电磁场课后习题答案

电磁场课后习题答案
电磁场课后习题答案

一 习题答案(第二章)

2.4 由E =-??

已知?=+2ax b

得2E a =-??=- x ax

根据高斯定理:0

.E ?= ρ

ε得

电荷密度为:

00.E ==?

-2a ρεε

2.6

取直角坐标系如图所示,设圆盘位于xoy 平面,圆盘中心与坐标原点重合

方法1:

由 '

04s s

ds R ρ?=πε?

在球坐标系求电位值,取带点坐标表示源区

2'''0

00

4a s

π

ρ?=πε?

?

02s z ρ?=

因此,整个均匀带电圆面在轴线上P 点出产生的场强为

001 z>0 21 z<02s z s z ???ρ??ε??

=-??=?

?

?ρ?+??ε??a E -a

方法2 :(略) 2.7

当r>a (球外)时,

10

.E ?= ρε

221.(.)0E ??==? r r E r r

10.E ∴=?

=0ρε

当r

20

.E ?= ρε

20231.(.)E ??==? r E r E r r a

00203.E ∴=? E

=a

ερε

2.11

两个点电荷-q,+q/2在空间产生的电位:

01

(,,)4x y z ???=

+πε

令(,,)0x y z ?= 得方程:

104??=πε

方程化简得

2

22242()33x a y z a ??-++= ???

由此可见,零电位面是以点(4 a /3,0,0)为球心,2 a /3为半径的球面。 2.20

由高斯定理.s

D dS q =?

由 00r x r x D E E =εε=εεa

得 0()

x

qd

E s x d =ε+a

由0

.d

x U E dx =? 得 0ln 2qd

U s

=

ε 由

q

C U =

得 0ln 2

s C d ε= 2.22

由于d a ,球面的电荷可看作均匀分布的 先计算两导体球的电位1?、2?: 则112...d

a

a

d

E dr E dr E dr ∞

?==+???

112001144d a d

q q q r r ∞

+????

=

-+- ? ?πεπε???? 12

0044q q a d

=

+

πεπε '''212...d

a

a

d

E dr E dr E dr ∞

?==+???

212001144d

a d

q q q r r ∞

+????

=

-+- ? ?πεπε???? 120044q q

d a

=

+πεπε 得 1122014P P a ==

πε,1221

01

4P P d

==πε

由112212

1

2C P P P =

+-得 02ad C d a πε=-

2.25

方法1:

设其中一个极板在yoz 平面,另一极板在x=a 位置 则电容器储能:

22

0122e U W CU a

ε==

当电位不变时,第二个极板移动受力:

2

02

2e

a W U F a

a

?

?ε=

=-? 式中负号表示极板间作用力为吸引力

方法2:

设其中一个极板在yoz 平面,另一极板在x=a 位置 当电荷不变时,

由0.a

x U E dx =? 得 x U E a =

由高斯定理有0.s q E dS =ε? 则0x q

E =ε 得 0

qa

U =

ε 由 20122e q a W qU ==ε 得 22

02022e a q W U q F a a ?ε=-=-=-?ε

式中负号表示极板间作用力为吸引力

二 习题答案(第三章)

3. 7

方法1:

设流入球的电流为I ,球的半径为a , 导体球的电流分布为

2

2== r I J e r π

电场强度为

22r

J I E e r

σ

πσ==

以无穷远处为零点电位,则导体球的电压为

222∞∞===??a a I I U Edr dr r a

πσπσ

接地电阻为

土壤损耗的功率为

22

61.5910 (W)2==

=?I P I R a

πσ

方法2:

设半球表面的总电荷为q ,球的半径为a

电场强度为

2

2=

r q

E r πε

以无穷远处为零点电位,则导体球的电压为

2∞

==

?r a q

U E dr a

πε

导体球的电容

由静电比拟法可直接得: G=2a πσ

接地电阻为 1

2=R a

πσ

土壤损耗的功率为

22

61.5910 (W)2==

=?I P I R a

πσ

3.12

在圆柱坐标系计算,取导体中轴线和z 轴重合,磁场只有e

φ方向分量,大小只跟r 有关,

由安培环路定理:

'0.2B l ==?

C

d rB I φπμ

当≤r a 时,'0=I ,

0=B φ

12==

U R I a

πσ2==q

C a U

πε

当<≤a r b 时,22

'

2

2

-=-r a I I b a 22022()2()

-=-r a B I r b a φμπ

当>r b 时,'=I I

02=

I

B r

φμπ 写成矢量形式

22022

00 () 2() 2B e e ?

?≤?

-?=<≤?-??>?? r a r a I a r b r b a I

r b r

φφ

μπμπ

3. 21

解: 球内:磁化电流体密度为得:

0=??=

m J M 球表面:磁化电流面密度为

因球面上 c o s z a θ

=

22002cos sin J =?=?=

ms z r z M n a M a a M a

φθθ

3.29

同轴线的内外导体之间的磁场沿φ方向 根据安培环路定理, 当r a <时,有

2

2

2=I rB r a

πμππ 所以 02

2=

I

B r a μπ ()r a < 当≤

所以得到

'02=

I

B r

μπ ()≤

000

112222=+??a b m a B B W rdr rdr ππμμ

2200ln 164=+I I b a

μμππ (2)由2

12

m W LI =

,得到单位长度的自感为 0022ln 82==+m W b

L I a

μμππ

补充题:

两平行无限长直线电流1I 和2I ,相距为d ,求每根导线单位长度受到的安培力m F 。 解: 方法1:

设两平行无限长直线电流1I 和2I 方向相同

一根无限长直导线(1l )电流的磁场

0112B = I

a d

?μπ

另一根直导线(2l )的电流元22I dl 受到磁场力

2221F l B

=?

d I d 01222l =?

I I d a ?μπ 01222=- x I I

a dl d μπ

故导线2l 单位长度受力

0122222F F ==-

m x I I

d a dl d μπ

同理,可求得导线1l 单位长度受力

01212F = m x I I a d

μπ

方法2:

设两平行无限长直线电流1I 和2I 方向相同

一根无限长直导线(1l )电流的磁场

01

12B = I a d

?μπ

另一根直导线(2l )的电流元22I dl 受到磁场力

2221F l B

=?

d I d 01222l =?

I I d a ?μπ 01222=- x I I

a dl d μπ

故导线2l 单位长度受力

101222210012

1212

012

2222F l B =?=-==?==-?? m x

m m I I I d a d

I I W I I M d

W I I F d d

μπμπμπ 同理,可求得导线1l 单位长度受力 01212F = m x I I

a d

μπ

三 习题答案(第五章)

5.3

对于海水, 传导电流为 0sin c J E E t =σ=σω

位移电流为

000cos d r E J E t t

?=ε=εεωω?

