电阻率和表面电阻率

电阻率和表面电阻率
电阻率和表面电阻率

高阻计法测定高分子材料体积电阻率和表面电阻率

2010年03月07日10:37 admins 学习时间:20分钟评论 0条高分子材料的电学性能是指在外加电场作用下材料所表现出来的介电性能、导电性能、电击穿性质以

及与其他材料接触、摩擦时所引起的表面静电性质等。最基本的是电导性能和介电性能,前者包括电导(电导率γ,电阻率ρ=1/γ)和电气强度(击穿强度Eb);后者包括极化(介电常数εr)和介质损耗(损耗因数tg δ)。共四个基本参数。

种类繁多的高分子材料的电学性能是丰富多彩的。就导电性而言,高分子材料可以是绝缘体、半导体和导体,如表1所示。多数聚合物材料具有卓越的电绝缘性能,其电阻率高、介电损耗小,电击穿强度高,加之又具有良好的力学性能、耐化学腐蚀性及易成型加工性能,使它比其他绝缘材料具有更大实用价值,已成为电气工业不可或缺的材料。高分子绝缘材料必须具有足够的绝缘电阻。绝缘电阻决定于体积电阻与表面电阻。由于温度、湿度对体积电阻率和表面电阻率有很大影响,为满足工作条件下对绝缘电阻的要求,

必须知道体积电阻率与表面电阻率随温度、湿度的变化。

表1 各种材料的电阻率范围

材料电阻率(Ω·m) 材料电阻率(Ω·m)

超导体导体≤10-810-8~10-5半导体绝缘体10-5~107 107~1018

除了控制材料的质量外,测量材料的体积电阻率还可用来考核材料的均匀性、检测影响材料电性能的

微量杂质的存在。当有可以利用的相关数据时,绝缘电阻或电阻率的测量可以用来指示绝缘材料在其他方面的性能,例如介质击穿、损耗因数、含湿量、固化程度、老化等。表2为高分子材料的电学性能及其研

究的意义。

表2 高分子材料的电学性能及测量的意义

电学性能电导性能

①电导(电导率γ,电阻率ρ=1/γ)

②电气强度(击穿强度Eb)

介电性能

③极化(介电常数εr)

④介电损耗(损耗因数tanδ)

测量的意义实际意义

①电容器要求材料介电损耗小,介电常数大,电气强度高。

②仪表的绝缘要求材料电阻率和电气强度高,介电损耗低。

③高频电子材料要求高频、超高频绝缘。

④塑料高频干燥、薄膜高频焊接、大型制件的高频热处理要求材料

介电损耗大。

⑤纺织和化工为消除静电带来的灾害要求材料具适当导电性。理论意义研究聚合物结构和分子运动。

1 目的要求

了解超高阻微电流计的使用方法和实验原理。

测出高聚物样品的体积电阻率及表面电阻率,分析这些数据与聚合物分子结构的内在联系。

2 原理

名词术语

1) 绝缘电阻:施加在与试样相接触的二电极之间的直流电压除以通过两电极的总电流所得的商。它取决于体积电阻和表面电阻。

2) 体积电阻:在试样的相对两表面上放置的两电极间所加直流电压与流过两个电极之间的稳态电流之商;该电流不包括沿材料表面的电流。在两电极间可能形成的极化忽略不计。

3) 体积电阻率:绝缘材料里面的直流电场强度与稳态电流密度之商,即单位体积内的体积电阻。

4) 表面电阻:在试样的某一表面上两电极间所加电压与经过一定时间后流过两电极间的电流之商;该电流主要为流过试样表层的电流,也包括一部分流过试样体积的电流成分。在两电极间可能形成的极化忽略不计。

表面电阻率:在绝缘材料的表面层的直流电场强度与线电流密度之商,即单位面积内的表面电阻。

测量原理

根据上述定义,绝缘体的电阻测量基本上与导体的电阻测量相同,其电阻一般都用电压与电流之比得到。现有的方法可分为三大类:直接法,比较法,时间常数法。

这里介绍直接法中的直流放大法,也称高阻计法。该方法采用直流放大器,对通过试样的微弱电流经过放大后,推动指示仪表,测量出绝缘电阻,基本原理见图1。

图1 ZC36型1017Ω超高电阻测试仪测试原理图。

U—测试电压(V);R0—输入电阻(Ω);RX—被测试试样的绝缘电阻(Ω)

当R0《Rx时,则 Rx=(U/U0)·R0 (1)

式中:Rx——试样电阻,(Ω),

U——试验电压,(V),

U0——标准电阻R0两端电压,(V),

R0——标准电阻,(Ω)。

测量仪器中有数个不同数量级的标准电阻,以适应测不同数量级Rx的需要,被测电阻可以直接读出。高阻计法一般可测1017Ω以下的绝缘电阻。

从Rx的计算公式看到Rx的测量误差决定于测量电压U、标准电阻R0以及标准电阻两端的电压U0的误差。

测量技术

通常,绝缘材料用于电气系统的各部件相互绝缘和对地绝缘,固体绝缘材料还起机械支撑作用。一般希望材料有尽可能高的绝缘电阻,并具有合适的机械、化学和耐热性能。

绝缘材料的电阻率一般都很高,也就是传导电流很小。如果不注意外界因素的干扰和漏电流的影响,测量结果就会发生很大的误差。同时绝缘材料本身的吸湿性和环境条件的变化对测量结果也有很大影响。

影响体积电阻率和表面电阻率测试的主要因素是温度和湿度、电场强度、充电时间及残余电荷等。体积电阻率可作为选择绝缘材料的一个参数,电阻率随温度和湿度的变化而显著变化。体积电阻率的测量常常用来检查绝缘材料是否均匀,或者用来检测那些能影响材料质量而又不能用其他方法检测到的导电杂质。

由于体积电阻总是要被或多或少地包括到表面电阻的测试中去,因此只能近似地测量表面电阻,测得的表面电阻值主要反映被测试样表面污染的程度。所以,表面电阻率不是表征材料本身特性的参数,而是一个有关材料表面污染特性的参数。当表面电阻较高时,它常随时间以不规则的方式变化。测量表面电阻通常都规定1min的电化时间。

(1)温度和湿度:固体绝缘材料的绝缘电阻率随温度和湿度的升高而降低,特别是体积电阻率随温度改变而变化非常大。因此,电瓷材料不但要测定常温下的体积电阻率,而且还要测定高温下的体积电阻率,以评定其绝缘性能的好坏。由于水的电导大,随着湿度增大,表面电阻率和有开口孔隙的电瓷材料的体积电阻率急剧下降。因此,测定时应严格地按照规定的试样处理要求和测试的环境条件下进行。

(2)电场强度:当电场强度比较高时,离子的迁移率随电场强度增高而增大,而且在接近击穿时还会出现大量的电子迁移,这时体积电阻率大大地降低。因此在测定时,施加的电压应不超过规定的值。

(3)残余电荷:试样在加工和测试等过程中,可能产生静电,电阻越高越容易产生静电,影响测量的准确性。因此,在测量时,试样要彻底放电,即可将几个电极连在一起进行短路。

(4)杂散电势的消除:在绝缘电阻测量电路中,可能存在某些杂散电势,如热电势、电解电势、接触电势等,其中影响最大的为电解电势。用高阻计测量表面潮湿的试样的体积电阻时,测量极与保护极间可产生20mv的电势。试验前应检查有无杂散电势。可根据试样加压前后高阻计的二次指示是否相同来判断有无杂散电势。如相同,证明无杂散电势;否则应当寻找并排除产生杂散电势的根源,才能进行测量。

