低温实验讲义_霍尔效应测量汇编

低温实验讲义_霍尔效应测量汇编
低温实验讲义_霍尔效应测量汇编

实验8—1变温霍尔效应

引言

1879年,霍尔(E.H.Hall)在研究通有电流的导体在磁场中受力的情况时,发现在垂直于磁场和电流的方向上产生了电动势,这个电磁效应称为“霍尔效应”。在半导体材料中,霍尔效应比在金属中大几个数量级,引起人们对它的深入研究。霍尔效应的研究在半导体理论的发展中起了重要的推动作用。直到现在,霍尔效应的测量仍是研究半导体性质的重要实验方法。

利用霍尔效应,可以确定半导体的导电类型和载流子浓度,利用霍尔系数和电导率的联合测量,可以用来研究半导体的导电机构(本征导电和杂质导电)和散射机构(晶格散射和杂质散射),进一步确定半导体的迁移率、禁带宽度、杂质电离能等基本参数。测量霍尔系数随温度的变化,可以确定半导体的禁带宽度、杂质电离能及迁移率的温度特性。

根据霍尔效应原理制成的霍尔器件,可用于磁场和功率测量,也可制成开关元件,在自动控制和信息处理等方面有着广泛的应用。

实验目的

1.了解半导体中霍尔效应的产生原理,霍尔系数表达式的推导及其副效应的产生和消除。

2.掌握霍尔系数和电导率的测量方法。通过测量数据处理判别样品的导电类型,计算室温

下所测半导体材料的霍尔系数、电导率、载流子浓度和霍尔迁移率。

3.掌握动态法测量霍尔系数(R H)及电导率(σ)随温度的变化,作出R H~1/T,σ~1/T曲

线,了解霍尔系数和电导率与温度的关系。

4.了解霍尔器件的应用,理解半导体的导电机制。

实验原理

1.半导体内的载流子

根据半导体导电理论,半导体内载流子的产生有两种不同的机构:本征激发和杂质电离。

(1)本征激发

半导体材料内共价键上的电子有可能受热激发后跃迁到导带上成为可迁移的电子,在原共价键上却留下一个电子缺位—空穴,这个空穴很容易受到邻键上的电子跳过来填补而转移到邻键上。因此,半导体内存在参与导电的两种载流子:电子和空穴。这种不受外来杂质的影响由半导体本身靠热激发产生电子—空穴的过程,称为本征激发。显然,导带上每产生一个电子,价带上必然留下一个空穴。因此,由本征激发的电子浓度n和空穴浓度p应相等,并统称为本征浓度n i,由经典的玻尔兹曼统计可得

n i=n=p=(N c N v)1/2exp(-E g/2k B T)=K’T3/2 exp(-E g/2k B T)

式中N c,N v分别为导带、价带有效状态密度,K’为常数,T为温度,E g为禁带宽度,k B为玻尔兹曼常数。

(2)杂质电离

在纯净的第IV族元素半导体材料中,掺入微量III或V族元素杂质,称为半导体掺杂。掺杂后的半导体在室温下的导电性能主要由浅杂质决定。

如果在硅材料中掺入微量III族元素(如硼或铝等),这些第III族原子在晶体中取代部

分硅原子组成共价键时,从邻近硅原子价键上夺取一个电子成为负离子,而在邻近失去一个电子的硅原子价键上产生一个空穴。这样满带中电子就激发到禁带中的杂质能级上,使硼原子电离成硼离子,而在满带中留下空穴参与导电,这种过程称为杂质电离。产生一个空穴所需的能量称为杂质电离能。这样的杂质叫做受主杂质,由受主杂质电离而提供空穴导电为主的半导体材料称为p 型半导体。当温度较高时,浅受主杂质几乎完全电离,这时价带中的空穴浓度接近受主杂质浓度。

同理,在IV 族元素半导体(如硅、锗等)中,掺入微量V 族元素,例如磷、砷等,那么杂质原子与硅原子形成共价键时,多余的一个价电子只受到磷离子P +的微弱束缚,在室温下这个电子可以脱离束缚使磷原子成为正离子,并向半导体提供一个自由电子。通常把这种向半导体提供一个自由电子而本身成为正离子的杂质称为施主杂质,以施主杂质电离提供电子导电为主的半导体材料叫做n 型半导体。

2. 霍尔效应和霍尔系数

设一块半导体的x 方向上有均匀的电流I x 流过,在z 方向上加有磁场B z ,则在这块半导体的y 方向上出现一横向电势差U H ,这种现象被称为“霍尔效应”,U H 称为“霍尔电压”,所对应的横向电场E H 称为“霍尔电场”。见图一。

图一 霍尔效应产生原理图

实验指出,霍尔电场强度E H 的大小与流经样品的电流密度J x 和磁感应强度B z 的乘积成正比

z x H H B J R E ??= (1)

式中比例系数R H 称为“霍尔系数”。

下面以p 型半导体样品为例,讨论霍尔效应的产生原理并推导、分析霍尔系数的表达式。 半导体样品的长、宽、厚分别为L 、a 、b ,半导体载流子(空穴)的浓度为p ,它们在电场E x 作用下,以平均漂移速度v x 沿x 方向运动,形成电流I x 。在垂直于电场E x 方向上加一磁场B z ,则运动着的载流子要受到洛仑兹力的作用

F =q v ?B (2)

式中q 为空穴电荷电量。该洛仑兹力指向-y 方向,因此载流子向-y 方向偏转,这样在样品的左侧面就积累了空穴,从而产生了一个指向+y 方向的电场-霍尔电场E y 。当该电场对空

穴的作用力qE y 与洛仑兹力相平衡时,空穴在y 方向上所受的合力为零,达到稳态。稳态时电流仍沿x 方向不变,但合成电场E =E x +E y 不再沿x 方向,E 与x 轴的夹角称“霍尔角”。在稳态时,有

qE y =qv x B z

(3)

若E y 是均匀的,则在样品左、右两侧面间的电位差

U H =E y ·a =v x B z a

(4) 而x 方向的电流强度

I x =q ·p ·v x ·ab

(5) 将(5)式的v x 代入(4)式得霍尔电压 )1(

b B I qp U z x H = (6) 由(1)、(3)和(5)式得霍尔系数 qp R H 1= (7)

对于n 型样品,载流子(电子)浓度为n ,同理可以得出其霍尔系数为

qn R H 1-= (8)

上述模型过于简单。根据半导体输运理论,考虑到载流子速度的统计分布以及载流子在运动中受到散射等因素,在霍尔系数的表达式中还应引入一个霍尔因子A ,则(7)、(8)式应修正为

p 型: qp

A R H 1= (9) n 型: qn A R H 1-= (10)

A 的大小与散射机理及能带结构有关。由理论算得,在弱磁场条件下,对球形等能面 的非简并半导体,在较高温度(此时,晶格散射起主要作用)情况下,18.18

3==πA 。 一般地,Si 、Ge 等常用半导体在室温下属于此种情况,A 取为1.18。在较低温度(此时,电离杂质散射起主要作用)情况下,93.1512

315==πA 。对于高载流子浓度的简并半导体以及强磁场条件,A =1;对于晶格和电离杂质混合散射情况,一般取文献报道的实验值。

上面讨论的是只有电子或只有空穴导电的情况。对于电子、空穴混合导电的情况,在计 算R H 时应同时考虑两种载流子在磁场下偏转的效果。对于球形等能面的半导体材料,可以证明:

22222)'()'()()(nb p q nb p A n p q n p A R n p n p H +-=+-=μμμμ (11)

式中b ’=μn /μp ,μn 和μp 分别为电子和空穴的迁移率。

从霍尔系数的表达式可以看出:由R H 的符号(也即U H 的符号)可以判断载流子的类型,正为p 型,负为n 型(注意,所谓正、负是指在xyz 坐标系中相对于y 轴方向而言,见图一。I 、B 的正方向分别为x 轴、z 轴的正方向,则霍尔电场方向为y 轴方向。当霍尔电场方向的指向与y 正向相同时,则R H 为正。);R H 的大小可确定载流子的浓度;还可以结合测得的电导率σ算出如下定义的霍尔迁移率μH

μH =|R H |·σ (12)

μH 的量纲与载流子的迁移率相同,通常为cm 2/V·s (厘米2/伏秒),它的大小与载流子的电导迁移率有密切的关系。

霍尔系数R H 可以在实验中测量出来,若采用国际单位制,由(6)、(7)式可得

z x H H B I b U R = (m 3/C) (13)

但在半导体学科中习惯采用实用单位制(其中,b :厘米,B z :高斯或Gs ),则

z x H H B I b U R =

×108 (cm 3/C ) (13’)

3.霍尔系数与温度的关系

图二 霍尔系数与温度的关系图

R H 与载流子浓度之间有反比关系,因此当温度不变时,R H 不会变化;而当温度改变时,载流子浓度发生变化,R H 也随之变化。图二是R H 随温度T 变化的关系图。图中纵坐标为R H 的绝对值,曲线A 和B 分别表示n 型和p 型半导体的霍尔系数随温度的变化曲线。

下面简要地讨论曲线B :

(1)杂质电离饱和区。在曲线(a )段,所有的杂质都已电离,载流子浓度保持不变。p 型半导体中p >>n ,(11)式中nb ’2可忽略,可简化为

H qN A qp A

R 11==>0

式中N A 为受主杂质浓度。

(2) 温度逐渐升高,价带上的电子开始激发到导带,由于μn >μp ,所以b ’>1, 当温度升到使p =nb ’2时,R H =0,出现了图中(b )段。

(3) 温度再升高时,更多的电子从价带激发到导带,p <nb ’2而使R H <0,(11)式 中分母增大,R H 减小,将会达到一个负的极值,图中(c )点。此时价带的空穴数p =n +N A ,将它代入(11)式,并对n 求微商,可以得到当 1

'-=b N n A 时,R H 达到极值 (R H )M : A

H qN A qp A R 11== (14) 由此式可见,当测得(R H )M 和杂质电离饱和区的R H ,就可定出b ’的大小。

(4) 当温度继续升高,达本征范围时,半导体中载流子浓度大大超过受主杂质浓度, 所以R H 随温度上升而呈指数下降,R H 则由本征载流子浓度N i 来决定,此时杂质含量不同或 杂质类型不同的曲线都将趋聚在一起,见图中(d )段。

4.半导体的电导率

在半导体中若有两种载流子同时存在,则其电导率σ为

σ=qp μp +qn μn

(15)

图三 电导率与温度的关系图

实验得出σ与温度T 的关系曲线如图三。

现以p 型半导体为例分析:

(1)低温区。在低温区杂质部分电离,杂质电离产生的载流子浓度随温度升高而增加,而且μp 在低温下主要取决于杂质散射,它也随温度升高而增加。因此,σ随T 的增加而增加,见图的a 段。室温附近。此时,杂质已全部电离,载流子浓度基本不变,这时晶格散射起主要作用,使μp 随T 的升高而下降,导致σ随T 的升高而下降,见图的b段。

(2)高温区。在这区域中,本征激发产生的载流子浓度随温度升高而指数地剧增,远远超过μp 的下降作用,致使σ随T 而迅速增加,见图的c段。

实验中电导率σ可由下式计算出:

ab U l I ??==

ρσ1 (16)

最新霍尔效应实验报告96288资料

南昌大学物理实验报告 课程名称: _____________ 普通物理实验(2) ________________ 实验名称: ___________________ 霍尔效应_____________________ 学院: ___________ 专业班级: ____________ 学生姓名: _______ 学号: _________________ 实验地点: __________ 座位号:_________ 实验时间: ______________________ 一、实验目的: 1、了解霍尔效应法测磁感应强度 X的原理和方法; 2、学会用霍尔元件测量通电螺线管轴向磁场分布的基本方法;

实验仪器: 霍尔元件测螺线管轴向磁场装置、多量程电流表2只、电势差计、滑动变阻 器、双路直流稳压电源、双刀双掷开关、连接导线15根。 三、实验原理: 1、霍尔效应 霍尔效应本质上是运动的带电粒子在磁场中受洛仑磁力作用而引起的偏转。 当带电粒子(电子或空穴)被约束在固体材料中,这种偏转导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横加电场,即霍尔电场I E H . 如果血<0,贝U说明载流子为电子,则为n型试样;如果血>0,贝U说明载流子为空穴,即为p型试样。 显然霍尔电场旦是阻止载流子继续向侧面偏移,当载流子所受的横向电场 力e E H与洛仑磁力levB相等,样品两侧电荷的积累就达到动态平衡,故有:

e E H =-|evB, 其中E H为霍尔电场,W是载流子在电流方向上的平均速度。若试样的宽 度为b,厚度为d,载流子浓度为n,贝U I = nevbd 由上面两式可得: 即霍尔电压V H (上下两端之间的电压)与|I s B乘积成正比与试样厚度d成反比。 |R H二-称为霍尔系数,它是反应材料霍尔效应强弱的重要参量。只要 比列系数 测出V H以及知道LS、B和d可按下式计算L R±: R H诒1°4 2、霍尔系数R H与其他参量间的关系 根据 R H可进一步确定以下参量: (1) 由应的符号(或霍尔电压的正负)判断样品的导电类型。判别方法是电 间有如下关系 3、霍尔效应与材料性能的关系 由上述可知,要得到大的霍尔电压,关键是选择霍尔系数大(即迁移率高、电阻率也较高)的材料。因||R H|」P|,金属导体門和巴都很低;而不良导体已虽高,但巴极小,所以这两种材料的霍尔系数都很小,不能用来制造霍尔器件。半导体巴高,日适中,是制造霍尔元件较为理想的材料,由于电子的迁移率比空穴迁移率大,所以霍尔元件多采用n型材料,其次霍尔电压的大 1 I s B c I s B V H = Ewb = --------- =R H ne d d (3) 压为负, R H为负,样品属于n型;反之则为p型。 (2)由应求载流子浓度n.即n = |只]这个关系式是假定所有载流子都具有 相同的漂移速度得到的。 (3)结合电导率的测量, 求载流子的迁移率已与载流子浓度n以及迁移率巴之 a=ne^ 即門=R H。,测出冋值即可求門。

