瓦楞纸箱抗压特性分析

瓦楞纸箱抗压特性分析
瓦楞纸箱抗压特性分析

瓦楞纸箱抗压特性

瓦楞纸箱抗压强度是指瓦楞纸箱空箱立体放置时,对其两面匀速施压,箱体所能承受的最大压力值。抗压强度试验的检测方法是将样箱立体合好,用封箱胶带上、下封牢,放入抗压试验机下压板的中间位置,开机使上压板接近空箱箱体,然后启动加压标准速度,直至将纸箱压溃,读取实测值,即为抗压强度,同一批次纸箱的试验数据之间的偏差越小抗压性能就越稳定。

影响瓦楞纸箱抗压强度的因素较多,这些因素交互发生作用,只有充分认识弄清这些因素影响的规律,才能准确预测出瓦楞纸箱的抗压强度值,以满足顾客需求。

瓦楞纸板的边压强度对抗压强度的影响

计算瓦楞纸箱抗压强度最常用的是Kellicutt 凯里卡特公式:

P=ECT{4 ax2/Z}2/3·Z·J

式中:ECT—纸板边压强度(lb / in);

ax2—瓦楞常数;

J—楞型常数;

Z—纸箱周长(in );

P—纸箱抗压强度(lb)

比较简易的计算公式是:

P=5.874×ECT× √T×C

式中:P—抗压强度,N

ECT—边压强度,N/m

T —纸板厚度,m

C —纸箱周长,m

从瓦楞纸箱抗压强度的计算公式可以看出,瓦楞纸箱抗压强度主要取决于纸板边压强度,又称为垂直抗压强度,是对瓦楞纸板试样以垂直方向施加压力,施压过程中纸板所能承受的最大力即为纸箱的边压强度。

瓦楞纸板边压强度基本取决于箱纸板和瓦楞原纸的环压强度,并且与瓦楞纸板的生产工艺、瓦楞纸板的结构、楞形、黏合剂的质量等因素有关,计算公式为:

瓦楞纸板边压强度(N/m)

ECT=各层原纸的环压强度值之和×(1+δ)

式中:δ—楞型系数之和,参考值如下:

A型瓦楞一般为:0.12;

B型瓦楞一般为:0.08;

C型瓦楞一般为:0.10

原纸的环压强度值=环压指数×定量。

瓦楞纸板的楞型对纸板抗压强度的影响

人们把发明的第一个瓦楞形状定为 A型瓦楞,其次发明了B型瓦楞,后来又发明了介于A、B楞型大小之间的C楞,之后发明了E楞,而后又出现了较大的D楞、K楞。近年来,人们又研发了微型瓦楞,有F、G、N、O等楞型。

目前最常用的瓦楞类型为A、B、C、E和K五种,国内外生产瓦楞纸箱最常用的是A、B、C三种楞型及其组合,瓦楞纸板边压强度的高低依次为AB、BC、A、C、B,另外根据纸箱箱型选择合适的楞型也很关键,在人们的意识中,往往认为楞型越大,纸箱的抗压强度越高,而容易忽视楞型对变形量的影响。实际上,楞型越大,纸箱的抗压强度越大,变形量越大;楞型越小,纸箱的抗压强度越小,变形量越小。如果纸箱过大,楞型却很小,纸箱在抗压测试时就很容易被压溃;纸箱过小,楞型却很大,抗压测试时会造成变形量过大,缓冲过程长。

纸箱的周长、高度尺寸及长宽比对抗压强度的影响

纸箱的周长影响

在用料和楞型相同的情况下,纸箱周长的增长与抗压强度的增长会形成一种变化的曲线,开始纸箱的周长越长,抗压强度越高,但随着纸箱周长的加大,增加了纸箱的不稳定性,在纸箱周长达到一定阶段后,所能承受的抗压强度会呈现按一定比例的递减。 (图1 纸箱周长与抗压强度的关系)

图1 纸箱周长与抗压强度的关系

纸箱的高度影响

高度在 100~350mm时,抗压强度随着纸箱的高度增加而稍有下降;高度在350~650mm 之间时,纸箱的抗压强度几乎不变;高度大于650mm时,纸箱的抗压强度随着高度增加而降低。主要原因是随着纸箱的高度增加,其稳定性也会相应地增加。

纸箱的长宽比影响

一般情况下,纸箱的长宽比在 1~1.8的范围内,长宽比对抗压强度的影响仅为±5%。其中纸箱的长宽比RL=1.2~1.5时,纸箱的抗压强度最高。纸箱的长宽比为2:1时,其抗压强度下降约20%,因此确定纸箱尺寸时,长宽比不宜超过2,否则会造成成本浪费。( 图2 纸箱的长宽比与抗压强度的关系)

图2 纸箱的长宽比与抗压强度的关系

纸箱的放置方法对抗压强度的影响

装满货物的纸箱,可能有三个放置方向,即平放、横放和竖放。平放是瓦楞垂直于地面,也是正确的放置。横放和竖放均会导致不利结果。如平放强度为100,则横放和竖放的强度分别为60和40。这就要求在仓库堆码或在运输工具上都应该采取正确的放置方法。

纸箱的堆码方式对抗压强度的影响

纸箱竖楞方向承受的压力大大超过横楞方向,纸箱堆码时应保持竖楞方向受压。在纸箱的整个承压过程中主要是四个角受力,约占整个受力总量的三分之二,箱角部位承受的压力最高,离箱角越远,承压力越低,因此应尽量减少对纸箱四个角周围瓦楞的破坏,在堆码时应尽量保持箱角与箱角对齐叠放。(图3 抗压强度负荷的分布状态)

纸箱堆码方式很多,但总结起来可分为两种形式: 纵行堆码和交替堆码。采用纵行堆码时,纸箱的抗压强度下降18%左右,而交替堆码的强度下降为55%左右,交替堆码不易侧倒。下面几种堆码方式按abcdef顺序对纸箱抗压强度的降低依次加大。(图4各种堆码方式)

图3 抗压强度负荷的分布状态

a重叠堆码 b井字堆码 c锁式回转堆码

d瓦形堆码 e中间堆码 f十字堆码

图4 各种堆码方式

纸箱的堆码时间对抗压强度的影响

纸箱的抗压强度随着装载时间的延长而降低,这种现象称为疲劳现象。试验表明,在两个小时以后,纸箱的抗压强度减少是明显的,在长期载荷的作用下,只要经历一个月的时间,纸箱的抗压强度就会下降 30%,90天的保管堆装就会造成大约45%的抗压强度降低,在经历一年后,其抗压强度就只有初始值的50%。在设计纸箱材质时,对流通时间较长的纸箱应提高其安全系数。(图5 纸箱的堆码时间与抗压强度的关系)

图5 纸箱的堆码时间与抗压强度的关系

安全系数设计方法:

一般情况下,国内的安全系数选3~5倍。安全系数可以在各种各样的导致抗压强度的主要因素确定的前提下进行计算:

k=1/(1-a)(1-b)(1-c)(1-d) (1-e)…

a:温湿度变化导致的降低率

b:堆放时间导致的降低率

c:堆放方法导致的降低率

d:装卸过程导致的降低率

e:其他因素导致的降低率

其中降低率可以参考下表:

瓦楞纸箱抗压强度计算公式

瓦楞纸箱抗压强度计算公式 纸箱抗压强度一类根据瓦楞纸板原纸,即面纸和芯纸的测试强度来进行计算,另一类则直接根据瓦楞纸板的测试强度进行计算。 ①凯里卡特(K.Q.Kellicutt)公式 a. 凯里卡特公式 P——瓦楞纸箱抗压强度(N); Px——瓦楞纸板原纸的综合环压强度(N/cm); aXz——瓦楞常数; Z——瓦楞纸箱周边长(cm); J——纸箱常数。 瓦楞纸板原纸的综合环压强度计算公式如下 Rn——面纸环压强度测试值(N/0.152m) Rmn ——瓦楞芯纸环压强度测试值(N/0.152m) C——瓦楞收缩率,单瓦楞纸板来说 双瓦楞纸板 纸箱抗压强度公式中的15.2(cm)为测定原纸环压强度时的试样长度。 Z 值计算公式 Z=2(L 0+B ) Z——纸箱周边长(cm); L0——纸箱长度外尺寸(cm)B0——纸箱宽度外尺寸(cm); a z X、J、C值可查表

b.06 类纸箱抗压强度计算公式: P0201 ——0201 箱型用凯里卡特公式计算的抗压强度(N);a——箱型修正系数, 凯里卡特公式,与实际测试值有一定差异,一般比测试值小5%。 ②马丁荷尔特(Maltenfort)公式

P——瓦楞纸箱抗压强度(N); CLT- O ——内、外面纸横向平压强度平均值(N/cm)。 ③沃福(Wolf)公式 Pm——瓦楞纸板边压强度(N/m) ④马基(Makee)公式 纸箱抗压强度Dx——瓦楞纸板纵向挺度(MN·m)Dy——瓦楞纸板横向挺度(MN·m) 马基简易公式: 包卷式纸箱抗压强度计算公式: PwA——包卷式纸箱抗压强度(N); Pm ——瓦楞纸板边压强度(N/m) a——常数 b——常数 纸箱抗压强度⑤APM 计算公式 考虑箱面印刷对抗压强度的影响。

泡沫混凝土压缩特性及抗压强度模型_周顺鄂

第32卷 第11期 2010年6月武 汉 理 工 大 学 学 报JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY Vo l.32 N o.11 Jun.2010DOI:10.3963/j.issn.1671 4431.2010.11.003 泡沫混凝土压缩特性及抗压强度模型 周顺鄂,卢忠远,焦 雷,李三霞 (西南科技大学材料科学与工程学院,先进建筑材料四川省重点实验室,绵阳621010) 摘 要: 制备了一系列的泡沫混凝土,对泡沫混凝土的压缩力学性能进行了测试,研究了泡沫混凝土压缩应力 应变曲线的特征,分析了影响泡沫混凝土压缩性能的相关因素,并运用Gibson Ashby 模型对抗压强度进行了模拟,通过拟合得出了抗压强度与相对密度的方程,确定了表征孔棱材料分数和孔壁断裂强度的微观结构参数。研究表明,泡沫混凝土压缩过程分为4个阶段,即平台阶段、密实阶段、屈服阶段和衰退阶段,其压缩力学性能受到基体材料、容重和气孔形态及分布等因素的影响;Gibbson Ashby 模型拟合的结果具有较高的合理性,对分析泡沫混凝土微观结构力学性能有较大的帮助。 关键词: 泡沫混凝土; 压缩特性; Gibbson A shby 模型 中图分类号: T U 55文献标识码: A 文章编号:1671 4431(2010)11 0009 05 Compression Property and Compression Strength Model of Foamed Concrete Z H O U Shun e,L U Zhong y uan,JIA O Lei,LI San x ia (School of M aterials Science and Engineering,Southwest U niversity of Science and T echnology, Key L aboratory for Advanced Building Materials of Sichuan Pr ovince,M ianyang 621010,China) Abstract: A ser ies of foamed concrete were prepared in this paper.Co mpression mechanical property of foamed concrete was tested.T hen,we hav e do ne resear ch on stress strain curve character i stics of foamed concrete,and analyzed relative factors ef fect on compression property of fo amed co https://www.360docs.net/doc/126553090.html,pression strength v alues were simulated by Gibbson Ashby model.T he e quation of compressio n streng th and relativ e density was deduced out by fitting compression strength.M icrostructure par ameters character izing the propor tion of por e r ib and po re wall fr actur e streng th was determined.T he r esults show that ther e ar e four steps in foamed co ncrete co mpression process,namely plateau step,compacting step,yield step and decline step.T he compr es sion mechanical property is affected by matrix mater ial,volume w eight,morphology and distr ibut ion o f pore,etc.Fitting re sults of Gibbson Ashby model had high rationality.It could be helpful in analyzing mechanical pr operty of fo amed concrete mi crostructure. Key words: foamed concrete; compression propert y; Gibbso n Ashby model 收稿日期:2010 01 06. 基金项目: 十一五 国家科技支撑计划子课题(2006BAF02A24)和四川省科技攻关项目(2006Z02 044).作者简介:周顺鄂(1985 ),男,硕士生.E mail:zhoushune1985@https://www.360docs.net/doc/126553090.html, 泡沫混凝土又名发泡混凝土,它是采用发泡剂通过机械制出泡沫,再将泡沫加入胶凝材料浆体,制成泡沫料浆,然后成型或现浇,经自然养护或者蒸压养护所形成的微孔轻质材料。它的突出特点就是在混凝土内形成泡沫孔,使混凝土轻质化和保温隔热化[1]。泡沫混凝土属于以固相为连续相气相为分散相的保温材料。泡沫混凝土具有重量轻、保温隔热、吸音防震的特点。泡沫混凝土是一种利废、环保、节能、价格低、性能好的新型保温隔热材料。