(5)防止漏电流的影响:对于高电阻材料,只有采取保护技术才能去除漏电流对测量的影响。保护技术就是在引起测量误差的漏电路径上安置保护导体,截住可能引起测量误差的杂散电流,使之不流经测量回路或仪表。保护导体连接在一起构成保护端,通常保护端接地。测量体积电阻时,三电极系统的保护极就是保护导体。此时要求保护电极和测量电极间的试样表面电阻高于与它并联元件的电阻10~100倍。线路接好后,应首先检查是否存在漏电。此时断开与试样连接的高压线,加上电压。如在测量灵敏度范围内,测量仪器指示的电阻值为无限大,则线路无漏电,可进行测量。

(6)条件处理和测试条件的规定:固体绝缘材料的电阻随温度、湿度的增加而下降。试样的预处理条件取决于被测材料,这些条件在材料规范中规定。推荐使用GB10580《固体绝缘材料在试验前和试验时采用的标准条件》中规定的预处理方法。可使用甘油—水溶液潮湿箱进行湿度预处理。测试条件应与预处理条件尽可能地一致,有些时候(如浸水处理)不能保持预处理条件和测试条件一致时,则应在从预处理环境中取出后在尽可能短时间内完成测试,一般不超过5分钟。

(7)电化时间的规定:当直流电压加到与试样接触的两电极间时,通过试样的电流会指数式地衰减到一个稳定值。电流随时间的减小可能是由于电介质极化和可动离子位移到电极所致。对于体积电阻率小于1010Ω·m的材料,其稳定状态通常在1分钟内达到。因此,要经过这个电化时间后测定电阻。对于电阻率较高的材料,电流减小的过程可能会持续几分钟、几小时、几天,因此需要用较长的电化时间。如果需要的话,可用体积电阻率与时间的关系来描述材料的特性。当表面电阻较高时,它常随时间以不规则的方式变化。测量表面电阻通常都规定1分钟的电化时间。

3 仪器与试样

仪器

本实验选用ZC36型起高阻微电流计。该仪器工作原理属于进接法中的直流放大法,测量范围106~1017Ω,误差≤10%。

图2 ZC36高阻计外形图

图3 三电极电阻测量系统

为准确测量体积电阻和表面电阻,一般采用三电极系统,圆板状三电极系统见图3。测量体积电阻Rv 时,保护电极的作用是使表面电流不通过测量仪表,并使测量电极下的电场分布均匀。此时保护电极的正确接法见图4。测量表面电阻Rs时,保护电极的作用是使体积电流减少到不影响表面电阻的测量。

图4 体积电阻Rv和表面电阻Rs测量示意图

试样及其预处理

试样

不同比例的聚丙烯与碳酸钙共混物样片(φ100圆板,厚2±0.2mm)5只

预处理

试样应平整、均匀、无裂纹和机械杂质等缺陷。用蘸有深剂(此溶剂应不腐蚀试样)的绸

布擦试;把擦净的试样放在温度23±2℃和相对湿度65±5%的条件下处理24小时。测量表面电阻时,一般不清洗及处理表面,也不要用手或其他任何东西触及。

4 实验

准备

使用前,面板上的各开关位置应如下:

a) 倍率开关置于灵敏度最低档位置。

b) 测试电压开关置于“10V”处

c) “放电-测试”开关置于“放电”位置。

d) 电源总开关(POWER)置于“关”。

e) 输入短路揿键置于“短路”。

f) 极性开关置于“0”。

检查测试环境的湿度是否在允许的范围内。尤其当环境湿度高于80%以上时,对测量较高的绝缘电阻(大于10 11Ω及小于10-8 A)时微电流可能会导致较大的误差。

接通电源预热30分钟,将极性开关置于“+”,此时可能发现指示仪表的指针会离开“∞”及“0”处,这时可慢慢调节“∞”及“0”电位器,使指针置于“∞”及“0”处。

测试

将被测试样用测量电缆线和导线分别与讯号输入端和测试电压输出端连接。将测试电压选择开关置于所需要的测试电压档。将“放电-测试”开关置于“测试”档,输入短路开关仍置于“短路”。对试样经一定时间的充电以后(视试样的容量大小而定,一般为15秒。电容量大时,可适当延长充电时间),即可将输入短路开关揿至“测量”进行读数,若发现指针很快打出满刻度,应立即揿输入短路开关,使其置于“短路”,将“放电-测试”开关置于“放电”档,等查明原因并排除故障后再进行测试。当输入短路开关置于测量后,如发现表头无读数,或指示很少,可将倍率开关逐步升高,数字显示依次为7、8、9、…直至读数清晰为止(尽量取仪表上1~10的那段刻度)。通过旋转倍率旋钮,使示数处于半偏以内的位置,便于读数。测量时先将RV/RS转换开关置于RV测量体积电阻,然后置于RS测量表面电阻。读数方法如下:表头指示为读数,数字显示为10的指数,单位W。用不同电压进行测量时,其电阻系数不一样,电阻系数标在电压值下方。将仪表上的读数(单位为兆欧)乘以倍率开关所指示的倍率及测试电压开关所指的系数(10V

为;100V为;250V为;500V为;1000V为1)即为被测试样的绝缘电阻值。例如:读数为′106W倍率开关所指系数为108,测量电压为100V,则被测电阻值为:′106′108′ =′1013W。在测试绝缘电阻时,如发现指针有不断上升的现象,这是由于电介质的吸收现象所致,若在很长时间内未能稳定,则一般情况下取接通测试开关后一分钟时的读数作为试样的绝缘电阻值。

一个试样测试完毕,即将输入短路揿键置于“短路”,测试电压控制开关置于“关”后,将方式选择开关拨向放电位置,几分钟后方可取出试样。对电容量较大的试样者需经1分钟左右的放电,方能取出试样,以免受测试系统电容中残余电荷的电击。。若要重复测试时,应将试样上的残留电荷全部放掉方能进行。

然后进入下一个试样的测试:为了操作简便无误,测量绝缘材料体积电阻(Rv)和表面电阻(Rs)时采用了转换开关。当旋钮指在Rv处时,高压电极加上测试电压。保护电极接地,当旋钮指在Rs处时,保护电极加上测试电压,高压电极接地。仪器使用完毕,应先切断电源,将面板上各开关恢复到测试前的位置,拆除所有接线,将仪器安放保管好。

注意事项

(1)试样与电极应加以屏蔽(将屏蔽箱合上盖子),否则,由于外来电磁干扰而产生误差,甚至因指针的不稳定而无法读数。

(2)测试时,人体不可接触红色接线柱,不可取试样,因为此时“放电-测试”开关处在“测试位置”,该接线柱与电极上都有测试电压,危险!!

(3)在进行体积电阻和表面电阻测量时,应先测体积电阻再测表面电阻,反之由于材料被极化而影响体积电阻。当材料连续多次测量后容易产生极化,会使测量工作无法进行下去,出现指针反偏等异常现象,这时须停止对这种材料测试,置于净处8h-10h后再测量或者放在无水酒精内清洗,烘干,等冷却后再进行测量

(4)经过处理的试样及测量端的绝缘部分绝不能被脏物污染,以保证实验数据的可靠性。

(5)若发现指针很快打出满刻度,应立即将输入短路开关置于“短路”,测试电压控制开关置于“关”,等查明原因并排除故障后再进行测量。

(6)当输入短路开关置于测量后,如果发现表头无读数,或指示很少,可将倍率逐步升高。

(7)若要重复测量时,应将试样上的残余电荷全部放掉方能进行。

数据处理

体积电阻率ρv

ρv=Rv(A/h),

A=(π/4)·d22=(π/4)(d1+2g)2 (3)

式中,ρv ——体积电阻率(Ω·m),

Rv ——测得的试样体积电阻(Ω),

A ——测量电极的有效面积(m2),

d1 ——测量电极直径(m),

h——绝缘材料试样的厚度(m),

g ——测量电极与保护电极间隙宽度(m),

表面电阻率ρv

ρs=Rs(2π)/㏑(d2/d1) (4)

式中,ρv ——表面电阻率(Ω),

Rs ——试样的表面电阻(Ω),

d2 ——保护电极的内径(m),

d1 ——测量电极直径(m)。

需要的数据

d1 = 5 cm

d2 = 5.4 cm

h = 0.2 cm

g = 0.2 cm

问题为什么测试电性能时对试样要进行处理?对环境条件有何要求?对同一块试样,采用不同的电压测量。测试电压升高时,测得的电阻值将如何变化?通过实验说明为什么在工程技术领域中,用体积电阻率来表示介电材料的绝缘性质,而不用绝缘电阻或表面电阻率来表示?

