射频连接器的阻抗原理

射频连接器的阻抗原理
射频连接器的阻抗原理

阻抗匹配与史密斯(Smith)圆图:基本原理

在处理RF系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。一般情况下,需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、功率放大器输出(RFOUT)与天线之间的匹配、LNA/VCO 输出与混频器输入之间的匹配。匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。

在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。频率在数十兆赫兹以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的RF测试、并进行适当调谐。需要用计算值确定电路的结构类型和相应的目标元件值。

有很多种阻抗匹配的方法,包括

?计算机仿真:由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。设计者必须熟悉用正确的格式输入众多的数据。设计人员还需要具有从大量的输出结果中找到有用数据的技能。另外,除非计算机是专门为这个用途制造的,否则电路仿真软件不可能预装在计算机上。

?手工计算:这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。

?经验:只有在RF领域工作过多年的人才能使用这种方法。总之,它只适合于资深的专家。

?史密斯圆图:本文要重点讨论的内容。

本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。讨论的主题包括参数的实际范例,比如找出匹配网络元件的数值。当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的影响以及进行稳定性分析。

图1. 阻抗和史密斯圆图基础

基础知识

在介绍史密斯圆图的使用之前,最好回顾一下RF环境下(大于100MHz) IC连线的电磁波传播现象。这对RS-485传输线、PA和天线之间的连接、LNA和下变频器/混频器之间的连接等应用都是有效的。

大家都知道,要使信号源传送到负载的功率最大,信号源阻抗必须等于负载的共轭阻抗,即:

R S + jX

S

= R

L

- jX

L

图2. 表达式R

S + jX

S

= R

L

- jX

L

的等效图

在这个条件下,从信号源到负载传输的能量最大。另外,为有效传输功率,满足这个条件可以避免能量从负载反射到信号源,尤其是在诸如视频传输、RF或微波网络的高频应用环境更是如此。

史密斯圆图

史密斯圆图是由很多圆周交织在一起的一个图。正确的使用它,可以在不作任何计算的前提下得到一个表面上看非常复杂的系统的匹配阻抗,唯一需要作的就是沿着圆周线读取并跟踪数据。

史密斯圆图是反射系数(伽马,以符号Γ表示)的极座标图。反射系数也可以从数学上定义为单端口散射参数,即s

11

史密斯圆图是通过验证阻抗匹配的负载产生的。这里我们不直接考虑阻抗,而是用反射系数Γ

L

,反射系数可以反映负载的特性(如

导纳、增益、跨导),在处理RF频率的问题时Γ

L

更加有用。

我们知道反射系数定义为反射波电压与入射波电压之比:

图3. 负载阻抗

负载反射信号的强度取决于信号源阻抗与负载阻抗的失配程度。反射系数的表达式定义为:

由于阻抗是复数,反射系数也是复数。

为了减少未知参数的数量,可以固化一个经常出现并且在应用中经常使用的参数。这里Z

(特性阻抗)通常为常数并且是实数,是常用的归一化标准值,如50Ω、75Ω、100Ω和600Ω。于是我们可以定义归一化的负载阻抗:

据此,将反射系数的公式重新写为:

从上式我们可以看到负载阻抗与其反射系数间的直接关系。但是这个关系式是一个复数,所以并不实用。我们可以把史密斯圆图当作上述方程的图形表示。

为了建立圆图,方程必需重新整理以符合标准几何图形的形式(如圆或射线)。

首先,由方程2.3求解出;

并且

令等式2.5的实部和虚部相等,得到两个独立的关系式:

重新整理等式2.6,经过等式2.8至2.13得到最终的方程2.14。这个方程是在复平面(Γr, Γi)上、圆的参数方程(x - a)2 + (y - b)2 = R2,它以[r/(r + 1), 0]为圆心,半径为1/(1 + r)。

更多细节参见图4a。

图4a. 圆周上的点表示具有相同实部的阻抗。例如,r = 1的圆,以(0.5, 0)为圆心,半径为0.5。它包含了代表反射零点的原点(0, 0) (负载与特性阻抗相匹配)。以(0, 0)为圆心、半径为1的圆代表负载短路。负载开路时,圆退化为一个点(以1, 0为圆心,半径为零)。与此对应的是最大的反射系数1,即所有的入射波都被反射回来。

在作史密斯圆图时,有一些需要注意的问题。下面是最重要的几个方面:

?所有的圆周只有一个相同的,唯一的交点(1, 0)。

?代表0Ω、也就是没有电阻(r = 0)的圆是最大的圆。

?无限大的电阻对应的圆退化为一个点(1, 0)

?实际中没有负的电阻,如果出现负阻值,有可能产生振荡。

?选择一个对应于新电阻值的圆周就等于选择了一个新的电阻。

作图

经过等式2.15至2.18的变换,2.7式可以推导出另一个参数方程,方程2.19。

同样,2.19也是在复平面(Γr, Γi)上的圆的参数方程(x - a)2 + (y - b)2 = R2,它的圆心为(1, 1/x),半径1/x。

更多细节参见图4b。

图4b. 圆周上的点表示具有相同虚部x的阻抗。例如,× = 1的圆以(1, 1)为圆心,半径为1。所有的圆(x为常数)都包括点(1, 0)。与实部圆周不同的是,x既可以是正数也可以是负数。这说明复平面下半部是其上半部的镜像。所有圆的圆心都在一条经过横轴上1点的垂直线上。

完成圆图

为了完成史密斯圆图,我们将两簇圆周放在一起。可以发现一簇圆周的所有圆会与另一簇圆周的所有圆相交。若已知阻抗为r + jx,只需要找到对应于r和x的两个圆周的交点就可以得到相应的反射系数。

可互换性

上述过程是可逆的,如果已知反射系数,可以找到两个圆周的交点从而读取相应的r和×的值。过程如下:

?确定阻抗在史密斯圆图上的对应点

?找到与此阻抗对应的反射系数(Γ)

?已知特性阻抗和Γ,找出阻抗

?将阻抗转换为导纳

?找出等效的阻抗

?找出与反射系数对应的元件值(尤其是匹配网络的元件,见图7)

推论

因为史密斯圆图是一种基于图形的解法,所得结果的精确度直接依赖于图形的精度。下面是一个用史密斯圆图表示的RF应用实例:

例:已知特性阻抗为50Ω,负载阻抗如下:

Z 1 = 100 + j50ΩZ

2

= 75 - j100ΩZ

3

= j200ΩZ

4

= 150Ω

Z 5 = ∞ (an open circuit) Z

6

= 0 (a short circuit) Z

7

= 50ΩZ

8

= 184 - j900Ω

对上面的值进行归一化并标示在圆图中(见图5):

z 1 = 2 + j z

2

= 1.5 - j2 z

3

= j4 z

4

= 3

z 5 = 8 z

6

= 0 z

7

= 1 z

8

= 3.68 - j18

图5. 史密斯圆图上的点

现在可以通过图5的圆图直接解出反射系数Γ。画出阻抗点(等阻抗圆和等电抗圆的交点),只要读出它们在直角坐标水平轴和垂直轴上的投影,就得到了反射系数的实部Γr和虚部Γi (见图6)。

该范例中可能存在八种情况,在图6所示史密斯圆图上可以直接得到对应的反射系数Γ:

Γ1 = 0.4 + 0.2j Γ2 = 0.51 - 0.4j Γ3 = 0.875 + 0.48j Γ4 = 0.5

Γ5 = 1 Γ6 = -1 Γ7 = 0 Γ8 = 0.96 - 0.1j

图6. 从X-Y轴直接读出反射系数Γ的实部和虚部

用导纳表示

史密斯圆图是用阻抗(电阻和电抗)建立的。一旦作出了史密斯圆图,就可以用它分析串联和并联情况下的参数。可以添加新的串联元件,确定新增元件的影响只需沿着圆周移动到它们相应的数值即可。然而,增加并联元件时分析过程就不是这么简单了,需要考虑其它的参数。通常,利用导纳更容易处理并联元件。