位移电流与传导电流的幅度之比为

300.2 1.1310d r r c J f

J -εεωεεπ====?σσ d c J J 5.10

应用理想导体的边界条件可以得出

在0=x 处,0=y E ,0=x H )c o s (0t kz H H z ω-= 在a x =处,0=y E ,0=x H )c o s (0t kz H H z ω--=

上述结果表明,在理想导体的表面,不存在电场的切向分量y E 和磁场的法向分量x H 。

另外,在0=x 的表面上,电流密度为

00|)(|==+?=?=x z z x x x x s H e H e e J

)c o s (|00t kz

H e H e e y x z z x ω--=?== 在a x =的表面上,电流密度则为

a x z z x x x a x s H e H e e J ==+?-=?=|)(|

0|c o s ()x z z x

a y

e e H e H k z t ==-?=-ω

5.13

(1) ()

()2Re[] a a -++-+=- j t kx j t kx x ym z zm E E e E e πωαωα ()()a a ----=- j kx j kx x ym z zm E e jE e αα

(2) 00()sin()cos()cos()cos()2H a a ??

=-++- ???

x z a x x t H k t kz H t kz a a πππωωπ

()()2

00Re[sin()cos()]H a a -+-??=+ ??? j t kz j t kz x z a x x H k e H e a a πωωπππ

()()2

00sin()cos()a a -+-??=+ ??? j kz j kz x z a x x H k e H e a a ππππ

(3)()0(,,,)Re[sin()sin()]a -=

z j t k z z x y E x y z t E k x k y e ω

0sin()sin()cos()a =-

z x y z E k x k y t k z ω

(4)(sin )20(,,,)Re[2sin()cos(cos )]a -+= j t kz x x E x y z t E k e πωθθθ

02sin()cos(cos )cos(sin )2

a =-+ x x E k t kz πθθωθ

02sin()cos(cos )sin(sin )a =--

x x E k t kz θθωθ

5.15

解:

(1)将E 表示为复数形式,有 a -=-

jkz y m E jE e

由复数形式的麦克斯韦方程,得

00011a a --=-??=-= jkz jkz m x m x kE H E kE e j e j j ωμωμωμ

磁场H

的瞬时表达式为

()sin()a =-- m x kE

H t t kz ωωμ

(2)方法1:

由于是无源自由空间,根据无源自由空间的波动方程得:

220020??-=? E

E t

με

由于E

只有y 分量,得y 分量的标量波动方程

222200

2

2

2

2

0????+

+

-=????y y y y E E E E x

y

z

t

με

由于

22

??y E x 、

22

??y E y 为0,得

2200

2

2

0??-=??y y E E z t με

对正弦电磁场,上方程可以写成

2200()()0-=y y jk E j E μεω

=

=C k

ω

方法2:

由于是无源自由空间,根据无源自由空间的麦克斯韦方程得:

0??= H j E ωε

由于 200

()=a a a --???=-=? jkz jkz x

m m y y y H kE k E H j jk e e z ωμωμ

00a -=

jkz y m j E E e ωεωε

故 200

a a --=

jkz jkz m y y m k E e E e ωεωμ

=

=C k

ω

(3)坡印廷矢量的时间平均值为

11Re[]Re[()(.())]22a a *-=?=-?-

jkz jkz m av y m x kE S E H jE e j e ωμ

20

1.2a = m

z kE ωμ 5.20

解: 由麦克斯韦方程的微分形式

t

E

??+=??ε

(1) t

??-=??μ

(2) 0H ??=

(3)

1

E ??=ρε

(4)

由式(1)两边取旋度,得

)()(t

????

+??=????ε

利用矢量恒等式,

)()(2???+-?=????

所以 )()(2t

????

-?-?=???-?ε 将式(2)和式(3)代入上式

)(2t

t ??-??-?-?=?με

故得

J t

H ?-?=??-?222

εμ (5)

同理可得

ρε

μεμ?+??=??-?1

222

t t (6)

式(5)式(6)则为所求的有源空间中E 和H 所满足的波动方程,是非齐次波动方程。

四 习题答案(第六章)

6.1

(1)介质中

2212ππλ===πk (m )

自由空间中

8

0802310310π?λ======c k f (m )

(2)

由于

=k 故 22282

282

(2)(310)9(210)π??ε===ωπ?r k c (3)

由于0ηηππ=

?1

=120=403 磁场强度的瞬时表达式

80()cos 2(10)m y E

t t z πη

=-H a

80cos 2(10)40m y E

t z ππ=-a

85cos 2(10)40y t z ππ=-a

81cos 2(10)8y t z ππ

=-a

6.3

由 j

H E ωμ

=

?? 得 磁场强度的瞬时表达式

88011()4cos 2(310)3cos 2(310)6y x H t e t z e t z ππη??=?--?-- ???

88

114cos 2(310)3cos 2(310)1206y

x e t z e t z πππ

??=?--?-- ??

? 881

11cos 2(310)cos 2(310) (A/m)40630x y e t z e t z ππππ=-?--+?-

由 1Re[]2

av S E H *=?

3

3111Re[(.4..3.)(.....)]24030j j jkz jkz jkz jkz av x y x y S e e e e e e ππππ

---=+?-+a a a a

25

(W/m )48π

=

6.9

由于

7

90 5.8101121036f σωεππ-?=?? 属良导体 由

1δα

=

=

=

由于频率越大,集肤深度越小,故取4min 10 f Hz =代入上式得

0.66 (mm)δ=

=

按题意铜皮厚度h 应选择 5 3.3 (mm)h δ≥=

6.19 (1) 00cos()cos()2

x y E wt kz E wt kz π

=---E a +a

x E 与y E 幅度相同,x E 相位比y E 相位滞后2

π

,电磁波往+z 方向传播,故为左

旋圆极化波。 (2) 00cos()2cos()22

x y E wt kz E wt kz ππ=----E a +a

x E 与y E 没有相位差,故为在一、三象限的线极化波。 (3)

0000cos()cos()

424

cos()cos()

44

x y x y E wt kz E wt kz E wt kz E wt kz πππ

ππ=-+---=----E a +a a +a

x E 与y E 幅度相同,没有相位差,故为在一、三象限的线极化波。 (4)

0000cos()cos()

42

3cos()cos()