说明实验结果与高聚物分子结构的内在联系。

预习要求

(1).了解实验原理。

(2).了解实验操作步骤及注意事项。

(3).写好预习报告,准备记录表格。

(4). 初步回答思考题。

参考文献:

[1] 何曼君等;高分子物理[M];复旦大学出版社,

[2] 张国光;影响绝缘电阻测量值的主要因素[J];机电技术,,第011版

[3] 张滨秋;浅谈外界因素对电容器绝缘电阻测量值的影响;信息技术,2001,第2期

[4] ZC36高阻计说明书

表面电阻率

测量表面电阻率 1.范围 本方法用以测定导电热塑性材料的表面电阻率。依照惯例,表面电阻率是正方形测量面积内的绝缘电阻(单位:欧姆/平方米)。因此,表面电阻率的值不受电极配置的影响。 因为没有相关的国际标准对测量导电材料的表面电阻率进行过描述,所以在本方法中测试条件将参照IEC 167(国际电工标准:固体绝缘材料体积电阻率和表面电阻率试验方法)和AFNOR C26-215(法国标准:绝缘材料的试验方法.固体电绝缘材料的体积电阻率和表面电阻率的试验方法)。 样品: ★ 4mm厚的压缩成型板(CTM E042A) ★ 100um厚的吹塑薄膜(CTM E042B) ★ 400mm厚的挤压成型带材(CTM E042D) ★ 4×50×80mm3的注射成型板(CTM E042E) 2.原理 导电材料的绝缘电阻通过测量其电阻获得。该电阻通过计算电流方向上的电位梯度(伏特)与电流强度(安培)之比获得(欧姆定律)。依照惯例,表面电阻率是正方形测量面积内的绝缘电阻。 按照IEC 167(1964-01)标准的描述,在测试中用两条导电涂料线做电极从而测量电阻值。

图表 1 注射成型板样品 3.仪器 ★银粉漆 ★小漆刷 ★欧姆表(电阻范围:0~106欧姆) ★皮可安培计(电阻范围:106~1014欧姆) ★有两条平行缝隙(长100mm、宽1mm、间距10mm)的adhesive mask ★电极连接系统(恒压) 4.样品制备 ★不同的样品分别按如下方法制备: ★压缩成型板:CTM E050B ★吹塑薄膜:CTM E046 ★挤出成型带材:CTM E045 ★注射成型板:CTM E050A 5.样品预加工

土壤电阻率测量步骤

四极法测量土壤电阻率的步骤 淮安供电公司市郊农电:葛进进 操作过程:20分钟,三个否决项 1、报告老师,询问极距a是多少? 2、在操作纸上写出极距a,并算出接地埋深L=a/20。 3、选择仪器及工具、摇表(四端子)、四捆接线、尺、锤、接地棒、螺丝刀、计算器等。用粉笔在四个接地棒上画出接地埋深的标志(注意:从下向上画,距离为L) 4、检查仪表 ①外观检查,看有无破损、有无裂纹等; ②检查合格证:如没合格证,要报告老师,等允许后,方 可操作;(此处为否决项) ③来回转动各旋钮检查是否灵敏。 5、放线 ①将仪器和工具放在合适的地点,拿起二捆接线、尺、锤、接地棒,螺丝刀(原地只留下摇表和两捆线) ②由摇表向正前方走约16米,然后向正左方走约1.5a米,钉下第一个接地棒(注意,钉到刚才粉笔画到的标志处),并把螺丝刀穿过尺前的小圆环插入地下,然后抱着材料(除一捆接地线)拉开皮尺,向前走,大约走到3a米多,停下。 ③将皮尺拉紧拉直,轻轻放下,在3a米平行与第一接地棒的地方,钉下第二个接地棒,并放下二捆接地线。

④向回走,在皮尺刻度的2a米的平行与第一接地棒的地方,钉下第三个接地棒。 ⑤向回走,在皮尺刻度的a米的平行与第一接地棒的地方,钉下第四个接地棒。 ⑥到第一个接地棒处,将接地线的上小夹子,夹在接地棒上,向摇表方向放开接地线,不要绷紧,以防夹子脱落, ⑦把螺丝刀插在摇表前,从摇表处拿起一捆接地线,将有接线片的一端打活扣在螺丝刀上,向第四根接线棒放线。 ⑧按⑥和⑦的方法,放完其余两捆接地线,并检查四个小夹子是否夹牢。 6、接线 ①先打开短接片(此处为否决项)。方法:松开短接片旋钮,手由下向上一挑,即可打开短接片。 ②接四根连线。注意:不能交叉,接触要紧。 7、调零 将摇表放平,用螺丝刀将调零器调零,调零时,头要位于摇表正上方。 8、测量 ①将摇表倍率(里面的小旋钮)调到10R档,顺时针旋动RS电位器(外面的大旋钮)刻度盘到最大。 ②左手掌按住摇表,左手大姆指和食指捻住外面的大旋钮,右手顺时针方向慢慢摇到摇把,在摇动时,左手要迅速调节RS电位器(禁

绝缘电阻的正确测量方法及标准

绝缘电阻的正确测量方法 一、测试内容施工现场主要测试电气设备、设施和动力、照明线路的绝缘电阻。 二、测试仪器 测试设备或线路的绝缘电阻必须使用兆欧表(摇表),不能用万用表来测试。兆欧表是一种具有高电压而且使用方便的测试大电阻的指示仪表。它的刻度尺的单位是兆欧,用ΜΩ表示。在实际工作中,需根据被测对象来选择不同电压等级和阻值测量范围的仪表。而兆欧表测量范围的选用原则是:测量范围不能过多超出被测绝缘电阻值,避免产生较大误差。施工现场上一般是测量500V以下的电气设备或线路的绝缘电阻。因此大多选用500V,阻值测量范围0----250ΜΩ的兆欧表。兆欧表有三个接线柱:即L(线路)、E(接地)、G(屏蔽),这三个接线柱按测量对象不同来选用。 三、测试方法 1、照明、动力线路绝缘电阻测试方法线路绝缘电阻在测试中可以得到相对相、相对地六组数据。首先切断电源,分次接好线路,按顺时针方向转动兆欧表的发电机摇把,使发电机转子发出的电压供测量使用。摇把的转速应由慢至快,待调速器发生滑动时,要保证转速均匀稳定,不要时快时慢,以免测量不准确。一般兆欧表转速达每分钟120转左右时,发电机就达到额定输出电压。当发电机转速稳定后,表盘上的指针也稳定下来,这时指针读数即为所测得的绝缘电阻值。测量电缆的绝缘电阻时,为了消除线芯绝缘层表面漏电所引起的测量误差,其接线方法除了使用“L”和“E”接线柱外,还需用屏蔽接线柱“G”。将“G”接线柱接至电缆绝

