牛顿第一定律和牛顿第二定律

牛顿第一定律和牛顿第二定律
牛顿第一定律和牛顿第二定律

第10讲 牛顿第一定律和牛顿第二定律

1.牛顿第一定律

理想实验是物理学重要的研究方法之一。如图10-1所示,是伽俐略设计的理想斜面实验。

让静止的小球沿一个斜面滚下,小球将滚上另一个斜面;

③减小第二个斜面的倾角,小球仍然达到原来的高度;

④继续减小斜面的倾角,最后使它成为水平面,小球将沿水平面以恒定的速度持续运动下去。 (1)①是经验事实,其他是推论,请按照逻辑推理的顺序,在 ② 填写出合理的推论。 (2)上述理想实验证明了

(3)牛顿在伽俐略等物理学家的研究基础上总结出牛顿第一定律。具体内容是: 。

(4) 叫做惯性,惯性是 的物体具有的 。惯性的大小与哪些因素有关?

(5)物体的速度的大小或方向发生变化,就说运动状态发生了改变。运动状态改变的难易程度与什么有关?力和运动状态的关系是什么?

2.牛顿第二定律

如图10-2所示,轻质弹簧固定在水平地面上,有一个小从弹簧的正上方自由下落后,与弹簧接触。

(1)小球在空中运动时的加速度为 。

(2)接触弹簧之后,加速度表达式为 ,所依据的牛顿第二定律的表达式为 。这里的F 合的含义是 。

(3)物体运动的加速度的方向由哪个物理量来决定?小球在下降到最低点的过程中,加速度的方向和大小如何变化?

(4)力的独立性原理就是:一个物体同时受几个力的作用,每一个力都使物体产生一个效果,就如同其他力不存在一样。请思考求解加速度的两种方法各是什么?对于上述模型的具体应用如何?

(5)力的单位牛顿是如何定义的?

提醒疑难 警示误区

(1)理解惯性定律时要注意适用条件

一切宏观低速的物体都具有惯性,但是微观高速的粒子却不具有惯性。如电子的衍射实验即说明了这一点。

图10-1

图10-2

(2)惯性大小决定因素的理解。

物体的质量是惯性大小的量度。可以从以下两方面理解:

一方面是在相同外力作用下的两个物体,加速度大的物体惯性小;加速度小的物体惯性大。 另一方面是物体运动状态容易改变则物体的惯性小;物体运动状态难改变则物体的惯性大。 有的同学认为:“速度大的物体惯性大,速度小的物体惯性小”,这是不对的。事实上,在受到了相同阻力的情况下,速度(大小)不同而质量相同的物体,在相同的时间内速度减小量是相同的。这就说明两质量相同的物体,改变运动状态的难易程度——惯性是相同的,而与速度无关。

(3)在理解第二定律时要注意“四同一相对”。

F 合=ma 中的F 合必须是物体所受的合外力,例如第3题。对于公式中的合外力F 和加速度a 的关系,要从以下几个方面理解:

①同方向。方向始终是一致的。可以根据合外力的方向判定加速度的方向,也可以根据加速度的方向判定合外力的方向。特别要注意在画受力分析图时,一定要画出加速度的方向。例如第3题。

②同物体。公式中的F 合、m 、a 必须是对应同一物体的物理量,例如第2题。

③同单位。公式中的各物理量必须使用国际基本单位。否则F 合=kma 中的比例系数k ≠1。 ④同时刻。力作用在物体上的同时即产生了个与之相对的加速度,例如第1题。

⑤一相对。合外力F 和加速度a 是相对于惯性参考系的,高中阶段一般以地面为参考系。 例如:在不光滑的水平面上,在水平外力F 的作用下,A 、B 两物体的质量分别为m A 、m B ,一起共同加速运动。A 、B 之间及B 与地面之间的动摩擦因数都为μ,如图10-3所示。如果以B 参照物,A 的加速度为0。如果以地面为参照物A 与B 都有加速度a=

B

A m m F +μg 。

我们也可以讨论F 和a 的同物性。同学们可以试用隔离法写出A 、B 两物体各自的加速度。

1.(2005上海模拟)设想如能创造一理想的没有摩擦的环境,用一个人的力量去拖一艘万吨巨轮,则从理论上可以说

A .巨轮惯性太大,所以完全无法拖动。

B .一旦施力于巨轮,巨轮立即产生一个加速度。

C .由于巨轮惯性很大,施力于巨轮后,要经过一段很长时间后才会产生一个明显的加速度。

D .由于巨轮惯性很大,施力于巨轮后,要经过足够长的时间才会产生一个明显的速度。

2.一个小孩从滑梯上滑下的运动可看作匀加速直线运动,第一次小孩单独从滑梯上滑下,加速度为a 1,第二次小孩抱上一只小狗后再从滑梯上滑下(小狗不与滑梯接触),加速度为a 2,则 ( ) A .a 1=a 2 B .a l a 2 D .无法判断a l 与a 2的大小

3.(2001年全国物理)惯性制导已广泛应用于弹道式导弹工程中。这个系统的重要元件之一是加速度计。加速度计的构造原理的示意图如图10-4所示:沿导弹长度方向安装的固定光滑杆上套一质量为m 的滑块,滑块两侧分别于劲度系数均为k 的弹簧相连;两弹簧的另一端与固定壁相连。滑块原来静止,弹簧处于自然长度。滑块上有指针,可通过标尺测出滑块的位移,然后通过控制系统进行制导。设某段时间内导弹沿水平方向运动,指针向左偏离O 点的距离为s ,则这段时间内导弹的加速度

A.方向向左,大小为kx/m

B.方向向右,大小为kx/m

C.方向向左,大小为2kx/m

D.方向向右,大小为2kx/m

点拨方法 启迪思维

(1)应用惯性知识解释现象的思路。

对惯性问题可采用三步法来解释:①所研究的物体原来是什么状态;②后来发生了哪些变化;③由于惯性产生了什么结果。

图10-4

图10-3

【举例】从加速竖直上升的气球上落下一个物体,在物体刚离开气球的瞬间,下列说法正确的是: A .体立即向下作自由落体运动

B .物体具有竖直向上的加速度

C .物体的速度为零,但具有向下的加速度

D .物体具有向上的速度和向下的加速度

【尝试】在谷物的收割和脱粒过程中,小石子、草屑等杂物很容易和谷物混在一起,另外谷粒中也有

瘪粒,为了将它们分离,可用扬场机分选,如图10-5所示,它的分选原理是 A . 谷物和草屑质量最小,在空气阻力作用下,反向加速度最大,

飞得最远 B . 空气阻力对质量不同的物体影响不同 C . 石子质量最大,空气阻力最小,飞得最远 D . 空气阻力使它们的速度变化不同

【自测】两木块A 、B 由同种材料制成,m A >m B ,并随木板一起以相同速度向右匀速运动,如图10-6所示,设木板足够长,当木板突然停止运动后,则( )

(A )若木板光滑,由于A 的惯性大,故A 、B 间距离将增大 (B )若木板粗糙,由于A 受的阻力大,故B 可能与A 相碰 (C )无论木板是否光滑,A 、B 间距离将保持不变

(D )无论木板是否光滑,A 、B 二物体一定能相碰

(2)讨论动力学问题重要是弄清楚是分解力还是分解加速度

讨论动力学问题时一般采用正交分解法,依具体情况建立直角坐标系,将各力或加速度往两坐标轴上分解,建立牛顿第二定律的分量式,即∑F x =ma x 和∑F y =ma y ,然后求解。