4

x y x y E wt kz E wt kz E wt kz E wt kz ππ

π

=----=---E a +a a +a

x E 与y E 幅度相同,x E 相位比y E 相位滞后34

π

,电磁波往+z 方向传播,故为左旋椭圆极化波。

(完整版)电磁场与电磁波答案(第四版)谢处方

一章习题解答 1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e 4y z =-+B e e 52x z =-C e e 求:(1)A a ;(2)-A B ;(3)A B g ; (4)AB θ;(5)A 在B 上的分量;(6)?A C ; (7)()?A B C g 和()?A B C g ;(8)()??A B C 和()??A B C 。 解 (1 )23A x y z +-= ==-e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e (3)=A B g (23)x y z +-e e e (4)y z -+=e e g -11 (4)由 cos AB θ ===A B A B g ,得 1cos AB θ- =(135.5=o (5)A 在B 上的分量 B A =A cos AB θ ==A B B g (6)?=A C 1 235 02x y z -=-e e e 41310x y z ---e e e (7)由于?=B C 04 1502x y z -=-e e e 8520x y z ++e e e ?=A B 123041 x y z -=-e e e 1014x y z ---e e e 所以 ()?=A B C g (23)x y z +-e e e g (8520)42x y z ++=-e e e ()?=A B C g (1014)x y z ---e e e g (52)42x z -=-e e (8)()??=A B C 1014502x y z ---=-e e e 2405x y z -+e e e ()??=A B C 1 238 5 20 x y z -=e e e 554411x y z --e e e

电磁场与电磁波课后习题及答案六章习题解答

第六章 时变电磁场 有一导体滑片在两根平行的轨道上滑动,整个装置位于正弦时变磁场 5cos mT z e t ω=B 之中,如题图所示。滑片的位置由0.35(1cos )m x t ω=-确定,轨道终 端接有电阻0.2R =Ω,试求电流i. 解 穿过导体回路abcda 的磁通为 5cos 0.2(0.7) cos [0.70.35(1cos )]0.35cos (1cos )z z d B ad ab t x t t t t ωωωωωΦ==?=?-=--=+?g g B S e e 故感应电流为 11 0.35sin (12cos ) 1.75sin (12cos )mA in d i R R dt t t t t R ωωωωωωΦ = =-=-+-+E 一根半径为a 的长圆柱形介质棒放入均匀磁场0z B =B e 中与z 轴平行。设棒以角速 度ω绕轴作等速旋转,求介质内的极化强度、体积内和表面上单位长度的极化电荷。 解 介质棒内距轴线距离为r 处的感应电场为 00 z r r r B φωω=?=?=E v B e e B e 故介质棒内的极化强度为 00000(1)()e r r r r B r B εεεωεεω==-=-P E e e X 极化电荷体密度为 200 00 11()()2()P rP r B r r r r B ρεεωεεω?? =-??=- =--??=--P 极化电荷面密度为 0000()()P r r r a e r a B σεεωεεω==?=-?=-P n B e 则介质体积内和表面上同单位长度的极化电荷分别为 220020012()212()P P PS P Q a a B Q a a B πρπεεωπσπεεω=??=--=??=- 平行双线传输线与一矩形回路共面,如题图所示。设0.2a m =、0.1m b c d ===、7 1.0cos(210)A i t π=?,求回路中的感应电动势。

2009级电磁场理论期末试题-1(A)-题目和答案--房丽丽

课程编号:INF05005 北京理工大学2011-2012学年第一学期 2009级电子类电磁场理论基础期末试题A 卷 班级________ 学号________ 姓名________ 成绩________ 一、简答题(共12分)(2题) 1.请写出无源、线性各向同性、均匀的一般导电(0<σ<∞)媒质中,复麦克斯韦方程组的限定微分形式。 2.请写出谐振腔以TE mnp 模振荡时的谐振条件。并说明m ,n ,p 的物理意义。 二、选择题(每空2分,共20分)(4题)(最好是1题中各选项为同样类型) 1. 在通电流导体(0<σ<∞)内部,静电场( A ),静磁场(B ),恒定电流场(B ),时变电磁场( C )。 A. 恒为零; B. 恒不为零; C.可以为零,也可以不为零; 2. 以下关于全反射和全折射论述不正确的是:( B ) A.理想介质分界面上,平面波由光密介质入射到光疏介质,当入射角大于某一临界角时会发生全反射现象; B.非磁性理想介质分界面上,垂直极化波以某一角度入射时会发生全折射现象; C.在理想介质与理想导体分界面,平面波以任意角度入射均可发生全反射现象; D.理想介质分界面上发生全反射时,在两种介质中电磁场均不为零。 3. 置于空气中半径为a 的导体球附近M 处有一点电荷q ,它与导体球心O 的距离为d(d>a),当导体球接地时,导体球上的感应电荷可用球内区域设置的(D )的镜像电荷代替;当导体球不接地且不带电荷时,导体球上的感应电荷可用(B )的镜像电荷代替; A. 电量为/q qd a '=-,距球心2/d a d '=;以及一个位于球心处,电量为q aq d ''=; B. 电量为/q qa d '=-,距球心2/d a d '=;以及一个位于球心处,电量为q aq d ''=; C. 电量为/q qd a '=-,距球心2/d a d '=; D. 电量为/q qa d '=-,距球心2/d a d '=; 4.时变电磁场满足如下边界条件:两种理想介质分界面上,( C );两种一般导电介质(0<σ<∞)分界面上,(A );理想介质与理想导体分界面上,( D )。 A. 存在s ρ,不存在s J ; B. 不存在s ρ,存在s J ; C. 不存在s ρ和s J ; D. 存在s ρ和s J ; 三、(12分)如图所示,一个平行板电容 器,极板沿x 方向长度为L ,沿y 方向宽 度为W ,板间距离为z 0。板间部分填充 一段长度为d 的介电常数为ε1的电介质,如两极板间电位差为U ,求:(1)两极板 间的电场强度;(2)电容器储能;(3)电 介质所受到的静电力。

电磁场与电磁波课后习题及答案六章习题解答

第六章 时变电磁场 6.1 有一导体滑片在两根平行的轨道上滑动,整个装置位于正弦时变磁场 5cos mT z e t ω=B 之中,如题6.1图所示。滑片的位置由0.35(1cos )m x t ω=-确定,轨 道终端接有电阻0.2R =Ω,试求电流i. 解 穿过导体回路abcda 的磁通为 5cos 0.2(0.7)cos [0.70.35(1cos )]0.35cos (1cos )z z d B ad ab t x t t t t ωωωωωΦ==?=?-=--=+?B S e e 故感应电流为 11 0.35sin (12cos ) 1.75sin (12cos )mA in d i R R dt t t t t R ωωωωωωΦ = =-=-+-+E 6.2 一根半径为a 的长圆柱形介质棒放入均匀磁场0z B =B e 中与z 轴平行。设棒以角 速度ω绕轴作等速旋转,求介质的极化强度、体积和表面上单位长度的极化电荷。 解 介质棒距轴线距离为r 处的感应电场为 00 z r r r B φωω=?=?=E v B e e B e 故介质棒的极化强度为 00000(1)()e r r r r B r B εεεωεεω==-=-P E e e X 极化电荷体密度为 200 00 11()()2()P rP r B r r r r B ρεεωεεω?? =-??=- =--??=--P 极化电荷面密度为 0000()()P r r r a e r a B σεεωεεω==?=-?=-P n B e 则介质体积和表面上同单位长度的极化电荷分别为 220020012()212()P P PS P Q a a B Q a a B πρπεεωπσπεεω=??=--=??=- 6.3 平行双线传输线与一矩形回路共面,如题6.3图所示。设0.2a m = 、0.1m b c d ===、7 1.0cos(210)A i t π=?,求回路中的感应电动势。