缘纸上。 2、电气设备、设施绝缘电阻测试方法首先断开电源,对三相异步电动机定子绕组测三相绕组对外壳(即相对地)及三相绕组之间的绝缘电阻。摇测三相异步电动机转子绕组测相对相。测相对地时“E”测试线接电动机外壳,“L”测试线接三相绕组。即三相绕组对外壳一次摇成;若不合格时则拆开单相分别摇测;测相对相时,应将相间联片取下。 四、绝缘电阻值测试标准 绝缘阻值判断 (1)、所测绝缘电阻应等于或大于一般容许的数值,各种电器的具体规定不一样,最低限值: 低压设备0.5MΩ, 3-10KV 300MΩ、 20-35KV为400MΩ、 63-220KV为800MΩ、 500KV为3000MΩ。 1、现场新装的低压线路和大修后的用电设备绝缘电阻应不小于0.5ΜΩ。 2、运行中的线路,要求可降至不小于每伏1000Ω=0.001MΩ,每千伏1 MΩ。 3、三相鼠笼异步电动机绝缘电阻不得小于0.5ΜΩ。 4、三相绕线式异步电动机的定子绝缘电阻值热态应大于0.5ΜΩ、冷态应大于2ΜΩ,转子绝缘电阻值热态应大于0.15ΜΩ、冷态应大于0.8ΜΩ。

变电站土壤电阻率报告(20200813205558)

广西金桂二期中配110kV变电站土壤电阻率测量成果说明书 广西基础勘察工程有限责任公司 建设部甲级勘察证:201007-kj号 二0 一一年四月 广西金桂二期中配110kV变电站土壤电阻率测量成果说明书 工程负责:梁宁克 校对:周永炼 审核:沈健 审定:沈雁明 总经理:夏志永 广西基础勘察工程有限责任公司 建设部甲级勘察证:201007-kj号 二0 一一年四月

目录1、工程概况

精心整理 2、地址概况 (1) 3、野外工作方法与技术 (1) 4、土壤电阻率分布特点 (1) 附图: 1、测试点平面位置图(1张) 2、土壤电阻率等值线图(4张)

1、工程概况 广西金桂二期中配110kV变电站施工图设计阶段的任务要求测量土壤电阻率,深度 为5m、10m、20m、30m。野外工作于2011年4月20日进行,共完成测试点15个。勘察期间多为阴天的气候条件。 2、地址概况 本工程新建广西金桂二期中配110kV变电站一座,位于钦州港口区大揽坪,占地面积约为63.36 X 22.00卅,地上4层,主变3个及电缆层、竖井等配套设施,框架结构,基础型式及整平标高等未确定。地貌上属丘陵地貌,地形较平坦,经钻探证实和资料收集,场地内地层主要有第四系素填土①层,粉质粘土②层,强风化砂岩③层,中风化砂岩④层组成。 3、野外工作方法与技术 测试点的布置原则上以勘探剖面为准,按网格进行布置,详细位置见土壤电阻率等 值线图。测量方法采用电阻率法对称四级测试装置,电极距最大取AB/2为65m,最小为AB/2 为1.5 米,MN/1 为1.5 米~12 米。 电阻率测量仪为DWD-2A型微机电侧仪,严格按照SDCJ-81-88《电力工程物探技术规定》执行。 4、土壤电阻率分布特点 不同深度的土壤电阻率值的分布见《深度为5m、10m、20m、30m的土壤电阻率等 值线图》,经过地形改正,侧出的土壤电阻率值特点如下: (1)深度AB/2=5m,场地范围内土壤电阻率最大值为311 Q?m,最小值为98Q?m。 (2)深度AB/2=10m,场地范围内土壤电阻率最大值为421 Q - m,最小值为305 Q - m。 (3)深度AB/2=20m,场地范围内土壤电阻率最大值为496Q - m,最小值为396 Q - m。 (4)深度AB/2=30m,场地范围内土壤电阻率最大值为793Q - m,最小值为589 Q - m。 场地范围内由素填土①层,粉质粘土②层,强风化砂岩③层,中风化砂岩④层组成,地质结构较复杂,同一深度的土壤电阻率值相差较小,同一位置随着深度的增大,土壤

四探针法测电阻率

实验 四探针法测电阻率 1.实验目的: 学习用四探针法测量半导体材料的体电阻率和扩散薄层的电阻率及方块电阻。 2.实验内容 ① 硅单晶片电阻率的测量:选不同电阻率及不同厚度的大单晶圆片,改变条件(光照 与否),对测量结果进行比较。 ② 薄层电阻率的测量:对不同尺寸的单面扩散片和双面扩散片的薄层电阻率进行测 量。改变条件进行测量(与①相同),对结果进行比较。 3. 实验原理: 在半导体器件的研制和生产过程中常常要对半导体单晶材料的原始电阻率和经过扩散、外延等工艺处理后的薄层电阻进行测量。测量电阻率的方法很多,有两探针法,四探针法,单探针扩展电阻法,范德堡法等,我们这里介绍的是四探针法。因为这种方法简便可行,适于批量生产,所以目前得到了广泛应用。 所谓四探针法,就是用针间距约1毫米的四根金属探针同时压在被测样品的平整表面上如图1a 所示。利用恒流源给1、4两个探针通以小电流,然后在2、3两个探针上用高输入阻抗的静电计、电位差计、电子毫伏计或数字电压表测量电压,最后根据理论 公式计算出样品的电阻率[1] I V C 23 =ρ 式中,C 为四探针的修正系数,单位为厘米,C 的大小取决于四探针的排列方法和针距,

探针的位置和间距确定以后,探针系数C 就是一个常数;V 23为2、3两探针之间的电压,单位为伏特;I 为通过样品的电流,单位为安培。 半导体材料的体电阻率和薄层电阻率的测量结果往往与式样的形状和尺寸密切相关,下面我们分两种情况来进行讨论。 ⑴ 半无限大样品情形 图1给出了四探针法测半无穷大样品电阻率的原理图,图中(a)为四探针测量电阻率的装置;(b)为半无穷大样品上探针电流的分布及等势面图形;(c)和(d)分别为正方形排列及直线排列的四探针图形。因为四探针对半导体表面的接触均为点接触,所以,对图1(b )所示的半无穷大样品,电流I 是以探针尖为圆心呈径向放射状流入体内的。因而电流在体内所形成的等位面为图中虚线所示的半球面。于是,样品电阻率为ρ,半径为r ,间距为dr 的两个半球等位面间的电阻为 dr r dR 2 2πρ = , 它们之间的电位差为 dr r I IdR dV 2 2πρ= =。 考虑样品为半无限大,在r →∞处的电位为0,所以图1(a )中流经探针1的电流I 在r 点形成的电位为 ()r I dr r I V r r πρπρ222 1== ? ∞ 。 流经探针1的电流在2、3两探针间形成的电位差为 ()??? ? ??-= 1312123112r r I V πρ; 流经探针4的电流与流经探针1的电流方向相反,所以流经探针4的电流I 在探针2、3之间引起的电位差为 ()??? ? ??--=4342423112r r I V πρ。 于是流经探针1、4之间的电流在探针2、3之间形成的电位差为 ??? ? ??+--= 434213122311112r r r r I V πρ。 由此可得样品的电阻率为 ()1111121 434213 1223-???? ??+--=r r r r I V πρ 上式就是四探针法测半无限大样品电阻率的普遍公式。 在采用四探针测量电阻率时通常使用图1(c )的正方形结构(简称方形结构)和图1(d )的等间距直线形结构,假设方形四探针和直线四探针的探针间距均为S , 则对于直线四探针有 S r r S r r 2, 42134312==== ()2223 I V S ? =∴πρ 对于方形四探针有 S r r S r r 2,42134312==== () 322223 I V S ? -=∴ πρ

