热氧化生长动力学的研究

热氧化生长动力学的研究
热氧化生长动力学的研究

热氧化生长动力学的研究

摘要在分立器件与集成电路制造过程中,需要很多类型的薄膜,这些薄膜主要分为四类:热氧化薄膜、介质、多晶硅以及金属膜等。半导体可采用多种氧化方法,包括热氧化法、电化学阳极氧化法以及等离子体反应法。对于硅来说,热

的生长原理和影响因氧化法是最重要的。本文主要讲述了在热氧化过程中SIO

2

素。

一引言

在分立器件与集成电路制造过程中,需要很多类型的薄膜,这些薄膜主要分为四类:热氧化薄膜、介质、多晶硅以及金属膜等。半导体可采用多种氧化方法,包括热氧化法、电化学阳极氧化法以及等离子体反应法。对于硅来说,热氧化法是最重要的。在热氧化薄膜中,有两种膜最重要:一种是在漏/源极的导通沟道覆盖的栅极氧化膜(gate oxide);一种是用来隔离其他器件的场氧化膜(field oxide)。这些膜只有通过热氧化才能获得最低界面陷阱密度的高质量氧化膜。二氧化硅SiO2和氮化硅Si3N4的介电薄膜作用:隔离导电层;作为扩散及离子注入的掩蔽膜;防止薄膜下掺杂物的损失;保护器件使器件免受杂质、水气或刮伤的损害。由于多晶硅电极的可靠性由于铝电极,常用来制作MOS器件的栅极;多晶硅可以作为杂质扩散的浅结接触材料;作为多层金属的导通材料或高电阻值的电阻。金属薄膜有铝或金属硅化物,用来形成具有低电阻值的金属连线、欧姆接触及整流金属-半导体接触势垒器件。

二二氧化硅简介

2.1 SiO2的结构

S iO2 分为结晶形和无定形两类。结晶形 SiO2 由 Si-O 四面体在空间规则排列而成,如水晶;无定形 SiO2 是 Si-O 四面体在空间无规则排列而成,为透明的玻璃体、非晶体,其密度低于前者,如热氧化的 SiO2 、CVD 淀积的 SiO2 等。Si-O 四面体的结构是,4 个氧原子位于四面体的 4 个角上,1 个硅原子位于四面体的中心。每个氧原子为两个相邻四面体所共有。

2.2 SiO2的性质

1)、二氧化硅的绝缘特性

二氧化硅具有电阻率高、禁带宽度大、介电强度高等特点。而且二氧化硅最小击穿电场(非本征击穿):由缺陷、杂质引起,最大击穿电场(本征击穿):由SiO2厚度、导热性、界面态电荷等决定。实验证明二氧化硅氧化层越薄、氧化温度越低,击穿电场越低。

2)、二氧化硅的掩蔽性质

B、P、As 等常见杂质在SiO2中的扩散系数远小于其在Si中的扩散系数。SiO2做掩蔽膜要有足够的厚度:对特定的杂质、扩散时间、扩散温度等条件,有一最小掩蔽厚度。

3)、二氧化硅的化学稳定性

二氧化硅是硅的最稳定化合物,属于酸性氧化物,不溶于水。耐多种强酸腐蚀,但极易与氢氟酸反应。在一定温度下,能和强碱(如NaOH,KOH等)反应,也有可能被铝、氢等还原。

2.3二氧化硅在IC中的主要用途

二氧化硅可用做杂质选择扩散的掩蔽膜、IC的隔离介质和绝缘介质、

电容器的介质材料以及MOS器件的绝缘栅材料等等。

三热氧化动力学的原理

3.1原理

热氧化工艺的原理就是在硅衬底上生成高质量的二氧化硅薄膜。热氧化工艺分为干氧氧化和湿氧氧化。反应方程式如下:Si+2H2O→SiO2+2H2湿氧氧化

Si+O2→SiO2干氧氧化

热氧化是高温工艺。在高温下,一开始是氧原子与硅原子结合,二氧化硅的生长是一个线性过程。大约长了500?之后,线性阶段达到极限。为了保持氧化层的生长,氧原子与硅原子必须相互接触。在二氧化硅的热生长过程中,氧气扩散通过氧化层进入到硅表面,因此,二氧化硅从硅表面消耗硅原子,氧化层长入硅表面。随着氧化层厚度的增加,氧原子只有扩散通过更长的一段距离才可以到达硅表面。因此从时间上来看,氧化层的生长变慢,氧化层厚度、生长率及时间之间的关系成抛物线形。