范德堡测试方法与变温霍尔效应

范德堡测试方法与变温霍尔效应 摘要:本实验采用范德堡测试方法,测量样品霍耳系数及电导率随温度的变化,可以确定一些主要特性参数——禁带宽度,杂质电离能,电导率,载流子浓度,材料的纯度及迁移率,从而进一步探讨导电类型,导电机理及散射机制。 关键词:霍尔效应、范德堡测试法、霍尔系数、电导率 引言:对通电导体或半导体施加一与电流方向相垂直的磁场,则在垂直于电流和磁场方向上有一横向电位差出现,此即为霍耳效应。利用霍尔效应测量霍耳系数及电导率是分析半导体纯度以及杂质种类的一种有力手段,也可用于研究半导体材料电输运特征,是半导体材料研制工作中必不可少的一种常备测试方法。 一、原理部分: (一)、半导体内的载流子 根据半导体导电理论,半导体内载流子的产生有两种不同的机制:本征激发和杂质电离。 1、本征激发 在一定的温度下,由于原子的热运动,价键中的电子获得足够的能量,摆脱共价键的束缚,成为可以自由运动的电子。这时在原来的共价键上就留下了一个电子空位,邻键上的电子随时可以跳过来填充这个空位,从而使空位转移到邻键上去,因此空位也是可以移动的。 这种可以自由移动的空位被称为空穴。半导体不 仅靠自由电子导电,而且也靠这种空穴导电。半 导体有两种载流子,即电子和空穴。 从能带来看,构成共价键的电子也就是填充 价带的电子,电子摆脱共价键而形成一对电子和 空穴的过程,就是一个电子从价带到导带的量子 跃迁过程,如图1 所示。 纯净的半导体中费米能级位置和载流子浓 度只是由材料本身的本征性质决定的,这种半导 体称本征半导体。本征半导体中,在电子—空穴 对的产生过程中,每产生一个电子,同时也产生 一个空穴,所以,电子和空穴浓度保持相等, n表示,称为本征载流图1 本征激发示意图 这个共同的浓度用 i 子浓度。这种由半导体本身提供,不受外来掺杂影响的载流子产生过程通常叫做本征激发。 2.、杂质电离 绝大部分的重要半导体材料都含有一定量的浅杂质,它们在常温下的导电性能,主要由浅杂质决定。浅杂质分为两种类型,一种是能够接收价带中激发的电子变为负离子,称为受主杂质。由受主杂质电离提供空穴导电的半导体叫做P 型半导体如图2(a)所示。还有一种可以向半导体提供一个自由电子而本身成为正离子,称为施主杂质。这种由施主杂质电离提供电子导电的半导体叫做n 型半导体,如图2(b)所示。

霍尔效应实验报告98010

霍尔效应与应用设计 摘要:随着半导体物理学的迅速发展,霍尔系数和电导率的测量已成为研究半导体材料的主要方法之一。本文主要通过实验测量半导体材料的霍尔系数和电导率可以判断材料的导电类型、载流子浓度、载流子迁移率等主要参数。 关键词:霍尔系数,电导率,载流子浓度。 一.引言 【实验背景】 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,称为霍尔效应。 如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且随着电子技术的发展,利用该效应制成的霍尔器件,由于结构简单、频率响应宽(高达10GHz )、寿命长、可靠性高等优点,已广泛用于非电量测量、自动控制和信息处理等方面。 【实验目的】 1. 通过实验掌握霍尔效应基本原理,了解霍尔元件的基本结构; 2. 学会测量半导体材料的霍尔系数、电导率、迁移率等参数的实验方法和技术; 3. 学会用“对称测量法”消除副效应所产生的系统误差的实验方法。 4. 学习利用霍尔效应测量磁感应强度B 及磁场分布。 二、实验内容与数据处理 【实验原理】 一、霍尔效应原理 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。如图1所示。当载流子所受的横电场力与洛仑兹力相等时,样品两侧电荷的积累就达到平衡,故有 B e eE H v = 其中E H 称为霍尔电场,v 是载流子在电流方向上的平均漂移速度。设试样的宽度为b , ? a

厚度为d ,载流子浓度为n ,则 bd ne t lbde n t q I S v =??=??= d B I R d B I ne b E V S H S H H =?= ?=1 比例系数R H =1/ne 称为霍尔系数。 1. 由R H 的符号(或霍尔电压的正负)判断样品的导电类型。 2. 由R H 求载流子浓度n ,即 e R n H ?= 1 (4) 3. 结合电导率的测量,求载流子的迁移率μ。 电导率σ与载流子浓度n 以及迁移率μ之间有如下关系 μσne = (5) 即σμ?=H R ,测出σ值即可求μ。 电导率σ可以通过在零磁场下,测量B 、C 电极间的电位差为V BC ,由下式求得σ。 S L V I BC BC s ?= σ(6) 二、实验中的副效应及其消除方法: 在产生霍尔效应的同时,因伴随着多种副效应,以致实验测得的霍尔电极A 、A′之间的电压为V H 与各副效应电压的叠加值,因此必须设法消除。 (1)不等势电压降V 0 如图2所示,由于测量霍尔电压的A 、A′两电极不可能绝对对称地焊在霍尔片的两侧,位置不在一个理想的等势面上,Vo 可以通过改变Is 的方向予以消除。 (2)爱廷豪森效应—热电效应引起的附加电压V E 构成电流的载流子速度不同,又因速度大的载流子的能量大,所以速度大的粒子聚集的一侧温度高于另一侧。电极和半导体之间形成温差电偶,这一温差产生温差电动势V E ,如果采用交流电,则由于交流变化快使得爱延好森效应来不及建立,可以减小测量误差。 (3)能斯托效应—热磁效应直接引起的附加电压V N

