MCS-51单片机串行口工作方式与波特率计算举例

MCS-51单片机串行口工作方式与波特率计算举例
MCS-51单片机串行口工作方式与波特率计算举例

MCS-51单片机串行口工作方式与波特率计算举例

1)方式0

方式0是外接串行移位寄存器方式。工作时,数据从RXD串行地输入/输出,TXD 输出移位脉冲,使外部的移位寄存器移位。波特率固定为fosc/12(即,TXD每机器周期输出一个同位脉冲时,RXD接收或发送一位数据)。每当发送或接收完一个字节,硬件置TI=1或RI=1,申请中断,但必须用软件清除中断标志。

实际应用在串行I/O口与并行I/O口之间的转换。

2)方式1

方式1是点对点的通信方式。8位异步串行通信口,TXD为发送端,RXD为

接收端。一帧为10位,1位起始位、8位数据位(先低后高)、1位停止位。波特率由T1或T2的溢出率确定。

在发送或接收到一帧数据后,硬件置TI=1或RI=1,向CPU申请中断;但必须用软件清除中断标志,否则,下一帧数据无法发送或接收。

(1)发送:CPU执行一条写SBUF指令,启动了串行口发送,同时将1写入

输出移位寄存器的第9位。发送起始位后,在每个移位脉冲的作用下,输出移位寄存器右移一位,左边移入0,在数据最高位移到输出位时,原写入的第9位1的左边全是0,检测电路检测到这一条件后,使控制电路作最后一次移位,/SEND

和DATA无效,发送停止位,一帧结束,置TI=1。

(2)接收:REN=1后,允许接收。接收器以所选波特率的16倍速率采样RXD

端电平,当检测到一个负跳变时,启动接收器,同时把1FFH写入输入移位寄存器(9位)。由于接、发双方时钟频率有少许误差,为此接收控制器把一位传送时间16等分采样RXD,以其中7、8、9三次采样中至少2次相同的值为接收值。接收位从移位寄存器右边进入,1左移出,当最左边是起始位0时,说明已接收8位数据,再作最后一次移位,接收停止位。此后:

A、若RI=0、SM2=0,则8位数据装入SBUF,停止位入RB8,置RI=1。

B、若RI=0、SM2=1,则只有停止位为1时,才有上述结果。

C、若RI=0、SM2=1,且停止位为0,则所接数据丢失。

D、若RI=1,则所接收数据丢失。

无论出现那种情况,检测器都重新检测RXD的负跳变,以便接收下一帧。

3)方式2、方式3

方式2和方式3是9位异步串行通信,一般用在多机通信系统中或奇偶校验的通信过程。在通讯中,TB8和RB8位作为数据的第9位,位SM2也起作用。方式2与方式3的区别只是波特率的设置方式不同。

(1)发送

向SBUF写入一个数据就启动串口发送,同时将TB8写入输出移位寄存器第9位。开始时,SEND和DATA都是低电平,把起始位输出到TXD。DATA为高,第一次移位时,将‘1’移入输出移位寄存器的第9位,以后每次移位,左边移入‘0’,当TB8移到输出位时,其左边是一个‘1’和全‘0’。检测到此条件,再进行最后一次移位,/SEND=1,DATA=0,输出停止位,置TI=1。

(2)接收

置REN=1,与方式1类似,接收器以波特率的16倍速率采样RXD端。。。在

起始位0移到输入寄存器的最左边时,进行最后一次移位。在RI=0,SM2=0或接收到的第9位=1时,收到的一字节数据装入SBUF,第9位进入RB8,置RI=1;然后又开始检测RXD端负跳变。

3、多机通信

在这里,多机系统是指‘一主多从’。51系列单片机中,利用第9位TB8/RB8

来区分地址与数据信息,用位SM2确定接收方是否对地址或数据帧敏感。其原则是:

1)发送方用第9位TB8=1标志地址帧,TB8=0标志数据帧。

2)接收方若设置SM2=1,则只能接收到地址信息,若设SM2=0,则不管是地址还

是数据帧,都能接收到。

利用方式2、3的特点,在点对点的通讯中,在发送方可以用第9位TB8

作为奇偶校验位。在接收方,SM2位必须清0。

4、波特率

1)方式0的波特率=fosc/12

2)方式2的波特率=2^smod*fosc/64

3)方式1、3的波特率由T1或T2的溢出率和SMOD位确定:

(1)用T1:波特率=2^smod*T1定时器的溢出率/32,T1为方式2

T1定时器溢出率=1/((12/fosc)*(256-X))

例:已知fosc=6MHz,SMOD=0,设置波特率为2400,求T1的计数初值X。

波特率=1/((12/fosc)*(256-X))/32=fosc/12*32(256-X)

(256-X)=fosc/2400/384=6M/2400/384;256-X~=6.5104

X~=250=FAH 只能近似计算。

若fosc=11.0592MHz, 则256-X=11.0592M/2400/384=4068/384=12 X=F4H;可精确算出,对其它常用的标准波特率也是能正确算出。所以这个晶振频率是最常用的。

如果SMOD=1,则同样的X初值得出的波特率加倍。

(3)用T2:

在52型单片机中,串口方式1、3的波特率发生器选择由TCLK、RCLK位

确定是T1还是T2。若TCLK=1,则发送器波特率来自T2,否则来自T1。若RCLK=1,则接收器波特率来自T2,否则来自T1。

由T2产生的波特率与SMOD无关。T2定时的最小单元=2/fosc。T2的溢出脉冲16分频后作为串口的发送或接收脉冲。

波特率=(1/((2/fosc)(65536-X)))/16=fosc/(32(65536-X))

例:已知fosc=11.0592MHz,求波特率=2400时的X

2400=11059200/(32(65536-X)) 65536-X=144 X=65392=FF70H

计数器初值寄存器:RCAP2H=0FFH,RCAP2L=70H。

8051的串口波特率的计算(笔记版)