电磁场课后习题答案

一 习题答案(第二章) 2.4 由E =-?? 已知?=+2ax b 得2E a =-??=- x ax 根据高斯定理:0 .E ?= ρ ε得 电荷密度为: 00.E ==? -2a ρεε 2.6 取直角坐标系如图所示,设圆盘位于xoy 平面,圆盘中心与坐标原点重合 方法1: 由 ' 04s s ds R ρ?=πε? 在球坐标系求电位值,取带点坐标表示源区

2'''0 00 4a s π ρ?=πε? ? 02s z ρ?= ?ε 因此,整个均匀带电圆面在轴线上P 点出产生的场强为 001 z>0 21 z<02s z s z ???ρ??ε?? =-??=? ? ?ρ?+??ε??a E -a 方法2 :(略) 2.7 当r>a (球外)时, 10 .E ?= ρε 221.(.)0E ??==? r r E r r 10.E ∴=? =0ρε 当r

2 22242()33x a y z a ??-++= ??? 由此可见,零电位面是以点(4 a /3,0,0)为球心,2 a /3为半径的球面。 2.20 由高斯定理.s D dS q =? 由 00r x r x D E E =εε=εεa 得 0() x qd E s x d =ε+a 由0 .d x U E dx =? 得 0ln 2qd U s = ε 由 q C U = 得 0ln 2 s C d ε= 2.22 由于d a ,球面的电荷可看作均匀分布的 先计算两导体球的电位1?、2?: 则112...d a a d E dr E dr E dr ∞ ∞ ?==+??? 112001144d a d q q q r r ∞ +???? = -+- ? ?πεπε???? 12 0044q q a d = + πεπε '''212...d a a d E dr E dr E dr ∞ ∞ ?==+??? 212001144d a d q q q r r ∞ +???? = -+- ? ?πεπε???? 120044q q d a = +πεπε 得 1122014P P a == πε,1221 01 4P P d ==πε

电磁场理论习题及答案1

一. 1.对于矢量A u v,若A u v= e u u v x A+y e u u v y A+z e u u v z A, x 则: e u u v?x e u u v=;z e u u v?z e u u v=; y e u u v?x e u u v=;x e u u v?x e u u v= z 2.对于某一矢量A u v,它的散度定义式为; 用哈密顿算子表示为 3.对于矢量A u v,写出: 高斯定理 斯托克斯定理 4.真空中静电场的两个基本方程的微分形式为 和 5.分析恒定磁场时,在无界真空中,两个基本场变量之间的关系为,通常称它为 二.判断:(共20分,每空2分)正确的在括号中打“√”,错误的打“×”。 1.描绘物理状态空间分布的标量函数和矢量函数,在时间为一定值的情况下,它们是唯一的。() 2.标量场的梯度运算和矢量场的旋度运算都是矢量。() 3.梯度的方向是等值面的切线方向。() 4.恒定电流场是一个无散度场。() 5.一般说来,电场和磁场是共存于同一空间的,但在静止和恒定的情况下,电场和磁场可以独立进行分析。() 6.静电场和恒定磁场都是矢量场,在本质上也是相同的。()

7.研究物质空间内的电场时,仅用电场强度一个场变量不能完全反映物质内发生的静电现象。( ) 8.泊松方程和拉普拉斯方程都适用于有源区域。( ) 9.静电场的边值问题,在每一类的边界条件下,泊松方程或拉普拉斯方程的解都是唯一的。( ) 10.物质被磁化问题和磁化物质产生的宏观磁效应问题是不相关的两方面问题。( ) 三.简答:(共30分,每小题5分) 1.用数学式说明梯无旋。 2.写出标量场的方向导数表达式并说明其涵义。 3.说明真空中电场强度和库仑定律。 4.实际边值问题的边界条件分为哪几类? 5.写出磁通连续性方程的积分形式和微分形式。 6.写出在恒定磁场中,不同介质交界面上的边界条件。 四.计算:(共10分)半径分别为a,b(a>b),球心距为c(c

电磁场与电磁波(第三版)课后答案第1章

第一章习题解答 1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e 4y z =-+B e e 52x z =-C e e 求:(1)A a ;(2)-A B ;(3)A B ;(4)A B θ;(5)A 在B 上的分量;(6)?A C ; (7)()?A B C 和()?A B C ;(8)()??A B C 和()??A B C 。 解 (1 )23A x y z +-= = =e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11 ( 4 ) 由 c o s AB θ =1 1 2 3 8 = A B A B , 得 1 c o s A B θ- =(135.5- = (5)A 在B 上的分量 B A =A c o s AB θ = =- A B B (6)?=A C 1 235 02x y z -=-e e e 41310x y z ---e e e (7)由于?=B C 04 1502x y z -=-e e e 8520x y z ++e e e ?=A B 1 230 4 1 x y z -=-e e e 1014x y z ---e e e 所以 ()?=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()?=A B C (1014)x y z ---e e e (52)42x z -=-e e (8)()??=A B C 1014502 x y z ---=-e e e 2405x y z -+e e e ()??=A B C 1 238 5 20 x y z -=e e e 554411x y z --e e e 1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。 (1)判断123P P P ?是否为一直角三角形; (2)求三角形的面积。

电磁场与电磁波答案(无填空答案).

电磁场与电磁波复习材料 简答 1. 简述恒定磁场的性质,并写出其两个基本方程。 2. 试写出在理想导体表面电位所满足的边界条件。 3. 试简述静电平衡状态下带电导体的性质。 答:静电平衡状态下,带电导体是等位体,导体表面为等位面;(2分) 导体内部电场强度等于零,在导体表面只有电场的法向分量。(3分) 4. 什么是色散?色散将对信号产生什么影响? 答:在导电媒质中,电磁波的传播速度随频率变化的现象称为色散。 (3分) 色散将使信号产生失真,从而影响通信质量。 (2分) 5.已知麦克斯韦第二方程为t B E ??- =?? ,试说明其物理意义,并写出方程的积分形式。 6.试简述唯一性定理,并说明其意义。 7.什么是群速?试写出群速与相速之间的关系式。