影响瓦楞纸箱抗压强度的因素

影响瓦楞纸箱抗压强度的因素 1)瓦楞纸板的楞型对纸板抗压强度的影响 人们把发明的第一个瓦楞形状定为A型瓦楞,其次发明了B型瓦楞,后来又发明了介于A、B楞型大小之间的C楞,之后发明了E楞,而后又出现了较大的D楞、K楞。近年来,人们又研发了微型瓦楞,有F、G、N、O等楞型。 目前最常用的瓦楞类型为A、B、C、E和K五种,国内外生产瓦楞纸箱最常用的是A、B、C三种楞型及其组合, 瓦楞纸板边压强度的高低依次为AB、BC、A、C、B,另外根据纸箱箱型选择合适的楞型也很关键,在人们的意识中,往往认为楞型越大,纸箱的抗压强度越高,而容易忽视楞型对变形量的影响。实际上,楞型越大,纸箱的抗压强度越大,变形量越大;楞型越小,纸箱的抗压强度越小,变形量越小。如果纸箱过大,楞型却很小,纸箱在抗压测试时就很容易被压溃;纸箱过小,楞型却很大,抗压测试时会造成变形量过大,缓冲过程长。 2)纸箱的周长、高度尺寸及长宽比对抗压强度的影响 纸箱的周长影响 在用料和楞型相同的情况下,纸箱周长的增长与抗压强度的增长会形成一种变化的曲线,开始纸箱的周长越长,抗压强度越高,但随着纸箱周长的加大,增加了纸箱的不稳定性,在纸箱周长达到一定阶段后,所能承受的抗压强度会呈现按一定比例的递减。 纸箱的高度影响 高度在100~350mm时,抗压强度随着纸箱的高度增加而稍有下降;高度在350~650mm 之间时,纸箱的抗压强度几乎不变;高度大于650mm时,纸箱的抗压强度随着高度增加而降低。主要原因是随着纸箱的高度增加,其稳定性也会相应地增加。 纸箱的长宽比影响 一般情况下,纸箱的长宽比在1~1.8的范围内,长宽比对抗压强度的影响仅为±5%。其中纸箱的长宽比RL=1.2~1.5时,纸箱的抗压强度最高。纸箱的长宽比为2:1时,其抗压强度下降约20%,因此确定纸箱尺寸时,长宽比不宜超过2,否则会造成成本浪费。(图1 纸箱的长宽比与抗压强度的关系)

如何提高瓦楞纸箱抗压强度

如何提高瓦楞纸箱抗压强度 纸箱最重要的功能在于它对商品具有良好的保护性,而纸箱的整体抗压强度则是纸箱保护性能的综合体现,抗压强度对纸箱的重要性是不言而喻的。近几年来,随着我国包装业的迅猛发展,许多工厂对纸箱的认识逐渐从凭手感判定纸箱的优劣发展到运用各种仪器对纸箱的物理性能进行测试分析的阶段,很多厂家还配备了抗压仪对纸箱抗压强度进行测试。不仅如此,许多客户特别是国外一些大型跨国公司对纸箱的认识也发生了深刻变化,即从关注纸板耐破强度逐渐转向纸箱的抗压强度,并将抗压强度作为质量验收的最重要指标。 如此一来,如何为客户提供满足抗压强度要求的纸箱便成为众多纸箱厂关注的焦点。特别是近二年原纸价格居高不下,纸箱利润空间一缩再缩的情况下,制造出用纸成本最省而又能满足客户抗压要求的纸箱已成为众多纸箱厂共同的目标。 在此着重就影响纸箱抗压强度的因素、纸箱抗压强度的推算方法、抗压强度的用纸配置方法及抗压强度的测试方法等几个方面对纸箱的抗压强度进行综合论述与分析。有些地方难免会有孔见之嫌,但希望能为广大同行提供有益的参考。 影响纸箱抗压强度的因素: 影响纸箱抗压强度的因素有很多,大致可归纳为边压强度、结构尺寸、加工工艺、水分及装箱后的堆码运输方式等。由于各因素的交互影响,常常导致我们对抗压强度的预测产生一定偏差。纸箱厂也往往因为对这些因素认识不足,在设计、印刷及后加工过程中处理不当,造成巨大的成本浪费及客户投诉。因此,弄清这些因素的影响规律是十分必要的。 瓦楞纸板的边压强度 边压强度又叫垂直抗压强度,是对瓦楞纸板试样以垂直方向施加压力,施压过程中纸板所能承受的最大力即为纸箱的边压强度。纸箱抗压强度的高低主要取决于纸板边压强度,而边压强度则与组成瓦楞纸板的各层原纸的横向环压强度、纸板的坑型组合及纸板的粘合强度有关。 瓦楞纸板的边压强度主要与各层原纸的横向环压强度有关。一般来讲,克重较高、造纸材料质量较好及紧度较高的原纸,其横向环压强度也相应越高。但并非克重高的原纸环压就一定比克重低的原纸高。以箱板纸为例,进口牛皮横向环压指数可达到12N·m/g以上,而内地一些小型造纸厂生产的箱板纸仅为8 N·m/ g,相差了30个百分点。也就是说克重为175 g / m2的进口牛卡,其环压强度相当于260 g / m2。因此,鉴定纸箱保护性能的好坏,不能以纸箱用纸克重而论。 瓦楞纸板的结构设计是很科学的,其瓦楞的楞形就如一个个连接的小小拱形门,排成一排,相互支撑,形成三角结构体,强而有力,而且平面上也能承受一定压力,富有弹性,缓冲力强,能起到防震和保护商品的作用。瓦楞形状依圆弧半径不同一般分为U形、V形和UV形三种。U型的顶峰圆弧半径较大,呈圆弧形,如B楞、C 楞;V型的波峰半径较小,且尖,如A楞;UV型介于两者之间,如AB楞。据试验表明,V形楞在受压初期歪斜度较小,但超过最高点,便迅速地破坏,而U形楞吸收的能量较高,当压力消除后,仍能恢复原状,富有弹性,但耐压强度不高。另外V形楞节省瓦楞纸,粘合剂耗量较少,但加工时易出现高低楞,瓦楞辊磨损较快。UV形楞是结合U形和V形的特点,目前得到广泛的采用。 瓦楞纸板的各种坑型及其组合,就单坑纸板来说,一般A坑纸箱抗压强度最高,但易受到损坏; B坑强度较差,但稳定性好;C坑抗压力及稳定性居中。A型瓦楞具有较好的防震缓冲性,另外垂直耐压强度也较高;B型瓦楞的峰端较尖,粘合面较窄,其瓦楞高度较小,可以节省瓦楞原纸,其平面抗压能力超过A型瓦楞,B型瓦

瓦楞纸箱抗压特性分析

瓦楞纸箱抗压特性 瓦楞纸箱抗压强度是指瓦楞纸箱空箱立体放置时,对其两面匀速施压,箱体所能承受的最大压力值。抗压强度试验的检测方法是将样箱立体合好,用封箱胶带上、下封牢,放入抗压试验机下压板的中间位置,开机使上压板接近空箱箱体,然后启动加压标准速度,直至将纸箱压溃,读取实测值,即为抗压强度,同一批次纸箱的试验数据之间的偏差越小抗压性能就越稳定。 影响瓦楞纸箱抗压强度的因素较多,这些因素交互发生作用,只有充分认识弄清这些因素影响的规律,才能准确预测出瓦楞纸箱的抗压强度值,以满足顾客需求。 瓦楞纸板的边压强度对抗压强度的影响 计算瓦楞纸箱抗压强度最常用的是Kellicutt 凯里卡特公式: P=ECT{4 ax2/Z}2/3·Z·J 式中:ECT—纸板边压强度(lb / in); ax2—瓦楞常数; J—楞型常数; Z—纸箱周长(in ); P—纸箱抗压强度(lb) 比较简易的计算公式是: P=5.874×ECT× √T×C 式中:P—抗压强度,N ECT—边压强度,N/m