电阻率和表面电阻率

高阻计法测定高分子材料体积电阻率和表面电阻率 2010年03月07日10:37 admins 学习时间:20分钟评论 0条高分子材料的电学性能是指在外加电场作用下材料所表现出来的介电性能、导电性能、电击穿性质以 及与其他材料接触、摩擦时所引起的表面静电性质等。最基本的是电导性能和介电性能,前者包括电导(电导率γ,电阻率ρ=1/γ)和电气强度(击穿强度Eb);后者包括极化(介电常数εr)和介质损耗(损耗因数tg δ)。共四个基本参数。 种类繁多的高分子材料的电学性能是丰富多彩的。就导电性而言,高分子材料可以是绝缘体、半导体和导体,如表1所示。多数聚合物材料具有卓越的电绝缘性能,其电阻率高、介电损耗小,电击穿强度高,加之又具有良好的力学性能、耐化学腐蚀性及易成型加工性能,使它比其他绝缘材料具有更大实用价值,已成为电气工业不可或缺的材料。高分子绝缘材料必须具有足够的绝缘电阻。绝缘电阻决定于体积电阻与表面电阻。由于温度、湿度对体积电阻率和表面电阻率有很大影响,为满足工作条件下对绝缘电阻的要求, 必须知道体积电阻率与表面电阻率随温度、湿度的变化。 表1 各种材料的电阻率范围 材料电阻率(Ω·m) 材料电阻率(Ω·m) 超导体导体≤10-810-8~10-5半导体绝缘体10-5~107 107~1018 除了控制材料的质量外,测量材料的体积电阻率还可用来考核材料的均匀性、检测影响材料电性能的 微量杂质的存在。当有可以利用的相关数据时,绝缘电阻或电阻率的测量可以用来指示绝缘材料在其他方面的性能,例如介质击穿、损耗因数、含湿量、固化程度、老化等。表2为高分子材料的电学性能及其研 究的意义。 表2 高分子材料的电学性能及测量的意义 电学性能电导性能 ①电导(电导率γ,电阻率ρ=1/γ) ②电气强度(击穿强度Eb) 介电性能 ③极化(介电常数εr) ④介电损耗(损耗因数tanδ) 测量的意义实际意义 ①电容器要求材料介电损耗小,介电常数大,电气强度高。 ②仪表的绝缘要求材料电阻率和电气强度高,介电损耗低。 ③高频电子材料要求高频、超高频绝缘。 ④塑料高频干燥、薄膜高频焊接、大型制件的高频热处理要求材料 介电损耗大。 ⑤纺织和化工为消除静电带来的灾害要求材料具适当导电性。理论意义研究聚合物结构和分子运动。 1 目的要求 了解超高阻微电流计的使用方法和实验原理。 测出高聚物样品的体积电阻率及表面电阻率,分析这些数据与聚合物分子结构的内在联系。 2 原理 名词术语 1) 绝缘电阻:施加在与试样相接触的二电极之间的直流电压除以通过两电极的总电流所得的商。它取决于体积电阻和表面电阻。

变电站土壤电阻率报告

变电站土壤电阻率报告 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

广西金桂二期中配110kV 土壤电阻率测量成果说明书广西基础勘察工程有限责任公司 建设部甲级勘察证:201007-kj号 二0一一年四月 广西金桂二期中配110kV变电站土壤电阻率测量成果说明书 工程负责:梁宁克 校对:周永炼 审核:沈健 审定:沈雁明 总经理:夏志永 广西基础勘察工程有限责任公司 建设部甲级勘察证:201007-kj号 二0一一年四月 目录 1、工程概况 (1) 2、地址概况 (1) 3、野外工作方法与技术 (1) 4、土壤电阻率分布特点 (1) 附图: 1、测试点平面位置图(1张)

2、土壤电阻率等值线图(4张)

1、工程概况 广西金桂二期中配110kV变电站施工图设计阶段的任务要求测量土壤电阻率,深度为5m、10m、20m、30m。野外工作于2011年4月20日进行,共完成测试点15个。勘察期间多为阴天的气候条件。 2、地址概况 本工程新建广西金桂二期中配110kV变电站一座,位于钦州港口区大揽坪,占地面积约为×㎡,地上4层,主变3个及电缆层、竖井等配套设施,框架结构,基础型式及整平标高等未确定。地貌上属丘陵地貌,地形较平坦,经钻探证实和资料收集,场地内地层主要有第四系素填土①层,粉质粘土②层,强风化砂岩③层,中风化砂岩④层组成。 3、野外工作方法与技术 测试点的布置原则上以勘探剖面为准,按网格进行布置,详细位置见土壤电阻率等值线图。测量方法采用电阻率法对称四级测试装置,电极距最大取AB/2为65m,最小为AB/2为1.5米,MN/1为1.5米~12米。 电阻率测量仪为DWD-2A型微机电侧仪,严格按照SDCJ-81-88《电力工程物探技术规定》执行。 4、土壤电阻率分布特点 不同深度的土壤电阻率值的分布见《深度为5m、10m、20m、30m的土壤电阻率等值线图》,经过地形改正,侧出的土壤电阻率值特点如下: (1)深度AB/2=5m,场地范围内土壤电阻率最大值为311Ω·m,最小值为98Ω·m。 (2)深度AB/2=10m,场地范围内土壤电阻率最大值为421Ω·m,最小值为305Ω·m。 (3)深度AB/2=20m,场地范围内土壤电阻率最大值为496Ω·m,最小值为396Ω·m。 (4)深度AB/2=30m,场地范围内土壤电阻率最大值为793Ω·m,最小值为589Ω·m。 场地范围内由素填土①层,粉质粘土②层,强风化砂岩③层,中风化砂岩④层组成,地质结构较复杂,同一深度的土壤电阻率值相差较小,同一位置随着深度的增

四电极法测电阻率——Summary

51 四探针法测电阻率1. 理解四探针测量半导体或金属薄膜电阻率的原理 2. 了解四探针测量材料电阻率的注意事项实验原理四探针法测量电阻率常用的四探针法是将四根金属探针的针尖排在同一直线上的直线型四探针法如图1-1a 所示。当四根探针同时在一块相对于探针间距可视为半无穷大的平面上时如果探针接触处的材料是均匀的并可忽略电流在探针处的少子注入则当电流I 由探针流入样品时可视为点电流源在半无穷大的均匀样品中所产生的电场线具有球面对称性即等势面为一系列以点电流源为中心的半球面。样品中距离点电源r 处的电流密度j电场ε和电位V 分别直流四探针法也称为四电极法主要用于低电阻率材料的测量。使用的仪器以及与样品的接线如图3-1所示。由图可见测试时四根金属探针与样品表面接触外侧两根1、4为通电流探针内侧两根2、3为测电压探针。由电流源输入小电流使样品内部产生压降同时用高阻抗的静电计、电子毫伏计或数字电压表测出其他二根探针的电压即V23伏。 a 仪器接线b点电流源c四探针排列图1-1 四探针法测试原理示意图一块电阻率为的均匀材料样品其几何尺寸相对于探针间距来说可以看作半无限大。当探针引入的点电流源的电流为I由于均匀导体内恒定电场的等位面为球面则在半径为r处等位面的面积为2r2则电流密度为jI/2r2 1-1 52 根据电导率与电流密度的关系可得E2222rIrIj 1-2 其中E为电场强度σ