我们知道,根据定义Y = 1/Z,Z = 1/Y。导纳的单位是姆欧或者Ω-1 (早些时候导纳的单位是西门子或S)。并且,如果Z是复数,则Y也一定是复数。

所以Y = G + jB (2.20),其中G叫作元件的“电导”,B称“电纳”。在演算的时候应该小心谨慎,按照似乎合乎逻辑的假设,可以得出:G = 1/R及B = 1/X,然而实际情况并非如此,这样计算会导致结果错误。

,得出y = g + jb。但是如何计算反射系数呢?通过下面的式子进行推导:用导纳表示时,第一件要做的事是归一化, y = Y/Y

结果是G的表达式符号与z相反,并有Γ(y) = -Γ(z)。

如果知道z,就能通过将的符号取反找到一个与(0, 0)的距离相等但在反方向的点。围绕原点旋转180°可以得到同样的结果(见图7)。

图7. 180°度旋转后的结果

当然,表面上看新的点好像是一个不同的阻抗,实际上Z和1/Z表示的是同一个元件。(在史密斯圆图上,不同的值对应不同的点并具有不同的反射系数,依次类推)出现这种情况的原因是我们的图形本身是一个阻抗图,而新的点代表的是一个导纳。因此在圆图上读出的数值单位是西门子。

尽管用这种方法就可以进行转换,但是在解决很多并联元件电路的问题时仍不适用。

导纳圆图

在前面的讨论中,我们看到阻抗圆图上的每一个点都可以通过以Γ复平面原点为中心旋转180°后得到与之对应的导纳点。于是,将整个阻抗圆图旋转180°就得到了导纳圆图。这种方法十分方便,它使我们不用建立一个新图。所有圆周的交点(等电导圆和等电纳圆)自然出现在点(-1, 0)。使用导纳圆图,使得添加并联元件变得很容易。在数学上,导纳圆图由下面的公式构造:

解这个方程:

接下来,令方程3.3的实部和虚部相等,我们得到两个新的独立的关系:

从等式3.4,我们可以推导出下面的式子:

它也是复平面(Γr, Γi)上圆的参数方程(x - a)2 + (y - b)2 = R2 (方程3.12),以[g/(g + 1), 0]为圆心,半径为1/(1 + g)。

从等式3.5,我们可以推导出下面的式子:

同样得到(x - a)2 + (y - b)2 = R2型的参数方程(方程3.17)。

求解等效阻抗

当解决同时存在串联和并联元件的混合电路时,可以使用同一个史密斯圆图,在需要进行从z到y或从y到z的转换时将图形旋转。

= 50Ω进行了归一化)。串联电抗(x)对电感元件而言为正数,对电容元件而言为负数。而考虑图8所示网络(其中的元件以Z

电纳(b)对电容元件而言为正数,对电感元件而言为负数。

图8. 一个多元件电路

这个电路需要进行简化(见图9)。从最右边开始,有一个电阻和一个电感,数值都是1,我们可以在r = 1的圆周和I=1的圆周的交点处得到一个串联等效点,即点A。下一个元件是并联元件,我们转到导纳圆图(将整个平面旋转180°),此时需要将前面的那个点变成导纳,记为A'。现在我们将平面旋转180°,于是我们在导纳模式下加入并联元件,沿着电导圆逆时针方向(负值)移动距离0.3,得到点B。然后又是一个串联元件。现在我们再回到阻抗圆图。

图9. 将图8网络中的元件拆开进行分析

在返回阻抗圆图之前,还必需把刚才的点转换成阻抗(此前是导纳),变换之后得到的点记为B',用上述方法,将圆图旋转180°回到阻抗模式。沿着电阻圆周移动距离1.4得到点C就增加了一个串联元件,注意是逆时针移动(负值)。进行同样的操作可增加下一个元件(进行平面旋转变换到导纳),沿着等电导圆顺时针方向(因为是正值)移动指定的距离(1.1)。这个点记为D。最后,我们回到阻抗模式增加最后一个元件(串联电感)。于是我们得到所需的值,z,位于0.2电阻圆和0.5电抗圆的交点。至此,得出z = 0.2 + j0.5。如果系统的特性阻抗是50Ω,有Z = 10 + j25Ω (见图10)。

图10. 在史密斯圆图上画出的网络元件

逐步进行阻抗匹配

史密斯圆图的另一个用处是进行阻抗匹配。这和找出一个已知网络的等效阻抗是相反的过程。此时,两端(通常是信号源和负载)阻抗是固定的,如图11所示。我们的目标是在两者之间插入一个设计好的网络已达到合适的阻抗匹配。

图11. 阻抗已知而元件未知的典型电路

初看起来好像并不比找到等效阻抗复杂。但是问题在于有无限种元件的组合都可以使匹配网络具有类似的效果,而且还需考虑其它因素(比如滤波器的结构类型、品质因数和有限的可选元件)。

实现这一目标的方法是在史密斯圆图上不断增加串联和并联元件、直到得到我们想要的阻抗。从图形上看,就是找到一条途径来连接史密斯圆图上的点。同样,说明这种方法的最好办法是给出一个实例。

我们的目标是在60MHz工作频率下匹配源阻抗(Z

S )和负载阻抗(z

L

) (见图11)。网络结构已经确定为低通,L型(也可以把问题看

作是如何使负载转变成数值等于Z

S 的阻抗,即Z

S

复共轭)。下面是解的过程:

图12. 图11的网络,将其对应的点画在史密斯圆图上

要做的第一件事是将各阻抗值归一化。如果没有给出特性阻抗,选择一个与负载/信号源的数值在同一量级的阻抗值。假设Z

为50Ω。于是z

S = 0.5 - j0.3, z*

S

= 0.5 + j0.3, Z

L

= 2 - j0.5。

下一步,在图上标出这两个点,A代表z

L ,D代表z*

S

然后判别与负载连接的第一个元件(并联电容),先把z

L

转化为导纳,得到点A'。

确定连接电容C后下一个点出现在圆弧上的位置。由于不知道C的值,所以我们不知道具体的位置,然而我们确实知道移动的方向。并联的电容应该在导纳圆图上沿顺时针方向移动、直到找到对应的数值,得到点B (导纳)。下一个元件是串联元件,所以必需把B转换到阻抗平面上去,得到B'。B'必需和D位于同一个电阻圆上。从图形上看,从A'到D只有一条路径,但是如果要经过中间的B点(也就是B'),就需要经过多次的尝试和检验。在找到点B和B'后,我们就能够测量A'到B和B'到D的弧长,

前者就是C的归一化电纳值,后者为L的归一化电抗值。A'到B的弧长为b = 0.78,则B = 0.78 × Y

= 0.0156S。因为ωC

= B,所以C = B/ω = B/(2πf) = 0.0156/[2π(60 × 106)] = 41.4pF。

= 60Ω。由ωL = X,得L = X/ω = X/(2πf)= 60/[2π(60 × 106)] = 159n B到D的弧长为× = 1.2,于是X = 1.2 × Z

H。

图13. MAX2472典型工作电路

第二个例子是MAX2472的输出匹配电路,匹配于50Ω负载阻抗(z

),工作品率为900MHz (图14所示)。该网络采用与MAX2472

L

数据资料相同的配置结构,上图给出了匹配网络,包括一个并联电感和串联电容,以下给出了匹配网络元件值的查找过程。

图14. 图13所示网络在史密斯圆a图上的相应工作点

首先将S

22散射参数转换成等效的归一化源阻抗。MAX2472的Z

为50Ω,S

22

= 0.81/-29.4°转换成z

S

= 1.4 - j3.2, z

L

= 1和

z

L

* = 1。

下一步,在圆图上定位两个点,z

S 标记为A,z

L

*标记为D。因为与信号源连接的是第一个元件是并联电感,将源阻抗转换成导纳,

得到点A’。

确定连接电感L

MATCH 后下一个点所在的圆弧,由于不知道L

MATCH

的数值,因此不能确定圆弧终止的位置。但是,我们了解连接L

MATC

H

并将其转换成阻抗后,源阻抗应该位于r = 1的圆周上。由此,串联电容后得到的阻抗应该为z = 1 + j0。以原点为中心,在r = 1的圆上旋转180°,反射系数圆和等电纳圆的交点结合A’点可以得到B (导纳)。B点对应的阻抗为B’点。