【大学物理实验】霍尔效应与应用讲义

霍尔效应与应用 1879年,年仅24岁的霍尔在导师罗兰教授的支持下,设计了一个根据运动载流子在外磁场中的偏转来确定在导体或半导体中占主导地位的载流子类型的实验,霍尔的发现在当时震动了科学界,这种效应被称为霍尔效应。通过实验测量半导体材料的霍尔系数和电导率可以判断材料的导电类型、载流子浓度、载流子迁移率等主要参数。通过测量霍尔系数和电导率随温度变化的关系,还可以求出半导体材科的杂质电离能和材料的禁带宽度。如今常规霍尔效应不但是测定半导体材料电学参数的主要手段,利用该效应制成的霍尔器件已广泛用于非电量的电测量、自动控制和信息处理等各个研究领域。 该实验要求学生了解霍尔效应的基本原理、霍尔元件的基本结构,测试霍尔元件特性的方法,并对测量结果给出正确分析和结论。 鼓励学生运用霍尔效应的基本原理和霍尔元件的特性,设计一些测量磁场,或各种非磁性和非电性物理量的测量的实验方案,例如:磁场分布、位置、位移、角度、角速度等。让学生更好的运用霍尔效应来解决一些实际问题。 一、预备问题 1.霍尔效应在基础研究和应用研究方面有什么价值? 2.如何利用实验室提供的仪器测量半导体材料的霍尔系数? 3.怎样判断霍尔元件载流子的类型,计算载流子的浓度和迁移速率? 4.伴随霍尔效应有那些副效应?如何消除? 5.如何利用霍尔效应和元件测量磁场? 6.如何利用霍尔元件进行非电磁的物理量的测量? 7.若磁场的法线不恰好与霍尔元件片的法线一致,对测量结果会有何影响?如何用实验的方法判断B与元件法线是否一致? 8.能否用霍尔元件片测量交变磁场? 二、引言 霍尔效应发现一百多年来,在基础和应用研究范围不断扩展壮大,反常霍尔效应、整数霍尔效应、分数霍尔效应、自旋霍尔效应和轨道霍尔效应等相继被发现,并构成了一个庞大的霍尔效应家族。1985年克利青、多尔达和派波尔因发现整数量子霍尔效应,荣获诺贝尔奖;1998年诺贝尔物学理奖授予苏克林、施特默和崔琦,以表彰他们发现了分数量子霍尔效应。自旋霍尔效应是目前凝聚态领域中一个相当热门的研究方向。(反映霍尔效应家族中最新研究进展的论文和资料详见配套光盘)。 用霍尔效应制备的各种传感器件,已广泛应用于工业自动化技术、检测技术和信息处理等各个方面,霍尔器件作为一种磁传感器。不仅可以用来直接检测磁场及其变化,还可用人为设置的磁场,用这个磁场来作被检测的信息的载体,通过它进行各种非磁性和电性物理量的测量,例如:力、力矩、压力、应力、位置、位移、速度、加速度、角度、角速度、转数、转速以及工作状态发生变化的时间等,转变成电量来进行检测和控制(详见配套光盘中各种霍尔传感器和应用案例分析)。 霍尔元件或各种霍尔传感器的工作基础是霍尔效应。霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场E H。对于图1所示的半导体试样,若在X方向通以电流Is,在Z方向加磁场B,则在Y方向即试样A,A′两侧就开始聚积异号电荷而产生相应的附加电场(可参阅配套光盘中动画演示)。电场的指向取决于试样的导电类型。

霍尔效应实验方法

实验: 霍尔效应与应用设计 [教学目标] 1. 通过实验掌握霍尔效应基本原理,了解霍尔元件的基本结构; 2. 学会测量半导体材料的霍尔系数的实验方法和技术; 3. 学会用“对称测量法”消除副效应所产生的系统误差的实验方法。 [实验仪器] 1.TH -H 型霍尔效应实验仪,主要由规格为>2500GS/A 电磁铁、N 型半导体硅单晶切薄片式样、样品架、I S 和I M 换向开关、V H 和V σ(即V AC )测量选择开关组成。 2.TH -H 型霍尔效应测试仪,主要由样品工作电流源、励磁电流源和直流数字毫伏表组成。 [教学重点] 1. 霍尔效应基本原理; 2. 测量半导体材料的霍尔系数的实验方法; 3. “对称测量法”消除副效应所产生的系统误差的实验方法。 [教学难点] 1. 霍尔效应基本原理及霍尔电压结论的电磁学解释与推导; 2. 各种副效应来源、性质及消除或减小的实验方法; 3. 用最小二乘法处理相关数据得出结论。 [教学过程] (一)讲授内容: (1)霍尔效应的发现: 1879,霍尔在研究关于载流导体在磁场中的受力性质时发现: “电流通过金属,在磁场作用下产生横向电动势” 。这种效应被称为霍尔效应。 结论:d B I ne V S H ?=1 (2)霍尔效应的解释: 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。当载

流子所受的横电场力H e eE f =与洛仑兹力evB f m =相等时,样品两侧电荷的积累就达到平衡, B e eE H v = (1) bd ne I S v = (2) 由 (1)、(2)两式可得: d B I R d B I ne b E V S H S H H =?= ?=1 (3) 比例系数ne R H 1=称为霍尔系数,它是反映材料霍尔效应强弱的重要参数, (3) 霍尔效应在理论研究方面的进展 1、量子霍尔效应(Quantum Hall Effect) 1980年,德国物理学家冯?克利青观察到在超强磁场(18T )和极低 温(1.5K )条件下,霍尔电压 UH 与B 之间的关系不再是线性的,出现一 系列量子化平台。 量子霍尔电阻 获1985年诺贝尔物理学奖! 2、分数量子霍尔效应 1、1982年,美国AT&T 贝尔实验室的崔琦和 斯特默发现:“极纯的半导体材料在超低温(0.5K) 和超强磁场(25T)下,一种以分数形态出现的量子电 阻平台”。 2、1983 年,同实验室的劳克林提出准粒子理 论模型,解释这一现象。 获1998年诺贝尔物理学奖 i e h I U R H H H 1 2?==3,2,1=i

变温霍尔效应

学号:PB07203143 姓名:王一飞院(系):物理系 变温霍尔效应 【实验目的】 1、通过该实验,学习利用变温霍尔效应测量半导体薄膜的多种电学性质的方法。 2、掌握霍尔系数、霍尔迁移率和电导率的测量方法,了解它们随温度的变化规律。 3、测定样品的导电类型和载流子浓度,并计算出禁带宽度和杂质电离能等。 【实验原理】 1、半导体的能带结构和载流子浓度 本征半导体中本征载流子(电子和空穴)总是成对出现的,它们的浓度相同,本征载流 子浓度仅取决于材料的性质(如材料种类和禁带宽度)及外界的温度。 若所掺杂质的价态大于基质的价态,即施主杂质,称为 n 型半导体;若所掺杂质的价态小 于基质的价态,即受主杂质,称为 p 型半导体。 当导带中的电子和价带中的空穴相遇后,电子重新填充原子中的空位,导致相应的电子 和空穴消失,这过程叫做电子和空穴的复合。在这一过程中,电子从高能态的导带回到低能态的价带,多余的能量以热辐射的形式(无辐射复合)或光辐射的形式(辐射复合)放出。 当温度在几十K左右时,只有很少受主电离,空穴浓度P远小于受主浓度,曲线基本上为 直线,由斜率可得到受主电离能Ei。 当温度升高到杂质全电离饱和区,载流子浓度与温度无关 当在本征激发的高温区,由曲线的斜率可求出禁带宽度Eg 2、电导率和迁移率 半导体中同时有两种载流子导电时,在过渡区及本征激发区电导率可写为: [p型半导体] 设p s 为杂质全部电离产生的空穴饱和浓度,p = p s + n 则 3、霍尔效应及其测量 如右图,霍尔系数 在考虑霍尔效用时,由于载流子沿y方向发生偏转,