和ρ分别是样品的电导率和电阻率。若电流由探针流出样品则距点电荷r处的电势为rIV2 1-3 因此当电流由探针1流入样品自探针4流出样品时根据电位叠加原理在探针2处的电位为在探针 3 处的电位为式中的S1是探针1和2之间的距离S2是探针2和3之间的距离S3是探针3和4之间的距离。各点的电势应为四个探针在该点形成电势的矢量和。所以探针2、3 之间的电位为通过数学推导可得四探针法测量电阻率的公式为IVCrrrrIV231341324122311112 3-4 式中13413241211112rrrrC为探针系数单位为cmr12、r24、r13、r34分别为相应探针间的距离见图3-1c。若四探针在同一平面的同一直线上其间距分别为S1、S2、S3且S1S2S3S时则SIVSSSSSSIV21111223133221123 3-5 这就是常见的直流等间距四探针法测电阻率的公式。根据样品在不同电流I下的电压值V计算出该样品的电阻值及电阻率。53 为了减小测量区域以观察电阻率的不均匀性四根探针不—定都排成—直线而可排成正方形或矩形此时只需改变计算电阻率公式中的探针系数C。四探针法的优点是可迅速、方便、无破坏地测量任意形状的样品且精度较高适合于大批生产中使用。但由于该方法受针距的限制很难发现小于0.5mm两点电阻的变化。注意事项a 预热打开电流源和电压表的电源开关使仪器预热30分钟。b 在联接电流源和切换电流量程前应先将电流输出调至近零以免造成电流对样品的冲击。电压表

表面电阻测试标准

Model 803B Model 850 Measures surface and volume resistance/resistivity of planar surfaces in accordance with ESDA, ASTM, NFPA, military and other standards. Features: 1 Probes meet: ESDA STM 11.11, 11.12, 4.1 ASTM D257, F150 NFPA 99 Military & IEC requirements 1 Concentric ring design (803B) 1 Direct x10 conversion to surface resistivity (Model 803B) 1 Specified 5 lb (2.2kg) weight 1 Conductive rubber electrodes 1 Ground & insulated test beds (Model 803B) 1 Optional calibration fixtures (Model 803B) 1 Optional Press (Model 847) Applications: Test standards used to characterize the surface and/or volume resistance/resistivity of material typically define specific electrode configurations. ASTM D257 specifies either parallel bar or concentric ring electrodes while the ESD Association (ESDA) standards define a specific concentric ring electrode configuration. To measure point-to-point and resistance-to-ground (RTG) of ESD protective work surfaces, floors and seating ESDA, NFPA, and ASTM test methods specify a 5 lb (2.2kg) probe with a 2.5” (64mm) diameter conductive rubber electrode. ETS resistance/resistivity probes are designed to meet these requirements. Where applicable, surface resistance measurements are easily converted to surface resistivity by multiplying the measured resistance by 10. Custom probes are available for virtually any application.

接地电阻测量实验报告范文

接地电阻测量实验报告范文 为了了解接地装置的接地电阻值是否合格、保证安全运行,同时根据配电设备维护规程的有关规定,我部于20xx 年3月1日上午8:00 对乐民原料部弓角田煤矿各变配电点的接地及其各变压器对地绝缘情况进行测量试验。试验过程及试验结果分析报告如下: 一、试验前的准备: 1、制订试验方案: 前期,我们组织机电队人员一起到现场查看接地装置,查找接地极的适合试验的位置,制订、讨论、修改试验方案,提出试验中的注意事项。 2、试验方法: 接地电阻表本身备有三根测量用的软导线,可接在E、P、C三个接线端子上。接在E端子上的导线连接到被测的接地体上,P端子为电压极,C端子为电流极(P、C都称为辅助接地极),根据具体情况,我们准备采用两种方式测量:(1)、将辅助接地极用直线式或三角线式,分别插入远离接地体的土壤中;(2)、用大于25cm×25cm的铁板作为辅助电极平铺在水泥地面上,然后在铁板下面倒些水,铁板的布放位置与辅助接地极的要求相同。两种方法我们都采取接地体和连接设备不 断开的方式测量,接地电阻电阻表将倍率开关转换到需要的量程上,用手摇发电机手柄,以每分钟120转/分以上的速度转时,使电阻表上的仪表指针趋于平衡,读取刻盘上

的数值乘以倍率即为实测的接地电阻值。 3、试验工具: 我们准备好ZC29B-2型接地电阻测试仪、ZC110D-10(0~2500MΩ)型摇表、万用表、铜塑软导线(BVR 1.5mm2)、测电笔、接地极棒和接地板等试验用具及棉纱等辅助材料。 二、试验过程: 1、3月1日上午,现场试验人员进行简单碰头,并进行分工:由帅锐进行测量、值班人员蔡富贵和彭余坤配合操作、陈应沫记录、班长方兴华负责监护; 2、8:45试验开始; 3、测量辅助接地极间及与测量接地体间的距离; 4、采取第一种方法,将接地极棒插入到土壤中并按照图纸接好线; 5、将测量接地体连接处与连接端子牢靠连接; 6、将导线与接地电阻表接好; 7、校正接地电阻表; 8、测量并记录数据;(试验数据见附表) 9、采取第二种方法,测量并记录数据; 10、整个试验过程结束。 恒鼎实业弓角田煤矿春季预防性试验设备外壳接地测试记录 恒鼎实业弓角田煤矿春季预防性试验变压器绝缘测试记录 使用仪器: ZC29B-2型接地电阻测试仪

防静电检测规范

防静电检测规范

目录 5、程序 测试方法: 5.1.1测试环境: 环境温度23±5℃,相对湿度40%~70%。 5.1.2测试仪器使用方法 5.1.2.1静电场测试仪(TREK520) 静电场测试仪是感应式的,该仪器表面有2个按键:“POWER”、“RANGE/ZERO”、“HOLD”,按“POWER” 键开机/关机。该仪器有两个量程:0~2KV、0~20KV,可通过按“RANGE/ZERO”键进行切换。当显示3位小数时,量程范围为0~2KV;当显示2位小数时,量程范围为0~20KV。 每次测试时都应进行读数清零工作,方法为:将sensor对准一个已知的电压为0V的导体上,按“RANGE/ZERO”键至少3秒钟。

为保证测试值的准确性,测试时人体必须戴静电环或穿防静电鞋。测试前,先将待测物放置在绝缘的物体上(如干燥的硬纸板),手持干燥并干净的棉布以每 分钟120次的速度,施加适当的压力(2~4千克力),单向摩擦待测物表面20 次,然后用仪器测量电压(senor距离被测物表面的距离为2.54CM及两个红灯 重合在一起),将显示的读数乘以1000即得实际的电压值,例如读数为“.018”, 则实际电压为18V。 5.1.2.2 表面电阻测试仪(ACL-385) ACL-385为简易表面电阻测试仪,该仪器两个测试电极间距根据标准不变,测试时将被测物放于绝缘的平面上,表面电阻测试仪平置在材料表面上,手指施加适当压力(2~ 4KG)于测试按钮上,使测试电极与材料表面接触良好,指示灯发亮档即为读 数。如果被测材料为软性材料,可施加4~6kg的压力进行测试。 5.1.2.3 接地电阻测试仪(EMI-20780) EMI-20780 可以测试点对点电阻(RTT), 接地电阻(RTG)、体积电阻,和表面电阻率, 配套两点测试电极可测量微小物体表面电阻.测试范围为: 1x 103? - 1012?;测试电压为: 10V或100V+/-5%;测试精度为: +/-10%;测试时间为15秒;

电阻率测量报告

. . . . 莆田南日岛风电场三期工程施工图阶段土壤电阻率测量报告 福建永福工程顾问有限公司 发证机关:福建省建设厅 证书等级:乙级证书编号:130903-ky 二00九年一月·

批准:审核:校核:编写:

目录 1、前言 2、仪器接线示意图 3、原理及操作 4、测量结果分析 5、结论

1、前言 根据公司勘察任务安排及工程勘察联系书的要求,莆田南日岛风电厂三期工程施工图阶段土壤电阻率测量工作于2008年10月2日至2008年10月24日期间进行。 南日岛风电厂前两期共投产19台风机,本期计划建设57台风机,总装机容量48.45MW,110kV升压站一座。 本次测量工作采用DZD-6A多功能直流电法仪测量,测量原理采用等极距四极对称法,极距分别为a=5、10、20、60、100m,大部分风机为测量至100m极距,局部因测量场地限制仅测量至40m 或60m极距。 本次测量工作布线按每风机一条测线,升压站按常规220kV变电站布线方式,四周四条线,对角两条线,共六条测线。本期总共完成测线63条。 本次测量遵循《电力工程物探技术规定》(DL/T5159-2002)。 2、仪器接线示意图 仪器接线示意图

3、原理及操作 等极距四极对称法,又称温纳装置,其做法是沿测线上的测点,分别打入电极,并用导线连接供电回路AB 和测量回路MN ,通过对AB 电极供电,使位于其中间的大地产生电场,测量MN 处产生的电位差及电流,通过以下公式计算出其电阻率。 测量原理示意图 I U K MN a ?=ρ ① a ρ——MN 间的等效土壤电阻率; MN U ?——MN 间的电位差; I ——MN 间的电流; K ——装置系数,对称四极法中a 2MN AN AM K ππ=?= DZD-6A 直流电法仪存在内在计算系统,测量前仅需输入极距a 后,则可直接测出结果。

体积表面电阻率测定仪

一、橡胶体积表面电阻率测定仪主要标准: GB/T 1410-2006 《固体绝缘材料体积电阻率和表面电阻率试验方法》 ASTM D257-99 《绝缘材料的直流电阻或电导试验方法》 GB/T 2439-2001《硫化橡胶或热塑性橡胶导电性能和耗散性能电阻率的测定》 GB/T 10581-2006 《绝缘材料在高温下电阻和电阻率的试验方法》 GB/T 1692-2008 《硫化橡胶绝缘电阻率的测定》 GB/T 12703.4-2010 《纺织品静电性能的评定第4部分:电阻率》 GB/T 10064-2006《测定固体绝缘材料绝缘电阻的试验方法》 二、橡胶体积表面电阻率测定仪概述: 本仪器既可测量高电阻,又可测微电流。采用了美国Intel公司的大规模集成电路,使仪器体积小、重量轻准确度高。数字液晶直接显示电阻值和电流。量限从1×104Ω ~1×1018 Ω,是目前国内测量范围最宽,准确度最高的数字超高阻测量仪。电流测量范围为2×10-4 ~1×10-16A。机内测试电压10V/50V/100V/250V/500V/1000V任意可调。本仪器具有精度高、显示迅速、性好稳定、读数方便. 适用于橡胶、塑料、薄膜、地毯、织物及粉体、液体、及固体和膏体形状的各种绝缘材料体积和表面电阻值的测定。 三、橡胶体积表面电阻率测定仪技术指标: 1.电阻测量范围:0.01×10 4Ω ~1×10 18Ω。 2.电流测量范围为: 2×10-4A~1×10-16A 3. 双表头显示: 3.1/2位LED显示 4. 内置测试电压:10V、50V、100V、250、500、1000V 5. 基本准确度:1% 6 使用环境: 温度:0℃~40℃,相对湿度<80% 7 机内测试电压: 10/50/100/250/500/1000V 任意切换 8.供电形式: AC 220V,50HZ,功耗约5W 9. 仪器尺寸: 285mm× 245mm× 120 mm 10.质量: 约2.5KG 四、橡胶体积表面电阻率测定仪工作原理: 根据欧姆定律,被测电阻Rx等于施加电压V除以通过的电流I。传统的高阻计的工作原理是测量电压V固定,通过测量流过取样电阻的电流I来得到电阻值。从欧姆定律可以看出,由于电流I是与电阻成反比,而不是成正比,所以电阻的显示值是非线性的,即电阻无穷大时,电流为零,即表头的零位处是∞,其附近的刻度非常密,分辨率很低整个刻度是非线性的。又由于测量不同的电阻时,其电压V也会有些变化,所以普通的高阻计是精度差、分辨率低。 BEST121型数字高阻计是同时测出电阻两端的电压V和流过电阻的电流I,通过内部的大规模集成电路完成电压除以电流的计算,然后把所得到的结果经过A/D转换后以数字显示出电阻值,即便是电阻两端的电压V和流过电阻的电流I是同时变化,其显示的电阻值不象普通高阻计那样因被测电压V的变化或电流I的变化而变,所以,即使测量电压、被测量电阻、电源电压等发生变化对其结果影响不大,其测量精度很高(专利),从理论上讲其误差可以做到零,而实际误差可以做到千分之几或万分之几。 五、橡胶体积表面电阻率测定仪典型应用: 1.测量防静电鞋、导电鞋的电阻值 2、测量防静电材料的电阻及电阻率 3、测量计算机房用活动地板的系统电阻值 4、测量绝缘材料电阻(率)

雷电灾害土壤电阻率四级法测试方法、层次分析法、雷电灾害风险普查报告式样表

附 录 C (资料性附录) 土壤电阻率四级法测试方法 C.1 四级等距法 四极等距法或称为温纳(Wenner)四级法,布线如图C.1所示,4个测试电极位于同一深度的一条直线上,测得的土壤视在电阻率按公式B.1计算: aR I aU ππρ2/2==..........................(B.1) 式中: ɑ-两电极之间的距离,不应小于电极埋深的20倍,单位m; U -电流电压表所测的电压值,单位V; I -电流电压表所测的电流值,单位A; R -接地绝缘电阻法所测得电阻值,单位Ω。 a) 电流-电压表法 (b) 接地绝缘电阻法 图C.1 四极等距法电位极布置示意图 C.2 四极非等距法 四极非等距法或称Schlumberger-Palme r法。当电极间距相当大时,四极等距法内侧两个电极的电位差迅速下降,通常仪器测不出或测不准如此低的电位差。电位极的布置如图C.2所示,电位极布置在相应的电流极附近,可升高所测的电位差值。如果电极的埋深h与其距离ɑ和b相比较很小,土壤电阻率按公式B.2计算: b R b a a /)(2+=πρ......................(B.2) 式中: ɑ-电流极与电位极间距,单位m; b -电位极间距,单位m。

图C.2 四极非等距法电位极布置示意图 C.3 测试要求与结果处理 测试电极宜用直径不小于1.5 cm的圆钢或∠25 mm×∠25 mm×∠4 mm的角钢,其长度均不小于40cm. 被测场地土壤中的电流场的深度及被测土壤的深度,与极间距离ɑ有密切关系。当被测场地的面积较大时,极间距离ɑ也相应地增大。 在各电极间距时得出的一组数据即为各视在土壤电阻率,以该数据与间距的关系绘成曲线,即可判断该地区是否存在多种土壤层或是否有岩石层,还可判断其各自的电阻率和深度。 为了得到较合理的土壤电阻率的数据,宜改变极间距离ɑ,求得视在土壤电阻率ρ与极间距离ɑ之间的关系曲线ρ=?(ɑ),极间距离的取值可为5 m、10 m、15 m、20 m、30 m、40 m等,最大的极间距离ɑmax 一般不宜小于拟建接地装置最大对角线。当布线空间路径有限时,可酌情减少,但至少达到最大对角线 的2/3。