找到B和B'后,可以测量圆弧A'B以及圆弧B'D的长度,第一个测量值可以得到L

MATCH 。电纳的归一化值,第二个测量值得到C

M

ATCH 电抗的归一化值。圆弧A'B的测量值为b = -0.575,B = -0.575 × Y

= 0.0115S。因为1/ωL = B,则L

MATCH

= 1/Bω = 1/

(B2πf) = 1/(0.01156 × 2 ×π× 900 × 106) = 15.38nH,近似为15nH。圆弧B'D的测量值为× = -2.81,X = -2.81

× Z

0 = -140.5Ω。因为-1/ωC = X,则C

MATCH

= -1/Xω = -1/(X2πf) = -1/(-140.5 × 2 ×π× 900 × 106) = 1.259pF,

近似为1pF。这些计算值没有考虑寄生电感和寄生电容,所得到的数值接近与数据资料中给出的数值: L

MATCH = 12nH和C

MATCH

=

1pF。总结

在拥有功能强大的软件和高速、高性能计算机的今天,人们会怀疑在解决电路基本问题的时候是否还需要这样一种基础和初级的方法。

实际上,一个真正的工程师不仅应该拥有理论知识,更应该具有利用各种资源解决问题的能力。在程序中加入几个数字然后得出结果的确是件容易的事情,当问题的解十分复杂、并且不唯一时,让计算机作这样的工作尤其方便。然而,如果能够理解计算机的工作平台所使用的基本理论和原理,知道它们的由来,这样的工程师或设计者就能够成为更加全面和值得信赖的专家,得到的结果也更加可靠。

军用连接器专业知识

第一章概论 一、什么是连接器 连接器的作用非常单纯:在电路内被阻断处或孤立不通的电路之间,架起沟通的桥梁,保证电流顺畅连续和可靠地流通,使电路实现预定的功能。 连接器是电子设备中不可缺少的部件,顺着电流流通的通路观察,你总会发现有一个或多个连接器。连接器形式和结构是千变万化的,随着应用对象、频率、功率、应用环境等不同,有各种不同形式的连接器。例如,球场上点灯用的连接器和硬盘驱动器的连接器,以及点燃火箭的连接器是大不相同的。 二、为什么要使用连接器 设想一下如果没有连接器会是怎样?这时电路之间要用连续的导体永久性地连接在一起,例如电子装置要连接在电源上,必须把连接导线两端,与电子装置及电源通过某种方法(例如焊接)固定接牢。这样一来,无论对于生产还是使用,都带来了诸多不便。 以汽车电池为例。假定电池电缆被固定焊牢在电池上,汽车生产厂为安装电池就增加了工作量,增加了生产时间和成本。电池损坏需要更换时,还要将汽车送到维修站,脱焊拆除旧的,再焊上新的,为此要付较多的人工费。有了连接器就可以免除许多麻烦,从商店买个新电池,断开连接器,拆除旧电池,装上新电池,重新接通连接器就可以了。这个简单的例子说明了连接器的好处。它使设计和生产过程更方便、更灵活,降低了生产和维护成本。 连接器的好处 改善生产过程连接器简化电子产品的装配过程。也简化了批量生产过程 易于维修如果某电子元部件失效,装有连接器时可以快速更换失效元部件 便于升级随着技术进步,装有连接器时可以更新元部件,用新的、更完善的元部件代替旧的

三、连接器行业涉及的主要相关理论知识 (一)电接触理论 电接触理论的范围很广,接触的物理—化学过程包括:接触时的热、电、磁、半导体等各种效应,接触电阻的物理本质及其计算,触头接触点温度场、触点的温差热电势及其对金属迁移的影响,触头金属小桥理论与计算,触点间热量和质量转移的物理过程及其数学模型等。在电接触理论方面,荷尔姆作出了重大贡献,他的巨著《电接触》总结了他数十年的研究心得,为了纪念他,国际上成立了HOLM 电接触学会,各主要国均有相应的年会,国内有北京邮电大学、福州大学、贵州大学等电接触方面进行研究。 (二)电弧理论 带电插拔的电连接器涉及到电弧问题,电弧理论包括触头分离时如何引弧和熄弧的理论,气体放电和激励的过程,火花放电、辉光放电和弧光放电的界限和过程,离子平衡和电离消电离的过程,极旁和弧柱理论,剩余电流热积累,电击穿和热击穿的过程,电弧的静态和动态特性,电弧的能量与过电压等等。 (三)电器的发热理论 除了介质损耗是热源外,电器的发热主要是载流导体的电流效应,在大电流和强的交变磁场下,载流体间不仅产生巨大的电动力,而且还产生集肤效应和邻近效应,载流体电流线分布不均匀将直接影响发热和温升。 四、常用术语 电连接器的术语较多,国标GB4210-84(相当于IEC50)对相关的术语进行了描述,本节仅列出了主要的术语,其他可查阅标准。 (1)连接器(Connector):一般是指有能使电缆和电缆接线端迅速连接或分离的

SI9000各阻抗计算说明

阻抗培训 1.外层单端:Coated Microstrip 1B H1:介质厚度(PP片或者板材,不包括铜厚) Er1:PP片的介电常数(板材为:4.5 P片4.2) W1:阻抗线上线宽(客户要求的线宽) W2:阻抗线下线宽(W2=W1-0.5MIL) T1:成品铜厚 C1:基材的绿油厚度(我司按0.8MIL) C2:铜皮或走线上的绿油厚度(0.5MIL) Cer:绿油的介电常数(我司按3.3MIL) Zo:由上面的参数计算出来的理论阻值

2.外层差分:Edge-Coupled Coated Microstrip 1B H1:介质厚度(PP片或者板材,不包括铜厚) Er1:PP片的介电常数(板材为:4.5 P片4.2) W1:阻抗线上线宽(客户要求的线宽) W2:阻抗线下线宽(W2=W1-0.5MIL) S1:阻抗线间距(客户原稿) T1:成品铜厚 C1:基材的绿油厚度(我司按0.8MIL) C2:铜皮或走线上的绿油厚度(0.5MIL) C3:基材上面的绿油厚度(0.50MIL) Cer:绿油的介电常数(我司按3.3MIL)

3.内层单端:Offset Stripline 1B1A H1:介质厚度(PP片或者光板,不包括铜厚) Er1:H1厚度PP片的介电常数(P片4.2MIL) H2:介质厚度(PP片或者光板,不包括铜厚) Er2:H2厚度PP片的介电常数(P片4.2MIL) W1:阻抗线上线宽(客户要求的线宽) W2:阻抗线下线宽(W2=W1-0.5MIL) T1:成品铜厚 Zo:由上面的参数计算出来的理论阻值

4.内层差分:Edge-Couled Offset Stripline 1B1A H1:介质厚度(PP片或者光板,不包括铜厚) Er1:H1厚度PP片的介电常数(P片4.2MIL) H2:介质厚度(PP片或者光板,不包括铜厚) Er2:H2厚度PP片的介电常数(P片4.2MIL) W1:阻抗线上线宽(客户要求的线宽) W2:阻抗线下线宽(W2=W1-0.5MIL) S1:客户要求的线距 T1:成品铜厚 Zo:由上面的参数计算出来的理论阻值

变压器阻抗计算word资料24页

设 计 手 册 油 浸 电 力 变 压 器 阻 抗 计 算 目 录 1 概述 SB1-007.5 第1页 1.1 漏磁通及漏抗电势 SB1-007.5 第1页 1.2 短路阻抗 SB1-007.5 第1页 1.3 短路阻抗允许偏差 SB1-007.5 第2页 2 电抗分量计算 SB1-007.5 第2页 2.1 电抗计算公式中的符号代表意义 SB1-007.5 第2页 2.2 双绕组变压器电抗计算 SB1-007.5 第5页 2.3 双绕组有载变压器电抗计算 SB1-007.5 第6页 2.4 双绕组变压器 (高-低-高) 电抗计算 SB1-007.5 第7页 2.4.1 双绕组变压器(高-低-高)电抗计算方法之一 SB1-007.5 第7页 2.4.2 双绕组变压器(高-低-高)电抗计算方法之二 SB1-007.5 第8页 共 第 01 01 油 浸 电 力 变 压 器 阻 抗 计 算