T —纸板厚度,m C —纸箱周长,m 从瓦楞纸箱抗压强度的计算公式可以看出,瓦楞纸箱抗压强度主要取决于纸板边压强度,又称为垂直抗压强度,是对瓦楞纸板试样以垂直方向施加压力,施压过程中纸板所能承受的最大力即为纸箱的边压强度。 瓦楞纸板边压强度基本取决于箱纸板和瓦楞原纸的环压强度,并且与瓦楞纸板的生产工艺、瓦楞纸板的结构、楞形、黏合剂的质量等因素有关,计算公式为: 瓦楞纸板边压强度(N/m) ECT=各层原纸的环压强度值之和×(1+δ) 式中:δ—楞型系数之和,参考值如下: A型瓦楞一般为:0.12; B型瓦楞一般为:0.08; C型瓦楞一般为:0.10 原纸的环压强度值=环压指数×定量。 瓦楞纸板的楞型对纸板抗压强度的影响 人们把发明的第一个瓦楞形状定为 A型瓦楞,其次发明了B型瓦楞,后来又发明了介于A、B楞型大小之间的C楞,之后发明了E楞,而后又出现了较大的D楞、K楞。近年来,人们又研发了微型瓦楞,有F、G、N、O等楞型。 目前最常用的瓦楞类型为A、B、C、E和K五种,国内外生产瓦楞纸箱最常用的是A、B、C三种楞型及其组合,瓦楞纸板边压强度的高低依次为AB、BC、A、C、B,另外根据纸箱箱型选择合适的楞型也很关键,在人们的意识中,往往认为楞型越大,纸箱的抗压强度越高,而容易忽视楞型对变形量的影响。实际上,楞型越大,纸箱的抗压强度越大,变形量越大;楞型越小,纸箱的抗压强度越小,变形量越小。如果纸箱过大,楞型却很小,纸箱在抗压测试时就很容易被压溃;纸箱过小,楞型却很大,抗压测试时会造成变形量过大,缓冲过程长。 纸箱的周长、高度尺寸及长宽比对抗压强度的影响 纸箱的周长影响

瓦楞纸箱抗压强度基本知识

瓦楞纸箱抗压强度基本知识 瓦楞纸箱抗压强度是指瓦楞纸箱空箱立体放置时,对其两面匀速施压,箱体所能承受的最大压力值。抗压强度试验的检测方法是将样箱立体合好,用封箱胶带上、下封牢,放入瓦楞纸箱耐压试验机下压板的中间位置,开机使上压板接近空箱箱体,然后启动加压标准速度,直至将纸箱压溃,读取实测值,即为纸箱抗压强度,同一批次纸箱的试验数据之间的偏差越小抗压性能就越稳定。影响瓦楞纸箱抗压强度的因素较多,这些因素交互影响,满足顾客对抗压强度的要求。常常导致我们对抗压强度的预测产生一定偏差。纸箱厂也往往因为对这些因素认识不足,在设计、印刷及后加工过程中处理不当,造成巨大的成本浪费及客户投诉。因此,弄清这些因素的影响规律是十分必要的。纸箱抗压试验机瓦楞纸板的边压强度边压强度又叫垂直抗压强度,是对瓦楞纸板试样以垂直方向施加压力,施压过程中纸板所能承受的最大力即为纸箱的边压强度。纸箱抗压强度的高低主要取决于纸板边压强度,而边压强度则与组成瓦楞纸板的各层原纸的横向环压强度、纸板的楞型组合及纸板的粘合强度有关。测试时需要使用纸板纸箱边压强度试验机,平压强度试验机,粘合强度试验机,环压强度试验机。纸张的防水性能也很重要,特别是冷藏箱对纸张的防水性能要求更高,有时虽然纸箱的抗压强度很高,但由于纸张不防水,纸箱存放在冷库中就容易吸潮,造成塌库。瓦楞纸板的边压强度主要与各层原纸的横向环压强度有关。瓦楞纸板的波形分为U形、V形和UV 形三种。U型的顶峰圆弧半径较大,呈圆弧形,如B楞、C楞;V型的波峰半径较小,且尖,如A楞;UV型介于两者之间,如AB楞。据试验表明,V形楞在受压初期歪斜度较小,但超过最高点,便迅速地破坏,而U形楞吸收的能量较高,当压力消除后,仍能恢复原状,富有弹性,但耐压强度不高。另外V形楞节省瓦楞纸,粘合剂耗量较少,但加工时易出现高低楞,瓦楞辊磨损较快。UV形楞是结合U形和V形的特点,目前得到广泛的采用。 瓦楞纸板的各种楞型及其组合,就单瓦纸板来说,一般A瓦纸箱抗压强度最高,但易受到损坏;B瓦强度较差,但稳定性好;C瓦抗压力及稳定性居中。A瓦楞具有较好的防震缓冲性,另外垂直耐压强度也较高;B瓦楞的峰端较尖,粘合面较窄,其瓦楞高度较小,可以节省瓦楞原纸,其平面抗压能力超过A型瓦楞,B瓦楞单位长度内瓦楞数较多,与面纸有较多的支承点,因而不易变形,且表面较平。在印刷时有较强抗压能力,可得到良好印刷效果。C瓦楞兼有A和B瓦楞的特点,它的防震性能与A瓦楞相近,平面抗压能力接近B瓦楞。E瓦楞是最细的一种瓦楞,单位长度内的瓦楞数目最多,能承受较大的平面压力,可适应胶版印刷需要,能在包装面上印出质量较高的图文,这种瓦楞纸板和硬纸板强度差不多。根据纸箱箱型选择合适的楞型也很关键在人们的意识中,往往认为楞型越大,纸箱的抗压强度越高,容易忽视楞型对变形量的影响。楞型越大,纸箱的抗压强度越大,变形量越大;楞型越小,纸箱的抗压强度越小,变形量越小。如果纸箱过大,楞型却很小,纸箱在抗压测试时就很容易被压溃;纸箱过小,楞型却很大,抗压测试时会造成变形量过大,缓冲过程长,有效力值与最终力值偏差过大。 三种楞型比较表瓦楞种类平面压力垂直压力平行压力 A:3 1 3 B :1 3 1 C:2 2 2 注:1. 平面压力是指垂直于瓦楞纸板平面的压力。 2. 垂直压力是指与瓦楞方向一致的压力,平行压力是指垂直于瓦楞方向的压力。 3. “1”代表最强。根据上述不同类型瓦楞的不同特点,单瓦楞纸箱用A型和C型为宜;双瓦楞纸箱用AB型, BC型相结合最为理想;接近表面的用B型,能起到抗冲击力较强的作用;接近内层的用A型或C型弹性足、缓冲力强;采有用AB型或BC型结合,使纸箱的物理性能发挥两个