8051的串口波特率的计算 1、方式0的波特率,固定为晶振频率的十二分之一。 2、方式2的波特率,取决于PCON寄存器的SMOD位。PCON是一个特殊的寄 存器,吹了最高位SMOD位,其他位都是虚设的。计算方法如下: SMOD=0,波特率为晶振的1/64; SMOD=1,波特率为晶振的1/32. 3、方式1与方式3的波特率都是由定时器的溢出率决定的。 公式为: BR=(2SOMD/32)*(定时器TI的溢出率) 通常情况下,我们使用定时器的方式2,即比率发生器,自动重载计数常数。 溢出的周期为: T=(256-X)*12/fosc 溢出率为溢出周期的倒数,即 T1=1/T 所以: 式中:SMOD是所选的方式,fosc是晶振频率。X是初始值。 51单片机模拟串口波特率计算方法 1.计算波特率位间隔时间(即定时时间,其实就是波特率的倒数) 位间隔时间(us)=10(6)(us)/波特率(bps)

2.计算机单片机指令周期: 指令周期(us)=12/晶振频率(Mhz) 补充问题:做串口通信时,为什么要把晶振频率设为11.0592,为什么要把波特率设为9600? 先说波特率。波特率从300到115200都可以,甚至更高或更低。一般规范的波特率都是3的倍数,比如9600、19200、38400;但是并不是一定的,波特率也可以是10000或者10001、10002,只要你的设备能产生符合这个要求的频率,尤其是自己用时,波特率都是很随意的,没有限制。只是多数时候为了和电脑配合,波特率才规范为固定的几个值,且为了传输稳定,用9600。 用11.0592晶振的原因是51单片机的定时器导致的。通常用11.0592M晶振是为了得到标准的无误差的波特率。举例说来,如我们要得到的9600的波特率,晶振为11.0592M和12M,定制器1为2SMOD设为1,分别看看那所求的TH1为何值。代入公式: 11.0592M 9600=(2/32)*((11.0592M/12)(256-TH1)) TH 1=250 12M 9600=(2/32)*((12M/12)(256-TH1)) TH1=249.49

51单片机串口通信及波特率设置

51单片机串口通信及波特率设置 MCS-51单片机具有一个全双工的串行通信接口,能同时进行发送和接收。它可以作为UART(通用异步接收和发送器)使用,也可以作为同步的移位寄存器使用。 1. 数据缓冲寄存器SBUF SBUF是可以直接寻址的专用寄存器。物理上,它对应着两个寄存器,即一个发送寄存器一个接收寄存器,CPU写SBUF就是修改发送寄存器;读SBUF就是读接收寄存器。接收器是双缓冲的,以避免在接收下一帧数据之前,CPU未能及时的响应接收器的中断,没有把上一帧的数据读走而产生两帧数据重叠的问题。对于发送器,为了保持最大的传输速率,一般不需要双缓冲,因为发送时CPU是主动的,不会产生重叠问题。 2. 状态控制寄存器SCON SCON是一个逐位定义的8位寄存器,用于控制串行通信的方式选择、接收和发送,指示串口的状态,SCON即可以字节寻址也可以位寻址,字节地址98H,地址位为98H~9FH。它的各个位定义如下: MSB LSB SM0 SM1 SM2 REN TB8 RB8 TI RI SM0和SM1是串口的工作方式选择位,2个选择位对应4种工作方式,如下表,其中Fosc是振荡器的频率。 SM0 SM1 工作方式功能波特率 0 0 0 8位同步移位寄存器Fosc/12 0 1 1 10位UART 可变 1 0 2 11位UART Fosc/64或Fosc/32 1 1 3 11位UART 可变 SM2在工作方式2和3中是多机通信的使能位。在工作方式0中,SM2必须为0。在工作方式1中,若SM2=1且没有接收到有效的停止位,则接收中断标志位RI不会被激活。在工作方式2和3中若SM2=1且接收到的第9位数据(RB8)为0,则接收中断标志RB8不会被激活,若接收到的第9位数据(RB8)为1,则RI置位。此功能可用于多处理机通信。 REN为允许串行接收位,由软件置位或清除。置位时允许串行接收,清除时禁止串行接收。 TB8是工作方式2和3要发送的第9位数据。在许多通信协议中该位是奇偶位,可以按需要由软件置位或清除。在多处理机通信中,该位用于表示是地址帧还是数据帧。 RB8是工作方式2和3中接收到的第9位数据(例如是奇偶位或者地址/数据标识位),在工作方式1中若SM2=0,则RB8是已接收的停止位。在工作方式0中RB8不使用。 TI 为发送中断标志位,由硬件置位,软件清除。工作方式0中在发送第8位末尾由硬件置位;在其他工作方式时,在发送停止位开始时由硬件置位。TI=1时,申请中断。CPU 响应中断后,发送下一帧数据。在任何工作方式中都必须由软件清除TI。 RI为接收中断标志位,由硬件置位,软件清除。工作方式0中在接收第8位末尾由硬件置位;在其他工作方式时,在接收停止位的中间由硬件置位。RI=1时,申请中断,要求CPU取走数据。但在工作方式1中,SM2=1且未接收到有效的停止位时,不会对RI置位。在任何工作方式中都必须由软件清除RI。 系统复位时,SCON的所有位都被清除。 控制寄存器PCON也是一个逐位定义的8位寄存器,目前仅仅有几位有定义,如下所示:MSB LSB

波特率计算公式

一、波特率概念 波特率即调制速率,指的是信号被调制以后在单位时间内的波特数,即单位时间内载波参数变化的次数。它是对信号传输速率的一种度量,通常以“波特每秒”(Bps)为单位。波特率表示每秒钟传送的码元符号的个数,它是对符号传输速率的一种度量,它用单位时间内载波调制状态改变的次数来表示,1波特即指每秒传输1个符号。波特(Baud,单位符号:Bd)这一单位是以法国电讯工程师埃米尔·博多(英语:émile Baudot)(1845-1903)的姓氏来命名的,他是数位通讯的先驱之一,是电传与博多式电报机的发明人。 波特率有时候会同比特率混淆,实际上后者是对信息传输速率(传信率)的度量。波特率可以被理解为单位时间内传输码元符号的个数(传符号率),通过不同的调制方法可以在一个码元上负载多个比特信息。因此信息传输速率即比特率在数值上和波特率有这样的关系。 计算机内部采用二进制的方式计数,那么它为什么又能识别十进制数和各种字符、图形呢?其实,不论是数值数据还是文字、图形等,在计算机内部都采用了一种编码标准。通过编码标准可以把它转换成二进制数来进行处理,计算机将这些信息处理完毕再转换成可视的信息显示出来。常用的字符代码是ASCII码,它原来是美国的国家标准,1967年被定为国际标准。 二、波特率计算公式有哪些? 在串行通信中,收发双方对发送或接收的数据速率要有一定的约定,我们通过软件对MCS—51串行口编程可约定四种工作方式。其