分解力的方法:以加速度方向为x 轴的正方向,y 轴与加速度方向垂直,沿坐标轴方向分解力。牛顿第二定律的表达式为∑F x =ma ,∑F y =0。这种方法我们经常使用。

分解加速度的方法:物体所受的几个力分别在互相垂直的两个方向上,且与加速度方向不同,此时以力所在的两个方向建立直角坐标系。分解加速度,建立牛顿第二定律表达式∑F x =ma x 和∑F y =ma y 。 【举例】(2002全国春)如图10-7质量为m 的三角形木楔A 置于倾角为θ的固定斜面上,它与斜面间的动摩擦因数为μ,一水平力F 作用在木楔A 的竖直平面上,在力F 的推动下,木楔A 沿斜面以恒定的加速度a 向上滑动,则F 的大小为:

A

θ

θμθcos )]

cos (sin [++g a m B

)

sin (cos )sin (θμθθ+-g a m

C

)

sin (cos )]

cos (sin [θμθθμθ-++g a m D

)

sin (cos )]

cos (sin [θμθθμθ+++g a m

【尝试】如图10-8所示,倾斜索道与水平方向夹角为θ=370,当载人车厢匀加速向上运动时,人对厢底的压力为体重的1.25倍,这时人与车厢相对静止,那么车厢对人的摩擦力是体重的

A 1

B 5

C 1

D 4.

4433

【自测】(2005北京模拟)物块A 放在斜面体的斜面上,和斜面体一起向右做加速运动,如图10-9所示。若物块与斜面体保持相对静止,物块A

受到斜面对

图10-5

图10-6 图10-7

图10-8

图10-9

它的支持力和摩擦力的合力的方向可能是( ) A. 向右斜上方 B. 水平向右

C. 向右斜下方

D. 上述三种方向都不可能 (3)物体在某一时刻的瞬时加速度的计算思路

计算物体的瞬时加速度必须根据牛顿第二定律求出合外力,而合外力的确定方法是: ①变化之前的受力情况和运动状态; ②发生了什么样的变化;

③分析变化之后的受力情况及运动状态,

④物体在某一时刻的合外力,再由牛顿第二定律求出瞬时加速度。

此类问题还应注意三种基本模型。 A .钢性绳(或接触面):认为是一种不发生明显形变就可产生弹力的物体,若剪断(或脱离)后,其弹力立即消失,不需要形变恢复时间,一般题目中所给的细线和接触面在不加特殊说明时,均可按此模型处理。

B .弹簧(或橡皮绳):此种物体的特点是形变量大,形变恢复需要较长时间,在瞬时问题中,其弹力的大小往往可以看成不变。

C .运动过程中的物体:此物体的加速度和速度都发生变化,速度是不能发生突变的,而加速度要随合外力的变化而瞬时发生变化。

【举例】(2003全国春)匀速上升的升降机顶部悬有一轻质弹簧,弹簧下端挂有一小球,若升降机突然停止,在地面上观察者看来,小球在继续上升的过程中

A. 速度逐渐减小

B. 速度先增大后减小

C. 加速度逐渐增大

D. 加速度逐渐减小 【尝试】(2001年上海)如图10-10中A 、B 所示,一质量

为m 的物体系于长度分别为l 1、l 2的两根细线上,l 1的一端

悬挂在天花板上,与竖直方向夹角为θ,l 2水平拉直,物体处于平衡状态。现将l 2线剪断,求剪断瞬时物体的加速度。

【自测】如图所示,木块A 和B 用一轻弹簧相连,竖直放在木块C 上,三者静止于地面,它们的质量之比为1:2:3.设所有接触都光滑,当沿水平方向迅速抽出木块C 的瞬间,A 和B 的加速度分别为a A = ,a B = 。

体验高考 检验规范

1.一个小球正在作曲线运动,某时刻突然撤去所有外力,则小球将:

A . 立即停止下来

B . 仍作曲线运动

C . 做减速运动

D . 作匀速直线运动

2.在平直轨道上,匀加速向右行驶的封闭车厢中,悬挂着一个带有滴管的盛油容器,如图10-12所示。当滴管依次滴下三滴油时,(设这三滴油都落在车厢底板上),下列说法中正确的是

A 、 这三滴油依次落在OA 之间,且后一滴比前一滴离O 点远

B 、这三滴油依次落在OA 之间,且后一滴比前一滴离O 点近

C 、这三滴油依次落在OA 间同一位置上

D 、这三滴油依次落在O 点上 3.(2005全国理综Ⅱ)如图10-13所示,位于光滑固定斜面上的小物块P

受到一水平向右的推力F 的。已知物块P 沿斜面加速下滑。现保持F 的方

向不变,使其减小,由加速度:

图10-10

图10-11

图10-12

图10-13

A .一定变小

B .一定变大

C .一定不变

D .可能变小、可能变大、也可能不变 4.(2005湖南模拟)如图10-14所示,物块P 静止在水平放置的固定木板上。若分别对P 施加相互垂直的两个水平拉力F 1和F 2时(F 1>F 2),P 将分别沿F 1和F 2的方向匀加速滑动,其受到的滑动摩擦力大小分别为f 1和f 2,其加速度大小分别为a 1和a 2;若从静止开始同时对P 施加上述二力,其受到的滑动摩擦力大小为f 3,其加速度大小为a 3。关于以上各物理量之间的关系,判断正确的是

A. f 3>f 1>f 2,a 3>a 1>a 2

B.f 3>f 1>f 2,a 3=a 1=a 2

C. f 3=f 1=f 2,a 3>a 1>a 2

D.f 3=f 1=f 2,a 3=a 1=a 2 5.(2004全国春)如图10-15所示,a 、b 是两个位于固定斜面上的正方形物块,它

们的质量相等。F 是沿水平方向作用于a 上的外力,已知a 、b 的接触面,a 、b

与斜面的接触面都是光滑的。正确的说法是 A .a 、b 一定沿斜面向上运动 B .a 对b 的作用力沿水平方向

C .a 、b 对斜面的正压力相等

D .a 受到的合力沿水平方向的分力等于b 受到的合力沿水平方向的分力 6.(2001年上海物理)如图10-16所示,一升降机在箱底装有若干个弹簧,设在某次事故中,升降机吊索在空中断裂,忽略摩擦力,则升降机在从弹簧下端触地后直到最低点的一段运动过程中,

A .升降机的速度不断减小

B .升降机的加速度不断变大

C .先是弹力做的负功小于重力做的正功,然后是弹力做的负功大于重力做的正功

D .到最低点时,升降机加速度的值一定大于重力加速度的值。

规范 7.(2000年上海物理)(12分)如图10-17所示,风洞实验室中可以产生水平方向的、大小可调节的风力,现将一套有小球的细直杆放入风洞实验室,小球孔径略大于细杆直径。

(1)当杆在水平方向上固定时,调节风力的大小,使小球在杆上作匀速运动,这时小班干部所受的风力为小球所受重力的0.5倍,求小球与杆间的滑动摩擦因数。

(2)保持小球所受风力不变,使杆与水平方向间夹角为37°并固定,

则小球从静止出发在细杆上滑下距离S 所需时间为多少?(sin37°=0.6,cos37°=0.8)

图10-14

图10-15 图10-16

图10-17

第10讲 牛顿第一定律和牛顿第二定律

感悟情景 整合知识

1. (1)如果没有摩擦,小球将上升到原来的高度;(2)物体运动不需要力来维持;(3)一切物体总

保持匀速直线运动或静止状态,直到有外力迫使它改变这种状态为止;(4)物体保持原来的匀速直线运动或静止状态的性质;一切宏观低速物体;固有性质;质量,质量越大,惯性越大;(5)物体