高质量的二氧化硅都是在800℃~1200℃的高温下生成,而且其生成速率极其缓慢。其中湿氧氧化速率要高于干氧氧化。在氧化过程中,硅与二氧化硅的界面会向硅内部迁移,这将使得Si表面原有的污染物移到氧化膜表面而形成一个崭新的界面。

热氧化法生长二氧化

常用的热氧化装置(图一),由电阻式加热的炉身、圆柱形熔凝石英管、石英舟以及气体源组成。将硅片置于用石英玻璃制成的反应管中,反应管用电阻丝加热炉加热一定温度(常用的温度为900~1200℃,在特殊条件下可降到600℃以下),氧气或水汽通过反应管(典型的气流速度为1L/min)时生成SiO2层,其厚度一般在几十埃到上万埃之间。

3.2热氧化工艺的Deal-Grove 模型

C:氧化剂浓度 J1:粒子流密度 J2:扩散流密度 J3:反应流密度1、D – G 模型

(1)氧化剂由气相传输至SiO2的表面,其粒子流密度J1(即单位时间通过单位面积的原子数或分子数)为:

(2)位于SiO2表面的氧化剂穿过已生成的SiO2层扩散到SiO2-Si界面,其扩散流密度J2为:

(3) SiO2-Si界面处,氧化剂和硅反应生成新的SiO2,其反应流密度J3为:

四实验方案

1.氧化工艺的主要步骤以干氧氧化为例

1) 硅片送入炉管,通入N2及小流量O2;

2) 升温,升温速度为5℃~30℃/分钟;

3) 通大流量O2,氧化反应开始;

4) 通大流量O2及TCE (0.5~2%);

5) 关闭TCE,通大流量O2,以消除残余的TCE;

6) 关闭O2,改通N2,作退火;

7) 降温,降温速度为2℃~1 0℃/分钟;

8) 硅片拉出炉管。

2.不同氧化方法的特点

(1) 干氧氧化:氧化速率慢,SiO2膜结构致密、干燥(与光刻胶粘附性好),掩蔽能力强。

(2) 湿氧氧化:氧化速率快,SiO2膜结构较疏松,表面易有缺陷,与光刻胶粘附性不良。 (湿氧环境中O2和 H2O的比例是关键参数) (3) 氢氧合成氧化:氧化机理与湿氧氧化类似,SiO2膜质量取

决于H2,O2纯度(一般H2纯度可达99.9999%,O2纯度可达 99.99%);氧化速率取决于H2和O2的比例。

(3) 掺氯氧化:减少钠离子沾污,提高SiO2/Si界面质量;氧化速率略有提高。 (常用的氯源:HCI,TCE,TCA等)

五主要结论与分析

1、氧化层厚度与氧化时间的关系式:

氧化层足够薄(氧化时间短)时,可忽略二次项,此时T ox~ t为线性关系:

其中B/A为线性氧化速率常数

氧化层足够厚(氧化时间长)时,可忽略一次项,此时T ox ~ t为抛物线关系:

其中B为抛物线氧化速率常数

介于(1)、(2)两者之间的情况,T ox ~ t关系要用求根公式表示:

2、氧化速率与氧化层厚度的关系

由图可知:氧化速率随着氧化层厚度的增加(氧化时间的增加)而下降。

图4.6 各种薄干氧氧化情况下,氧化速率与氧化层厚度之间的关系,衬底是轻微掺杂的 (1 0 0) 硅。

3、D – G 模型的修正

初始快速氧化阶段

D-G模型在很宽的参数范围内与实际氧化速率吻合,但对于薄干氧氧化层的生长,D-G模型严重低估氧化层厚度。根据D-G模型,氧化层厚度趋于零(氧化时间接近于零)时,氧化速率接近于一个常数值:

但实际工艺结果显示,初始氧化速率比预计值大了4倍或更多。

D-G干氧模型中给出一个 值,来补偿初始阶段的过度生长。

湿氧工艺的氧化速率常数

干氧工艺的氧化速率常数

4、参数B和B/A的温度依赖关系

在各种氧化工艺条件下,参数B和B/A都可以确定下来,并且是扩散系数、反应速率常数和气压等工艺参数的函数。参数B和B/A可写成Arrhenius函数形式。

B和B/A

参数B的激活能E A取决于氧化剂的扩散系数(D0)的激活能;参数B/A 的激活能取决于Ks,基本上与Si—Si键合力一致。

图 4.2 氧化系数B的阿列尼乌斯图,湿氧氧化参数取决于水汽浓度(进而取决于气流量和高温分解条件)