纸箱的检验方法及标准

纸箱的检验方法及标准 一、外观质量: 1、印刷质量:图案、字迹印刷清晰,色度一致,光亮鲜艳;印刷位置误差大箱不超过7mm,小箱不超过4mm; 2、封闭质量:箱体四周无漏洞,各箱盖合拢后无参差和离缝; 3、尺寸公差:箱体内径与设计尺寸公差应保持在大箱±5mm,小箱±3mm,外形尺寸基本一致; 4、盖折叠次数:瓦楞纸箱摇盖经开、合180度往复折叠5次以上,一、二类箱的面层和里层、三类箱里层裂缝长度总和不大于70mm; 此外,要求接合规范,边缘整齐,不叠角,箱面不允许有明显损坏或污迹等. 二、纸箱耐压强度及影响因素 纸箱耐压强度是许多商品包装要求的最重要的质量指标,测试时将瓦楞纸箱放在两压板之间,加压至纸箱压溃时的压力,即为纸箱耐压强度,用KN表示。 1、预定纸箱耐压强度 纸箱要求有一定的耐压强度,是因为包装商品后在贮运过程中堆码在最低层的纸箱受到上部纸箱的压力,为了不至于压塌,必须具有合适的抗压强度,纸箱的耐压强度用下列公式计算: P=KW(n-1) 式中P----纸箱耐压强度, W----纸箱装货后重量, n----堆码层数

K----堆码安全系数 堆码层数n根据堆码高度H与单个纸箱高度h求出,n=H/h 堆码安全系数根据货物堆码的层数来确定,国标规定: 贮存期小于30d取K=1.6 贮存期30d-100d取K=1.65 贮存期大于100d取K=2.0 2、据原料计算出纸箱抗压强度 预定了纸箱抗压强度以后,应选择合适的纸箱板、瓦楞原纸来生产瓦楞纸箱,避免盲目生产造成的浪费; 根据原纸的环压强度计算出纸箱的抗压强度有许多公式,但较为简练实用的是kellicutt公式,它适合于用来估算0201型纸箱抗压强度。 3、确定纸箱抗压强度的方法 由于受生产过程中各种因素的影响,最后用原料生产的纸箱抗压强度不一定与估算结果完全一致,因此最终精确确定瓦楞纸箱抗压强度的方法是将纸箱恒温湿处理后用纸箱抗压试验机测试;对于无测试设备的中小型厂,可以在纸箱上面盖一木板,然后在木板上堆放等量的重物,来大致确定纸箱抗压强度是否满足要求;4、影响纸箱抗压强度的因素 1)原材料质量 原纸是决定纸箱压缩强度的决定性因素,由kellicutt公式即可看出。然而瓦楞纸板生产过程中其他条件的影响也不允许忽视,如粘合剂用量、楞高变化浸渍、涂布、复合加工处理等。 2)水分

瓦楞纸箱抗压强度计算公式

瓦楞纸箱抗压强度计算 公式 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

瓦楞纸箱抗压强度计算公式 一类根据瓦楞纸板原纸,即面纸和芯纸的测试强度来进行计算,另一类则直接根据瓦楞纸板的测试强度进行计算。 a. 凯里卡特公式 P——瓦楞纸箱抗压强度(N); Px——瓦楞纸板原纸的综合环压强度(N/cm); aXz——瓦楞常数; Z——瓦楞纸箱周边长(cm); J——纸箱常数。 瓦楞纸板原纸的综合环压强度计算公式如下 Rn——面纸环压强度测试值(N/)

Rmn ——瓦楞芯纸环压强度测试值(N/) C——瓦楞收缩率,单瓦楞纸板来说 双瓦楞纸板 公式中的(cm)为测定原纸环压强度时的试样长度。Z 值计算公式 Z=2(L 0+B ) Z——纸箱周边长(cm); L0——纸箱长度外尺寸(cm)B0——纸箱宽度外尺寸(cm); a z X、J、C值可查表 类纸箱抗压强度计算公式:

P0201 ——0201 箱型用凯里卡特公式计算的抗压强度(N);a——箱型修正系数,

凯里卡特公式,与实际测试值有一定差异,一般比测试值小5%。 ②马丁荷尔特(Maltenfort)公式 P——瓦楞纸箱抗压强度(N); CLT- O ——内、外面纸横向平压强度平均值(N/cm)。 ③沃福(Wolf)公式 Pm——瓦楞纸板边压强度(N/m) ④马基(Makee)公式 Dx——瓦楞纸板纵向挺度(MN·m) Dy——瓦楞纸板横向挺度(MN·m) 马基简易公式:

包卷式纸箱抗压强度计算公式: PwA——包卷式纸箱抗压强度(N);Pm ——瓦楞纸板边压强度(N/m)a——常数 b——常数 ⑤APM 计算公式 考虑箱面印刷对抗压强度的影响。 a——箱面分类系数;

瓦楞纸箱抗压强度计算中凯里卡特公式的应用

瓦楞纸箱抗压强度计算中凯里卡特公式的应用: 瓦楞纸箱抗压强度的计算公式很多: 常用的有凯里卡特(K.Q.Kellicutt)公式、马丁荷尔特(Maltenfort)公式、沃福(Wolf)公式、马基(Makee)公式、澳大利亚APM公司计算公式,等等。 其中,凯里卡特公式常被应用于0201型瓦楞纸箱抗压强度的计算。 凯里卡特公式表达式: 美国的凯里卡特根据瓦楞纸箱的边压强度和周长提出了计算纸箱抗压强度的公式 BCT=ECT×(4aXz/Z)2/3×Z×J 式中BCT——瓦楞纸箱的抗压强度(lb) ECT——瓦楞纸板的边压强度(lb/in) Z ——瓦楞纸箱的周长(lb) aXz——瓦楞常数 J ——纸箱常数 相应的瓦楞纸箱常数见表1。 倘若知道瓦楞纸箱的外尺寸和楞型,可根据瓦楞纸板的边压强度ECT推测瓦楞纸箱的抗压强度BCT,或者根据瓦楞纸箱的抗压强度BCT推测瓦楞纸板的边压强度ECT。 例如,29英寸彩电包装纸箱采用AB型瓦楞纸板 ? 纸箱外尺寸为904×644×743mm; ? 毛重G=48Kg; ? 经多次使用修正确定安全系数为K=6.5; ? 堆码层数为N=300/74.3=4(堆码限高为3米, 堆码层数取整数); 因为1磅(lb)=0.454千克(Kg)=4.453牛顿(N),1英寸(in)=2.54厘米(cm),所以空箱抗压强度为: BCT=KG(N?1) =6.5×48×9.81×(4-1) =9182.16(N) =2061.67(lb) 因为瓦楞纸箱的周长Z=(90.4+64.4)×2=309.6(cm)=121.89(in), 瓦楞常数aXz=13.36, 纸箱常数J=0.54, 故瓦楞纸板的边压强度: ECT=BCT/【(4aXz/Z)2/3×Z×J】 =2061.67/【(4×13.36 /121.89)2/3×121.89×0.54】 =54.27(lb/in) =95.2(N/cm) =9520 (N/m) 1