质量,质量越大,运动状态越难改变;力是物体运动状态发生改变的原因。

2. (1)g ;(2)g-F 弹/m ,F 合=ma ,物体所受合力。(3)F 合的方向来决定,a 的方向先向下且减小,当

重力等弹力之后,a 的方向向上且增大。(4)一种是先求合力,利用F 合=ma 求加速度a ;另一种是

先求各个力产生的加速度,再求各个加速度的矢量和。(5)使1kg 的物体产生1m/s 2加速度的外力大小就是1N

提醒疑难 警示误区

1.BD 2.A 3.D 点拨方法 启迪思维

(1)【举例】D 【尝试】D 【自测】C (2)【举例】C 【尝试】C 【自测】A

(3)【举例】AC 【尝试】a =g sin θ,与线垂直;a =g tg θ,水平向右C 【自测】 a A =0,a B =1.5g

体验高考 检验规范

1.D 2.C 3.B 4.AC 5.D 6.CD 7.(1)设小球所受的风力为F ,小球质量为m

mg F μ= ① 5.0/5.0/===mg mg mg F μ ②

(2)设杆对小球的支持力为N ,摩擦力为f 沿杆方向ma f mgnin F =-+θθcos ③

垂直于杆方向0cos sin =-+θθng F N ④

N f μ= ⑤ 可解得g g

m F

g m f

ng F a 4

3sin )(sin cos 2

2

=

+

=-+=θθθ⑥

2

2

1at S =

⑦ g

S g S t 384

/32==

∴ ⑧

评分标准:

(1)3分。正确得出②式,得3分。仅写出①式,得1分。

(2)9分,正确得出⑥式,得6分,仅写出③④式,各得2分,仅写出⑤式,得1分,正确得出⑧式,得3分,仅写出⑦式,得2分,g 用数值代入的不扣分。

图A10-18

牛顿第二定律经典好题

牛顿第二定律 瞬间问题 1.如图所示,一木块在光滑水平面上受一恒力F作用而运动,前方固定一个弹簧,当木块接触弹簧后( ) A.将立即做变减速运动 B.将立即做匀减速运动 C.在一段时间内仍然做加速运动,速度继续增大 D.在弹簧处于最大压缩量时,物体的加速度为零 解析:因为水平面光滑,物块与弹簧接触前,在推力的作用下做加速运动,与弹簧接触后,随着压缩量的增加,弹簧弹力不断变大,弹力小于推力时,物体继续加速,弹力等于推力时,物体的加速度减为零,速度达到最大,弹力大于推力后,物体减速,当压缩量最大时,物块静止. 答案:C 2.(2017届浏阳一中月考)搬运工人沿粗糙斜面把一个物体拉上卡车,当力沿斜面向上,大小为F时,物体的加速度为a1;若保持力的方向不变,大小变为2F时,物体的加速度为 a 2,则( ) A.a1=a2B.a1<a2<2a1 C.a2=2a1D.a2>2a1 解析:当力沿斜面向上,大小为F时,物体的加速度为a1,则F-mg sinθ-μmg cos θ=ma 1 ;保持力的方向不变,大小变为2F时,物体的加速度为a2,2F-mg sinθ-μmg cos θ=ma 2 ;可见a2>2a1;综上本题选D. 答案:D 3.(2017届天津一中月考)如图所示,A、B、C三球质量均为m,轻质弹簧一端固定在 斜面顶端、另一端与A球相连,A、B间固定一个轻杆,B、C间由一轻质细线连接.倾角为 θ的光滑斜面固定在地面上,弹簧、轻杆与细线均平行于斜面,初始系统处于静止状态, 细线被烧断的瞬间,下列说法正确的是( ) A.A球的受力情况未变,加速度为零 B.C球的加速度沿斜面向下,大小为g C.A、B之间杆的拉力大小为2mg sinθ D.A、B两个小球的加速度均沿斜面向上,大小均为 1 2 g sinθ 解析:细线被烧断的瞬间,以A、B整体为研究对象,弹簧弹力不变,细线拉力突变为 0,合力不为0,加速度不为0,故A错误;对球C,由牛顿第二定律得:mg sinθ=ma,解

牛顿第二定律练习题(经典好题)

牛顿定律(提高) 1、质量为m 的物体放在粗糙的水平面上,水平拉力F 作用于物体上,物体产生的加速度为a 。若作用在物体上的水平拉力变为2F ,则物体产生的加速度 A 、小于a B 、等于a C 、在a 和2a 之间 D 、大于2a 2、用力F 1单独作用于某一物体上可产生加速度为3m/s 2,力F 2单独作用于这一物体可产生加速度为1m/s 2,若F 1、F 2同时作用于该物体,可能产生的加速度为 A 、1 m/s 2 B 、2 m/s 2 C 、3 m/s 2 D 、4 m/s 2 3、一个物体受到两个互相垂直的外力的作用,已知F 1=6N ,F 2=8N ,物体在这两个力的作用下获得的加速度为2.5m/s 2,那么这个物体的质量为 kg 。 4、如图所示,A 、B 两球的质量均为m ,它们之间用一根轻弹簧相连,放在光滑的水平面上,今用力将球向左推,使弹簧压缩,平衡后突然将F 撤去,则在此瞬间 A 、A 球的加速度为F/2m B 、B 球的加速度为F/m C 、B 球的加速度为F/2m D 、B 球的加速度为0 5如图3-3-1所示,A 、B 两个质量均为m 的小球之间用一根轻弹簧(即不计其 质量)连接,并用细绳悬挂在天花板上,两小球均保持静止.若用火将细绳烧断,则在绳刚断的这一瞬间,A 、B 两球的加速度大小分别是

A.a A=g;a B=gB.a A=2g ;a B=g C.a A=2g ;a B=0 D.a A=0 ;a B=g 6.(8分)如图6所示,θ=370,sin370=0.6,cos370=0.8。箱子重G=200N,箱子与地面的动摩擦因数μ=0.30。(1)要匀速拉动箱子,拉力F为多大? (2)以加速度a=10m/s2加速运动,拉力F为多大? 7如图所示,质量为m的物体在倾角为θ的粗糙斜面下匀速下滑,求物体与斜面间的滑动摩擦因数。 8.(6分)如图10所示,在倾角为α=37°的斜面上有一块竖直放置的档板,在档板和斜

牛顿第二定律的系统表达式及应用一中

牛顿第二定律的系统表达式 一、整体法和隔离法处理加速度相同的连接体问题 1.加速度相同的连接体的动力学方程: F 合 = (m 1 +m 2 +……)a 分量表达式:F x = (m 1 +m 2 +……)a x F y = (m 1 +m 2 +……)a y 2. 应用情境:已知加速度求整体所受外力或者已知整体受力求整体加速度。 例1、如图,在水平面上有一个质量为M的楔形木块A,其斜面倾角为α,一质量为m的木块B放在A的斜面上。现对A施以水平推力F, 恰使B与A不发生相对滑动,忽略一切摩擦,则B对 A的压力大小为( BD ) A 、 mgcosα B、mg/cosα C、FM/(M+m)cosα D、Fm/(M+m)sinα ★题型特点:隔离法与整体法的灵活应用。 ★解法特点:本题最佳方法是先对整体列牛顿第二定律求出整体加速度,再隔离B受力分析得出A、B之间的压力。省去了对木楔受力分析(受力较烦),达到了简化问题的目的。 例2.质量分别为m1、m2、m3、m4的四个物体彼此用轻绳连接,放在光滑的桌面上,拉力F1、F2分别水平地加在m1、m4上,如图所示。求物体系的加速度a和连接m2、m3轻绳的张力F。(F1>F2) 例3、两个物体A和B,质量分别为m1和m2,互相接触放在光滑水平面上,如图所示,对物体A施以水平的推力F,则物体A对B的作用力等于 ( ) A.F F F F 3、B 解析:首先确定研究对象,先选整体,求出A、B共同的加速度,再单独研究B,B 在A施加的弹力作用下加速运动,根据牛顿第二定律列方程求解. 将m1、m2看做一个整体,其合外力为F,由牛顿第二定律知,F=(m1+m2)a,再以m2为研究对象,受力分析如右图所示,由牛顿第二定律可得:F12=m2a,以上两式联立可得:F12= ,B正确. 例4、在粗糙水平面上有一个三角形木块a,在它的两个粗糙斜面上分别放有质量为m1和m2的两个木块b和c,如图1所示,已知m1>m2,三木块均处于静止, 则粗糙地面对于三角形木块( D ) A.有摩擦力作用,摩擦力的方向水平向右。B.有摩擦力作用,摩擦力的方向水平向左。C.有摩擦力作用,组摩擦力的方向不能确定。D.没有摩擦力的作用。 二、对加速度不同的连接体应用牛顿第二定律1.加速度不同的连接体的动力学方程:b c a