2.5双绕组变压器 ( 高-低-高-低 ) 电抗计算SB1-007.5第9页 2.6三绕组变压器电抗计算SB1-007.5第10页2.7三绕组自耦变压器电抗计算SB1-007.5第11页2.8双绕组变压器 ( 低压Z形联结) 电抗计算SB1-007.5第12页 2.9分裂变压器电抗计算SB1-007.5第13页2.9.1单相分裂变压器电抗计算SB1-007.5第13页2.9.2三相径向分裂变压器电抗计算SB1-007.5第14页2.9.3三相轴向分裂变压器电抗计算SB1-007.5第15页 2.10单相旁轭有载调压自耦变压器(低压励磁)电抗计算SB1-007.5第16页3电阻分量计算SB1-007.5第17页4短路阻抗计算SB1-007.5第17页

PCB阻抗值因素与计算方法

PCB阻抗设计及计算简介

特性阻抗的定义 ?何谓特性阻抗(Characteristic Impedance ,Z0) ?电子设备传输信号线中,其高频信号在传输线中传播时所遇到的阻力称之为特性阻抗;包括阻抗、容抗、感抗等,已不再只是简单直流电的“欧姆电阻”。 ?阻抗在显示电子电路,元件和元件材料的特色上是最重要的参数.阻抗(Z)一般定义为:一装置或电路在提供某特定频率的交流电(AC)时所遭遇的总阻力. ?简单的说,在具有电阻、电感和电容的电路里,对交流电所起的阻碍作用叫做阻抗。

设计阻抗的目的 ?随着信号传送速度迅猛的提高和高频电路的广泛应用,对印刷电路板也提出了更高的要求。印刷电路板提供的电路性能必须能够使信号在传输过程中不发生反射现象,信号保持完整,降低传输损耗,起到匹配阻抗的作用,这样才能得到完整、可靠、精确、无干扰、噪音的传输信号。?阻抗匹配在高频设计中是很重要的,阻抗匹配与否关系到信号的质量优劣。而阻抗匹配的目的主要在于传输线上所有高频的微波信号皆能到达负载点,不会有信号反射回源点。

?因此,在有高频信号传输的PCB板中,特性阻抗的控制是尤为重要的。 ?当选定板材类型和完成高频线路或高速数字线路的PCB 设计之后,则特性阻抗值已确定,但是真正要做到预计的特性阻抗或实际控制在预计的特性阻抗值的围,只有通过PCB生产加工过程的管理与控制才能达到。

?从PCB制造的角度来讲,影响阻抗和关键因素主要有: –线宽(w) –线距(s)、 –线厚(t)、 –介质厚度(h) –介质常数(Dk) εr相对电容率(原俗称Dk介质常数),白容生对此有研究和专门诠释。 注:其实阻焊也对阻抗有影响,只是由于阻焊层贴在介质上,导致介电常数增大,将此归于介电常数的影响,阻抗值会相 应减少4%

一 射频同轴连接器型号命名方法

一射频同轴连接器型号命名方法 1 插头和插座的定义: 插头------具有连接机构的主动部分即螺母或卡口连接套的连接器,一般玮自由连接器。 插座------与插头相配连接的连接器,一般为固定连接器。 2 型号一般命名方法: ①射频连接器的型号由主称代号和结构形式代号两部分组成,中间用短横线“-“隔开。 ②射频连接器的主称由产品技术标准作出具体规定。 ③射频连接器的结构形成代号有下表所示部分组成: 表示一端为插针接触件,另一端为插孔接触件,阻抗为75的N型系列内转接器。 表示一端为N型插针接触件,另一端为BNC插孔接触件,阻抗为50的系列间转接器。 注: ①插头装插针,插座装插孔的系列,结构形式代号中插头和插座代号(表中序号(1)不标。插座装插针的系列,用括号中的代号。 ②注有#号者,仅在面板插头中使用。 ③SMB(50)和SSMB型的结构形式代号基本按SMB型技术标准规定,有数字代号和电缆编号组成,此处略。 3射频连接器的型号组成示例: (1)SMA-JW5,TNC-JW5 表示SMA型及TNC型弯式非密封射频插头,插头内导体为插针接触件,配用SYV -50-3电缆。 (2)N-50KFD,SMA-KFD 表示法兰安装,阻抗为50的N和SMA型微带射频插座,内导体为插孔接触件。(3)SMA-KE,SMB-75KHD 表示直接焊接在线路板上的阻抗为50的SMA微带插孔连接器及阻抗为75的SMB 插孔连接器。

(4)转接器和阻抗转接器的型号组成方法,以插头或插座型号型为基础派生,一般采用下列形式: ①转接器的型号,其类型代号部分用连接器主称代号(系列内转接器)及分数形式(系列间转接器)表示。 如:N-75JK ②阻抗转接器的型号,其型号或结构形式代号用分数形式表示: 如:N-50J/75K 表示一端为50的插头,另一端为75的插座,两端均为“N“型的阻抗转接器。 4射频同轴连接器 根据射频连接器的定义,他是传输线的一个部分借助与它,可以使传输系统的元件(电缆)接上和脱开,它与电力连接器不同,电力连接器用于低频(一般为60赫兹)的电气信号,而射频连接器是用于传输射频能量,其频率范围很宽,可达18x109赫兹、秒(18GHz)甚至更高。射频连接器的典型用途包括先进的雷达,车船通信,数据传输系统及航空航天设备。 同轴连接器的基本结构包括:中心导体(阳性和阴性的中心接触件);然后,外面是介电材料,或称绝缘体,如像在电缆中一样;最后是外接触件。这个外面部分起着如同电缆外屏蔽层一样的功能,即传输信号,作为屏蔽或电路的接地元件。

电连接器基本知识概述

电连接器基本知识概述 在武器装备的各类电子系统中,电连接器在器件与器件、组件与组件、系统与系统之间进行电气连接和信号传递,是构成一个完整系统所必须的基础元件。 在各种军机和武器装备中,电连接器的用量较大,特别是飞机上使用电连接器的用量特大。一般来讲一架飞机电连接器的使用量可达数百件至几千件,牵扯到好几万个线路。因此,电连接器除了要满足一般的性能要求外,特别重要的要求是电连接器必须达到接触良好,工作可靠,维护方便,其工作可靠与否直接影响飞机电路的正常工作,涉及整个主机的安危。为此,主机电路对电连接器的质量和可靠性有非常严格的要求,也正因为电连接器的高质量和高可靠性,使它也广泛应用于航空、航天、国防等军用系统中。针对此块精英人才,也是目前我国最稀缺的,目前收纳电连接器人较多的有连接器英才网,是电连接器行业人才的一个专业性招聘、求职网站。 一、电连接器分类、结构 1.连接器常用的分类方法是: 1)按外形分:圆形电连接器、矩形电连接器。 圆形电连接器由于自身结构的特点在军事装备上(航空、航天)用量最大。矩形电连接器由于其结构简单更多的是用于电子设备的印制线路板上。 2)按结构分: 按连接方式:螺纹连接、卡口(快速)连接、卡锁连接、推拉式连接、直插式连接等; 按接触体端接形式:压接,焊接,绕接;螺钉(帽)固定; 按环境保护分:耐环境电连接器和普通电连接器 3)按用途分: 射频电连接器 密封电连接器(玻璃封焊) 高温电连接器 自动脱落分离电连接器 滤波电连接器 复合材料电连接器 机场电源电连接器 印制线路板用电连接器等2.电连接器结构电连接器由固定端电连接器(以下称插座),自由端电连接器(以下称插头)组成。插座通过其方(圆)盘固定在用电部件上(个别还采用焊接方式),插头一般接电缆,通过连接螺帽实现插头、插座连接。 电连接器由壳体、绝缘体、接触体三大基本单元组成。 壳体——电连接器壳体是指插头插座的外壳、连接螺帽、尾部附件。外壳作用是保护绝缘体和接触体(插针插孔的通称)等电连接器内部零件不被损伤。上面的定位键槽保证插头与插座定位。连接螺帽用于插头座连接和分离。尾部附件用于保护导线与接触体端接处不受损伤并用于固定电缆。壳体还具有一定电磁屏蔽作用。