图4.3 氧化系数B/A的阿列尼乌斯图

5 氧化速率常数的实验获取方法

6 热氧化工艺的质量检测

质量检测是氧化工艺的一个关键步骤,氧化层质量的含义包括:厚度、介电常数、折射率、介电强度、缺陷密度等,质量检测需要对上述各项指标的绝对值、其在片内及片间的均匀性进行测量,质量检测的方法一般可分为:物理测量、光学测量、电学测量。

Thermal oxidation of covellite (CuS)

J.G. Dunn a,*, C. Muzenda b

A School of Applied Chemistry, Curtin University, Perth, Australia

B Department of Chemistry, Bindura University of Science Education, Bindura, Zimbabwe Received 17 July 2000; received in revised form 26 October 2000; accepted 27 October 2000 Abstract The thermal oxidation of covellite of particle size 45±90 mm was studied by heating 5±6 mg samples at 208

C min ?1 in dry air in a simultaneous thermogravimetry±differential thermal analysis (TG±DTA) apparatus.

Evolved gases were analysed by coupled FTIR equipment. The unreacted and the partially oxidised covellite samples were characterised for phase composition by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and optical microscopy (OM). By 3308C, a small amount of decomposition of covellite had occurred with the formation of cubic digenite (Cu1.8S). A mass loss was evident between 330 and 4228C associated with an exothermic peak. This event was assigned to the decomposition of

CuS to Cu2S followed by oxidation of the evolved sulfur. Between 422 and 4748C, an exothermic peak accompanied by a mass gain was observed. The exothermic peak was attributed to the oxidation of Cu2S, and the mass gain to the formation of CuSO4. This was followed by a further exothermic peak and mass gain in the temperature range

474±5858C. This event was attributed to a solid±solid reaction between Cu2S and CuSO4 which caused a melt to form. Until this stage, the reaction had proceeded by a shrinking core mechanism inhibited by oxide and sulfate coatings. However, the formation of a melt effectively destroyed this inhibition and permitted further oxidation of the sul?de and formation of sulfate. At 5838C CuO_CuSO4 was detected, and continued to form up to 6538C. Finally an endothermic event and mass loss observed in the temperature range 653±8208C were due to the decomposition of CuO_CuSO4 into CuO. Various other reactions were

identi?ed which did not produce signi?cant events on the TG±DTA record. # 2001 Elsevier Science B.V. All rights reserved. Keywords: Covellite; Oxidation; TG±DTA±FTIR

1. Introduction

Covellite usually exists in small quantities associated with other copper sul?des such as chalcocite (Cu2S), chalcopyrite (CuFeS2) and bornite (Cu5FeS4). It is found in the zone of secondary enrichment formed

as a result of the alteration of primary sul?des [1]. It can occur as thin crusts or as deep blue-black powdery or sooty masses [2], as well as grains in geothite, malachite and areas of gangue [3]. Heating covellite in an inert atmosphere causes decomposition with the formation of copper de?cient compounds. Anilite (Cu7S4) is reported to form from covellite in the temperature range 278±3548C, followed by decomposition to Cu2S between 500 and 6158C [4]. In another study, four endothermic peaks were observed commencing at 280, 450, 550, and 8308C, respectively. These were assigned to the Thermochimica Acta 369 (2001) 117±123

* Corresponding author. Present address: Department of Chemistry, University of Toledo, Toledo, OH 43606, USA. Tel.: .1-419-

530-1508; fax: .1-419-530-4033.

E-mail addresses: jeffdunn@https://www.360docs.net/doc/143556581.html, (J.G. Dunn),

muzenda@mailhost.buse.ac.zw (C. Muzenda).

0040-6031/01/$ ± see front matter # 2001 Elsevier Science B.V. All rights reserved.