绝缘电阻的认识及测试标准

绝缘电阻地正确测量方法 现代生活日新月异,人们一刻也离不开电.在用电过程中就存在着用电安全问题,在电器设备中,例如电机、电缆、家用电器等.它们地正常运行之一就是其绝缘材料地绝缘程度即绝缘电阻地数值.当受热和受潮时,绝缘材料便老化.其绝缘电阻便降低.从而造成电器设备漏电或短路事故地发生.为了避免事故发生, 就要求经常测量各种电器设备地绝缘电阻.判断其绝缘程度是否满足设备需要.普通电阻地测量通常有低电压下测量和高电压下测量两种方式.而绝缘电阻由于一般数值较高(一般为兆欧级).在低电压下地测量值不能反映在高电压条件下工作地真正绝缘电阻值.兆欧表也叫绝缘电阻表.它是测量绝缘电阻最常用地仪表.它在测量绝缘电阻时本身就有高电压电源,这就是它与测电阻仪表地不同之处.兆欧表用于测量绝缘电阻即方便又可靠.但是如果使用不当,它将给测量带来不必要地误差,我们必须正确使用兆欧表绝缘电阻进行测量. 兆欧表在工作时,自身产生高电压,而测量对象又是电气设备,所以必须正确使用,否则就会造成人身或设备事故.使用前,首先要做好以下各种准备: ()测量前必须将被测设备电源切断,并对地短路放电,决不允许设备带电进行测量,以保证人身和设备地安全. ()对可能感应出高压电地设备,必须消除这种可能性后,才能进行测量. ()被测物表面要清洁,减少接触电阻,确保测量结果地正确性. ()测量前要检查兆欧表是否处于正常工作状态,主要检查其“”和“∞”两点.即摇动手柄,使电机达到额定转速,兆欧表在短路时应指在“”位置,开路时应指在“∞”位置.资料个人收集整理,勿做商业用途 ()兆欧表使用时应放在平稳、牢固地地方,且远离大地外电流导体和外磁场. 做好上述准备工作后就可以进行测量了,在测量时,还要注意兆欧表地正确接线,否则将引起不必要地误差甚至错误. 兆欧表地接线柱共有三个:资料个人收集整理,勿做商业用途 一个为“”即线端,一个“”即为地端,再一个“”即屏蔽端(也叫保护环),一般被测绝缘电阻都接在“”“”端之间,但当被测绝缘体表面漏电严重时,必须将被测物地屏蔽环或不须测量地部分与“”端相连接.这样漏电流就经由屏蔽端“”直接流回发电机地负端形成回路,而不在流过兆欧表地测量机构(动圈).这样就从根本上消除了表面漏电流地影响,特别应该注意地是测量电缆线芯和外表之间地绝缘电阻时,一定要接好屏蔽端钮“”,因为当空气湿度大或电缆绝缘表面又不干净时,其表面地漏电流将很大,为防止被测物因漏电而对其内部绝缘测量所造成地影响,一般在电缆外表加一个金属屏蔽环,与兆欧表地“”端相连. 当用兆欧表摇测电器设备地绝缘电阻时,一定要注意“”和“”端不能接反,正确地接法是:“”线端钮接被测设备导体,“”地端钮接地地设备外壳,“”屏蔽端接被测设备地绝缘部分.如果将“”和“”接反了,流过绝缘体内及表面地漏电流经外壳汇集到地,由地经“”流进测量线圈,使“” 失去屏蔽作用而给测量带来很大误差.另外,因为“”端内部引线同外壳地绝缘程度比“”端与外壳地绝缘程度要低,当兆欧表放在地上使用时,采用正确接线方式时,“”端对仪表外壳和外壳对地地绝缘电阻,相当于短路,不会造成误差,而当“”与“”接反时,“”对地地绝缘电阻同被测绝缘电阻并联,而使测量结果偏小,给测量带来较大误差.

最新四探针法测电阻率

四探针法测电阻率

实验四探针法测电阻率 1.实验目的: 学习用四探针法测量半导体材料的体电阻率和扩散薄层的电阻率及方块电阻。 2.实验内容 ①硅单晶片电阻率的测量:选不同电阻率及不同厚度的大单晶圆片,改变 条件(光照与否),对测量结果进行比较。 ②薄层电阻率的测量:对不同尺寸的单面扩散片和双面扩散片的薄层电阻 率进行测量。改变条件进行测量(与①相同),对结果进行比较。 3.实验原理:

在半导体器件的研制和生产过程中常常要对半导体单晶材料的原始电阻率和经过扩散、外延等工艺处理后的薄层电阻进行测量。测量电阻率的方法很多,有两探针法,四探针法,单探针扩展电阻法,范德堡法等,我们这里介绍的是四探针法。因为这种方法简便可行,适于批量生产,所以目前得到了广泛应用。 所谓四探针法,就是用针间距约1毫米的四根金属探针同时压在被测样品的平整表面上如图1a 所示。利用恒流源给1、4两个探针通以小电流,然后在2、3两个探针上用高输入阻抗的静电计、电位差计、电子毫伏计或数字电压表测量电压,最后根 据理论公式计算出样品的电阻率[1] I V C 23 =ρ 式中,C 为四探针的修正系数,单位为厘米,C 的大小取决于四探针的排列方法和针距,探针的位置和间距确定以后,探针系数C 就是一个常数;V 23为2、3两探针之间的电压,单位为伏特;I 为通过样品的电流,单位为安培。 半导体材料的体电阻率和薄层电阻率的测量结果往往与式样的形状和尺寸密切相关,下面我们分两种情况来进行讨论。 ⑴ 半无限大样品情形 图1给出了四探针法测半无穷大样品电阻率的原理图,图中(a)为四探针测量电阻率的装置;(b)为半无穷大样品上探针电流的分布及等势面图形;(c)和(d)分别为正方形排列及直线排列的四探针图形。因为四探针对半导体表面的接触均为点接触,所以,对图1(b )所示的半无穷大样品,电流I 是以探针尖为圆心呈径向放射状流入体内的。因而电流在体内所形成的等位面为图中虚线所示的半球面。于是,样品电阻率为ρ,半径为r ,间距为dr 的两个半球等位面间的电阻为 dr r dR 2 2πρ = , 它们之间的电位差为 dr r I IdR dV 2 2πρ= =。

表面电阻率测试标准

表面电阻率测试标准 1 Purpose: 目 的: 1.1To define the requirements and procedures of surface resistivity test. 本文旨在定义表面电阻测量的要求和步骤。 2 Scope: 范 围: 2.1The test method described in the document cover direct-current procedures for the determination of DC surface resistance and surface resistivity of electrical materials. 本方法用来测量电气材料的直流表面电阻,表面电阻率。 2.2This document shall be applicable to solid materials and products used and/or produced by PEAK, except of metal materials.. 本规范适用于必佳公司内生产及使用的,除金属材料外,其它固体材料及产 品的表面电阻和/或表面电阻率的测试。 3 Instrument : 测试仪器 3.1MCP-HT260 Resistivity meter MCP-HT260型电阻率测试仪 3.2Model PSI-870 Surface Resistance/Resistivity Indicator PSI-870 型 表面电阻/表面电阻率测试仪 3.3PRF-912 miniature concentric ring fixture PRF-912型微型同心环型电极 3.4SRM-110 Surface Resistivity Meter SRM-110 型表面电阻率测试仪。 4 External Reference documents: 外部参考文件: 4.1ASTM D257-93 :Standard test methods for DC resistance or conductance of insulating materials 绝缘材料的直流电阻或电导实验方法 4.2ASTM D4496: Test method for DC resistance or conductance of moderately conductive materials 中等导电材料的直流电阻或电导实验方法。 5 Definitions 定 义 5.1 Moderately conductive-Describe a solid material having a volume resistivity between 1 and 10,000,000 ohm-cm. 中等导电性:指固体材料的体积电阻率在10-10,000,000ohm-cm

相关文档
最新文档