造成在x方向定向运动的速度出现统计分布。 考虑载流子迁移率μ = v /E时,应采用速度的统计平均结果vH 稳态时,y 方向的电场力与罗伦兹力相抵消,故有 对p型半导体,当温度处在较低的杂质电离区时 在温度逐渐升高的过程中,电子由价带激发到导带的过程加剧,出现两种载流子导电机制。 温度进一步升高,更多的电子从价带激发到导带,使,故有。随后R H 将会 达到其极值R HM 。 3、范得堡法测量电阻率和霍耳效应 原理图如右图,在样品侧边制作四个电极,依次在一对相邻 的电极用来通入电流,另一对电极之间测量电位差。 电阻率 由于两霍尔电极位置不对称引起的,叫失排电压。 设B、D电极之间电压Vo,在 B、C电极间电压Vm,在理想范德堡样品中。电流线分布在磁场前后是不变的,因而加磁场后等位面的改变使B、D间电压改变(Vm-Vo)完全是由于霍尔效应引起的, 即电压改变量就是霍尔电压V H 。 4、霍尔效应测量中的副效应及其消除方法 在测量霍耳系数时,由于存在一系列电磁和热磁副效应,使得数字电压表测出的电位差V AB 并不 等于样品的霍耳电位差V H ,而是包括了由各种副效应引起的附加电位差与V H 之和。这些副效应主要 有以下几种。 ①由于电极A与B不能真正制作在同一等位面上,所以即使在没有加磁场B的情况下,A、B间也有一个电位差,其正负与电流I的方向有关。 ②由于载流子漂移速度有一定的分布范围,当它们在磁场作用下发生偏转时,速度快的高能粒子最早在y方向形成积累,于是在y方向两霍尔电极之间出现温度差,产生温差电压V E 。这就叫艾廷豪 森效应。不难看出,VE的极性总是与V H 一致,与B和I方向有关。 ③在沿x方向给样品加电流时,两个端电极与样品的接触电阻不同,产生的焦耳热不同,将造成沿电流方向的温差,有温度梯度就会有载流子的热扩散流。在横向磁场作用下,同样也要发生偏转,积累,产生附加的霍尔电压VN。这种效应叫能斯脱效应。VN的极性只随磁场方向改变。 ④上述热扩散速度也有个分布,从艾廷豪森效应的分析不难看出,热扩散的载流子在横向磁场作 用下向y方向积累的结果使霍尔电极间有温差电压VR。这叫里纪—勒杜克效应。V R 的极性只随磁场方向改变。

大学物理实验报告霍尔效应

大学物理实验报告霍尔效应 一、实验名称:霍尔效应原理及其应用二、实验目的:1、了解霍尔效应产生原理;2、测量霍尔元件的、曲线,了解霍尔电压与霍尔元件工作电流、直螺线管的励磁电流间的关系;3、学习用霍尔元件测量磁感应强度的原理和方法,测量长直螺旋管轴向磁感应强度及分布;4、学习用对称交换测量法(异号法)消除负效应产生的系统误差。 三、仪器用具:YX-04 型霍尔效应实验仪(仪器资产编号)四、实验原理:1、霍尔效应现象及物理解释霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直于电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。对于图1 所示。半导体样品,若在x 方向通以电流,在z 方向加磁场,则在y 方向即样品A、A′电极两侧就开始聚积异号电荷而产生相应的电场,电场的指向取决于样品的导电类型。显然,当载流子所受的横向电场力时电荷不断聚积,电场不断加强,直到样品两侧电荷的积累就达到平衡,即样品A、A′间形成了稳定的电势差(霍尔电压)。设为霍尔电场,是载流子在电流方向上的平均漂移速度;样品的宽度为,厚度为,载流子浓度为,则有:(1-1) 因为,,又根据,则(1-2)其中称为霍尔系数,是反映材料霍尔效应强弱的重要参数。只要测出、以及知道和,可按下式计算:(1-3)(1-4)为霍尔元件灵敏度。 根据RH 可进一步确定以下参数。(1)由的符号(霍尔电压的正负)判断样品的导电类型。判别的方法是按图1 所示的和的方向(即测量中的+,+),若测得的 <0(即A′的电位低于A 的电位),则样品属N 型,反之为P 型。(2)由求载流子浓度,即。应该指出,这个关系式是假定所有载流子都具有相同的漂移速度得到的。严格一点,考虑载流子的速度统计分布,需引入的修正因子(可参阅黄昆、谢希德著《半导体物理学》)。(3)结合电导率的测量,求载流子的迁移率。电导率与载流子浓度以及迁移率之间有如下关系:(1-5)2、霍尔效应中的副效应及其消除方法上述推导是从理想情况出发的,实际情况要复杂得多。产生上述霍尔效应的同时还伴随产生四种副效应,使的测量产生系统误差,如图 2 所示。 (1)厄廷好森效应引起的电势差。由于电子实际上并非以同一速度v 沿y 轴负向运动,速度大的电子回转半径大,能较快地到达接点3 的侧面,从而导致3 侧面较4 侧面集中较多能量高的电子,结果3、4 侧面出现温差,产生温差电动势。 可以证明。的正负与和的方向有关。(2)能斯特效应引起的电势差。焊点1、2 间接触电阻可能不同,通电发热程度不同,故1、2 两点间温度可能不同,于是引起热扩散电流。与霍尔效应类似,该热扩散电流也会在 3、4 点间形成电势差。 若只考虑接触电阻的差异,则的方向仅与磁场的方向有关。(3)里纪-勒杜克效应产生的电势差。上述热扩散电流的载流子由于速度不同,根据厄廷好森效应同样的理由,又会在3、4 点间形成温差电动势。的正负仅与的方向有关,而与的方向无关。(4)不等电势效应引起的电势差。由于制造上的困难及材料的不均匀性,3、4 两点实际上不可能在同一等势面上,只要有电流沿x 方向流过,即使没有磁场,3、4 两点间也会出现电势差。的正负只与电流的方向有关,而与的方向无关。综上所述,在确定的磁场和电流下,实际测出的电压是霍尔

(打印)霍尔效应讲义

霍尔效应与磁场测定 一、实验目的及课时安排(6课时) (1)理解霍耳效应产生的机理; (2)掌握霍耳元件测量磁场的基本方法; (3)进一步了解系统误差消除的方法和重要性。 二、实验原理介绍 1、通过霍尔效应测量磁场 霍尔效应装置如图2.3.1-1和图2.3.1-2所示。将一个半导体薄片放在垂直于它的磁场中(B的方向沿z轴方向),当沿y方向的电极A、A’上施加电流I时,薄片内定向移动的载流子(设平均速率为u)受到洛伦兹力FB的作用, F B = q u B (1) 无论载流子是负电荷还是正电荷,FB的方向均沿着x方向,在磁力的作用下,载流子发生偏移,产生电荷积累,从而在薄片B、B’两侧产生一个电位差VBB’,形成一个电场E。电场使载流子又受到一个与FB方向相反的电场力FE, FE=q E = q VBB’ / b(2) 其中b为薄片宽度,FE随着电荷累积而增大,当达到稳定状态时FE=FB,即 q uB = q VBB’ / b(3) 这时在B、B’两侧建立的电场称为霍尔电场,相应的电压称为霍尔电压,电极B、B’称为霍尔电极。 另一方面,射载流子浓度为n,薄片厚度为d,则电流强度I与u的关系为: I=bdnqu (4) 由(3)和(4)可得到 VBB= IB/nqd (5) 另R=1/nq,则