PCB阻抗计算方法

阻抗计算说明 Rev0.0 heroedit@https://www.360docs.net/doc/1213003749.html, z给初学者的 一直有很多人问我阻抗怎么计算的. 人家问多了,我想给大家整理个材料,于己于人都是个方便.如果大家还有什么问题或者文档有什么错误,欢迎讨论与指教! 在计算阻抗之前,我想很有必要理解这儿阻抗的意义 z传输线阻抗的由来以及意义 传输线阻抗是从电报方程推导出来(具体可以查询微波理论) 如下图,其为平行双导线的分布参数等效电路: 从此图可以推导出电报方程 取传输线上的电压电流的正弦形式 得 推出通解

定义出特性阻抗 无耗线下r=0, g=0得 注意,此特性阻抗和波阻抗的概念上的差异(具体查看平面波的波阻抗定义) ε μ=EH Z 特性阻抗与波阻抗之间关系可从 此关系式推出. Ok,理解特性阻抗理论上是怎么回事情,看看实际上的意义,当电压电流在传输线传播的时候,如果特性阻抗不一致所求出的电报方程的解不一致,就造成所谓的反射现象等等.在信号完整性领域里,比如反射,串扰,电源平面切割等问题都可以归类为阻抗不连续问题,因此匹配的重要性在此展现出来. z 叠层(stackup)的定义 我们来看如下一种stackup,主板常用的8层板(4层power/ground 以及4层走线层,sggssggs,分别定义为L1, L2…L8)因此要计算的阻抗为 L1,L4,L5,L8 下面熟悉下在叠层里面的一些基本概念,和厂家打交道经常会使用的 Oz 的概念 Oz 本来是重量的单位Oz(盎司 )=28.3 g(克) 在叠层里面是这么定义的,在一平方英尺的面积上铺一盎司的铜的厚度为1Oz, 对

电源连接器种类介绍

现代社会,科技崛起,电成了我们生活中不可缺少的能源,各种各样的用电设备也进入了人们的视线,那么,各种各样的电源连接器也是我们不可缺少的,那么,让我们来走进电源连接器。 电源连接器,其包括有一绝缘本体及复数端子,该绝缘本体具有复数容置槽,这些容置槽容置这些端子,该绝缘本体另设有至少一舌片,该舌片隔离这些端子,这些端子分别具有一倒刺,这些端子于这些倒刺第一侧分别向外延伸设有复数触接部,而于这些倒刺第二侧固定复数导线;通过上述结构,可达到端子的倒刺嵌入于绝缘本体,且端子易于组装,只需推入绝缘本体即可,端子间不致发生短路等效能。电源连接器有哪几种呢? 1.在很多结构的任何结构中用于将柔性电缆连接到刚性器件上的通

用电源连接器 这种电源连接器比较常见,基本上在工业生产上运用到的大型机械都会有这样的电源连接器,由于过于常见,所以我们在这里也不做过多赘述。 2. 具有隔热元件的电源连接器 这种电源连接器常常用于需要在高温条件下工作的电气设备,所以这一类的电源连接器就比较耐高温,以及在高温条件下不易于改变的电阻系数。 3. 晶片化电源连接器 这一种的电源连接器,一般适用于那种接口形状比较特殊的用电设备上,是专门针对这一类的设备而设计的连接器。 4. 组合型电源转换插头连接器 应用的领域为各种传感器、制动器和电源,以及汽车、工业电子、电脑科技、电子消费品或医疗工程中的数据应用。此类的电源连接器应用比较广泛,两两之间可以拼接,从而来应用于更多的复杂情况。蚌埠富源电子科技有限责任公司是一家专业从事金属—玻璃封装类

产品的研发、生产和销售的高科技企业。目前已开发出的主要产品有密封连接器、金属封装外壳、传感器基座、锂电池盖组、大功率LED 灯支架等五大类几百种产品,广泛应用于航空、航天、雷达、船舶、医疗、高档汽车等领域,产品已销往国内大型军工企业及欧美发到国家的民用航空航天厂家。公司内具有完善的质量管理体系,拥有高素质的管理人才,对内实行全面质量管理,严把质量关,尽最大努力为顾客提供高质量的产品

PCB阻抗计算

阻抗线计算 一.传输线类型 1 最通用的传输线类型为微带线(microstrip)和带状线(stripline) 微带线(microstrip):指在PCB外层的线和只有一个参考平面的线,有非嵌入/嵌入两种如图所示:(图1) 非嵌入(我们目前常用) (图2) 嵌入(我们目前几乎没有用过) 带状线:在绝缘层的中间,有两个参考平面。如下图: (图3) 2 阻抗线 2.1差动阻抗(图4)

差动阻抗,如上所示,阻抗值一般为90,100,110,120 2.2特性阻抗(图5) 特性阻抗: 如上如所示,.阻抗值一般为50 ohm,60ohm 二.PCB叠层结构 1板层、PCB材质选择 PCB是一种层叠结构。主要是由铜箔与绝缘材料叠压而成。附图为我们常用的1+6+1结构的,8层PCB叠层结构。(图6) 首先第一层为阻焊层(俗称绿油)。它的主要作用是在PCB表面形成一层保护膜,防止导体上不该上锡的区域沾锡。同时还能起到防止导体之间因潮气、化学品等引起的短路、生产

和装配中不良操作造成的断路、防止线路与其他金属部件短路、绝缘及抵抗各种恶劣环境,保证PCB工作稳定可靠。 防焊的种类有传统环氧树脂IR烘烤型,UV硬化型, 液态感光型(LPISM-Liquid Photo Imagable Solder Mask)等型油墨, 以及干膜防焊型(Dry Film, Solder Mask),其中液态感光型为目前制程大宗,常用的有Normal LPI, Lead-free LPI,Prob 77. 防焊对阻抗的影响是使得阻抗变小2~3ohm左右 阻焊层下面为第一层铜箔。它主要起到电路连通及焊接器件的作用。硬板中使用的铜箔一般以电解铜为主(FPC中主要使用压延铜)。常用厚度为0.5OZ及1OZ.(OZ为重量单位在PCB行业中做为一种铜箔厚度的计量方式。1OZ表示将重量为1OZ的铜碾压成1平方英尺后铜箔的厚度。1OZ=0.035mm). 铜箔下面为绝缘层..我们常用的为FR4半固化片.半固化片是以无碱玻璃布为增强材料,浸以环氧树脂.通过120-170℃的温度下,将半固化片树脂中的溶剂及低分子挥发物烘除.同时,树脂也进行一定程度的反应,呈半固化状态(B阶段).在PCB制作过程中通过层压机的高温压合.半固化中的树脂完全反应,冷却后完全固化形成我们所需的绝缘层. 半固化片中所用树脂主要为热塑性树脂, 树脂有三种阶段: A阶段:在室温下能够完全流动的液态树脂,这是玻钎布浸胶时状态 B阶段:环氧树脂部分交联处于半固化状态,在加热条件下,又能恢复到液体状态 C阶段:树脂全部交联为C阶段,在加热加压下会软化,但不能再成为液态,这是多层板压制后半固化片转成的最终状态. 由于半固化片在板层压合过程中,厚度会变小,因而半固化片的原始材料厚度和压合后的厚度不一样,因而必须分清厚度是原始材料厚度还是完成厚度。另外,半固化片的厚度不是固定不变的,根据板厚、板层和板厂不同,而有所不同。上述只是一例。 同时该叠层中用了两块芯板,即core(FR-4).芯板是厂家已压合好的带有双面铜的基材,在压合过程中厚度是不变的。常见芯板见下:(表二)