8.写出位移电流的表达式,它的提出有何意义? 9.简述亥姆霍兹定理,并说明其意义。 答:当一个矢量场的两类源(标量源和矢量源)在空间的分布确定时,该矢量场就唯一地确定了,这一规律称为亥姆霍兹定理。 (3分) 亥姆霍兹定理告诉我们,研究任意一个矢量场(如电场、磁场等),需要从散度和旋度两个方面去研究,或者是从矢量场的通量和环量两个方面去研究 10.已知麦克斯韦第二方程为S d t B l d E S C ???-=???,试说明其物理意义,并写出方程的微 分形式。 答:其物理意义:随时间变化的磁场可以产生电场。 (3分) 方程的微分形式: 11.什么是电磁波的极化?极化分为哪三种? 答:电磁波的电场强度矢量的方向随时间变化所描绘的轨迹称为极化。(2分) 极化可以分为:线极化、圆极化、椭圆极化。 12.已知麦克斯韦第一方程为 t D J H ??+ =?? ,试说明其物理意义,并写出方程的积分形式。

电磁场理论习题及答案_百度文库

习题 5.1 设x 0的半空间充满磁导率为 的均匀介质,x 0的半空间为真空,今有线电流沿z轴方向流动,求磁感应强度和磁化电流分布。 5.2 半径为a的无限长圆柱导体上有恒定电流J均匀分布于截面上,试解矢势A 的微分方程,设导体的磁导率为 0,导体外的磁导率为 。 5.3 设无限长圆柱体内电流分布,J azrJ0(r a)求矢量磁位A和磁感应B。5.4载有电流的细导线,右侧为半径的半圆弧,上下导线相互平行,并近似为向左侧延伸至无穷远。试求圆弧中心点处的磁感应强度。 5.5 两根无限长直导线,布置于x 1,y 0处,并与z轴平行,分别通过电流I 及 I,求空间任意一点处的磁感应强度B。 5.6 半径的磁介质球,具有磁化强度为M az(Az2 B) 求磁化电流和磁荷。 5.7已知两个相互平行,相隔距离为d,共轴圆线圈,其中一个线圈的半径为 a(a d),另一个线圈的半径为b,试求两线圈之间的互感系数。

5.8 两平行无限长直线电流I1和I2,相距为d,求每根导线单位长度受到的 安培力Fm。 5.9 一个薄铁圆盘,半径为a,厚度为b b a ,如题5.9图所示。在平行 于z轴方向均匀磁化,磁化强度为M。试求沿圆铁盘轴线上、铁盘内、外的磁感 应强度和磁场强度。 5.10 均匀磁化的无限大导磁媒质的磁导率为 ,磁感应强度为B,若在该

媒质内有两个空腔,,空腔1形状为一薄盘,空腔2像一长针,腔内都充有空气。试求两空腔中心处磁场强度的比值。 5.11 两个无限大且平行的等磁位面D、N,相距h, mD 10A, mN 0。其间充以两种不同的导磁媒质,其磁导率分别为 1 0, 2 2 0,分界面与等磁位面垂直,求媒质分界面单位面积受力的大小和方向。 题5.11图 5.12 长直导线附近有一矩形回路,回路与导线不共面,如题5.12图 a 所 示。证明:直导线与矩形回路间的互感为 M 0aln2 R2b R2 C22 b2 R2 题5.12图 a 5.13 一环形螺线管的平均半径r0 15cm,其圆形截面的半径a 2cm,铁芯的相对磁导率 r 1400,环上绕N 1000匝线圈,通过电流I 0.7A。 (1)计算螺线管的电感; (2)在铁芯上开一个l0 0.1cm的空气隙,再计算电感(假设开口后铁芯 的 r不变); (3)求空气隙和铁芯内的磁场能量的比值。 5.14 同轴线的内导体是半径为a的圆柱,外导体是半径为b的薄圆柱面,其厚度可忽略不计。内、外导体间充有磁导率分别为 1和 2两种不同的磁介质, 如题5.14图所示。设同轴线中通过的电流为I,试求: (1)同轴线中单位长度所储存的磁场能量; (2)单位长度的自感。 5.15 已知一个平面电流回路在真空中产生的磁场强度为

电磁场与电磁波课后答案

第一章 矢量分析 重点和难点 关于矢量的定义、运算规则等内容可让读者自学。应着重讲解梯度、散度、旋度的物理概念和数学表示,以及格林定理和亥姆霍兹定理。至于正交曲面坐标系一节可以略去。 考虑到高年级同学已学过物理学,讲解梯度、散度和旋度时,应结合电学中的电位、积分形式的高斯定律以及积分形式的安培环路定律等内容,阐述梯度、散度和旋度的物理概念。详细的数学推演可以从简,仅给出直角坐标系中的表达式即可。讲解无散场和无旋场时,也应以电学中介绍的静电场和恒定磁场的基本特性为例。 至于格林定理,证明可免,仅给出公式即可,但应介绍格林定理的用途。 前已指出,该教材的特色之一是以亥姆霍兹定理为依据逐一介绍电磁场,因此该定理应着重介绍。但是由于证明过程较繁,还要涉及? 函数,如果学时有限可以略去。由于亥姆霍兹定理严格地定量描述了自由空间中矢量场与其散度和旋度之间的关系,因此应该着重说明散度和旋度是产生矢量场的源,而且也是惟一的两个源。所以,散度和旋度是研究矢量场的首要问题。 此外,还应强调自由空间可以存在无散场或无旋场,但是不可能存在既无散又无旋的矢量场。这种既无散又无旋的矢量场只能存在于局部的无源区中。 重要公式 直角坐标系中的矢量表示:z z y y x x A A A e e e A ++= 矢量的标积:代数定义:z z y y x x B A B A B A ++=?B A 几何定义:θcos ||||B A B A =? 矢量的矢积:代数定义:z y x z y x z y x B B B A A A e e e B A =? 几何定义:θsin ||B ||A e B A z =? 标量场的梯度:z y x z y ??+??+??=?Φ ΦΦΦe e e x 矢量场的散度:z A y A x A z y x ??+??+??= ??A 高斯定理:???=??S V V d d S A A 矢量场的旋度:z y x z y A A A z y x ?? ???? = ??e e e A x ; 斯托克斯定理: ???=???l S d d )(l A S A

电磁场理论试题

《电磁场理论》考试试卷(A 卷) (时间120分钟) 院/系 专业 姓名 学号 一、选择题(每小题2分,共20分) 1. 关于有限区域内的矢量场的亥姆霍兹定理,下列说法中正确的是 ( D ) (A )任意矢量场可以由其散度和旋度唯一地确定; (B )任意矢量场可以由其散度和边界条件唯一地确定; (C )任意矢量场可以由其旋度和边界条件唯一地确定; (D )任意矢量场可以由其散度、旋度和边界条件唯一地确定。 2. 谐变电磁场所满足的麦克斯韦方程组中,能反映“变化的电场产生磁场”和“变化的磁场产生电场”这一物理思想的两个方程是 ( B ) (A )ε ρ= ??=??E H ??,0 (B )H j E E j J H ρ? ρ??ωμωε-=??+=??, (C )0,=??=??E J H ? ??(D )ε ρ = ??=??E H ??,0 3.一圆极化电磁波从媒质参数为13==r r με的介质斜入射到空气中,要使电场的平行极化分量不产生反射,入射角应为 ( B ) (A )15° (B )30° (C )45° (D )60°

