50欧姆的同轴线馈电,这里使用半径为0.6mm的材质 为pec的圆柱体模型。而与圆柱体相接的参考地面需挖出一个半径为1.5mm的圆孔,将其作为信号输入输出端口,该端口的激励方式设置为集总端口激励,端口 归一化阻抗为50欧姆。 HFSS仿真设计过程 1.新建工程文件 (1)运行HFSS并新建工程:双击快捷图标,启动HFSS软件。新建一个工程文件,工程名为Dual_Patch.hfss文件。 (2)设置求解类型:选择hfss→Solution Type,选中Driven Modal,然后点击OK。

(3)设置模型长度:选择Modeler→Units选项设置为mm。点击OK。 2.添加和定义设计变量 在HFSS →Design Propertied 命令,打开设计属性对话框,然后单击对话框。在Name文本框中输入第一个变量名称H,在value文本框中输入该变量的初始值为1.6mm。 使用相同的方法,分别定义变量L0,W0,L1,length,L2。其初始值分别为28mm,37.26mm,7mm,30mm,10mm点击确定。设计属性对话框如图所示。 3.设计建模 (1)创建介质基片:在主菜单中选择Draw→Box命令,进入创建长方体的状态,然后三维模型窗口创建任意一个长方体。打开新建长方体属性对话框,把长方体的名称修改为Substrate,设置材质为FR4_epoxy,设置透明度为0.6.再双击历史树Substrate下的CreateBox选项,打开Command选项卡,在position文本框中输入顶点位置坐标为(-L0,-W0,0),在Xsize,Ysize和Zsize文本框中分别输入长方体的长宽高为2*L0,2*W0,H。如图3-1所示。这时就创建好了名称为Substrate 的介质基片模型。然后按Ctrl+D 全屏显示物体模型。 图3-1介质基片模型 (2)创建辐射贴片:在主菜单中选择Draw →rectangle命令,进入创建矩形面的状态,然后任意创建一个矩形面。双击Solids节点下的rectangle1选项,打开新建矩形面属性对话框的Attribute选项卡,把矩形面的名称修改为Patch,设置透明度为0.4.再双击历史树Substrate下的Createrectangle选项,打开Command 选项卡,在position文本框中输入顶点位置坐标为(-L0/2,-W0/2,H),在

相关文档
最新文档