牛顿第二定律经典例题

牛顿第二定律应用的问题 1. 力和运动的关系 力是改变物体运动状态的原因,而不是维持运动的原因。由知,加速度与力有直接关系,分析清楚了力,就知道了加速度,而速度与力没有直接关系。速度如何变化需分析加速度方向与速度方向之间的关系,加速度与速度同向时,速度增加;反之减小。在加速度为零时,速度有极值。 例1. 如图1所示,轻弹簧下端固定在水平面上。一个小球从弹簧正上方某一高度处由静止开始自由下落,接触弹簧后把弹簧压缩到一定程度后停止下落。在小球下落的这一全过程中,下列说法中正确的是() 图1 A. 小球刚接触弹簧瞬间速度最大 B. 从小球接触弹簧起加速度变为竖直向上 C. 从小球接触弹簧到到达最低点,小球的速度先增大后减小 D. 从小球接触弹簧到到达最低点,小球的加速度先减小后增大 例2. 一航天探测器完成对月球的探测任务后,在离开月球的过程中,由静止开始沿着与月球表面成一倾斜角的直线飞行,先加速运动,再匀速运动,探测器通过喷气而获得推动力,以下关于喷气方向的描述中正确的是() A. 探测器加速运动时,沿直线向后喷气 B. 探测器加速运动时,竖直向下喷气 C. 探测器匀速运动时,竖直向下喷气 D. 探测器匀速运动时,不需要喷气

解析:小球的加速度大小决定于小球受到的合外力。从接触弹簧到到达最低点,弹力从零开始逐渐增大,所以合力先减小后增大,因此加速度先减小后增大。当合力与速度同向时小球速度增大,所以当小球所受弹力和重力大小相等时速度最大。故选CD。 解析:受力分析如图2所示,探测器沿直线加速运动时,所受合力方向 与运动方向相同,而重力方向竖直向下,由平行四边形定则知推力方向必须斜向上方,由牛顿第三定律可知,喷气方向斜向下方;匀速运动时,所受合力为零,因此推力方向必须竖直向上,喷气方向竖直向下。故正确答案选C。 图2

牛顿第二定律典型分类习题

1.如图3-2-3所示,斜面是光滑的,一个质量是0.2kg 的小球用细绳吊在倾角为53o 的 斜面顶端.斜面静止时,球紧靠在斜面上,绳与斜面平行;当斜面以8m/s 2的加 速度向右做匀加速运动时,求绳子的拉力及斜面对小球的弹力. 2.如图2所示,跨过定滑轮的轻绳两端,分别系着物体A 和B ,物体A 放在倾角为α的斜面上,已知物体A 的质量为m ,物体A 和斜面间动摩擦因数为μ(μ

1.如图3-2-4所示,m 和M 保持相对静止,一起沿倾角为θ的光滑斜面下滑,则M 和m 间的摩擦力大小是多少? 2、如图3-3-8所示,容器置于倾角为θ的光滑固定斜面上时,容器顶面恰好处于水平状态,容器,顶部有竖直侧壁,有一小球与右端竖直侧壁恰好接触.今让系统从静止开始下滑,容器质量为M ,小球质量为m ,所有摩擦不计.求m 对M 侧壁压力的大小. 3、有5个质量均为m 的相同木块,并列地放在水平地面上,如下图所示。已知木块与地面间的动摩擦因数为μ。当木块1受到水平力F 的作用,5个木块同时向右做匀加速运动,求: (1)匀加速运动的加速度; (2)第4块木块所受合力; (3) 第4木块受到第3块木块作用力的大小. 4.倾角为30°的斜面体置于粗糙的水平地面上,已知斜面体的质量为M=10Kg ,一质量为m=1.0Kg 的木块正沿斜面体的斜面由静止开始加速下滑,木块滑行路程s=1.0m 时,其速度v=1.4m/s ,而斜面体保持静止。求: ⑴求地面对斜面体摩擦力的大小及方向。 ⑵地面对斜面体支持力的大小。 图3-2-4 m M θ 图3-3-8 1 2 3 4 5 F

牛顿第二定律的应用——解决动力学的两类基本问题

牛顿第二定律的应用 (解决动力学的两类基本问题) 知识要点: 1. 进一步学习分析物体的受力情况,达到能结合物体的运动情况进行受力分析。 2. 掌握应用牛顿运动定律解决问题的基本思路和方法。 重点、难点解析: (一)牛顿第一定律内容:物体总保持静止或匀速直线运动状态,直到有外力迫使它改变这种状态为止。 (二)牛顿第三定律 1. 内容:两个物体之间的作用力和反作用力总是大小相等、方向相反、作用在同一直线上。 2. 理解作用力与反作用力的关系时,要注意以下几点: (1)作用力与反作用力同时产生,同时消失,同时变化,无先后之分。 (2)作用力与反作用力总是大小相等,方向相反,作用在同一直线上(与物体的大小,形状,运动状态均无关系。) (3)作用力与反作用力分别作用在受力物体和施力物体上,其作用效果分别体现在各自的受力物体上,所以作用力与反作用力产生的效果不能抵消。(作用力与反作用力能否求和?)(4)作用力与反作用力一定是同种性质的力。(平衡力的性质呢?) (三)牛顿第二定律 1、内容:物体的加速度与物体所受合外力成正比,跟物体质量成反比,加速度方向跟合外力的方向相同。 2、数学表达式:F合=ma 3、关于牛顿第二定律的理解: (1)同体性:F合=ma是对同一物体而言的 (2)矢量性:物体加速度方向与所受合外力方向一致 (3)瞬时性:物体的加速度与所受合外力具有瞬时对应关系 牛顿第二定律的应用 (一)在共点力作用下物体的平衡 1:平衡状态:物体处于静止或匀速直线运动状态,称物体处于平衡状态。 2:平衡条件:在共点力作用下物体的平衡条件是:F合=0。 = = (其中F x合为物体在x轴方向上所受的合外力,F y合为物体在y轴方向上所受的合外力)(二)两类动力学的基本问题 1. 从受力情况确定运动情况 根据物体的受力情况,可由牛顿第二定律求出物体的加速度,再通过运动学的规律确定物体的运动情况。 2. 从运动情况确定受力情况 根据物体的运动情况,可由运动学公式求出物体的加速度,再通过牛顿第二定律确定物体所受的外力。 3. 分析这两点问题的关键是抓住受力情况和运动情况的桥梁-——加速度。 4. 求解这两类问题的思路,可由下面的框图来表示。