特性阻抗计算公式推导过程

特性阻抗计算公式推导过程 王国海 以下内容供参考。 1.传输线模型 2 符号说明 R L G C 分布式电阻电感电导电容 3 计算过程 (1) u(△z)-u=-R*?z*i-L*△z*?i ?t i(△z)- i=-G*△z*u(△z)?c?△z??u (2) ?t (1)(2) 两边同除以△z,得到电报公式

?u ?z +Ri+L ?i ?t =0 (3) ?i ?z +Gu+C ?u ?t =0 (4) u(z,t)=U(z)e jωt (5) i(z,t)=I(z)e jωt (6) 由(5)(6) 计算得道下列公式 ?u(z,t)?z =dU(z)dz e jωt (7) ?u(z,t)?t =U(z) e jωt jω (8) ?i(z,t)?z =dI(z)dz e jωt (9) ?i(z,t)?t =I(z) e jωt jω (10) 将(7)(8) (9) (10) 代入公式(3) dU(z)dz e jωt +Ri+L I(z) e jωt jω=0,i 用公式(6)代入, dU(z)dz e jωt +R I(z)e jωt +L I(z) e jωt jω=0 化简得到: dU(z)dz =-(R+ jωL)I(z) (11) 同理7)(8) (9) (10)代入(4)可得 dI(z)dz =-(G+ jωC)U(z) (12) 由(11)(12) 得到 dU(z)dI(z)=(R+ jωL)I(z) (G+ jωC)U(z) (13) 交叉相乘, (G + jωC)U(z) dU(z)= (R + jωL)I(z)dI(z) 两边积分, ∫(G + jωC)U(z) dU(z)=∫(R + jωL)I(z)dI(z) 12(G + jωC)U(z)2=12(R + jωL)I(z)2 U(z)2I(z)2=(R+ jωL)(G+ jωC) 两边开根号 Z=U/I=√(R+ jωL)(G+ jωC) 假定R=0,G=0 (无损)得到特性阻抗近似公式 Z=√L C

030 变压器零序阻抗的实测与计算

变压器零序阻抗的实测与计算   袁凌   (武汉大学电气工程学院,湖北武汉430072)   摘要:文章阐述了变压器零序电抗的实测方法并给出了折算成标幺值的公式,同时分析了常用的变压器零序电抗与正序阻抗之间的关系,为简化计算提供了方便。 关键词:变压器;零序阻抗;实测;简化   1变压器零序阻抗及等值电路图 电力系统中为了对接地性质的系统短路故障采用相应的有效的保护措施,需要确定系统中各电气设备的零序参数,变压器的零序阻抗便是其中之一。 变压器零序阻抗是指零序电流流过变压器三相对称电路时遇到的阻抗。 变压器的零序等值电路可以用三端T型电路来表示,见图 1。X G0、X Z0相当于零序漏电抗,X m0为零序激磁电抗。     2 实测与计算目的 三相变压器的零序阻抗特性与绕组的连接方式有关。在有三角形接线绕组时,在三角形接线绕组形成的平衡安匝作用的情况下,电压与电流间的关系是线性的,也就是说,零序阻抗是个定值。但对于没有三角形接线绕组的变压器,例如全星形三相三芯式自耦变压器来说,其零序阻抗由于油箱外壳磁化作用的影响,是一个变化的数值。图2所示为全星形三相三芯式自耦变压器做零序开路试验的特性曲 线,Z1,0(%)、Z2,0(%)、Z3,0(%)代表从高、中、低三侧加压时,Z0(%)

随着外施零序电压U0(%)的变化而呈现的非线性变化关系。因此其零序阻抗的稳定饱和值要实测确定。     零序阻抗还取决于绕组和铁芯之间的结构布置,因此在不同绕组上测量时就会有差异。零序阻抗也与铁芯结构型式有关。三相三柱式铁芯结构的变压器,零序磁通必须通过铁芯与油箱之间的空气隙和油箱形成回路,其零序阻抗较小。而三相五柱式铁芯结构的变压器,零序磁通则可通过旁轭形成回路,因此其零序阻抗较大。 即使2台相同规格,但绕组排列方式不同的变压器,例如Y0/y0/Δ型接线与Y0/Δ/y0接线的变压器零序阻抗也有差别。因此,在实际计算中,变压器零 序阻抗最好取实测值。 3不同类型变压器零序阻抗实测、计算与等值电路图 根据变压器接线组别、中性点引出线的不同,零序阻抗的测试方法有所不同,下面对电网中应用广泛的几种变压器的零序阻抗的测量、计算方法逐一论述。 3.1Y0/y0/Δ和Y0/Δ型接线变压器 Y0/Δ接线双绕组变压器与Y0/y0/Δ接线三绕组变压器,只有一个中性点引出线,其Y、Δ绕组中零序电流无法流通,零序阻抗的测量只需在带有中性点的Y0绕组上进行,将单相电压U0施加于Y0绕组中接在一起的

电连接器选择方式

电连接器的选择方法 连接器是连接电气线路的机电元件。因此连接器自身的电气参数是选择连接器首先要考虑的问题。正确选择和使用电连接器是保证电路可靠性的一个重要方面。 引言 电连接器(以下简称连接器)也可称插头座,广泛应用于各种电气线路中,起着连接或断开电路的作用。提高连接器的可靠性首先是制造厂的责任。但由于连接器的种类繁多,应用范围广泛,因此,正确选择连接器也是提高连接器可靠性的一个重要方面。只有通过制造者和使用者双方共同努力,才能最大限度的发挥连接器应有的功能。 连接器有不同的分类方法。按照频率分,有高频连接器和低频连接器;按照外形分有圆形 连接器,矩形连接器;按照用途分,有印制板用连接器,机柜用连接器,音响设备用连接器,电源连接器,特殊用途连接器等等。下面主要论述低频连接器(频率为3MHZ以下)的选择方法。 电气参数要求 连接器是连接电气线路的机电元件。因此连接器自身的电气参数是选择连接器首先要考虑的问题。 额定电压 额定电压又称工作电压,它主要取决于连机器所使用的绝缘材料,接触对之间的间距大小。某些元件或装置在低于其额定电压时,可能不能完成其应有的功能。连接器的额定电压事实上应理解为生产厂推荐的最高工作电压。原则上说,连接器在低于额定电压下都能正常工作。笔者倾向于根据连接器的耐压(抗电强度)指标,按照使用环境,安全等级要求来合理选用额定电压。也就是说,相同的耐压指标,根据不同的使用环境和安全要求,可使用到不同的最高工作电压。这也比较符合客观使用情况。 额定电流 额定电流又称工作电流。同额定电压一样,在低于额定电流情况下,连接器一般都能正常工作。在连接器的设计过程中,是通过对连接器的热设计来满足额定电流要求的,因为在接触对有电流流过时,由于存在导体电阻和接触电阻,接触对将会发热。当其发热超过一定极限时,将破坏连接器的绝缘和形成接触对表面镀层的软化,造成故障。因此,要限制额定电流,事实上要限制连接器内部的温升不超过设计的规定值。在选择时要注意的问题是:对多芯连接器而言,额定电流必须降额使用。这在大电流的场合更应引起重视,例如φ3.5mm接触对,一般规定其额定电流为50A,但在5芯时要降额33%使用,也就是每芯的额定电流只有38A,芯数越多,降额幅度越大。降额幅度可参看表1 接触电阻 接触电阻是指两个接触导体在接触部分产生的电阻。在选用时要注意到两个问题,第一,连接器的接触电阻指标事实上是接触对电阻,它包括接触电阻和接触对导体电阻。通常导体电阻较小,因此接触对电阻在很多技术规范中被称为接触电阻。第二,在连接小信号的电路中,要注意给出的接触电阻指标是在什么条件下测试的,因为接触表面会附则氧化层,油污或其他污染物,两接触件表面会产生膜层电阻。在膜层厚度增加时,电阻迅速增大,是膜层成为不良导体。但是,膜层在高接触压力下