VBB= RIB/d (6) R称为霍尔系数,它体现了材料的霍尔效应大小。根据霍尔效应制作的元件称为霍尔元件。 在应用中,(6)常以如下形式出现: VBB= KIB (7) 式中K=R/d=1/nqd称为霍尔元件灵敏度,I称为控制电流。 由式(7)可见,若I、KH已知,只要测出霍尔电压VBB’,即可算出磁场B的大小;并且若知载流子类型(n型半导体多数载流子为电子,P型半导体多数载流子为空穴),则由VBB’的正负可测出磁场方向,反之,若已知磁场方向,则可判断载流子类型。 由于霍尔效应建立所需时间很短(10-12~10-14s),因此霍尔元件使用交流电或者直流电都可。指示交流电时,得到的霍尔电压也是交变的,(7)中的I和VBB’应理解为有效值。 2、霍尔效应实验中的副效应 在实际应用中,伴随霍尔效应经常存在其他效应。例如实际中载流子迁移速率u服从统计分布规律,速度小的载流子受到的洛伦兹力小于霍尔电场作用力,向霍尔电场作用力方向偏转,速度大的载流子受到磁场作用力大于霍尔电场作用力,向洛伦兹力方向偏转。这样使得一侧告诉载流子较多,相当于温度较高,而另一侧低速载流子较多,相当于温度较低。这种横向温差就是温差电动势VE,这种现象称为爱延豪森效应。这种效应建立需要一定时间,如果采用直流电测量时会因此而给霍尔电压测量带来误差,如果采用交流电,则由于交流变化快使得爱延豪森效应来不及建立,可以减小测量误差。 此外,在使用霍尔元件时还存在不等位电动势引起的误差,这是因为霍尔电极B、B’ 不可能绝对对称焊在霍尔片两侧产生的。由于目前生产工艺水平较高,不等位电动势很小,故一般可以忽略,也可以用一个电位器加以平衡(图2.3.1-1中电位器R1)。 我们可以通过改变IS和磁场B的方向消除大多数付效应。具体说在规定电流和磁场正反方向后,分别测量下列四组不同方向的IS和B组合的VBB’,即 然后利用VBB= (v1-v2+v3-v4)/4=V的误差不大,可以忽略不计。 电导率测量方法如下图所示。设B’C间距离为L,样品横截面积为S=bd,流经样品电流为IS,在零磁场下,测得B’C间电压为VB’C,则

霍尔效应实验报告

南昌大学物理实验报告 课程名称:普通物理实验( 2) 实验名称:霍尔效应 学院:专业班级: 学生姓名:学号: 实验地点:座位号: 实验时间:

一、实验目的: 1、了解霍尔效应法测磁感应强度I S的原理和方法; 2、学会用霍尔元件测量通电螺线管轴向磁场分布的基本方法; 二、实验仪器: 霍尔元件测螺线管轴向磁场装置、多量程电流表 2 只、电势差计、滑动变阻器、双路直流稳压电源、双刀双掷开关、连接导线15 根。 三、实验原理: 1、霍尔效应 霍尔效应本质上是运动的带电粒子在磁场中受洛仑磁力作用而引起的偏转。 当带电粒子(电子或空穴)被约束在固体材料中,这种偏转导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横加电场,即霍尔电场E H . 如果 E H <0,则说明载流子为电子,则为n 型试样;如果 E H >0,则说明载流子为空穴,即为p 型试样。 显然霍尔电场 E H是阻止载流子继续向侧面偏移,当载流子所受的横向电场 力 e E H与洛仑磁力 evB 相等,样品两侧电荷的积累就达到动态平衡,故有:

e E H =- evB 其中 E H为霍尔电场, v 是载流子在电流方向上的平均速度。若试样的宽 度为 b,厚度为 d,载流子浓度为n,则I nevbd 由上面两式可得: 1 I S B I S B V H E H b R H(3) ne d d 即霍尔电压 V H(上下两端之间的电压)与I S B乘积成正比与试样厚度 d 成反比。 1 称为霍尔系数,它是反应材料霍尔效应强弱的重要参量。只要比列系数 R H ne 测出 V H以及知道I S、 B 和 d 可按下式计算 R H : R H V H d10 4 I S B 2、霍尔系数 R H与其他参量间的关系 根据 R H可进一步确定以下参量: ( 1)由 R H的符号(或霍尔电压的正负)判断样品的导电类型。判别方法是电压为负, R H为负,样品属于n 型;反之则为 p 型。 ( 2)由 R H求载流子浓度 n.即n1这个关系式是假定所有载流子都具有相 R H e 同的漂移速度得到的。 ( 3)结合电导率的测量,求载流子的迁移率与载流子浓度n以及迁移率之间有如下关系 ne即= R H,测出值即可求。 3、霍尔效应与材料性能的关系 由上述可知,要得到大的霍尔电压,关键是选择霍尔系数大(即迁移率高、

大学物理实验讲义实验 用霍尔效应法测量磁场

实验16用霍尔效应法测量磁场 在工业生产和科学研究中,经常需要对一些磁性系统或磁性材料进行测量,被测磁场的范 围可从~10 15-3 10T (特斯拉),测量所用的原理涉及到电磁感应、磁光效应、热磁效应等。常用的磁场测量方法有核磁共振法、电磁感应法、霍尔效应法、磁光效应法、超导量子干涉器件法等近十种。 一般地,霍尔效应法用于测量10~104 -T 的磁场。此法结构较简单,灵敏度高,探头体积小、测量方便、在霍尔器件的温度范围内有较好的稳定性。但霍尔电压和内阻存在一定的温度系数,并受输入电流的影响,所以测量精度较低。 用半导体材料制成的霍尔器件,在磁场作用下会出现显着的霍尔效应,可用来测量磁场、霍尔系数、判断半导体材料的导电类型(N 型或P 型)、确定载流子(作定向运动的带电粒子)浓度和迁移率等参数。如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且利用该效应制成的霍尔器件已广泛用于非电量电测、自动控制和信息处理等方面,如测量强电流、压力、转速等,在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更为广阔的应用前景。了解这一富有实用性的实验,对于日后的工作将有益处。 【实验目的】 1. 了解霍尔效应产生的机理。 2. 掌握用霍尔器件测量磁场的原理和基本方法。 3. 学习消除伴随霍尔效应的几种副效应对测量结果影响的方法。 4. 研究通电长直螺线管内轴向磁场的分布。 【仪器用具】 TH-H/S 型霍尔效应/螺线管磁场测试仪、TH-S 型螺线管磁场实验仪。 【实验原理】 1. 霍尔效应产生的机理 置于磁场中的载流体,如果电流方向与磁场方向垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,载流体的两侧会产生一电位差,这个现象是美国霍普斯金大学二年级研究生霍尔于1879年发现的,后被称为霍尔效应,所产生的电位差称为霍尔电压。特别是在半导体样品中,霍尔效应更加明显。 霍尔电压从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子和空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的积累,从而形成附加的横向电场,即霍尔电场。对于图1-1(a )所示的N 型半导体试样,若在X 方向通以电流S I ,在Z 方向加磁场B ,试样中载流子(电子)将受到洛仑兹力大小为: evB F g =(1-1) 则在Y 方向,在试样A 、A '电极两侧就开始聚积异号电荷而产生相应的附加电场——霍尔电场。电场的指向取决于试样的导电类型,对N 型半导体试样,霍尔电场逆Y 方向,P 型半导体试样,霍尔电场则沿Y 方向,即有: 当S I 沿X 轴正向、B 沿Z 轴正向、H E 逆Y 正方向的试样是N 型半导体。