中,方式0和方式2的波特率是固定的,而方式1和方式3的波特率是可变的,由定时器T1的溢出率决定。 串行口的四种工作方式对应着三种波特率。由于输人的移位时钟的来源不同,所以,各种方式的波特率计算公式也不同。 1、方式0的波特率 方式0时,移位时钟脉冲由56(即第6个状态周期,第12个节拍)给出,即每个机器周期产生一个移位时钟,发送或接收一位数据。所以,波特率为振荡频率的十二分之一,并不受PCON寄存器中SMOD的影响,即:方式0的波特率=fosc/12 2、方式2的波特率 串行口方式2波特率的产生与方式0不同,即输入时钏源的频率不同,控制接收与发送的移位时钟由振荡频率Foec的第二节拍P2(即Foec/2)给出,所以,方式2波特率取决于PCON中SMOD 位的值,当SMOD=0时,波特率为Foec的六十四分之一;若SMOD=1,则波特率为Foec的三十二分之一,即:方式2的波特率=2smod/64*Foec。 3、方式l和方式3的波特率 方式1和方式3的移位时钟脉冲由定时器T1的溢出率决定,故波特宰由定时器T1的溢出率与SMOD值同时决定,即:方式1和方式3的波特率=2SMOD/32?T1溢出率。 其中,溢出率取决于计数速率和定时器的预置值。计数速率与TMOD寄存器中C/T的状态有关。当C/T=0时,计数速率=fosc/2;

51单片机课设 串口计算器

[二0一三年]

1作品简介 本作品为带有串口通信功能的计算器,PC可通过串口助手软件将算式发送至单片机,单片机立即将计算结果发送回PC,并且在液晶上显示结果。串口通信波特率为两档可调,分别为9600bps和4800bps,可通过两个按键调整,同时在液晶上会显示当前的波特率。 计算器可自动识别输入的字符串,并自动判断输入的算式是否正确;可自动识别算式中包含错误字符、除数为零、浮点数做取余运算等错误。当计算结果超出设定范围时在液晶上出现“超出范围”提示,同时向PC发送“The result is out of range! ”。 2作品整体方案 2.1 串行通信功能: 实验板和PC电脑通过USB线相连,使MCU和PC软件“串口助手”能够进行串行通信。 (1)当实验板上电时默认波特率为9600bps,并发送欢迎词和提示词,例如“Welcome to Calculator V1.0”,"You can press key1 and key2 to change baud rate.".... (2)当实验板上按键1按下时波特率变更为4800bps,按键2按下时波特率变更为9600bps,并用两个LED灯指示相应的波特率。 2.2 计算器功能 通过串口助手发送框发送需要计算的公式,例如20*4=,MCU收到后解析公式并计算结果,将结果返回给串口,例如“The result is 80”,同时将计算结果显示在数码管上,具体细节如下: (1)可以进行加(+)、减(-)、乘(*)、除(\)、取余(%)运算; (2)整形、浮点型运算; (3)当计算结果为整形数时,有效的运算结果范围是-999~9999,超过此结果,返回相应的提示符,例如“The result is out of range.”,液晶上显示“超出范围”; (4)当计算结果为浮点数时,有效的运算结果范围是-99.9~999.9,液晶上保

STM32单片机的串口通信波特率计算方法

STM32单片机的串口通信波特率计算方法 1. 什么是波特率 不管是什么单片机,在使用串口通信的时候,有一个非常重要的参数:波特率。什么是波特率:波特率就是每秒传送的字节数。双方在传输数据的过程中,波特率一致,这是通讯成功的基本保障。下面以STM32单片机为例,讲解一下串口波特率的计算方法。 2. STM32波特率相关的寄存器 STM32单片机设置波特率的寄存器只有一个:USART_BRR寄存器,如下图所示。 该寄存器的有效位数为16位,前4位用于存放小数部分,后12位用于存放整数部分。将波特率算出来后,数值填入这个波特率就可以了。下面介绍如何计算。 3. 波特率计算方法 STM32的数据手册给出了计算方法,有一个公式,如下图所示: 在这个公式上,共有三个变量,其中两个我们是知道的,Fck和Tx/Rx波特率这两个是已知的,USARTDIV是未知的。通过该公式的描述可以看出如果使用USART1的话,那Fck 就是PCLK2=72MHz,否则就是PCLK1=36MHz,Tx/Rx波特率这个参数是已知的。只需要计算出USARTDIV的值赋值给USART_BRR寄存器就可以了。以115200为例,将公式变形后得到:USARTDIV = 72×1000000/(16×115200) = 39.0625。即将39.0625写入USART_BRR即可。 前文说过,USART_BRR的前4位存放小数部分,后12位存放整数部分。 那小数部分DIV_Fraction = 0.0625×16 = 1 = 0x01;那整数部分DIV_Mantissa = 39 = 0x27;那USART_BRR = 0X271; 数据手册给我们提供了一张数据表: 在这张数据表上,已经算出了常用的波特率值,我们可以拿来直接用。但是如果我们想把