PCB线路板阻抗计算公式

PCB线路板阻抗计算公式 现在关于PCB线路板的阻抗计算方式有很多种,相关的软件也能够直接帮您计算阻抗值,今天通过polar si9000来和大家说明下阻抗是怎么计算的。 在阻抗计算说明之前让我们先了解一下阻抗的由来和意义: 传输线阻抗是从电报方程推导出来(具体可以查询微波理论) 如下图,其为平行双导线的分布参数等效电路: 从此图可以推导出电报方程 取传输线上的电压电流的正弦形式 得

推出通解 定义出特性阻抗 无耗线下r=0, g=0 得 注意,此特性阻抗和波阻抗的概念上的差异(具体查看平面波的波阻抗定义) 特性阻抗与波阻抗之间关系可从此关系式推出. Ok,理解特性阻抗理论上是怎么回事情,看看实际上的意义,当电压电流在传输线传播的时候,如果特性阻抗不一致所求出的电报方程的解不一致,就造成所谓的反射现象等等.在信号完整性领域里,比如反射,串扰,电源平面切割等问题都可以归类为阻抗不连续问题,因此匹配的重要性在此展现出来. 叠层(stackup)的定义

我们来看如下一种stackup,主板常用的8 层板(4 层power/ground 以及4 层走线层,sggssggs,分别定义为L1, L2…L8)因此要计算的阻抗为L1,L4,L5,L8 下面熟悉下在叠层里面的一些基本概念,和厂家打交道经常会使用的 Oz 的概念 Oz 本来是重量的单位Oz(盎司)=28.3 g(克) 在叠层里面是这么定义的,在一平方英尺的面积上铺一盎司的铜的厚度为1Oz,对应的单位如下 介电常数(DK)的概念 电容器极板间有电介质存在时的电容量Cx 与同样形状和尺寸的真空电容量Co之比为介电常数:ε = Cx/Co = ε'-ε" Prepreg/Core 的概念 pp 是种介质材料,由玻璃纤维和环氧树脂组成,core 其实也是pp 类型介质,只不过他两面都覆有铜箔,而pp 没有.

变压器短路阻抗测试和计算公式

概述 变压器短路阻抗试验的目的是判定变压器绕组有无变形。 变压器是电力系统中主要电气设备之一,对电力系统的安全运行起着重大的作用。在变压器的运行过程中,其绕组难免要承受各种各样的短路电动力的作用,从而引起变压器不同程度的绕组变形。绕组变形以后的变压器,其抗短路能力急剧下降,可能在再次承受短路冲击甚至在正常运行电流的作用下引起变压器彻底损坏。为避免变压器缺陷的扩大,对已承受过短路冲击的变压器,必须进行变压器绕组变形测试,即短路阻抗测试。 变压器的短路阻抗是指该变压器的负荷阻抗为零时变压器输入端的等效阻抗。短路阻抗可分为电阻分量和电抗分量,对于110kV及以上的大型变压器,电阻分量在短路阻抗中所占的比例非常小,短路阻抗值主要是电抗分量的数值。变压器的短路电抗分量,就是变压器绕组的漏电抗。变压器的漏电抗可分为纵向漏电抗和横向漏电抗两部分,通常情况下,横向漏电抗所占的比例较小。变压器的漏电抗值由绕组的几何尺寸所决定的,变压器绕组结构状态的改变势必引起变压器漏电抗的变化,从而引起变压器短路阻抗数值的改变。 二、额定条件下短路阻抗基本算法

三、非额定频率下的短路阻抗试验 当作试验的电源频率不是额定频率(一般为50Hz)时,应对测试结果进行校正。由于短路阻抗由直流电阻和绕组电流产生的漏磁场在变压器中引起的电抗组成。可以认为直流电阻与频率无关,而由绕组电流产生的漏磁场在变压器中引起的电抗与试验频率有关。当试验频率与额定频率偏差小于5%时,短路阻抗可以认为近似相等,阻抗电压则按下式折算: 式中u k75 --75℃下的阻抗电压,%; u kt—试验温度下的阻抗电压,%; f N --额定频率(Hz); f′--试验频率(Hz); P kt --试验温度下负载损耗(W); S N --变压器的额定容量(kVA); K—绕组的电阻温度因数。 四、三相变压器的分相短路阻抗试验 当没有三相试验电源、试验电源容量较小或查找负载故障时,通常要对三相变压器进行单相负载试验。 1、供电侧为Y接法 当高压绕组为Y联结时,另一侧为y或d联结时,分相试验是将试品低压三相线端短路,由高压侧AB、BC、CA分别施加试验电压。此时折算到三相阻抗电压和三相负载损耗可

电连接器基础知识

电连接器基础知识 一、概述 连接器是我们电子工程技术人员经常接触的一种部件。它的作用非常单纯:在电路内被阻断处或孤立不通的电路之间,架起沟通的桥梁,从而使电流流通,使电路实现预定的功能。 连接器是电子设备中不可缺少的部件,顺着电流流通的通路观察,你总会发现有一个或多个连接器。连接器形式和结构是千变万化的,随着应用对象、频率、功率、应用环境等不同,有各种不同形式的连接器。例如,球场上点灯用的连接器和硬盘驱动器的连接器,以及点燃火箭的连接器是大不相同的。但是无论什么样的连接器,都要保证电流顺畅连续和可靠地流通。就泛指而言,连接器所接通的不仅仅限于电流,在光电子技术迅猛发展的今天,光纤系统中,传递信号的载体是光,玻璃和塑料代替了普通电路中的导线,但是光信号通路中也使用连接器,它们的作用与电路连接器相同。 设想一下如果没有连接器会是怎样?这时电路之间要用连续的导体永久性地连接在一起,例如电子装置要连接在电源上,必须把连接导线两端,与电子装置及电源通过某种方法(例如焊接)固定接牢。这样一来,无论对于生产还是使用,都带来了诸多不便,以汽车电池为例,假定电池电缆被固定焊牢在电池上,汽车生产厂为安装电池就增加了工作量,增加了生产时间和成本。电池损坏需要更换时,还要将汽车送到维修站,脱焊拆除旧的,再焊上新的,为此要付较多的人工费。有了连接器就可以免除许多麻烦,从商店买个新电池,断开连接器,拆除旧电池,装上新电池,重新接通连接器就可以了。这个简单的例子说明了连接器的好处。它使设计和生产过程更方便、更灵活,降低了生产和维护成本。 连接器属于电子元器件机电组件行业,一般成为接插件,广义的接插件包括了连接器、开关、管座等。 二、什么是连接器 连接器是我们电子工程技术人员经常接触的一种部件。它的作用非常单纯:在电路内被阻断处或孤立不通的电路之间,架起沟通的桥梁,从而使电流流通,使电路实现预定的功能。连接器是电子设备中不可缺少的部件,顺着电流流通的通路观察,你总会发现有一个或多个连接器。连接器形式和结构是千变万化的,随着应用对象、频率、功率、应用环境等不同,有各种不同形式的连接器。例如,球场上点灯用的连接器和硬盘驱动器的连接器,以及点燃火箭的连接器是大不相同的。但是无论什么样的连接器,都要保证电流顺畅连续和可靠地流通。 就泛指而言,连接器所接通的不仅仅限于电流,在光电子技术迅猛发展的今天,光纤系统中,传递信号的载体是光,玻璃和塑料代替了普通电路中的导线,但是光信号通路中也使用连接器,它们的作用与电路连接器相同。 三为什么要使用连接器