霍尔效应实验

霍爾效應實驗 (Hall Effect Experiment) 胡裕民 編寫 一. 實驗目的: 1. 藉由觀察變壓器中鐵芯隨磁場變化下的磁滯曲線,了解鐵磁性物質的磁滯性質。 2. 驗證伯努利定律(Bernoulli ’s Law)。 二. 原理介紹: 1879年Hall 研究一電流經過的導體在磁場下所受到的力量而發現了霍爾效應。考慮一p 型半導體(如圖一所示),電流I 朝著正x 軸方向流動(電洞向右移動),外加磁場在正z 軸方向。電流I 可表示為: x x q w d p v q A p v I == Eq.(1) 其中q 是電荷、p 是電洞的密度。而沿著x 軸方向的電壓V ρ為 wd s I R I V ρ ρ?=?= Eq.(2) 由Eq.(2)可將電阻率ρ表示 I V s wd ρρ= Eq.(3) 現在考慮在一均勻磁場強度B 下電洞的運動,作用於電洞的力量若以向量來表示 )(B V q F ?+E = Eq.(4) 由Eq.(4)可知此時移動的電洞受到磁場的作用會偏折向樣品底部,如圖一所示。

圖一. p 型樣品中的霍爾效應。 由於在y 軸方向上沒有電流的流動,因此F y = 0。由Eq.(1)以及Eq.(4)我們可以得到y 軸方向的電場為: q w d p BI Bv E x y == Eq.(5) 而此y 軸方向的電場產生的霍爾電壓V H : qdp BI dy qwdp BI dy E V w w y H ===??00 Eq.(6) 霍爾係數R H 定義為: qp BI d V R H H 1== Eq.(7) 電流與淨電場的夾角θ定義為霍爾角度: P x y B E E μθ== t a n Eq.(8) 由Eq.(7)可知 H qR p 1= Eq.(9) 對於n 型樣品,同樣可得 H qR n 1-= Eq.(10) 當電子與電洞都存在時,霍爾係數將表示為 ] )()()[()()()(22222n p B bn p q n p B n b p R n n H -++-+-=μμ Eq.(12)

霍尔效应实验报告

霍尔效应与应用设计 摘要:随着半导体物理学得迅速发展,霍尔系数与电导率得测量已成为研究半导体材料得主要方法之一。本文主要通过实验测量半导体材料得霍尔系数与电导率可以判断材料得导电类型、载流子浓度、载流子迁移率等主要参数。 关键词:霍尔系数,电导率,载流子浓度。 一.引言 【实验背景】 置于磁场中得载流体,如果电流方向与磁场垂直,则在垂直于电流与磁场得方向会产生一附加得横向电场,称为霍尔效应。 如今,霍尔效应不但就是测定半导体材料电学参数得主要手段,而且随着电子技术得发展,利用该效应制成得霍尔器件,由于结构简单、频率响应宽(高达10GHz)、寿命长、可靠性高等优点,已广泛用于非电量测量、自动控制与信息处理等方面. 【实验目得】 1.通过实验掌握霍尔效应基本原理,了解霍尔元件得基本结构; 2.学会测量半导体材料得霍尔系数、电导率、迁移率等参数得实验方法与技术; 3.学会用“对称测量法"消除副效应所产生得系统误差得实验方法。 4.学习利用霍尔效应测量磁感应强度B及磁场分布. 二、实验内容与数据处理 【实验原理】 一、霍尔效应原理 霍尔效应从本质上讲就是运动得带电粒子在磁场中受洛仑兹力作用而引起得偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流与磁场得方向上产生正负电荷得聚积,从而形成附加得横向电场。如图1所示.当载流子所受得横电场力与洛仑兹力相等时,样品两侧电荷得积累就达到平衡,故有

? 其中EH 称为霍尔电场,就是载流子在电流方向上得平均漂移速度。设试样得宽度为b,厚度为d,载流子浓度为n ,则 ? ? ? 比例系数R H=1/n e称为霍尔系数. 1. 由RH 得符号(或霍尔电压得正负)判断样品得导电类型。 2. 由R H求载流子浓度n ,即 (4) 3. 结合电导率得测量,求载流子得迁移率. 电导率σ与载流子浓度n 以及迁移率之间有如下关系 (5) 即,测出值即可求。 电导率可以通过在零磁场下,测量B 、C 电极间得电位差为VBC ,由下式求得。 (6) 二、实验中得副效应及其消除方法: 在产生霍尔效应得同时,因伴随着多种副效应,以致实验测得得霍尔电极A 、A′之间得电压为V H 与各副效应电压得叠加值,因此必须设法消除。 (1)不等势电压降V 0 图1、 霍尔效应原理示意图,a)为N 型(电子) b)为P 型(孔穴)

低温实验讲义_霍尔效应测量汇编

实验8—1变温霍尔效应 引言 1879年,霍尔(E.H.Hall)在研究通有电流的导体在磁场中受力的情况时,发现在垂直于磁场和电流的方向上产生了电动势,这个电磁效应称为“霍尔效应”。在半导体材料中,霍尔效应比在金属中大几个数量级,引起人们对它的深入研究。霍尔效应的研究在半导体理论的发展中起了重要的推动作用。直到现在,霍尔效应的测量仍是研究半导体性质的重要实验方法。 利用霍尔效应,可以确定半导体的导电类型和载流子浓度,利用霍尔系数和电导率的联合测量,可以用来研究半导体的导电机构(本征导电和杂质导电)和散射机构(晶格散射和杂质散射),进一步确定半导体的迁移率、禁带宽度、杂质电离能等基本参数。测量霍尔系数随温度的变化,可以确定半导体的禁带宽度、杂质电离能及迁移率的温度特性。 根据霍尔效应原理制成的霍尔器件,可用于磁场和功率测量,也可制成开关元件,在自动控制和信息处理等方面有着广泛的应用。 实验目的 1.了解半导体中霍尔效应的产生原理,霍尔系数表达式的推导及其副效应的产生和消除。 2.掌握霍尔系数和电导率的测量方法。通过测量数据处理判别样品的导电类型,计算室温 下所测半导体材料的霍尔系数、电导率、载流子浓度和霍尔迁移率。 3.掌握动态法测量霍尔系数(R H)及电导率(σ)随温度的变化,作出R H~1/T,σ~1/T曲 线,了解霍尔系数和电导率与温度的关系。 4.了解霍尔器件的应用,理解半导体的导电机制。 实验原理 1.半导体内的载流子 根据半导体导电理论,半导体内载流子的产生有两种不同的机构:本征激发和杂质电离。 (1)本征激发 半导体材料内共价键上的电子有可能受热激发后跃迁到导带上成为可迁移的电子,在原共价键上却留下一个电子缺位—空穴,这个空穴很容易受到邻键上的电子跳过来填补而转移到邻键上。因此,半导体内存在参与导电的两种载流子:电子和空穴。这种不受外来杂质的影响由半导体本身靠热激发产生电子—空穴的过程,称为本征激发。显然,导带上每产生一个电子,价带上必然留下一个空穴。因此,由本征激发的电子浓度n和空穴浓度p应相等,并统称为本征浓度n i,由经典的玻尔兹曼统计可得 n i=n=p=(N c N v)1/2exp(-E g/2k B T)=K’T3/2 exp(-E g/2k B T) 式中N c,N v分别为导带、价带有效状态密度,K’为常数,T为温度,E g为禁带宽度,k B为玻尔兹曼常数。 (2)杂质电离 在纯净的第IV族元素半导体材料中,掺入微量III或V族元素杂质,称为半导体掺杂。掺杂后的半导体在室温下的导电性能主要由浅杂质决定。 如果在硅材料中掺入微量III族元素(如硼或铝等),这些第III族原子在晶体中取代部