牛顿第二定律各种典型题型

牛顿第二定律 牛顿第二定律 1.内容物体加速度的大小跟它受到的作用力成正比、跟它的质量成反比,加速度的方向跟作用力的方向相同。 2.表达式F=ma。 3.“五个”性质 考点一错误!瞬时加速度问题 1.一般思路:分析物体该时的受力情况―→错误!―→错误! 2.两种模型 (1)刚性绳(或接触面):一种不发生明显形变就能产生弹力的物体,剪断(或脱离)后,弹力立即改变或消失,不需要形变恢复时间,一般题目中所给的细线、轻杆和接触面在不加特殊说明时,均可按此模型处理。 (2)弹簧(或橡皮绳):当弹簧的两端与物体相连(即两端为固定端)时,由于物体有惯性,弹簧的长度不会发生突变,所以在瞬时问题中,其弹力的大小认为是不变的,即此时弹簧的弹力不突变。 [例] (多选)(2014·南通第一中学检测)如图所示,A、B球的质量相等,弹簧的质量不计,倾角为θ的斜面光滑,系统静止时,弹簧与细线均平行于斜面,在细线被烧断的瞬间,下列说法正确的是() A.两个小球的瞬时加速度均沿斜面向下,大小均为gsin θ B.B球的受力情况未变,瞬时加速度为零 C.A球的瞬时加速度沿斜面向下,大小为2g sin θ D.弹簧有收缩的趋势,B球的瞬时加速度向上,A球的瞬时加速度向下,瞬时加速度都不为零

[例](2013·吉林模拟)在动摩擦因数μ=0.2的水平面上有一个质量为m=2 kg的小球,小球与水平轻弹簧及与竖直方向成θ=45°角的不可伸长的轻绳一端相连,如图所示,此时小球处于静止平衡状态,且水平面对小球的弹力恰好为零。当剪断轻绳的瞬间,取g=10 m/s2,以下说法正确的是( ) A.此时轻弹簧的弹力大小为20 N B.小球的加速度大小为8 m/s2,方向向左 C.若剪断弹簧,则剪断的瞬间小球的加速度大小为10 m/s2,方向向右 D.若剪断弹簧,则剪断的瞬间小球的加速度为0 针对练习:(2014·苏州第三中学质检)如图所示,质量分别为m、2m的小球A、B,由轻质弹簧相连后再用细线悬挂在电梯内,已知电梯正在竖直向上做匀加速直线运动,细线中的拉力为F,此时突然剪断细线。在线断的瞬间,弹簧的弹力的大小和小球A的加速度的大小分别为( ) A.错误!,错误!+gB.错误!,错误!+g C.错误!,错误!+g D.错误!,\f(F,3m)+g 4.(2014·宁夏银川一中一模)如图所示,A、B两小球分别连在轻线两端,B球另一端与弹簧相连,弹簧固定在倾角为30°的光滑斜面顶端.A、B两小球的质量分别为m A、m B,重力加速度为g,若不计弹簧质量,在线被剪断瞬间,A、B A.都等于错误! B.错误!和0 C.错误!和错误!·错误!?D.错误!·错误!和错误! 考点二错误!动力学的两类基本问题分析 (1)把握“两个分析”“一个桥梁”两个分析:物体的受力分析和物体的运动过程分析。一个桥梁:物体运动的加速度是联系运动和力的桥梁。 (2)寻找多过程运动问题中各过程间的相互联系。如第一个过程的末速度就是下一个过程的初速度,画图找出各过程间的位移联系。

牛顿第二定律总结

牛顿第二定律应用的典型问题 1. 力和运动的关系 例1. 如图1所示,轻弹簧下端固定在水平面上。一个小球从弹簧正上方某一高度处由静止开始自由下落,接触弹簧后把弹簧压缩到一定程度后停止下落。在小球下落的这一全过程中,下列说法中正确的是() A. 小球刚接触弹簧瞬间速度最大 B. 从小球接触弹簧起加速度变为竖直向上 C. 从小球接触弹簧到到达最低点,小球的速度先增大后减小 D. 从小球接触弹簧到到达最低点,小球的加速度先减小后增大 例2. 一航天探测器完成对月球的探测任务后,在离开月球的过程中,由静止开始沿着与月球表面成一倾斜角的直线飞行,先加速运动,再匀速运动,探测器通过喷气而获得推动力,以下关于喷气方向的描述中正确的是() A. 探测器加速运动时,沿直线向后喷气 B. 探测器加速运动时,竖直向下喷气 C. 探测器匀速运动时,竖直向下喷气 D. 探测器匀速运动时,不需要喷气 故正确答案选C。 2. 力和加速度的瞬时对应关系 (1)物体运动的加速度a与其所受的合外力F有瞬时对应关系。每一瞬时的加速度只取决于这一瞬时的合外力,而与这一瞬时之间或瞬时之后的力无关。若合外力变为零,加速度也立即变为零(加速度可以突变)。这就是牛顿第二定律的瞬时性。 (2)中学物理中的“绳”和“线”,一般都是理想化模型,具有如下几个特性: ①轻,即绳(或线)的质量和重力均可视为零。由此特点可知,同一根绳(或线)的两端及其中间各点的张力大小相等。 ②软,即绳(或线)只能受拉力,不能承受压力(因绳能弯曲)。由此特点可知,绳与其他物体相互作用力的方向是沿着绳子且背离受力物体的方向。 ③不可伸长:即无论绳子所受拉力多大,绳子的长度不变。由此特点知,绳子中的张力可以突变。 (3)中学物理中的“弹簧”和“橡皮绳”,也是理想化模型,具有如下几个特性: ①轻:即弹簧(或橡皮绳)的质量和重力均可视为零。由此特点可知,同一弹簧的两端及其中间各点的弹力大小相等。 ②弹簧既能受拉力,也能受压力(沿弹簧的轴线);橡皮绳只能受拉力,不能承受压力(因橡皮绳能弯曲)。 ③由于弹簧和橡皮绳受力时,其形变较大,发生形变需要一段时间,所以弹簧和橡皮绳中的弹力不能突变。但是,当弹簧和橡皮绳被剪断时,它们所受的弹力立即消失。

牛顿第二定律典型例题

牛顿第二定律典型例题 一、力的瞬时性 1、无论绳所受拉力多大,绳子的长度不变,由此特点可知,绳子中的张力可以突变. 2、弹簧和橡皮绳受力时,要发生形变需要一段时间,所以弹簧和橡皮绳中的弹力不能突变,但是,当弹簧或橡皮绳被剪断时,它们所受的弹力立即消失. 【例1】如图3-1-2所示,质量为m 的小球与细线和轻弹簧连接后被悬挂起来,静止平衡时AC 和BC 与过C 的竖直 线的夹角都是600 ,则剪断AC 线瞬间,求小球的加速度;剪断B 处弹簧的瞬间,求小球的加速度. 练习 1、(2010年全国一卷)15.如右图,轻弹簧上端与一质量为m 的木块1相连,下端与另一质量为M 的木块2相连,整 个系统置于水平放置的光滑木坂上,并处于静止状态。现将木板沿水平方向突然抽出,设抽出后的瞬间,木块1、2的加速度大小分别为1a 、2a ?重力加速度大小为g ?则有 A. 10a =,2a g = B. 1a g =,2a g = C. 120, m M a a g M +== D. 1a g =,2m M a g M += 2、一物体在几个力的共同作用下处于静止状态.现使其中向东的一个力F 的值逐渐减小到零,又马上使其恢复到原值(方向不变),则( ) A .物体始终向西运动 B .物体先向西运动后向东运动 C .物体的加速度先增大后减小 D .物体的速度先增大后减小 3、如图3-1-13所示的装置中,中间的弹簧质量忽略不计,两个小球质量皆为m ,当剪断上端的绳子OA 的瞬间.小球A 和B 的加速度多大? 4、如图3-1-14所示,在两根轻质弹簧a 、b 之间系住一小球,弹簧的另外两端分别固定在地面和天花板上同 图3-1-13 图3-1-2 图3-1-14