4. 在电磁场与电磁波的理论中分析中,常引入矢量位函数A ?,并令A B ?? ??=,其依据是 ( C ) (A )0=??B ? ; (B )J B ??μ=??; (C )0=??B ? ; (D )J B ??μ=??。 5 关于高斯定理的理解有下面几种说法,其中正确的是 ( C ) (A) 如果高斯面内无电荷,则高斯面上E ? 处处为零; (B) 如果高斯面上E ? 处处不为零,则该面内必有电荷; (C) 如果高斯面内有净电荷,则通过该面的电通量必不为零; (D) 如果高斯面上E ? 处处为零,则该面内必无电荷。 6.若在某区域已知电位移矢量x y D xe ye =+,则该区域的电荷体密度为 ( B ) ( A) 2ρε=- (B )2ρ= (C )2ρε= (D )2ρ=- 7.两个载流线圈之间存在互感,对互感没有影响的是 ( C ) (A )线圈的尺寸 (B ) 两个线圈的相对位置 (C )线圈上的电流 (D )线圈中的介质 8 .以下关于时变电磁场的叙述中,正确的是 ( B ) (A )电场是无旋场 (B )电场和磁场相互激发 (C )电场和磁场无关 (D )磁场是有源场

电磁场与电磁波试题答案

《电磁场与电磁波》试题1 一、填空题(每小题1分,共10分) 1.在均匀各向同性线性媒质中,设媒质的导磁率为,则磁感应强度和磁场满足的方程为:。 2.设线性各向同性的均匀媒质中,称为方程。 3.时变电磁场中,数学表达式称为。 4.在理想导体的表面,的切向分量等于零。 5.矢量场穿过闭合曲面S的通量的表达式为:。 6.电磁波从一种媒质入射到理想表面时,电磁波将发生全反射。 7.静电场是无旋场,故电场强度沿任一条闭合路径的积分等于。 8.如果两个不等于零的矢量的等于零,则此两个矢量必然相互垂直。 9.对平面电磁波而言,其电场、磁场和波的传播方向三者符合关系。 10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是无散场,因此,它可用函数的旋度来表示。 二、简述题(每小题5分,共20分) 11.已知麦克斯韦第二方程为,试说明其物理意义,并写出方程的积分形式。 12.试简述唯一性定理,并说明其意义。 13.什么是群速?试写出群速与相速之间的关系式。 14.写出位移电流的表达式,它的提出有何意义? 三、计算题(每小题10分,共30分) 15.按要求完成下列题目 (1)判断矢量函数是否是某区域的磁通量密度? (2)如果是,求相应的电流分布。

16.矢量,,求 (1) (2) 17.在无源的自由空间中,电场强度复矢量的表达式为 (1)试写出其时间表达式; (2)说明电磁波的传播方向; 四、应用题(每小题10分,共30分) 18.均匀带电导体球,半径为,带电量为。试求 (1)球内任一点的电场强度 (2)球外任一点的电位移矢量。 19.设无限长直导线与矩形回路共面,(如图1所示), (1)判断通过矩形回路中的磁感应强度的方向(在图中标出);(2)设矩形回路的法向为穿出纸面,求通过矩形回路中的磁通量。 20.如图2所示的导体槽,底部保持电位为,其余两面电位为零,(1)写出电位满足的方程; (2)求槽内的电位分布

电磁场理论练习题

第一章 矢量分析 1.1 3?2??z y x e e e A -+= ,z y e e B ?4?+-= ,2?5?y x e e C -= 求(1)?A e ;(2)矢量A 的方向余弦;(3)B A ?;(4)B A ?; (5)验证()()()B A C A C B C B A ??=??=?? ; (6)验证()()()B A C C A B C B A ?-?=??。 1.2 如果给定一未知矢量与一已知矢量的标量积和矢量积,则可确定该未知矢 量。设A 为已知矢量,X A B ?=和X A B ?=已知,求X 。 1.3 求标量场32yz xy u +=在点(2,-1,1)处的梯度以及沿矢量z y x e e e l ?2?2?-+= 方向上的方向导数。 1.4 计算矢量()() 3222224???z y x e xy e x e A z y x ++= 对中心原点的单位立方体表面的面积分,再计算A ??对此立方体的体积分,以验证散度定理。 1.5 计算矢量z y e x e x e A z y x 22???-+= 沿(0,0),(2,0),(2,2),(0,2),(0,0)正方形闭合回路的线积分,再计算A ??对此回路所包围的表面积的积分,以验证斯托克斯定理。 1.6 f 为任意一个标量函数,求f ???。 1.7 A 为任意一个矢量函数,求()A ????。 1.8 证明:A f A f A f ??+?=?)(。 1.9 证明:A f A f A f ??+??=??)()()(。 1.10 证明:)()()(B A A B B A ???-???=???。 1.11 证明:A A A 2)(?-???=????。 1.12 ?ρ?ρ?ρρsin cos ?),,(32z e e z A += ,试求A ??,A ??及A 2?。 1.13 θθθ?θ?θcos 1?sin 1?sin ?),,(2r e r e r e r A r ++= ,试求A ??,A ??及A 2?。 1.14 ?ρ?ρsin ),,(z z f =,试求f ?及f 2?。 1.15 2sin ),,(r r f θ?θ=,试求f ?及f 2?。 1.16 求??S r S e d )sin 3?(θ,S 为球心位于原点,半径为5的球面。 1.17 矢量??θ23cos 1?),,(r e r A r = ,21<

电磁场与电磁波第四版谢处方课后答案

电磁场与电磁波(第四版)谢处方 课后答案 第一章习题解答 1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e 4y z =-+B e e 52x z =-C e e 求:(1)A a ;(2)-A B ;(3)A B g ;(4)AB θ;(5)A 在B 上的分量;(6)?A C ; (7)()?A B C g 和()?A B C g ; (8)()??A B C 和()??A B C 。 解 (1 )23A x y z +-= ==+e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e (3)=A B g (23)x y z +-e e e (4)y z -+=e e g -11 (4)由 cos AB θ = ==A B A B g ,得 1cos AB θ- =(135.5=o (5)A 在B 上的分量 B A =A cos AB θ ==A B B g (6)?=A C 1235 02 x y z -=-e e e 41310x y z ---e e e (7)由于?=B C 041502 x y z -=-e e e 8520x y z ++e e e ?=A B 123041 x y z -=-e e e 1014x y z ---e e e 所以 ()?=A B C g (23)x y z +-e e e g (8520)42x y z ++=-e e e ()?=A B C g (1014)x y z ---e e e g (52)42x z -=-e e (8)()??=A B C 1014502 x y z ---=-e e e 2405x y z -+e e e ()??=A B C 1 238 5 20 x y z -=e e e 554411x y z --e e e 1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。 (1)判断123 PP P ?是否为一直角三角形; (2)求三角形的面积。 解 (1)三个顶点1(0,1,2) P -、2(4,1,3)P -和3(6,2,5)P 的位置矢量分别为 12y z =-r e e ,243x y z =+-r e e e ,3625x y z =++r e e e