波特率计算

波特率选择 在串行通讯中,收发双方的数据传送率(波特率)要有一定的约定。在8051串行口的四种工作方式中,方式0和2的波特率是固定的,而方式1和3的波特率是可变的,由定时器T1的溢出率控制。 方式0 方式0的波特率固定为主振频率的1/12。 方式2 方式2的波特率由PCON 中的选择位SMOD 来决定,可由下式表示: 波特率=2的SMOD 次方除以64再乘一个fosc,也就是当SMOD=1时,波特率为1/32fosc,当SMOD=0时,波特率为1/64fosc 3.方式1和方式3 定时器T1作为波特率发生器,其公式如下: 波特率=定时器T1溢出率 产生溢出所需的周期数/计数率T 132 2=溢出率T 1mod ?s 式中T1计数率取决于它工作在定时器状态还是计数器状态。当工作于定时器状态时,T1计数率为fosc/12;当工作于计数器状态时,T1计数率为外部输入频率,此频率应小于fosc/24。产生溢出所需周期与定时器T1的工作方式、T1的预置值有关。 定时器T1工作于方式0:溢出所需周期数=8192-x 定时器T1工作于方式1:溢出所需周期数=65536-x 定时器T1工作于方式2:溢出所需周期数=256-x 因为方式2为自动重装入初值的8位定时器/计数器模式,所以用它来做波特率发生器最恰当。 当时钟频率选用11.0592MHZ 时,取易获得标准的波特率,所以很多单片机系统选用这个看起来“怪”的晶振就是这个道理。 下表列出了定时器T1工作于方式2常用波特率及初值。 常用波特率 Fosc(MHZ) SMOD TH1初值 19200 11.0592 1 FDH 9600 11.0592 0 FDH 4800 11.0592 0 FAH 2400 11.0592 0 F4h 1200 11.0592 0 E8h 例如9600 11.0592 0 FDH 溢出率T 1定时时32 2 =波特率mod ?s T1溢出率= T1计数率/产生溢出所需的周期数 产生溢出所需的周期数=256-FD(253)=3 SMOD=0 11059200/12*3 *1/32=9600

单片机波特率的计算方法

51单片机波特率计算的公式和方法 51单片机芯片的串口可以工作在几个不同的工作模式下,其工作模式的设置就是使用SCON寄存器。它的各个位的具体定义如下: SM0SM1SM2REN TB8RB8TI RI SM0、SM1为串行口工作模式设置位,这样两位可以对应进行四种模式的设置。串行口工作模式设置。 波特率在使用串口做通讯时,一个很重要的参数就是波特率,只有上下位机的波特率一样时才可以进行正常通讯。波特率是指串行端口每秒内可以传输的波特位数。这里所指的波特率,如标准9600不是每秒种可以传送9600个字节,而是指每秒可以传送9600个二进位,而一个字节要8个二进位,如用串口模式1来传输那么加上起始位和停止位,每个数据字节就要占用10个二进位,9600波特率用模式1传输时,每秒传输的字节数是9600÷10=960字节。 51芯片的串口工作模式0的波特率是固定的,为fosc/12,以一个12M的晶振来计算,那么它的波特率可以达到1M。模式2的波特率是固定在fosc/64或fosc/32,具体用那一种就取决于PCON寄存器中的SMOD位,如SMOD为0,波特率为focs/64,SMOD为1,波特率为focs/32。 模式1和模式3的波特率是可变的,取决于定时器1或2(52芯片)的溢出速率,就是说定时器1每溢出一次,串口发送一次数据。那么我们怎么去计算这两个模式的波特率设置时相关的寄存器的值呢?可以用以下的公式去计算。

上式中如设置了PCON寄存器中的SMOD位为1时就可以把波特率提升2倍。通常会使用定时器1工作在定时器工作模式2下,这时定时值中的TL1做为计数,TH1做为自动重装值,这个定时模式下,定时器溢出后,TH1的值会自动装载到TL1,再次开始计数,这样可以不用软件去干预,使得定时更准确。在这个定时模式2下定时器1溢出速率的计算公式如下: 溢出速率=(计数速率)/(256-TH1初值) 溢出速率=fosc/[12*(256-TH1初值)] 上式中的“计数速率”与所使用的晶体振荡器频率有关,在51芯片中定时器启动后会在每一个机器周期使定时寄存器TH的值增加一,一个机器周期等于十二个振荡周期,所以可以得知51芯片的计数速率为晶体振荡器频率的1/12,一个12M的晶振用在51芯片上,那么51的计数速率就为1M。通常用11.0592M 晶体是为了得到标准的无误差的波特率,那么为何呢?计算一下就知道了。如我们要得到9600的波特率,晶振为11.0592M和12M,定时器1为模式2,SMOD 设为1,分别看看那所要求的TH1为何值。代入公式: 11.0592M 9600=(2÷32)×((11.0592M/12)/(256-TH1)) TH1=250

MCS-51单片机串行口工作方式与波特率计算举例

MCS-51单片机串行口工作方式与波特率计算举例 1)方式0 方式0是外接串行移位寄存器方式。工作时,数据从RXD串行地输入/输出,TXD 输出移位脉冲,使外部的移位寄存器移位。波特率固定为fosc/12(即,TXD每机器周期输出一个同位脉冲时,RXD接收或发送一位数据)。每当发送或接收完一个字节,硬件置TI=1或RI=1,申请中断,但必须用软件清除中断标志。 实际应用在串行I/O口与并行I/O口之间的转换。 2)方式1 方式1是点对点的通信方式。8位异步串行通信口,TXD为发送端,RXD为 接收端。一帧为10位,1位起始位、8位数据位(先低后高)、1位停止位。波特率由T1或T2的溢出率确定。 在发送或接收到一帧数据后,硬件置TI=1或RI=1,向CPU申请中断;但必须用软件清除中断标志,否则,下一帧数据无法发送或接收。 (1)发送:CPU执行一条写SBUF指令,启动了串行口发送,同时将1写入 输出移位寄存器的第9位。发送起始位后,在每个移位脉冲的作用下,输出移位寄存器右移一位,左边移入0,在数据最高位移到输出位时,原写入的第9位1的左边全是0,检测电路检测到这一条件后,使控制电路作最后一次移位,/SEND 和DATA无效,发送停止位,一帧结束,置TI=1。 (2)接收:REN=1后,允许接收。接收器以所选波特率的16倍速率采样RXD 端电平,当检测到一个负跳变时,启动接收器,同时把1FFH写入输入移位寄存器(9位)。由于接、发双方时钟频率有少许误差,为此接收控制器把一位传送时间16等分采样RXD,以其中7、8、9三次采样中至少2次相同的值为接收值。接收位从移位寄存器右边进入,1左移出,当最左边是起始位0时,说明已接收8位数据,再作最后一次移位,接收停止位。此后: A、若RI=0、SM2=0,则8位数据装入SBUF,停止位入RB8,置RI=1。