牛顿第二定律的应用

牛顿第二定律的应用 Prepared on 22 November 2020

寒假作业4 (考查:牛顿第二定律的应用) 一、选择题(1-12单选,13-22多选) 1.如图,水平面上一个物体向右运动,将弹簧压缩,随后又被弹回直到离开弹簧,则该物体从接触弹簧到离开弹簧的这个过程中,下列说法中正确的是( ) A. 若接触面光滑,则物体加速度的大小是先减小后增大 B. 若接触面光滑,则物体加速度的大小是先增大后减小再增大 C. 若接触面粗糙,则物体加速度的大小是先减小后增大 D. 若接触面粗糙,则物体加速度的大小是先增大后减小再增大 2.静止在光滑的水平面上的物体,在水平推力F的作用下开始运动,推力F 随时间t变化的规律如图所示,则物体在 1 0~t时间内( ) A. 速度一直增大 B. 加速度一直增大 C. 速度先增大后减小 D. 位移先增大后减小 3.质量为M的木块位于粗糙水平桌面上,若用大小为F的水平恒力拉木块时,其加速度为a,当拉力方向不变,大小变为2F时,木块的加速度大小为a′,则 () A. 2a>a′ B. 2a

用牛顿运动定律解决问题(二)(精选练习)(解析版)

人教版物理必修1第四章《牛顿运动定律》 第七节用牛顿运动定律解决问题(二) 精选练习 一、夯实基础 1.当物体在共点力的作用下处于平衡状态时,下列说法正确的是() A.物体一定保持静止B.物体一定做匀速直线运动 C.物体的加速度为零D.物体一定做匀加速直线运动 【答案】 C 【解析】平衡状态指的是匀速直线运动状态或静止状态,物体在共点力的作用下处于平衡状态时,可能 做匀速直线运动,也可能处于静止状态,A、B、D选项错误;物体处于平衡状态的条件是合力为零,加速 度为零,C选项正确. 2.(多选)下列事例中的物体处于平衡状态的是() A.“神舟”号飞船匀速落到地面的过程B.汽车在水平路面上启动或刹车的过程 C.汽车停在斜坡上D.竖直上抛的物体在到达最高点的那一瞬间 【答案】:AC 【解析】:物体处于平衡状态,从运动状态来说,即物体保持静止或做匀速直线运动.从受力情况来说,物 体所受合力为零.“神舟”号飞船匀速落到地面的过程中,飞船处于平衡状态,A正确;B项中汽车在水平路面上启动或刹车过程中,汽车的速度在增大或减小,其加速度不为零,其合力不为零,所以汽车不是处于 平衡状态;C项中汽车停在斜坡上,速度和加速度均为零,合力为零,保持静止状态不变,即汽车处于平衡 状态;D项中物体上升到最高点时,只是速度为零,而加速度为g,所以物体不是处于平衡状态. 3.(多选)电梯的顶部拴一弹簧秤,弹簧秤下端挂一重物,电梯静止时,电梯中的人观察到弹簧秤的示数为10 N.某时刻电梯中的人观察到弹簧秤的示数为12 N,取g=10 m/s2,则此时() A.电梯可能向上加速运动,加速度大小为 2 m/s2 B.电梯可能向上减速运动,加速度大小为 2 m/s2 C.电梯中的人一定处于超重状态 D.电梯中的人一定处于平衡状态 【答案】AC 【解析】弹簧秤的示数增大,根据牛顿第二定律得,F-mg=ma,解得加速度a=2 m/s2,方向向上,电

牛顿第二定律练习题经典好题94107

A B F 牛顿定律(提高) 1、质量为m 的物体放在粗糙的水平面上,水平拉力F 作用于物体上,物体产生的加速度为a 。若作用在物体上的水平拉力变为2F,则物体产生的加速度 A 、小于a B 、等于a C 、在a和2a 之间 D、大于2a 2、用力F1单独作用于某一物体上可产生加速度为3m/s 2,力F 2单独作用于这一物体可产 生加速度为1m/s 2,若F 1、F 2同时作用于该物体,可能产生的加速度为 A、1 m/s2 B 、2 m /s 2 C 、3 m/s 2 D 、4 m/s 2 3、一个物体受到两个互相垂直的外力的作用,已知F 1=6N,F2=8N,物体在这两个力的 作用下获得的加速度为2.5m/s 2,那么这个物体的质量为 kg。 4、如图所示,A、B 两球的质量均为m,它们之间用一根轻弹簧相连,放在光滑的水平面上,今用力将球向左推,使弹簧压缩,平衡后突然将F 撤去,则在此瞬间 A 、A 球的加速度为F /2m B 、B 球的加速度为F/m C 、B 球的加速度为F/2m D 、B 球的加速度为0 5如图3-3-1所示,A、B 两个质量均为m 的小球之间用一根轻弹簧(即不计其质量)连接,并用细绳悬挂在天花板上,两小球均保持静止.若用火将细绳烧断,则在绳刚断的这一瞬间,A 、B 两球的加速度大小分别是 A .a A =g; a B =gB .a A =2g ;a B =g C .a A=2g ;a B =0 D.a A =0 ; aB =g 6.(8分)如图6所示,θ=370,sin 370=0.6,cos370=0.8。箱子重G =200N,箱子与地面的动摩擦因数μ=0.30。(1)要匀速拉动箱子,拉力F 为多大? (2)以加速度a =10m/s2加速运动,拉力F 为多大? 图3-3-1 B A

高一物理牛顿第二定律典型例题答案及讲解

高一物理牛顿第二定律典型例题讲解与错误分析【例1】在光滑水平面上的木块受到一个方向不变,大小从某一数值逐渐变小的外力作用时,木块将作[ ] A.匀减速运动 B.匀加速运动 C.速度逐渐减小的变加速运动 D.速度逐渐增大的变加速运动 【分析】木块受到外力作用必有加速度,已知外力方向不变,数值变小,根据牛顿第二定律可知,木块加速度的方向不变,大小在逐渐变小,也就是木块每秒增加的速度在减少,由于加速度方向与速度方向一致,木块的速度大小仍在不断增加,即木块作的是加速度逐渐减小速度逐渐增大的变加速运动. 【答】D. 【例2】一个质量m=2kg的木块,放在光滑水平桌面上,受到三个大小均为F=10N、与桌面平行、互成120°角的拉力作用,则物体的加速度多大若把其中一个力反向,物体的加速度又为多少【分析】物体的加速度由它所受的合外力决定.放在水平桌面上的木块共受到五个力作用:竖直方向的重力和桌面弹力,水平方向的三个拉力.由于木块在竖直方向处于力平衡状态,因此,只需由水平拉力算出合外力即可由牛顿第二定律得到加速度. (1)由于同一平面内、大小相等、互成120°角的三个力的合力等于零,所以木块的加速度a=0. (2)物体受到三个力作用平衡时,其中任何两个力的合力必与第三个力等值反向.如果把某一个力反向,则木块所受的合力F合=2F=20N,所以其加速度为: 它的方向与反向后的这个力方向相同. 【例3】沿光滑斜面下滑的物体受到的力是[ ] A.力和斜面支持力 B.重力、下滑力和斜面支持力 C.重力、正压力和斜面支持力 D.重力、正压力、下滑力和斜面支持力