电磁场与电磁波试题及答案

《电磁场与电磁波》试题2 一、填空题(每小题1分,共10分) 1.在均匀各向同性线性媒质中,设媒质的介电常数为ε,则电位移矢量D ?和电场E ? 满足的 方程为: 。 2.设线性各向同性的均匀媒质中电位为φ,媒质的介电常数为ε,电荷体密度为V ρ,电位 所满足的方程为 。 3.时变电磁场中,坡印廷矢量的数学表达式为 。 4.在理想导体的表面,电场强度的 分量等于零。 5.表达式()S d r A S ? ????称为矢量场)(r A ? ?穿过闭合曲面S 的 。 6.电磁波从一种媒质入射到理想导体表面时,电磁波将发生 。 7.静电场是保守场,故电场强度沿任一条闭合路径的积分等于 。 8.如果两个不等于零的矢量的点积等于零,则此两个矢量必然相互 。 9.对横电磁波而言,在波的传播方向上电场、磁场分量为 。 10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是 场,因此,它可用磁矢位函数的旋度来表示。 二、简述题 (每小题5分,共20分) 11.试简述磁通连续性原理,并写出其数学表达式。 12.简述亥姆霍兹定理,并说明其意义。 13.已知麦克斯韦第二方程为S d t B l d E S C ???????-=???,试说明其物理意义,并写出方程的微 分形式。 14.什么是电磁波的极化?极化分为哪三种? 三、计算题 (每小题10分,共30分) 15.矢量函数 z x e yz e yx A ??2+-=? ,试求 (1)A ? ?? (2)A ? ?? 16.矢量 z x e e A ?2?2-=? , y x e e B ??-=? ,求 (1)B A ? ?- (2)求出两矢量的夹角

电磁场考试试题及答案解析

电磁波考题整理 一、填空题 1. 某一矢量场,其旋度处处为零,则这个矢量场可以表示成某一标量函数的(梯度)形式。 2. 电流连续性方程的积分形式为(??? s dS j=- dt dq) 3. 两个同性电荷之间的作用力是(相互排斥的)。 4. 单位面积上的电荷多少称为(面电荷密度)。 5. 静电场中,导体表面的电场强度的边界条件是:(D1n-D2n=ρs) 6. 矢量磁位A和磁感应强度B之间的关系式:(B=▽x A) 7. .E(Z,t)=e x E m sin(wt-kz-)+ e y E m cos(wt-kz+),判断上述均匀平面电磁波的极化方式为:(圆极化)(应该是90%确定) 8. 相速是指均匀平面电磁波在理想介质中的传播速度。 9.根据电磁波在波导中的传播特点,波导具有(HP)滤波器的特点。(HP,LP,BP三选一) 10.根据电与磁的对偶关系,我们可以由电偶极子在远区场的辐射场得到(磁偶极子)在远区产生的辐射场 11. 电位移矢量D=ε0E+P在真空中P的值为(0) 12. 平板电容器的介质电容率ε越大,电容量越大。 13.恒定电容不会随时间(变化而变化) 14.恒定电场中沿电源电场强度方向的闭合曲线积分在数值上等于电源的(电动势) 15. 电源外媒质中电场强度的旋度为0。 16.在给定参考点的情况下,库伦规范保证了矢量磁位的(散度为零) 17.在各向同性媚质中,磁场的辅助方程为(D=εE, B=μH, J=σE) 18. 平面电磁波在空间任一点的电场强度和磁场强度都是距离和时间的函数。 19. 时变电磁场的频率越高,集肤效应越明显。

20. 反映电磁场中能量守恒与转换规律的定理是坡印廷定理。 二、名词解释 1. 矢量:既存在大小又有方向特性的量 2. 反射系数:分界面上反射波电场强度与入射波电场强度之比 3. TEM波:电场强度矢量和磁场强度矢量均与传播方向垂直的均匀平面电磁波 4. 无散场:散度为零的电磁场,即·=0。 5. 电位参考点:一般选取一个固定点,规定其电位为零,称这一固定点为参考点。当取点为参考点时,P点处的电位为=;当电荷分布在有限的区域时,选取无穷远处为参考点较为方便,此时=。 6. 线电流:由分布在一条细线上的电荷定向移动而产生的电流。 7.磁偶极子:磁偶极子是类比电偶极子而建立的物理模型。具有等值异号的两个点磁荷构成的系统称为磁偶极子场。磁偶极子受到力矩的作用会发生转动,只有当力矩为零时,磁偶极子才会处于平衡状态。利用这个道理,可以进行磁场的测量。但由于没有发现单独存在的磁单极子,故我们将一个载有电流的圆形回路作为磁偶极子的模型。 8. 电磁波的波长:空间相位变化所经过的距离称为波长,以表示。按此定义有,所以。 9. 极化强度描述介质极化后形成的每单位体积内的电偶极矩。 10. 坡印廷定理电磁场的能量转化和守恒定律称为坡印廷定理:每秒体积中电磁能量的增加量等于从包围体积的闭合面进入体积功率。 11. 线性均匀且各向同性电介质若煤质参数与场强大小无关,称为线性煤质。若煤质参数与场强方向无关,称为各向同性煤质。若煤质参数与位置无关,责称均匀煤质。若煤质参数与场强频率无关,称为各向同性煤质。 12.安培环路定理在真空中磁感应强度沿任意回路的环量等于真空磁导率乘以与该回路相交链的电流的代数和。

电磁场与电磁波课后答案第1章

第一章习题解答 给定三个矢量、和如下: 求:(1);(2);(3);(4);(5)在上的分量;(6); (7)和;(8)和。 解(1) (2) (3)-11 (4)由,得 (5)在上的分量 (6) (7)由于 所以 (8) 三角形的三个顶点为、和。 (1)判断是否为一直角三角形; (2)求三角形的面积。 解(1)三个顶点、和的位置矢量分别为 ,, 则,, 由此可见 故为一直角三角形。 (2)三角形的面积 求点到点的距离矢量及的方向。 解,, 则 且与、、轴的夹角分别为 给定两矢量和,求它们之间的夹角和在上的分量。 解与之间的夹角为 在上的分量为 给定两矢量和,求在上的分量。 解 所以在上的分量为 证明:如果和,则; 解由,则有,即 由于,于是得到 故 如果给定一未知矢量与一已知矢量的标量积和矢量积,那么便可以确定该未知矢量。设为一已知矢量,而,和已知,试求。