DH4512系列霍尔效应实验仪

霍尔效应和霍尔法测量磁场DH4512系列霍尔效应实验仪 (实验讲义) 使 用 说 明 书 杭州大华科教仪器研究所杭州大华仪器制造有限公司

DH4512系列霍尔效应实验仪使用说明 一、概述 DH4512系列霍尔效应实验仪用于研究霍尔效应产生的原理及其测量方法,通过施加磁场,可以测出霍尔电压并计算它的灵敏度,以及可以通过测得的灵敏度来计算线圈附近各点的磁场。 DH4512采用双个圆线圈产生实验所需要的磁场(对应实验一内容); DH4512B型采用螺线管产生磁场(对应实验一、实验二的内容); DH4512A组合了DH4512和DH4512B的功能,含有一个双线圈、一个螺线管和一个测试仪。 图1-1 DH4512霍尔效应双线圈实验架平面图 图1-2DH4512霍尔效应螺线管实验架平面图

二、仪器构成 DH4512型霍尔效应实验仪由实验架和测试仪二个部分组成。图1-1为DH4512型霍尔效应双线圈实验架平面图,图1-2为DH4512型霍尔效应螺线管实验架平面图;图1-3为DH4512型霍尔效应测试仪面板图。 图1-3 DH4512系列霍尔效应测试仪面板 三、主要技术性能 1、环境适应性:工作温度10~35℃; 相对湿度25~75%。 2、DH4512型霍尔效应实验架(DH4512、DH4512A) 二个励磁线圈:线圈匝数1400匝(单个); 有效直径72mm;二线圈中心间距52mm。 移动尺装置:横向移动距离70mm,纵向移动距离25mm; 霍尔效应片类型:N型砷化镓半导体。 3、DH4512B型霍尔效应螺线管实验架(DH4512A 、DH4512B): 线圈匝数1800匝,有效长度181mm,等效半径21mm; 移动尺装置:横向移动距离235mm,纵向移动距离20mm; 霍尔效应片类型:N型砷化镓半导体。 4、DH4512型霍尔效应测试仪 DH4512型霍尔效应测试仪主要由0~0.5A恒流源、0~3mA恒流源及20mV/2000mV量程三位半电压表组成。 a)霍尔工作电流用恒流源Is 工作电压8V,最大输出电流3mA,3位半数字显示,输出电流准确度为0.5%。 b)磁场励磁电流用恒流源I M 工作电压24V,最大输出电流0.5A,3位半数字显示,输出电流准确

变温霍尔效应.

变温霍尔效应 如果在电流的垂直方向加以磁场,则在同电流和磁场都垂直的方向上,将建立起一个电场,这种现象称为霍耳效应。霍尔效应是1879年霍耳在研究导体在磁场中受力的性质时发现的,对分析和研究半导体材料的电输运性质具有十分重要的意义。目前,霍耳效应不仅用来确定半导体材料的性质,利用霍耳效应制备的霍耳器件在科学研究、工业生产上都有着广泛的应用。 通过变温霍尔效应测量可以确定材料的导电类型、载流子浓度与温度的关系、霍耳迁移率和电导迁移率与温度的关系、材料的禁带宽度、施主或受主杂质以及复合中心的电离能等。 一 实验目的 1.了解和学习低温实验中的低温温度控制和温度测量的基本原理与方法; 2.掌握利用霍尔效应测量材料的电输运性质的原理和实验方法; 3.验证P型导电到N 型导电的转变。 二 实验原理 1. 半导体的能带结构和载流子浓度 没有人工掺杂的半导体称为本征半导体,本征半导体中的原子按照晶格有规则的排列,产生周期性势场。在这一周期势场的作用下,电子的能级展宽成准连续的能带。束缚在原子周围化学键上的电子能量较低,它们所形成的能级构成价带;脱离原子束缚后在晶体中自由运动的电子能量较高,构成导带,导带和价带之间存在的能带隙称为禁带。当绝对温度为0 k时,电子全被束缚在原子上,导带能级上没有电子,而价带中的能级全被电子填满(所以价带也称为满带);随着温度升高,部分电子由于热运动脱离原子束缚,成为具有导带能量的电子,它在半导体中可以自由运动,产生导电性能,这就是电子导电;而电子脱离原子束缚后,在原来所在的原子上留下一个带正电荷的电子的缺位,通常称为空穴,它所占据的能级就是原来电子在价带中所占据的能级。因为邻近原子上的电子随时可以来填补这个缺位,使这个缺位转移到相邻原子上去,形成空穴的自由运动,产生空穴导电。半导体的导电性质就是由导带中带负电荷的电子和价带中带正电荷的空穴的运动所形成的。这两种粒子统称载流子。本征半导体中的载流子称为本征载流子,它主要是由于从外界吸收热量后,将电子从价带激发到导带,其结果是导带中增加了一个电子而在价带出现了一个空穴,这一过程成为本征激发。所以,本征载流子(电子和空穴)总是成对出现的,它们的浓度相同,本征载流子浓度仅取决于材料的性质(如材料种类和禁带宽度)及外界的温度。 为了改变半导体的性质,常常进行人工掺杂。不同的掺杂将会改变半导体中电子或空穴的浓度。若所掺杂质的价态大于基质的价态,在和基质原子键合时就会多余出电子,这种电子很容易在外界能量(热、电、光能等)的作用下脱离原子的束缚成为自由运动的电子(导带电子),所以它的能级处在禁带中靠近导带底的位置(施主能级),这种杂质称为施主杂质。施主杂质中的电子进入导带的过程称为电离过程,离化后的施主杂质形成正电中心,它所放出的电子进入导带,使导带中的电子浓度远大于价带中空穴的浓度,因此,掺施主杂质的半导体呈现电子导电的性质,称为n型半导体。施主电离过程是施主能级上的电子跃迁到导带并在导带中形成电子的过程,跃迁所需的能量就是施主电离能;反之,若所掺杂质的价态小于基质的价态,这种杂质是受主杂质,它的能级处在禁带中靠近价带顶的位置(受主能级),受主杂质很容易被离化,离化时从价带中吸引电子,变为负电中心,使价带中出现空穴,呈空穴导电性质,这样的半导体为p型半导体。受主电离时所需的能量就是受主电离能。

相关文档
最新文档