【误解一】选(B)。 【误解二】选(C)。 【正确解答】选(A)。 【错因分析与解题指导】[误解一]依据物体沿斜面下滑的事实臆断物体受到了下滑力,不理解下滑力是重力的一个分力,犯了重复分析力的错误。[误解二]中的“正压力”本是垂直于物体接触表面的力,要说物体受的,也就是斜面支持力。若理解为对斜面的正压力,则是斜面受到的力。 在用隔离法分析物体受力时,首先要明确研究对象并把研究对象从周围物体中隔离出来,然后按场力和接触力的顺序来分析力。在分析物体受力过程中,既要防止少分析力,又要防止重复分析力,更不能凭空臆想一个实际不存在的力,找不到施力物体的力是不存在的。 【例4】图中滑块与平板间摩擦系数为μ,当放着滑块的平板被慢慢地绕着左端抬起,α角由0°增大到90°的过程中,滑块受到的摩擦力将[ ] A.不断增大 B.不断减少 C.先增大后减少 D.先增大到一定数值后保持不变 【误解一】选(A)。 【误解二】选(B)。 【误解三】选(D)。 【正确解答】选(C)。 【错因分析与解题指导】要计算摩擦力,应首先弄清属滑动摩擦力还是静摩擦力。 若是滑动摩擦,可用f=μN计算,式中μ为滑动摩擦系数,N是接触面间的正压力。若是静摩擦,一般应根据物体的运动状态,利用物理规律(如∑F=0或∑F = ma)列方程求解。若是最大静摩擦,可用f=μsN计算,式中的μs是静摩擦系数,有时可近似取为滑动摩擦系数,N是接触面间的正压力。 【误解一、二】都没有认真分析物体的运动状态及其变化情况,而是简单地把物体受到的摩擦力当作是静摩擦力或滑动摩擦力来处理。事实上,滑块所受摩擦力的性质随着α角增大会发生变

高中物理:4.6应用牛顿第二定律解决问题

高中物理应用牛顿第二定律解决问题 (答题时间:30分钟) 1. 如图中A为电磁铁,C为胶木秤盘,A和C(包括支架)的总质量为M,B为铁片,质量为m,整个装置用轻绳悬挂于O点,当电磁铁通电,铁片被吸引上升的过程中,轻绳上的拉力F的大小为() A. F=mg B mg < F <(M+m)g C. F=(M+m)g D F >(M+m)g 2. 如图所示,在探究牛顿第二定律的演示实验中,若1、2两个相同的小车所受拉力分别为F1、F2,车中所放砝码的质量分别为m1、m2,打开夹子后经过相同的时间,两车的位移分别为x1、x2,则在实验误差允许的范围内,有() A. 当m1=m2、F1=2F2时,x1=2x2 B. 当m1=m2、F1=2F2时,x2=2x1 C. 当m1=2m2时,x1=2x2 D. 当m1=2m2、F1=F2时,x2=2x1 3. 如图所示,质量为1.2kg的金属块放在水平桌面上,在与水平方向成37°角斜向上、大小为 4.0N的拉力作用下,以10.0m/s的速度向右做匀速直线运动。已知sin37o=0.6, cos37o=0.8,g取10m/s2,求: (1)金属块与桌面间的动摩擦因数; (2)若从某时刻起将与水平方向成37°角斜向右上方的拉力F变成与水平方向成37°角斜向左下方的推力(如图)F1=8.0N,求在换成推力F1后的2s时间内金属块所经过的路程。

4. 在水平地面上有质量为4kg的物体,物体在水平拉力F作用下由静止开始运动,10s 后拉力减为F/3,该物体的速度-时间图象如下图所示,则水平拉力F=________N,物体与地面间的动摩擦因数μ=____________。 5. 如下图所示为某些同学根据实验数据画出的图象,下列说法中正确的是() A. 形成图甲的原因是平衡摩擦力时长木板倾角过大 B. 形成图乙的原因是平衡摩擦力时长木板倾角过小 C. 形成图丙的原因是平衡摩擦力时长木板倾角过大 D. 形成图丁的原因是平衡摩擦力时长木板倾角过小 6. 如图所示,一足够长的木板静止在光滑水平面上,一物块静止在木板上,木板和物块间有摩擦,现用水平力向右拉木板,当物块相对木板滑动了一段距离但仍有相对运动时,撤掉拉力,此后木板和物块相对于水平面的运动情况为() A. 物块先向左运动,再向右运动 B. 物块向右运动,速度逐渐增大,直到做匀速运动 C. 木板向右运动,速度逐渐变小,直到做匀速运动 D. 木板和物块的速度都逐渐变小,直到为零 7. 下图为蹦极运动的示意图,弹性绳的一端固定在O点,另一端和运动员相连,运动员从O点自由下落,至B点弹性绳自然伸直,经过合力为零的C点到达最低点D,然后弹起,整个过程中忽略空气阻力,分析这一过程,下列表述正确的是()

高中物理牛顿第二定律经典例题

牛顿第二运动定律 【例1】物体从某一高度自由落下,落在直立于地面的轻弹簧上,如图3-2所示,在A点物体开始与弹簧接触,到B点时,物体速度为零,然后被弹回,则以下说法正确的是: A、物体从A下降和到B的过程中,速率不断变小 B、物体从B上升到A的过程中,速率不断变大 C、物体从A下降B,以及从B上升到A的过程中,速 率都是先增大,后减小 D、物体在B点时,所受合力为零 的对应关系,弹簧这种特 【解析】本题主要研究a与F 合 殊模型的变化特点,以及由物体的受力情况判断物体的 运动性质。对物体运动过程及状态分析清楚,同时对物 =0,体正确的受力分析,是解决本题的关键,找出AB之间的C位置,此时F 合 由A→C的过程中,由mg>kx1,得a=g-kx1/m,物体做a减小的变加速直线运动。在C位置mg=kx c,a=0,物体速度达最大。由C→B的过程中,由于mgf m′,(新情况下的最大静摩擦力),可见f m>f m′即是最大静摩擦力减小了,由f m=μN知正压力N减小了,即发生了失重现象,故物体运动的加速度必然竖直向下,所以木箱的运动情况可能是加速下降或减速上升,故A、B正确。另一种原因是木箱向左加速运动,由于惯性原因,木块必然向中滑动,故D 正确。 综合上述,正确答案应为A、B、D。 【例3】如图3-11所示,一细线的一端固定于倾角为45°度的光滑楔形滑块A 的顶端p处,细线的另一端栓一质量为m的小球,当滑块以2g的加速度向左运动时,线中拉力T等于多少? 【解析】当小球贴着滑块一起向左运动时,小球受到三个力作用:重力mg、线 中拉力T,滑块A的支持力N,如 图3-12所示,小球在这三个力作用 下产生向左的加速度,当滑块向左