基于51单片机的波特率自动识别系统程序

#include #define uint unsigned int #define uchar unsigned char #define disp_off 0x3e //关显示 #define disp_on 0x3f //开显示 #define disp_x 0xb8 //页地址 #define disp_z 0xc0 //行地址 #define disp_y 0x40 //列地址 #define comm 0 //命令标志 #define dat 1 //数据标志 #define data_ora P0 //MCU P0<------> LCM sbit cs1=P2^0; //cs1=L,选择左半屏 sbit cs2=P2^1; //cs2=L,选择右半屏 sbit rs =P2^2; //H:写数据,L:写指令 sbit rw =P2^3; //H:读,L:写 sbit e =P2^4; //读写使能 sbit bf =P0^7; //执行操作标志 sbit res=P0^4; //复位初始化标志 uchar uart_data,temp,baud_set=0x00; uchar dispnum[90]; uchar baud[5]={0x00,0x09,0x06,0x00,0x00}; uchar r_dat[4]={0x00,0x10,0x00,0x00}; uchar code baudrate[7][5]={ {0x00,0x00,0x03,0x00,0x00}, {0x00,0x00,0x06,0x00,0x00}, {0x00,0x01,0x02,0x00,0x00}, {0x00,0x02,0x04,0x00,0x00}, {0x00,0x04,0x08,0x00,0x00}, {0x00,0x09,0x06,0x00,0x00}, {0x01,0x04,0x04,0x00,0x00}, }; //波特率大小 uchar code hz11[]={ /*-- 隶书12; 此字体下对应的点阵为:宽x高=16x16 --*/ /*-- 文字: 发--*/ 0x00,0x00,0x00,0xE0,0xA0,0x80,0x80,0xF0, 0x80,0xA0,0xB0,0x80,0x00,0x00,0x00,0x00, 0x00,0x08,0x08,0x08,0x1C,0x14,0x13,0x1B, 0x0D,0x07,0x0B,0x18,0x18,0x30,0x10,0x00, /*-- 文字: 送--*/

STM32_CAN波特率计算

一般设置CAN_SJW = 1,总结程序发现!!! can时钟是RCC_APB1PeriphClock(APB1从APB2而来,分频系数不同,导致APB1不同,mini版中一般是APB2为72Mhz,APB1是36MHz),你要注意CAN时钟频率 CAN波特率= RCC_APB1PeriphClock/(1+CAN_BS1+CAN_BS2)/CAN_Prescaler ; 另外尽可能的把采样点设置为CiA 推荐的值: 75% when 波特率> 800K 80% when 波特率> 500K 87.5% when 波特率<= 500K 所以对于100K 的波特率(假定使用8MHz 时钟) 可以修改该BS1 BS2 为: CAN_InitStructure.CAN_Prescaler=5; CAN_InitStructure.CAN_BS1=CAN_BS1_13tq; CAN_InitStructure.CAN_BS2=CAN_BS2_2tq; (1+13) / (1+13+2) = 87.5% CAN波特率计算—网友总结 STM32里的CAN 支持2.0A,2.0B, 带有FIFO,中断等, 这里主要提一下内部的时钟应用. bxCAN挂接在APB1总线上,采用总线时钟,所以我们需要知道APB1的总线时钟是多少. 我们先看看下图,看看APB1总线时钟:

APB1时钟取自AHB的分频, 而AHB又取自系统时钟的分频, 系统时钟可选HSI,HSE, PLLCLK, 这个在例程的RC设置里都有的, 然后再看看有了APB1的时钟后,如何算CAN的总线速率, 先看下图: 有了上边的这个图,基本就清楚了. 总线时钟MHz (3+TS1+TS2)*(BRP+1) ===================================================下面是我的计算:

51单片机定时计数器溢出率计算和串口的波特率之间的关系

51单片机定时计数器溢出率计算和串口的波特率之间的关系 作者:wang1jin | 来源:网络| 查看:128 次 51芯片的串口可以工作在几个不同的工作模式下,其工作模式的设置就是使用 SCON 寄存器。它的各个位的具体定义如下: SM0 SM1 SM2 REN TB8 RB8 TI RI SM0、SM1为串行口工作模式设置位,这样两位可以对应进行四种模式的设置。串行口工 作模式设置。 SMO SM 檯式功能 0 0 0 同歩移位寄存器 1 1 8 位 UART 1 0 2 9位UART 1 1 3 9 位 UART 波特率在使用串口做通讯时,一个很重要的 参数就是波特率,只有上下位机的波特率一 样时才可以进行正常通讯。 波特率是指串行端口每秒内可以传输的波特位数。 这里所指的波 特率,如标准9600 不是每秒种可以传送 9600个字节,而是指每秒可以传送 9600 个二 进位,而一个字节要 8个二进位,如用串口模式 1来传输那么加上起始位和停止位,每个 数据字节就要占用10个二进位,9600波特率用模式1传输时,每秒传输的字节数是 9600 - 10 = 960 字节。 51芯片的串口工作模式 0的波特率是固定的,为 fosc/12 ,以一个12M 的晶振 来计算,那么它的波特率可以达到 1M 。模式2的波特率是固定在 fosc/64 或fosc/32 , 具体用那一种就取决于 PCON 寄存器中的SMOD 位,如SMOD 为0 ,波特率为 focs/64,SMOD 为 1,波特率为 focs/32 。 模式1和模式3的波特率是可变的,取决于定时器1或2 (52芯片)的溢出速率, 就是说定时器1每溢出一次,串口发送一次数据 。那么我们怎么去计算这两个模式的波特 率设置时相关的寄存器的值呢?可以用以下的公式去计算。 发布:2010-1-05 01:08 | 波特率 £osc/12 可变 fosc/32 或fosc/64 可变

计算机网络原理公式及计算题

计算机网络原理公式及计算题 第三章物理层 公式一:数据传输速率的定义和计算 每秒能传输的二进制信息位数,单位为位/秒(bits per second),记作bps或b/s R=1/T*Log2N(bps) T为一个数字脉冲信号的宽度(全宽码情况)或重复周期(归零码情况)单位为秒. N一个码元所取有效离散值个数,也称调制电平数,取2的整数次方值公式二: 信号传输速率(码元速率、调制速率或波特率)定义和计算单位时间内通过信道传输的码元个数,也就是信号经调制后的传输速率,单位为波特(Baud)。 B=1/T (Baud) 公式三:调制速率与数据传输速率的对应关系式 R=B*Log2N(bps) 公式四:奈奎斯特公式 奈奎斯特(Nyquist)定理奈奎斯特首先给出了无噪声情况下码元速率的极限值B与信息带宽H的关系 B=2*H H是信道的带宽,单位为Hz 信道传输能力的奈奎斯特公式: C=2*H*Log2N