解由,有 故得 在圆柱坐标中,一点的位置由定出,求该点在:(1)直角坐标中的坐标;(2)球坐标中的坐标。 解(1)在直角坐标系中、、 故该点的直角坐标为。 (2)在球坐标系中、、 故该点的球坐标为 用球坐标表示的场, (1)求在直角坐标中点处的和; (2)求在直角坐标中点处与矢量构成的夹角。 解(1)在直角坐标中点处,,故 (2)在直角坐标中点处,,所以 故与构成的夹角为 球坐标中两个点和定出两个位置矢量和。证明和间夹角的余弦为 解由 得到 一球面的半径为,球心在原点上,计算:的值。 解 在由、和围成的圆柱形区域,对矢量验证散度定理。 解在圆柱坐标系中 所以 又 故有 求(1)矢量的散度;(2)求对中心在原点的一个单位立方体的积分;(3)求对此立方体表面的积分,验证散度定理。 解(1) (2)对中心在原点的一个单位立方体的积分为 (3)对此立方体表面的积分 故有 计算矢量对一个球心在原点、半径为的球表面的积分,并求对球体积的积分。 解 又在球坐标系中,,所以 求矢量沿平面上的一个边长为的正方形回路的线积分,此正方形的两边分别与轴和轴相重合。再求对此回路所包围的曲面积分,验证斯托克斯定理。 解 又

电磁场与电磁波第二章课后答案

第二章 静电场 重点和难点 电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分形式的静电场方程导出微分形式的静电场方程,即散度方程和旋度方程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特性。 利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间的关系。通过书中列举的4个例子,总结归纳出根据电荷分布计算电场强度的三种方法。 至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、各向同性与各向异性等概念。讲解介质中静电场方程时,应强调电通密度仅与自由电荷有关。介绍边界条件时,应说明仅可依据积分形式的静电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。 关于静电场的能量与力,应总结出计算能量的三种方法,指出电场能量不符合迭加原理。介绍利用虚位移的概念计算电场力,常电荷系统和常电位系统,以及广义力和广义坐标等概念。至于电容和部分电容一节可以从简。 重要公式 真空中静电场方程: 积分形式: ? = ?S S E 0 d εq ?=?l l E 0d 微分形式: 0 ερ= ??E 0=??E 已知电荷分布求解电场强度: 1,)()(r r E ?-?=; ? ' '-'= V V 0 d ) (41)(| r r |r r ρπε ? 2,? ' ''-'-'= V V 3 d |4) )(()(| r r r r r r E πε ρ 3, ? = ?S S E 0 d εq 高斯定律

介质中静电场方程: 积分形式: q S =?? d S D ?=?l l E 0d 微分形式: ρ=??D 0=??E 线性均匀各向同性介质中静电场方程: 积分形式: ε q S = ?? d S E ?=?l l E 0d 微分形式: ε ρ= ??E 0=??E 静电场边界条件: 1,t t E E 21=。对于两种各向同性的线性介质,则 2 21 1εεt t D D = 2,s n n D D ρ=-12。在两种介质形成的边界上,则 n n D D 21= 对于两种各向同性的线性介质,则 n n E E 2211εε= 3,介质与导体的边界条件: 0=?E e n ; S n D e ρ=? 若导体周围是各向同性的线性介质,则 ε ρS n E = ; ε ρ?S n - =?? 静电场的能量:

电磁场理论复习考试题(含答案)

第1~2章 矢量分析 宏观电磁现象的基本规律 1. 设:直角坐标系中,标量场zx yz xy u ++=的梯度为A ,则M (1,1,1)处 A = ,=??A 0 。 2. 已知矢量场xz e xy e z y e A z y x ?4?)(?2 +++= ,则在M (1,1,1)处=??A 9 。 3. 亥姆霍兹定理指出,若唯一地确定一个矢量场(场量为A ),则必须同时给定该场矢量 的 旋度 及 散度 。 4. 写出线性和各项同性介质中场量D 、E 、B 、H 、J 所满足的方程(结构方 程): 。 5. 电流连续性方程的微分和积分形式分别为 和 。 6. 设理想导体的表面A 的电场强度为E 、磁场强度为B ,则 (a )E 、B 皆与A 垂直。 (b )E 与A 垂直,B 与A 平行。 (c )E 与A 平行,B 与A 垂直。 (d )E 、B 皆与A 平行。 答案:B 7. 两种不同的理想介质的交界面上, (A )1212 , E E H H == (B )1212 , n n n n E E H H == (C) 1212 , t t t t E E H H == (D) 1212 , t t n n E E H H == 答案:C 8. 设自由真空区域电场强度(V/m) )sin(?0βz ωt E e E y -= ,其中0E 、ω、β为常数。则???222x y z e e e ++A ??A ??E J H B E D σ=μ=ε= , ,t q S d J S ??-=?? t J ?ρ ?-=??

空间位移电流密度d J (A/m 2)为: (a ) )cos(?0βz ωt E e y - (b ) )cos(?0βz ωt ωE e y - (c ) )cos(?00βz ωt E ωe y -ε (d ) )cos(?0βz ωt βE e y -- 答案:C 9. 已知无限大空间的相对介电常数为4=εr ,电场强度(V/m) 2cos ?0d x e E x πρ= ,其中0ρ、d 为常数。则d x =处电荷体密度ρ为: (a )d 04πρ- (b )d 004ρπε- (c )d 02πρ- (d )d 02ρπε- 答案:d 10. 已知半径为R 0球面内外为真空,电场强度分布为 ?????? ?>θ+θ<θ+θ-=θθ )R ( )sin ?cos 2?() R ( )sin ?cos ?(2 0300 r e e r B r e e R E r r 求(1)常数B ;(2)球面上的面电荷密度;(3)球面内外的体电荷密度。 Sol. (1) 球面上 由边界条件 t t E E 21=得: sin sin 230 0θ=θR B R 202R B =→ (2)由边界条件s n n D D ρ=-21得: θε= -ε=-ε=ρcos 6)()(0 210210R E E E E r r n n s (3)由ρ=??D 得: ???><=θ?θ?θε+??ε=??ε=ρθ )R ( 0)R ( 0)sin (sin 1)(10002200r r E r r E r r E r 即空间电荷只分布在球面上。 11. 已知半径为R 0、磁导率为μ 的球体,其内外磁场强度分布为 ??? ??>θ+θ<θ-θ=θθ )R ( )sin ?cos 2?(A )R ( )sin ?cos ?(203 0r e e r r e e H r r 且球外为真空。求(1)常数A ;(2)球面上的面电流密度J S 大小。

相关文档
最新文档