牛顿第二定律及其应用 知识讲解 基础篇

物理总复习:牛顿第二定律及其应用 【考纲要求】 1、理解牛顿第二定律,掌握解决动力学两大基本问题的基本方法; 2、了解力学单位制; 3、掌握验证牛顿第二定律的基本方法,掌握实验中图像法的处理方法。 【知识网络】 牛顿第二定律内容:物体运动的加速度与所受的合外力成正比,与物体的质量成反比,加速度的方向与合外力相同。 解决动力学两大基本问题 (1)已知受力情况求运动情况。 (2)已知物体的运动情况,求物体的受力情况。 运动=F ma ???→←??? 合力 加速度是运动和力之间联系的纽带和桥梁 【考点梳理】 要点一、牛顿第二定律 1、牛顿第二定律 牛顿第二定律内容:物体运动的加速度与所受的合外力成正比,与物体的质量成反比,加速度的方向与合外力相同。 要点诠释:牛顿第二定律的比例式为F ma ∝;表达式为F ma =。1 N 力的物理意义是使质量为m=1kg 的物体产生21/a m s =的加速度的力。 几点特性:(1)瞬时性:牛顿第二定律是力的瞬时作用规律,力是加速度产生的根本原因,加速度与力同时存在、同时变化、同时消失。 (2)矢量性: F ma =是一个矢量方程,加速度a 与力F 方向相同。 (3)独立性:物体受到几个力的作用,一个力产生的加速度只与此力有关,与其他力无关。 (4)同体性:指作用于物体上的力使该物体产生加速度。 要点二、力学单位制 1、基本物理量与基本单位 力学中的基本物理量共有三个,分别是质量、时间、长度;其单位分别是千克、秒、米;其表示的符号分别是kg 、s 、m 。 在物理学中,以质量、长度、时间、电流、热力学温度、发光强度、物质的量共七个物理量 作为基本物理量。以它们的单位千克(kg )、米(m )、秒(s )、安培(A )、开尔文(K )、坎 德拉(cd )、摩尔(mol )为基本单位。 2、 基本单位的选定原则 (1)基本单位必须具有较高的精确度,并且具有长期的稳定性与重复性。 (2)必须满足由最少的基本单位构成最多的导出单位。 (3)必须具备相互的独立性。 在力学单位制中选取米、千克、秒作为基本单位,其原因在于“米”是一个空间概念;“千克”是一个表述质量的单位;而“秒”是一个时间概念。三者各自独立,不可替代。 例、关于力学单位制,下列说法正确的是( ) A .kg 、m/s 、N 是导出单位 B .kg 、m 、s 是基本单位 C .在国际单位制中,质量的单位可以是kg ,也可以是g D .只有在国际单位制中,牛顿第二定律的表达式才是 F ma = 【答案】BD

牛顿第二定律经典练习题

牛顿运动定律练习题 1.用2N的水平力拉一个物体沿水平面运动时,物体可获得1m/s2的加速度; 用3N的水平力拉物体沿原地面运动,加速度是2m/s2,那么改用4N的水平力拉物体,物体在原地面上运动的加速度是______m/s2,物体在运动中受滑动摩擦力大小为______N. 2. 一轻质弹簧上端固定,下端挂一重物体,平衡时弹簧伸长4cm,现将重物体向下拉1cm然后放开,则在刚放开的瞬时,重物体的加速度大小为( ). (A)2.5m/s2 (B)7.5m/s2 (C)10m/s2 (D)12.5m/s2 3.在粗糙的水平面上,物体在水平推力作用下由静止开始作匀加速直线运动,作用一段时间后,将水平推力逐渐减小到零,则在水平推力逐渐减小到零的过程中( ) (A)物体速度逐渐减小,加速度逐渐减小 (B)物体速度逐渐增大,加速度逐渐减小 (C)物体速度先增大后减小,加速度先增大后减小 (D)物体速度先增大后减小,加速度先减小后增大 4. 物体在水平地面上受到水平推力的作用,在6s内力F的变化和速度v的变化如图所示,则物体的质量为______kg,物体与地面的动摩擦因数为______. 5.质量为20kg的物体若用20N的水平力牵引它,刚好能在水平面上匀速前进.问:若改用50N拉力、沿与水平方向成37°的夹角向斜上方拉它,使物体由静止出发在水平而上前进2.3m,它的速度多大?在前进2.3m时撤去拉力,又经过3s,物体的速度多大(g取10m/s2)?

6. 如图所示,自由下落的小球,从它接触竖直放置的弹簧开始,到弹簧被压缩到最短的过程中,小球的速度和所受外力的合力变化情况是( ). (A)合力变小,速度变小 (B)合力变小,速度变大 (C)合力先变小后变大,速度先变大后变小 (D)合力先变大后变小,速度先变小后变大 7.如图,在光滑的水平面上,推力F大小为10N,木块A的质量为3kg,木块B 的质量为2kg,在推力F的作用下,A、B从静止开始一起向右做匀加速直线运动,求: (1)第3秒末,A、B的速度大小; (2)A与B之间的相互作用力的大小。 (3)

牛顿第二定律经典好题

牛顿第二定律瞬间问题 1.如图所示,一木块在光滑水平面上受一恒力F作用而运动,前方固定一个弹簧,当木块接触弹簧后( ) A.将立即做变减速运动 B.将立即做匀减速运动 C.在一段时间内仍然做加速运动,速度继续增大 D.在弹簧处于最大压缩量时,物体的加速度为零 解析:因为水平面光滑,物块与弹簧接触前,在推力的作用下做加速运动,与弹簧接触后,随着压缩量的增加,弹簧弹力不断变大,弹力小于推力时,物体继续加速,弹力等于推力时,物体的加速度减为零,速度达到最大,弹力大于推力后,物体减速,当压缩量最大时,物块静止. 答案:C 2.(2017届浏阳一中月考)搬运工人沿粗糙斜面把一个物体拉上卡车,当力沿斜面向上,大小为F时,物体的加速度为a1;若保持力的方向不变,大小变为2F时,物体的加速度为a 2 ,则( ) A.a1=a2B.a1<a2<2a1 C.a2=2a1D.a2>2a1 解析:当力沿斜面向上,大小为F时,物体的加速度为a1,则F-mg sinθ-μmg cos θ=ma1;保持力的方向不变,大小变为2F时,物体的加速度为a2,2F-mg sinθ-μmg cos θ=ma2;可见a2>2a1;综上本题选D. 答案:D 3.(2017届天津一中月考)如图所示,A、B、C三球质量均为m,轻质弹簧一端固定在斜面顶端、另一端与A球相连,A、B间固定一个轻杆,B、C间由一轻质细线连接.倾角为θ的光滑斜面固定在地面上,弹簧、轻杆与细线均平行于斜面,初始系统处于静止状态,细线被烧断的瞬间,下列说法正确的是( ) A.A球的受力情况未变,加速度为零 B.C球的加速度沿斜面向下,大小为g C.A、B之间杆的拉力大小为2mg sinθ D.A、B两个小球的加速度均沿斜面向上,大小均为 1 2 g sinθ 解析:细线被烧断的瞬间,以A、B整体为研究对象,弹簧弹力不变,细线拉力突变为0,合力不为0,加速度不为0,故A错误;对球C,由牛顿第二定律得:mg sinθ=ma,解得:a=g sinθ,方向向下,故B错误;以A、B、C组成的系统为研究对象,烧断细线前,A、B、C静止,处于平衡状态,合力为零,弹簧的弹力f=3mg sinθ,烧断细线的瞬间,由于弹簧弹力不能突变,弹簧弹力不变,以A、B为研究对象,由牛顿第二定律得:3mg sinθ-2mg sinθ=2ma,则B的加速度a= 1 2 g sinθ,故D正确;由D可知,B的加速度为a= 1 2 g sin θ,以B为研究对象,由牛顿第二定律得T-mg sinθ=ma.解得:T= 3 2 mg sinθ,故C错误;故选D. 答案:D 9.如图所示,质量分别为m、2m的两物块A、B中间用轻弹簧相连,A、B与水平面间的动摩擦因数均为μ,在水平推力F作用下,A、B一起向右做加速度大小为a的匀加速直线运动。当突然撤去推力F的瞬间,A、B两物块的加速度大小分别为( ) A.aA=2a+3μg B.aA=2(a+μg) C.aB=a D.aB=a+μg 答案 AC

相关文档
最新文档