公式五:香农公式 受随机噪声干扰的信道情况,给出了计算信道的香农公式: C=H*Log2(1+S/N)(bps) 其中,S表示信号功率,N为噪声功率,S/N则为信噪比。由于实际使用的信道的信噪比都要足够大,故常表示成10*log10 (S/N),以分贝(dB)为单位来计算,在使用时要特别注意 公式六:误码率 误码率是衡量数据通信系统在正常工作情况下的工作情况下的传输可靠性的指标,它定义为二进制数据传输出错的概率。设传输的二进制数据总数为N位,其中出错的位数为Ne,则误码率表示为; Pe= Ne/N 公式七:采样定律 采样定理 ?Fs(= 1/Ts )≥ 2Fmax 或Fs≥2Bs ?Fs是采样频率,Fmax 是原始信号最大频率,Ts 为采样周期,Bs(= Fmax- Fmin)为原始信号的带宽。 ?量化级是2的整数倍,用来生成每次采样的二进制码的个数,?2二进制码个数=量化级,比如量化级为128,则每次采样二进制码为7个 ?信号传输速率=采样频率*每次采样的二进制码个数 ?R(数据传输率)=1/T*log2N

51单片机串口通信

一、串口通信原理 串口通讯对单片机而言意义重大,不但可以实现将单片机的数据传输到计算机端,而且也能实现计算机对单片机的控制。由于其所需电缆线少,接线简单,所以在较远距离传输中,得到了广泛的运用。串口通信的工作原理请同学们参看教科书。 以下对串口通信中一些需要同学们注意的地方作一点说明: 1、波特率选择 波特率(Boud Rate)就是在串口通信中每秒能够发送的位数(bits/second)。MSC-51串行端口在四种工作模式下有不同的波特率计算方法。其中,模式0和模式2波特率计算很简单,请同学们参看教科书;模式1和模式3的波特率选择相同,故在此仅以工作模式1为例来说明串口通信波特率的选择。 在串行端口工作于模式1,其波特率将由计时/计数器1来产生,通常设置定时器工作于模式2(自动再加模式)。在此模式下波特率计算公式为:波特率=(1+SMOD)*晶振频率/(384*(256-TH1)) 其中,SMOD——寄存器PCON的第7位,称为波特率倍增位; TH1——定时器的重载值。 在选择波特率的时候需要考虑两点:首先,系统需要的通信速率。这要根据系统的运作特点,确定通信的频率范围。然后考虑通信时钟误差。使用同一晶振频率在选择不同的通信速率时通信时钟误差会有很大差别。为了通信的稳定,我们应该尽量选择时钟误差最小的频率进行通信。 下面举例说明波特率选择过程:假设系统要求的通信频率在20000bit/s以下,晶振频率为12MHz,设置SMOD=1(即波特率倍增)。则TH1=256-62500/波特率 根据波特率取值表,我们知道可以选取的波特率有:1200,2400,4800,9600,19200。列计数器重载值,通信误差如下表: 因此,在通信中,最好选用波特率为1200,2400,4800中的一个。 2、通信协议的使用 通信协议是通信设备在通信前的约定。单片机、计算机有了协议这种约定,通信双方才能明白对方的意图,以进行下一步动作。假定我们需要在PC机与单片机之间进行通信,在双方程式设计过程中,有如下约定:0xA1:单片机读取P0端口数据,并将读取数据返回PC机;0xA2:单片机从PC机接收一段控制数据;0xA3:单片机操作成功信息。 在系统工作过程中,单片机接收到PC机数据信息后,便查找协议,完成相应的操作。当单片机接收到0xA1时,读取P0端口数据,并将读取数据返回PC机;当单片机接收到0xA2时,单片机等待从PC机接收一段控制数据;当PC机接收到0xA3时,就表明单片机操作已经成功。 3、硬件连接 51单片机有一个全双工的串行通讯口,所以单片机和计算机之间可以方便地进行串口通讯。进行串行通讯时要满足一定的条件,比如计算机的串口是RS232电平的,而单片机的串口是TTL电平的,两者之间必须有一个电平转换电路,我们采用了专用芯片MAX232进行转换,虽然也可以用几个三极管进行模拟转换,但是还是用专用芯片更简单可靠。我们采用了三线制连接串口,也就是说和计算机的9针串口只连接其中的3根线:第5脚的GND、第2脚的RXD、第3脚的TXD。这是最简单的连接方法,但是对我们来说已经足够使用了,电路如下图所示,MAX232的第10脚和单片机的11脚连接,第9脚和单片机的10脚连接,第15脚和单片机的20脚连接。

波特率计算公式

在数字通信中的数据传输速率与调制速率是两个容易混淆的概念。数据传输速率(又称码率、比特率或数据带宽)描述通信中每秒传送数据代码的比特数,单位是bps。 当要将数据进行远距离传送时,往往是将数据通过调制解调技术进行传送的,即将数据信号先调制在载波上传送,如QPSK、各种QAM调制等,在接收端再通过解调得到数据信号。数据信号在对载波调制过程中会使载波的各种参数产生变化(幅度变化、相位变化、频率变化、载波的有或无等,视调制方式而定),波特率是描述数据信号对模拟载波调制过程中,载波每秒中变化的数值,又称为调制速率,波特率又称符号率。在数据调制中,数据是由符号组成的,随着采用的调制技术的不同,调制符号所映射的比特数也不同。符号又称单位码元,它是一个单元传送周期内的数据信息。如果一个单位码元对应二个比特数(一个二进制数有两种状态0和1,所以为二个比特)的数据信息,那么符号率等于比特率;如果一个单位码元对应多个比特数的数据信息(m个),则称单位码元为多进制码元。此时比特率与符号率的关系是:比特率=符号率*log2 m,比如QPSK调制是四相位码,它的一个单位码元对应四个比特数据信息,即m=4,则比特率=2*符号率,这里“log2 m”又称为频带利用率,单位是:bps/hz。 另外已调信号传输时,符号率(SR)和传输带宽(BW)的关系是:BW=SR(1+α),α是低通滤波器的滚降系数,当它的取值为0时,频带利用率最高,占用的带宽最小,但由于波形拖尾振荡起伏大(如图5-15b),容易造成码间干扰;当它的取值为1时,带外特性呈平坦特