瓦楞纸箱塌箱原因及解决对策

瓦楞纸箱塌箱原因及解决对策 众所周知,瓦楞纸箱最主要的力学指标就是空箱抗压强 度。在实际使用过程中,瓦楞纸箱可能会受到来自外界局部应力的破坏性冲击,但在正常运输条件下,这种局部应力发生的概率很小,尤其对托盘集合包装而言,这种应力发生的情况几乎可以忽略。然而,瓦楞纸箱包装件一般都会有堆码的情况,并且最底部的瓦楞纸箱不仅承受来自其顶部载荷的静态压力,还要承受运输过程中因振动、冲击等造成的动态压力。在这种情况下,瓦楞纸箱具有足够的抗压强度是保护内装物的必要前提。 但瓦楞纸箱在实际使用过程中经常会发生塌箱现象,这 对于少部分非销售包装,内装产品可以承压且不容易损坏的产品而言,瓦楞纸箱塌箱问题的出现并非不可接受,而对于大部分运输包装和销售产品来说,瓦楞纸箱塌箱问题的出现完全是不可接受的,外包装箱的严重变形极有可能导致内装产品出现问题,没有消费者会为一个内装物可能损坏的产品买单。因此,对于瓦楞纸箱塌箱问题必须引起足够的重视,否则将会对最终的产品销售产生严重的负面影响。 塌箱原因分析造成瓦楞纸箱塌箱的原因有很多,从最初的原纸质量到 最后的仓储销售,各个环节都有可能导致瓦楞纸箱塌箱,主要原因归纳如下。 1)原纸质量。由于原纸本身不具备防潮性,而且没 有进行相应的防潮处理,因此使得其制成的普通瓦楞纸箱在放入冷库储存到搬至库外的过程中,由于温差极易导致瓦楞纸箱吸潮,含水率迅速从10%升至19%,从而使得瓦楞纸箱 抗压强度急剧下降,产生卧箱和破损现象,进而影响内装物质量。 2)原纸含水率偏高。原纸含水率太高,容易造成瓦

楞变形、瓦楞纸箱抗压强度降低,干燥后又容易产生瓦楞纸板翘曲变形等物理损伤。 3)在瓦楞纸制造过程中,由于施胶量控制不当,影 响了成品后瓦楞纸板的黏合强度,从而造成塌箱。 4)印刷工艺和过程控制中压力控制不当。压力过大 时,导致瓦楞变形。 5)运输过程中车辆的振动和冲击,造成瓦楞纸箱的 变形破损,甚至内装物的损坏。这种损坏是无法避免的。 6)人工搬运、周转次数多。人工搬运次数多,瓦楞 纸箱不可避免地受到较大的外部冲击,从而造成瓦楞纸箱本身的强度降低。 7)仓储湿度。商品库存周期有长有短,南北方空气 湿度差异较大,对于库存周期较长而湿度又大的仓储条件, 瓦楞纸箱抗压性能下降较多。 8)仓储时间。即使在恒定温湿度条件下,仓储时间 过长也会导致瓦楞纸箱慢慢“老化” ,瓦楞纸箱本身的强度也会随之降低。 9)仓储堆码方式。如悬臂式堆码、错落式堆码、狼 牙交叉式堆码以及无货架堆码等大高度堆码方式,将大大降低瓦楞纸箱的抗压强度。 10)其他因素。模切加工工艺、手提孔的位置、添加 内衬、纸箱结构以及远洋运输环境等因素都会影响瓦楞纸箱的抗压强度。 塌箱解决对策上述塌箱问题的原因可以简单归纳为生产工艺、运

纸箱强度计算

包装设计过程中可能要涉及强度计算方面的内容,主要有两个方面的应用: 1.已知最大堆叠高度,需选择适当的瓦楞纸板; 2.产品包装已确定,需计算出允许的最大堆叠高度。 对包装强度影响最大的就是选用的瓦楞纸板了。 1. 瓦楞纸板的构造及分类在介绍乏味的内容之前,我们先了解一下瓦楞纸板的构造及分类。 瓦楞纸板主要由面纸和波形的瓦楞(flute)通过粘合而成。根据瓦楞的不同大小瓦楞可以分为A型,B型,C型,D型,E型,F型,G型楞。如下图: B型和C型瓦楞比较常用,B型楞排列密度大,制成的瓦楞纸板表面平整,承压力高,适于印刷;C型楞有较好的挺度和抗冲击性。 根据需求,瓦楞纸板可以加工成单面瓦楞纸板、三层瓦楞纸板、五层、七层、十一层等瓦楞纸板。层是中文的表述,对应于英文的Layer,但是更常用的一种表述是Wall。通过下面的图你就可以知道它们表示什么含义了。

瓦楞纸板的标注方式 2. 瓦楞纸板的强度包装箱上一般在底部会有一个如下的标识: 纸箱厂商证书 上图是两家厂商的包装箱上的标识,它上面包含的信息有:厂商名称,地址以及关于纸箱的强度参数: ?Edge Crush Test, ECT: 边压强度。边压强度又叫垂直抗压强度,是对瓦楞纸板试样以垂直方向施加压力,施压过程中纸板所能承受的最大力即为纸箱的边压强度。 ?Brusting Test: ?Size Limt: ?Groos WT LT: 瓦楞纸箱加上内装物总重量极限值

Min Comb WT Facings: Min Combined Weight on Facings 上面两张图片使用的参数不太一样,前面一个用的是Edge Crush Test,后面一个用的是Bursting Test也称为Mullen Test。 边压强度衡量的是瓦楞纸板的堆叠性能强度,而Mullen衡量瓦楞纸的抗破损强度。简单地说前者是沿纸板方向施压,后者是沿纸板垂直方向施压进行测试。Mullen测试更适合于包装比较重的物体,而ECT测试适合比较轻的物体时需考虑其堆叠特性。 ECT 和Brusting Test 的对应值大体如下表所示: Max Wt. Box/Contents (lbs.) Min. Burst Test Single/Double Wall (lbs. per sq. in.)* Min. Edge Crush Test (E (lbs. per in. width) Single Wall Corrugated Boxes 20 125 23 35 150 26 50 175 29 65 200 32 80 250 40 95 275 44 120 350 55 Double Wall Corrugated Boxes 80 200 42 100 275 48 120 350 51 140 400 61 160 500 71 180 600 82 Triple Wall Corrugated Boxes 240 700 67 260 900 80 280 1100 90 300 1300 112