输出变压器阻抗计算

谈谈输出变压器---左增军 输出牛是胆机的咽喉,其内在品质的优劣直接影响著整机的重放质量。由于输出牛的专业性较强,加之考虑厂家 的利 益,故很少有刊物作高保真输出牛的介绍。发烧友在评论某某胆机之输出牛时仅以外表或者品牌效应点评,甚至仅 以个人 听感为依据,缺乏对输出牛的定性的认识(虽然变压器所涉及的技术并不深,但一支高保真输出牛并非人人都能作 得好 的)。另外各胆机生产厂所生产的输出牛可以说各具特色,各有千秋。对于称得上“Hi-Fi” 级(严格地讲胆机的 输出牛 无法算Hi-Fi)的输出牛,一个厂家一个“味”,甚至一个批次一种音色。 当然在这“云云众生”众多的胆机中,也不乏有那不够Hi-Fi甚至失真较大,频率响应较窄的输出牛“滥竽充 数”。 而我们业余发烧友又无“孙悟空”那“火眼金睛”,来识破那些“笨牛”。本来不够Hi-Fi的“牛”,却奉为上 品,那可 就残了。这里笔者给大家谈一谈胆机的输出牛及其业余测试方法,让大家对“牛”有一个定性的了解和认识,也让 输出牛 不在那么“牛气”。 一颗理想的Hi-FI输出牛要求其: 1.初级电感(pri-inductor)为无穷大(infinite),以应付很低的低频信号; 2.漏感(leakage)为零,分布电感(distributed inductance)、电容(distributed capacitance)为零, 以 便高保真的传输现代音乐的超高频信号; 3.不产生各种形式的串联或并联谐振(resonance),以免使音频信号发生畸变(distortion); 4.不产生任何非线性(nonlinear distortion)或相位延迟失真(phase-delay distortion)。 从变压器的原理上讲,现今无论何种形式的变压器均无法同时满足以上条件的。首先说变压器要用铁心 (core)做导 磁媒体,其非线性失真一般很大。再有若需诺大的初级电感(pri-inductor),其漏感(leakage)、

阻抗计算公式、polarsi9000(教程)

一直有很多人问我阻抗怎么计算的. 人家问多了,我想给大家整理个材料,于己于人都是个方便.如果大家还有什么问题或者文档有什么错误,欢迎讨论与指教! 在计算阻抗之前,我想很有必要理解这儿阻抗的意义。 传输线阻抗的由来以及意义 传输线阻抗是从电报方程推导出来(具体可以查询微波理论) 如下图,其为平行双导线的分布参数等效电路: 从此图可以推导出电报方程 取传输线上的电压电流的正弦形式 得 推出通解

定义出特性阻抗 无耗线下r=0, g=0 得 注意,此特性阻抗和波阻抗的概念上的差异(具体查看平面波的波阻抗定义) 特性阻抗与波阻抗之间关系可从此关系式推出. Ok,理解特性阻抗理论上是怎么回事情,看看实际上的意义,当电压电流在传输线传播的时候,如果特性阻抗不一致所求出的电报方程的解不一致,就造成所谓的反射现象等等.在信号完整性领域里,比如反射,串扰,电源平面切割等问题都可以归类为阻抗不连续问题,因此匹配的重要性在此展现出来. 叠层(stackup)的定义 我们来看如下一种stackup,主板常用的8 层板(4 层power/ground 以及4 层走线 层,sggssggs,分别定义为L1, L2…L8)因此要计算的阻抗为L1,L4,L5,L8

下面熟悉下在叠层里面的一些基本概念,和厂家打交道经常会使用的 Oz 的概念 Oz 本来是重量的单位Oz(盎司 )=28.3 g(克) 在叠层里面是这么定义的,在一平方英尺的面积上铺一盎司的铜的厚度为1Oz,对应的单位如下 介电常数(DK)的概念 电容器极板间有电介质存在时的电容量Cx 与同样形状和尺寸的真空电容量Co之比为介电常数: ε = Cx/Co = ε'-ε" Prepreg/Core 的概念 pp 是种介质材料,由玻璃纤维和环氧树脂组成,core 其实也是pp 类型介质,只不过他两面都覆有铜箔,而pp 没有. 传输线特性阻抗的计算 首先,我们来看下传输线的基本类型,在计算阻抗的时候通常有如下类型: 微带线和带状线,

通信连接器的分类及应用

通信连接器的分类及应用 电连接器使电流在电路内被阻断处或孤立不通的电路可以流通,使电路实现预定的功能。有些连接器被做成普通插座的形式,在线缆工业中得到广泛认可和使用。 多年来电连接器的分类混乱,各个厂家自有其分类方法和标准。美国国家电子分销商协会(NEDA,即NaTIonalElectronicDistributorsAssociaTIon)在1989年主持制订了一套称为连接器部件封装分类等级(LevelsofPackaging)的标准。依据该标准,通信连接器一般使用4级连接器。但级别只是用于学习和分类连接器,实际工作中很少按照上述级别谈及连接器,而是按照连接器的外观形式和连接的结构方式来命名它(不同结构形式电连接器的命名由国际上通用的详细规范做出具体规定;一般来说,不同结构的连接器,有不同的应用范围)。通信网络的连接往往取决于所用的媒体,所以,通常是按不同的连接介质、连接方式和应用场合来讨论连接器的。 1.多线电缆连接器 多线电缆连接器包括DB连接器和DIX连接器以及DIN连接器等。 (1)DB型连接器包括DB-9、DB-15、DB-25连接器,它用于连接串口设备及并口电缆,分为阳性端和阴性端,DB25中的DB代表是D型连接器,数字25代表连接器的针的个数。DB25连接器是目前微机与线路接口的常用器件。 (2)DIX连接器:它的外表象DB-15连接器。它在连接时是用滑扣来实现的,而DB15连接时是通过螺丝来固定的,常常用于连接粗缆以太网。 (3)DIN连接器:在DIN连接器中有不同的针以及针的排列形式,它一般在连接Macintosh 和AppleTalk网络中使用。 2.双绞线连接器 双绞线连接包括两种连接器:RJ45和RJ11.RJ是描述公用电信网络的接口,在以往的4类、5类、超5类,甚至出台不久的6类布线中,采用的都是RJ型接口。 (1)RJ11连接器:是一种电话线类连接器,支持2线和4线,一般用于用户电话线接入。(2)RJ45连接器:一种同种类型的连接器,插孔式,比RJ11连接器较大,并且支持8

变压器试验基本计算公式

变压器试验基本计算公式 一、电阻温度换算: 不同温度下的电阻可按下式进行换算:R=R t (T+θ)/(T+t) θ:要换算到的温度;t:测量时的温度;R t:t温度时测量的电阻值; T :系数,铜绕组时为234.5,铝绕组为224.5。 二、电阻率计算: ρ=RtS/L R=(T+θ)/(T+t)电阻参考温度20℃ 三、感应耐压时间计算: 试验通常施加两倍的额定电压,为减少励磁容量,试验电压的频率应大于100Hz,最好频率为150-400Hz,持续时间按下式计算: t=120×f n /f, 公式中:t为试验时间,s;f n 为额定频率,Hz;f为试验频率, Hz。 如果试验频率超过400 Hz,持续时间应不低于15 s。 四、负载试验计算公式: 通常用下面的公式计算:P k =(P kt +∑I n 2R×(K t 2-1))/K t 式中:P k 为参考温度下的负载损耗; P kt 为绕组试验温度下的负载损耗; K t 为温度系数; ∑I n 2R为被测一对绕组的电阻损耗。 三相变压器的一对绕组的电阻损耗应为两绕组电阻损耗之和,计算方法如下:“Y” 或“Y n ”联结的绕组:P r =1.5I n 2R xn =3 I n 2R xg ; “D”联结的绕组:P r =1.5I n 2R xn =I n 2R xg 。 式中:P r 为电阻损耗; I n 为绕组的额定电流; R xn 为线电阻; R xg 为相电阻。 五、阻抗计算公式: 阻抗电压是绕组通过额定电流时的电压降,标准规定以该压降占额定电压的百分数表示。阻抗电压测量时应以三相电流的算术平均值为准,如果试验电流无法达到额定电流时,阻抗电压应按下列公式折算并校准到表四所列的参考温度。e kt = (U kt ×I n )/(U n ×I k )×100%, e k =1) - (K ) /10S (P e2 2 N kt 2 kt % 式中:e kt 为绕组温度为t℃时的阻抗电压,%; U kt 为绕组温度为t℃时流过试验电流I k 的电压降,V; U n 为施加电压侧的额定电压,V; I n 为施加电压侧的额定电流,A; e k 为参考温度时的阻抗电压,%; P kt 为t℃的负载损耗,W;S n 为额定容量,kVA; K t 为温度系数。案例1:

相关文档
最新文档