性,占用的带宽最大是为0时的两倍;由此可见,提高频带利用率与"拖尾"收敛相互矛盾,为此它的取值一般不小于0.15。例如,在数字电视系统,当α=0.16时,一个模拟频道的带宽为8M,那么其符号率=8/(1+0.16)=6.896Ms/s。如果采用64QAM调制方式,那么其比特率=6.896*log2 64=6.896*6=41.376Mbps 波特率即调制速率,指的是信号被调制以后在单位时间内的波特数,即单位时间内载波参数变化的次数。它是对信号传输速率的一种度量,通常以“波特每秒”(Bps)为单位。波特率有时候会同比特率混淆,实际上后者是对信息传输速率(传信率)的度量。波特率可以被理解为单位时间内传输码元符号的个数(传符号率),通过不同的调制方法可以在一个码元上负载多个比特信息。

51单片机串口通信(相关例程)

51单片机串口通信 1./*打开串口调试程序,将波特率设置为9600,无奇偶校验 晶振11.0592MHz,发送和接收使用的格式相同,如都使用 字符型格式,在发送框输入hello,I Love MCU ,在接 收框中同样可以看到相同字符,说明设置和通信正确*/ #include /*主程序*/ void main (void) { SCON = 0x50; /* SCON: 模式1, 8-bit UART, 使能接收*/ TMOD |= 0x20; /* TMOD: timer 1, mode 2, 8-bit reload*/ TH1 = 0xFD; /* TH1: reload value for 9600 baud @ 11.0592MHz */ TR1 = 1; /* TR1: timer 1 run */ EA = 1; /*打开总中断*/ ES = 1; /*打开串口中断*/ while (1) /*主循环不做任何动作*/ { } } void UART_SER (void) interrupt 4 //串行中断服务程序 { unsigned char Temp; //定义临时变量 if(RI) //判断是接收中断产生 { RI=0; //标志位清零 Temp=SBUF; //读入缓冲区的值 P1=Temp; //把值输出到P1口,用于观察 SBUF=Temp; //把接收到的值再发回电脑端 } if(TI) //如果是发送标志位,清零 TI=0; } 2.51单片机与电脑串口通信的C程序,最好是中断方式的 #include #include unsigned char ch; bit read_flag= 0 ; void init_serialcom( void ) //串口通信初始设定 { SCON = 0x50 ; //UART为模式1,8位数据, 允许接收 TMOD |= 0x20 ; //定时器1为模式2,8位自动重装 PCON |= 0x80 ; //SMOD=1; TH1 = 0xFD ; //Baud:19200 fosc="11".0592MHz IE |= 0x90 ; //Enable Serial Interrupt TR1 = 1 ; // timer 1 run

波特率计算来选择晶振频率

波特率计算 在串行通信中,收发双方对发送或接收的数据速率要有一定的约定,我们通过软件对MCS—51串行口编程可约定四种工作方式。其中,方式0和方式2的波特率是固定的,而方式1和方式3的波特率是可变的,由定时器T1的溢出率决定。 串行口的四种工作方式对应着三种波特率。由于输人的移位时钟的来源不同,所以,各种方式的波特率计算公式也不同。一、方式0的波特率 方式0时,移位时钟脉冲由56(即第6个状态周期,第12个节拍)给出,即每个机器周期产生一个移位时钟,发送或接收一位数据。所以,波特率为振荡频率的十二分之一,并不受PCON寄存器中SMOD的影响,即: 方式0的波特率=fosc/12 三、方式l和方式3的波特率 方式1和方式3的移位时钟脉冲由定时器T1的溢出率决定,故波特宰由定时器T1的 溢出率与SMOD值同时决定,即: 方式1和方式3的波特率=2SMOD/32·T1溢出率 其中,溢出率取决于计数速率和定时器的预置值。计数速率与TMOD寄存器中C/T的状态有关。当C/T=0时,计数速率=fosc/2;当C/T=1时,计数速率取决于外部输入时钟频率。 当定时器Tl作波特率发生器使用时,通常选用可自动装入初值模式(工作方式2),在 工作方式2中,TLl作为计数用,而自动装入的初值放在THl中,设计数初值为x,则每过“256一x”个机器周期,定时器T1就会产生一次溢出。为了避免因溢出而引起中断,此时应禁止T1中断。这时,溢出周期为: 系统晶振频率选为11.0592MHZ就是为了使初值为整数,从而产生精确的波特率。 如果串行通信选用很低的波特率,可将定时器Tl置于工作方式0或工作方式1,但在 这种情况下,T1溢出时,需用中断服务程序重装初值。中断响应时间和执行指令时间会使波特率产生一定的误差,可用改变初值的办法加以调整。 表6—2列出了各种常用的波特率及其初值。

51单片机晶振与波特率的关系

51 单片机晶振与波特率的关系 在串行通信中, MCS — 51 串口可约定四种工作方式。其中,方式 0 和方式 2 的波特率是固定的,而方式 1 和方式 3 的波特率是可变的,由定时器 T1 的溢出率决定。波特率是指串行端口每秒内可以传输的波特位数。这里所指的波特率,如标准9600 不是每秒种可以传送 9600 个字节,而是指每秒可以传送9600 个二进位,而一个字节要 8 个二进位,如用串口模式 1 来传输,那么加上起始位和停止位,每个数据字节就要占用 10 个二进位, 9600 波特率用模式 1 传输时,每秒传输的字节数是9600 - 10=960字节。一、方式0 和方式 2的波特率 方式0的波特率是固定的,为fosc/12 ,以一个12M的晶振来计算,那么它的波特率可以达到 1M。 方式2的波特率是固定在fosc/64或fosc/32,具体用那一种就取决于 PCON 寄存器中的 SMOD 位,如 SMOD 为 0,波特率为 focs/64,SMOD 为 1 ,波特率为 focs/32 。二、方式 1 和方式3 的波特率 模式 1 和模式 3 的波特率是可变的,取决于定时器 1 或 2(对于 52 芯片)的溢出速率,就是说定时器 1 每溢出一次,串口 发送一次数据。可以用以下的公式去计算:上式中如设置了 PCON 寄存器中的 SMOD 位为 1 时就可以把波特率提升 2 倍。通常会使用定时器 1工作在定时器工作模式 2 下,这时定时值中的 TL1