建筑结构抗压性能分析

开发研究 建筑结构抗压性能分析 霍艳华 (江西建设职业技术学院,江西南昌330200) 摘要:建筑结构的稳固性和抗压性是保证一栋建筑是否安全、长久使用的保障。在一些灾害,例如地震、火灾和爆炸的作用下,建筑结构的稳定性受到局部破坏而造成整体性崩塌的现象时有发生。由于现实中有大量案例存在,许多研究者关于建筑结构的负荷性能的研究一直在进行,目的是为了增加建筑的负荷性能。尤其是建筑结构中局部支撑物,如板柱结构和钢框架结构的实验和研究等,本文基于此开展抗压性能研究。 关键词:负荷性能;悬链线机制;压膜效应;压拱效应1混凝土结构的抗压负荷性能研究 1.1混凝土框架结构的作用 建筑中的混凝土框架结构通常在各大建筑体、宫殿、办公大楼、住宅小区等建筑中应用,这是人类进行生活、工作或者展览的地方,涉及到人们的安全,因此需要研究建筑结构的负荷性能,确保建筑物安全。 在研究建筑结构中的底层中柱的作用时,实验使用塑性极限状态设计法,将底层中柱设置于无作用力的状态下,实验结果表明,框架在压力下保持稳固性的负荷能力是实际悬链线效应下的框架负重承载能力的70%。因此可以推出悬链线效应的存在,对于建筑结构在负荷承载力的作用更明显。 在关于建筑结构的角柱之间的节点研究中发现,节点中存在空腹桁架效应,这种效应能够在建筑结构出现破坏性机制时,将破坏力进行一定的作用和分配,能够有效地减轻破坏机制对建筑结构的破坏。 1.2对板和柱2种结构的作用相关研究分析 一般而言,组成混凝土板柱的结构成分是楼盖板和梁柱,柱的作用是承载重力和压力,它是整个建筑结构中主要压力的承担者,具有负荷和稳固结构的作用。而楼盖板的作用不仅是扩大人类活动的空间,也能在柱失去承担压力的效用时,将压力分配到剩余建筑结构中。 2钢结构的抗压性能和保持建筑结构稳固的实验研究2.1钢结构的承载受力机制的分析 建筑铀中的钢结构是指将钢板等钢材通过专业的焊接、螺栓或钏钉等方式进行连接而形成结构,这种结构对于加强建筑结构的抗压性能有很大的作用价值。在目前阶段,关于钢结构在建筑结构中的抗压性能和维持建筑结构的稳定性方面的研究增多,而研究的方法属于利用物理的基本研究规律一能量守恒分析法。 钢结构与混凝土结构相比,钢结构性能对于建筑物的抗压性和稳固性的影响因素更加广泛,这是因为钢结构的设计方式更多,例如由于钢材的链接方式和钢材的造型差异,钢材的作用不完全相同,所以客观因素对建筑结构的抗压性能的影响各不相同。 钢框架结构在破坏性压力作用下,不同的受力变化形式决定其稳固性作用。例如在钢结构的中柱失去作用效力的情况下,钢结构的内部受力分配主要靠塑性较机制和悬链线机制等进行,而悬链线机制的形成与否主要看是否存在组合梁。由于组合梁内部会存在特定的压拱效应,所以当建筑建构中关键性的受力柱失去作用力时,其可以在一定的时限内实现压力的承载。这与混凝土的作用形式类似,都是依靠拉膜效应和悬链线机制的共同作用而产生的保护性影响。 2.2钢结构在爆炸下的受力分析 钢结构在建筑结构处于爆炸性破坏时,由于受到相应的压力而产生形变。实验表明,钢结构具有很好的防爆性能。钢结构在发生爆炸时,由于结构内部各种效应的影响,其不会出现太大的变形情况,直接承受爆炸的受力点除外。实验目测的结果是,钢结构的横跨距离越广,建筑结构出现倒塌和破坏的现象越少,但是钢结构在竖直层面的层数越多,钢框架就越有可能发生整个框架体的破坏。 钢结构在定向爆破中的实验结果表明,由于钢结构内部存在悬链线机制会对建筑结构的稳固性产生一定的破坏作用,所以悬链线之间的拉力会在一定程度上将建筑结构的局部产生翘曲现象而导致结构的整体出现不稳定现象。研究结果还表明,爆炸对钢框架的作用会随着距离的变化而变化,离爆炸点越远的钢框架就越能保持稳固性。 3结束语 通过建筑结构中各种结构的抗压性能分析,可以得到以下几种结论:在建筑结构遭遇到破坏性机制时,建筑结构(例如混凝土铀)部分輛的结构组成成分内部会存在压拱沁、融线效应、拉膜效应等等,这些效应的存在能够维持建筑结构的稳定性。 参考文献: [1]吴波,王明君,赵新宇.混凝土空间板柱结构震致落层倒塌的试验研究[J].工程力学,2013(1):277-287.[2]李凤武,肖岩,赵禹斌,等.钢筋混凝土框架边柱突然失效模拟试验与分析研究[J1.土木工程学报,2014,47(4):9-1& [3]王德斌,李宏男,张杰.构件失效后钢筋混凝土框架结构倒塌响应特性分析[J1.应用力学学报,2014,31(1):116-121. (收稿日期=2019-03-19) 《湖北农机化》2019年第"期

纸箱抗压强度的影响因素

影响瓦楞纸箱抗压强度的因素 瓦楞纸箱抗压强度是指瓦楞纸箱空箱立体放置时,对其两面匀速施压,箱体所能承受的最大压力值。抗压强度试验的检测方法是将样箱立体合好,用封箱胶带上、下封牢,放入抗压试验机下压板的中间位置,开机使上压板接近空箱箱体,然后启动加压标准速度,直至将纸箱压溃,读取实测值,即为抗压强度,同一批次纸箱的试验数据之间的偏差越小抗压性能就越稳定。 影响瓦楞纸箱抗压强度的因素较多,这些因素交互发生作用,只有充分认识弄清这些因素影响的规律,才能准确预测出瓦楞纸箱的抗压强度值,以满足顾客需求。 瓦楞纸板的边压强度对抗压强度的影响 计算瓦楞纸箱抗压强度最常用的是Kellicutt 凯里卡特公式: P=ECT{ 4 ax2/Z}2/3·Z·J 式中:ECT—纸板边压强度(lb / in); ax2—瓦楞常数; J—楞型常数; Z—纸箱周长(in ); P—纸箱抗压强度(lb) 比较简易的计算公式是: P=5.874×ECT× √T×C 式中:P—抗压强度,N ECT—边压强度,N/m T —纸板厚度,m C —纸箱周长,m 从瓦楞纸箱抗压强度的计算公式可以看出,瓦楞纸箱抗压强度主要取决于纸板边压强度,又称为垂直抗压强度,是对瓦楞纸板试样以垂直方向施加压力,施压过程中纸板所能承受的最大力即为纸箱的边压强度。 瓦楞纸板边压强度基本取决于箱纸板和瓦楞原纸的环压强度,并且与瓦楞纸板的生产工艺、瓦楞纸板的结构、楞形、黏合剂的质量等因素有关,计算公式为: 瓦楞纸板边压强度(N/m) ECT=各层原纸的环压强度值之和×(1+δ) 式中:δ—楞型系数之和,参考值如下:

A型瓦楞一般为:0.12; B型瓦楞一般为:0.08; C型瓦楞一般为:0.10 原纸的环压强度值=环压指数×定量。 瓦楞纸板的楞型对纸板抗压强度的影响 人们把发明的第一个瓦楞形状定为A型瓦楞,其次发明了B型瓦楞,后来又发明了介于A、B楞型大小之间的C楞,之后发明了E楞,而后又出现了较大的D楞、K楞。近年来,人们又研发了微型瓦楞,有F、G、N、O等楞型。 目前最常用的瓦楞类型为A、B、C、E和K五种,国内外生产瓦楞纸箱最常用的是A、B、C三种楞型及其组合,瓦楞纸板边压强度的高低依次为AB、BC、A、C、B,另外根据纸箱箱型选择合适的楞型也很关键,在人们的意识中,往往认为楞型越大,纸箱的抗压强度越高,而容易忽视楞型对变形量的影响。实际上,楞型越大,纸箱的抗压强度越大,变形量越大;楞型越小,纸箱的抗压强度越小,变形量越小。如果纸箱过大,楞型却很小,纸箱在抗压测试时就很容易被压溃;纸箱过小,楞型却很大,抗压测试时会造成变形量过大,缓冲过程长。 纸箱的周长、高度尺寸及长宽比对抗压强度的影响 纸箱的周长影响 在用料和楞型相同的情况下,纸箱周长的增长与抗压强度的增长会形成一种变化的曲线,开始纸箱的周长越长,抗压强度越高,但随着纸箱周长的加大,增加了纸箱的不稳定性,在纸箱周长达到一定阶段后,所能承受的抗压强度会呈现按一定比例的递减。(图1 纸箱周长与抗压强度的关系) 图1 纸箱周长与抗压强度的关系 纸箱的高度影响 高度在100~350mm时,抗压强度随着纸箱的高度增加而稍有下降;高度在350~650mm之间时,纸箱的抗压强度几乎不变;高度大于650mm时,纸箱的抗压强度随着高度增加而降低。主要原因是随着纸箱的高度增加,其稳定性也会相应地增加。 纸箱的长宽比影响 一般情况下,纸箱的长宽比在1~1.8的范围内,长宽比对抗压强度的影响仅为±5%。其中纸箱的长宽比RL=1.2~1.5时,纸箱的抗压强度最高。纸箱的长宽比为2:1时,其抗压强度下降约20%,因此确定纸箱尺寸时,长宽比不宜超过2,否则会造成成本浪费。(图2 纸箱的长宽比与抗压强度的关系) 错误!

瓦楞纸箱检测项目汇总

瓦楞纸箱检测项目汇总 [图片] 瓦楞纸箱检测项目汇总 瓦楞纸箱以其特点和环保优势被广泛应用于商品的外包装,在商品的运输、保存和销售中起到了重要的保护作用。在使用过程中,要求纸箱必须达到一定的牢固度和耐用性。 当前,激烈的市场竞争,使各纸箱生产企业在生产工艺和管理上不断的进行改进以获得最大利润,这就使得纸箱用户在使用纸箱的过程中遇到了或多或少的质量问题,如纸箱堆码后垮塌、破裂等造成了许多不必要的损失。 为避免出现这样的情况,生产出合格的纸箱产品,必须对瓦楞纸箱进行检测,使瓦楞纸箱的生产过程得到有效的控制。所以,正确认识和了解瓦楞纸箱的检测项目和检测方法,具有十分重要的意义。 一、基本检测项目 1、外观质量 合格的纸箱要求印刷图案、字迹清晰,无断线和缺失情况;图案色度一致,光亮鲜艳而且印刷位置误差小,大纸箱误差在7mm以内,小纸箱误差在4mm 以内。表面质量要完好无破损,无污迹,箱体四周无漏洞,各箱盖合拢后无缝隙。对纸箱形状来说,箱体内径与设计尺寸公差应保持在大箱±5mm,小箱±3mm之内,外形尺寸大小基本一致。瓦楞纸箱摇盖经开、合180度往复折叠5次以上,一、二类纸箱的面层和里层、三类纸箱里层裂缝长度总和不大于70mm。此外,还要求箱体接合规范,边缘整齐,不叠角等。 2、含水率 所谓含水率是指瓦楞原纸或纸板中的水分含量大小,用百分比表示,含水率对纸箱箱体强度有很大的影响,是纸箱3个重缺陷检验项目之一。 瓦楞原纸具有一定的耐压、抗张,抗戳穿和耐折性能,若水分含量过高,纸质就显得柔软,挺度差,压楞和粘合质量也差。如果水分含量过低,纸质就过脆,压楞时就容易破裂,且耐折度也差。如果瓦楞纸和箱板纸的水分含量悬殊过大时,单面机加工出来的瓦楞纸板,就容易出现卷曲,裱合时,就容易出现起泡和脱胶现象。成型的纸箱如果在保存时吸湿受潮,会使纸箱的强度明显下降,影响使用。 瓦楞纸箱的含水率标准为(12±4)%。纸箱含水率的测定,比较准确的检测方法是烘干法,即从纸板或箱体不同部位分别取样若干块,用天平称取约

影响纸箱抗压强度试验的原因.

影响纸箱抗压强度试验的原因 纸箱耐压强度是许多商品包装要求的最重要的质量指标,测试时将瓦楞纸箱放在两压板之间,加压至纸箱压溃时的压力,即为纸箱耐压强度,用KN表示。 1、预定纸箱耐压强度 纸箱要求有一定的耐压强度,是因为包装商品后在贮运过程中堆码在最低层的纸箱受到上部纸箱的压力,为了不至于压塌,必须具有合适的抗压强度,纸箱的耐压强度用下列公式计算: P=KW(n-1) 式中P----纸箱耐压强度,N W----纸箱装货后重量,N n----堆码层数 K----堆码安全系数 堆码层数n根据堆码高度H与单个纸箱高度h求出,n=H/h 堆码安全系数根据货物堆码的层数来确定,国标规定: 贮存期小于30d取K=1.6 贮存期30d-100d取K=1.65 贮存期大于100d取K=2.0 2、据原料计算出纸箱抗压强度 预定了纸箱抗压强度以后,应选择合适的纸箱板、瓦楞原纸来生产瓦楞纸箱,避免盲目生产造成的浪费; 根据原纸的环压强度计算出纸箱的抗压强度有许多公式,但较为简练实用的是kellicutt公式,它适合于用来估算0201型纸箱抗压强度。 3、确定纸箱抗压强度的方法

由于受生产过程中各种因素的影响,最后用原料生产的纸箱抗压强度不一定与估算结果完全一致,因此最终精确确定瓦楞纸箱抗压强度的方法是将纸箱恒温湿处理后用纸箱抗压试验机测试;对于无测试设备的中小型厂,可以在纸箱上面盖一木板,然后在木板上堆放等量的重物,来大致确定纸箱抗压强度是否满足要求; 4、影响纸箱抗压强度的因素 1)原材料质量 原纸是决定纸箱压缩强度的决定性因素,由kellicutt公式即可看出。然而瓦楞纸板生产过程中其他条件的影响也不允许忽视,如粘合剂用量、楞高变化浸渍、涂布、复合加工处理等。 2)水分 纸箱用含水量过高的瓦楞纸板制造,或者长时间贮顾在潮湿的环境中,都会降低其耐压强度。纤维是一种吸水性很强的,在梅雨季节及空气中湿度较大时,纸板中水分与大气环境的湿平衡关系很重要。 3)箱型 箱型是指箱的类型和同种类型箱的尺寸比例,它们对抗压强度有明显的影响。有的纸箱箱体为双层瓦楞纸板构成,耐压强度较同种规格的单层箱明显提高;在相同条件下,箱体越高,稳定性就越差,耐压强度越低。 4)印刷与开孔 印刷会降低纸箱抗压强度。包装有透气要求的商品在箱面开孔,或在箱侧冲切提手孔,都会降低纸箱强度,尤其开孔面积大,偏向某一侧等,影响更为明显。 5)加工工艺偏差 在制箱过程中压线不当,开槽过深,结合不牢等,也会降低成箱耐压强度。

相关文档
最新文档