做为计数, TH1 做为自动重装值,这个定时模式下,定时器溢出后, TH1 的值会自动装载到 TL1 ,再次开始计数,这样可以不用软件去干预,使得定时更准确。在这个定时模式 2 下定时器 1 溢出速率的计算公式如下:溢出速率 =(计数速率 )/(256-TH1 初值 ) 溢出速率 =fosc/[12*(256-TH1 初值 )] 上式中的“计数速率”与所使用的晶体振荡器频率有关,在 51 芯片中定时器启动后会在每一个机器周期使定时寄存器 TH 的值加 1,一个机器周期等于十二个振荡周期,所以可以得知 51 芯片的计数速率为晶体振荡器频率的 1/12 ,一个 12M 的晶振用在 51 芯片上,那么 51 的计数速率就为 1M 。通常用 11.0592M 晶体是为了得到标准的无误差的波特率,那么为何呢?计算一下就知道了。如我们要得到 9600 的波特率,晶振为 11.0592M 和 12M ,定时器1 为模式 2,SMOD 设为 1 ,分别看看那所要求的 TH1 为何值。代入公式: 11.0592M : 9600=(2 + 32) X ((11.0592M/12)/(256-TH1)) TH1=250 12M : 9600=(2 + 32) X ((12M/12)/(256-TH1)) TH1? 249.49 上面的计算可以看出使用 12M 晶体的时候计算出来的 TH1 不为整数,而 TH1 的值只能取整数,这样它就会有一定的误差存在不能产生精确的 9600 波特率。当然一定的误差是可以在使用中被接受的,就算使用 11.0592M 的晶体振荡器也会因晶体本身所存在的误差使波特率产生误差,但晶体本身的误差对

利用单片机实现波特率自检测的设计

摘要 高速发展的计算机业需要新型人才,需要具有创新的技术、专业的知识和富有团队作业能力的人才,踏着豪迈的脚步我们随着时间走进了21世纪,21世纪科学技术的飞快发展,人们不但在学习,工作方面有了更高的追求。他们已经不再局限于仅能做到,而是追求着更高的质更高飞跃和省时,省事,低成本成本的快捷方式。在当今社会,各种智能化控制系统均离不开数据信息的传输。其中波特率自动检测应用技术在单片机应用中占有很重要的一部分。通过学习单片机技术,解决实际生活中波特率自动检测的一种方案,性能,特点等,从而应用到实际当中去.通过对单片机的学习,开发出一个完整的系统.包括硬件设计,制作,独立运行及调试的软件及编程。 关键词:波特率检测

目录 摘要 (1) 1. 前言 (3) 1.1课题简介 (3) 1.2单片机的生产与发展 (4) 1.3单片机的特点及应用 (5) 1.4AT89S51系列单片机介绍 (6) 1.4.1 基本特性 (6) 3. 总体设计电路图及工作原理 (7) 2.1机型及器件的选择 (7) 2.2软、硬件功能划分 (7) 3. 系统硬件设计 (8) 3.1系统硬件电路设计 (8) 3.2硬件设计电路原理图 (9) 3.3各元件说明 (9) 3.3.1 AT89S51芯片 (9) 3.3.2 MAX232CPE芯片 (10) 4. 系统软件设计 (13) 4.1编程思路 (13) 4.1.1 详细设计 (15) 4.1.2 编写程序 (15) 4.2七段数码显示电路 (16) 4.2.1 接口及写入电路 (16) 总结 (17) 致谢...................................................... 错误!未定义书签。参考文献. (18) 附录1 (19) 附录2 (20)

STM32的CAN波特率计算

STM32的CAN波特率计算 STM32里的CAN 支持2.0A,2.0B, 带有FIFO,中断等, 这里主要提一下内部的时钟应用. bxCAN挂接在APB1总线上,采用总线时钟,所以我们需要知道APB1的总线时钟是多少. 我们先看看下图,看看APB1总线时钟: APB1时钟取自AHB的分频, 而AHB又取自系统时钟的分频, 系统时钟可选HSI,HSE, PLLCLK, 这个在例程的RC设置里都有的, 然后再看看有了APB1的时钟后,如何算CAN的总线速率, 先看下图:

有了上边的这个图,基本就清楚了. 总线时钟MHz (3+TS1+TS2)*(BRP+1) =================================================== 下面是我的计算: CAN_InitStructure.CAN_SJW = CAN_SJW_1tq; CAN_InitStructure.CAN_BS1 = CAN_BS1_3tq; 注意//#define CAN_BS1_3tq ((uint8_t)0x02) /*!< 3 time quantum */ CAN_InitStructure.CAN_BS2 = CAN_BS2_5tq; CAN_InitStructure.CAN_Prescaler = 4;//2

nominal bit time(3+5+1)tq=9tq 关于分频系数查看 system_stm32f10x.c下面的 static void SetSysClockTo72(void) 函数 /* HCLK = SYSCLK */ /* PCLK2 = HCLK */ /* PCLK1 = HCLK/2 */ 所以can时钟 72MHZ/2/4=9 Mhz tq=1/36Mhz 波特率为 1/nominal bit time= 9/9=1MHZ ==== void CAN_Configuration(void) { CAN_InitTypeDef CAN_InitStructure; CAN_FilterInitTypeDef CAN_FilterInitStructure; /* CAN register init */ CAN_DeInit(); CAN_StructInit(&CAN_InitStructure); /* CAN cell init */ CAN_InitStructure.CAN_TTCM=DISABLE; CAN_InitStructure.CAN_ABOM=DISABLE; CAN_InitStructure.CAN_AWUM=DISABLE;

相关文档
最新文档