PII: S0 0 4 0 - 6 0 31 ( 0 0 ) 0 0 7 4 8 - 6

第三章 微生物反应动力学习题

第三章微生物反应动力学习题 1. 微生物反应的特点,其与化学反应的主要区别有那些? 2.简要回答微生物反应与酶促反应的最主要区别? 3. 进行微生物反应过程的物量衡算有何意义,请举例说明。 4.Monod 方程建立的几点假设是什么?Monod 方程与米氏方程主要区别是什么? 5.举例简要说明何为微生物反应的结构模型? 6. 以葡萄糖为单一碳源,进行某种微生物好氧或厌氧培养。已知此菌的比生长速率μ、葡萄糖的比消耗速率γ、细胞、葡萄糖、二氧化碳和各产物中的碳元素含量α1、α2、α3 和αi,利用这6 个常数给出此菌的与生长相关的物料衡算式。 7. 葡萄糖为碳源的复合培养基进行干酪乳杆菌的厌氧培养,1mol葡萄糖可生成乳酸或乙酸或乙醇或甲酸为0.05mol、1.05mol、0.94mol和1.76mol,试讨论各分解代谢的碳元素的恒算及生成ATP的摩尔数。 8. 荧光假单胞菌(Pseudomonas fluorescens)好氧培养中,已知:Y x/s=180g/mol,Y x/o=30.4g/mol,每消耗1mol葡萄糖可生成2molATP,氧化磷酸化的P:O比为1,求Y ATP? 9. 在啤酒酵母的生长试验中,消耗了0.2kg 葡萄糖和0.0672kgO2,生成0.0746kg 酵母菌和 0.121kgCO2,请写出该反应的质量平衡式,计算酵母得率Y X/S 和呼吸商RQ。 10. 微生物物繁殖过程中分裂一次生成两个子细胞,也有4 分裂或8 分裂的,试证明当n 分 裂时,有如下式子:,式中: 为倍增时间, 为世代时间。 11.分别采用含有蛋白胨和牛肉膏的复合培养基、含有20 余种氨基酸的合成培养基和基本培养基进行运动发酵单胞菌厌氧培养,碳源为葡萄糖,获得如下表所示结果。已知菌体的含碳量(以碳源/细胞计)为0.45g/g,求采用不同培养基时的Y KJ。 12. 葡萄糖为碳源进行酿酒酵母培养,呼吸商为1.04,氨为氮源。消耗100mol 葡萄糖和48mol氨,生成细胞48mol、二氧化碳312mol 和水432mol。求氧的消耗量和酵母细胞的化学组成。 13. 以葡萄糖为唯一碳源的最低培养基进行Candida utilis 培养,Y x/s=91.8g-细胞/mol 葡萄糖,求Y kJ。已知葡萄糖的燃烧热为2830KJ/mol。 15. 以葡萄糖为唯一碳源的基本培养基厌氧培养产气气杆菌, Yx/s= 26.1 g 细胞/mol 葡萄糖,试求分解代谢消耗葡萄糖的量占总消耗量的分率? 已知每克细胞含0.45g 碳,每mol 葡萄糖含72g 碳,且△S=△S 合成 +△S分解。 16.一个新发现的微生物在每一次细胞分裂时,可产生3个新细胞,由下列生长数据求:①此微生物的比生长速率μ(h-1);②两个细胞分裂的平均间隔时间;③此微生物细胞的平均世代时间。 时间/h 0 0.5 1.0 1.5 2.0 细胞干重/(g/L) 0.10 0.15 0.23 0.34 0.51

分离课后习题及答案

第一章绪论1.分离技术的三种分类方法各有什么特点? 答:(1)按被分离物质的性质分类分为物理分离法、化学分离法、物理化学分离法。 (2)按分离过程的本质分类分为平衡分离过程、速度差分离过程、反应分离过程。(3)场流分类法 2.分离富集的目的? 答:①定量分析的试样通常是复杂物质,试样中其他组分的存在常常影响某些组分的定量测定,干扰严重时甚至使分析工作无法进行。这时必须根据试样的具体情况,采用适当的分离方法,把干扰组分分离除去,然后才能进行定量测定。②如果要进行试样的全分析,往往需要把各种组分适当的分离,而后分别加以鉴定或测定。③而对于试样中的某些痕量组分,进行分离的同时往往也就进行了必要的浓缩和富集,于是就便于测定。因此物质的化学分离和测定具有同样重要意义。 3.什么是直接分离和间接分离? 答:直接分离是将待测组分从复杂的干扰组分分离出来;间接分离是将干扰组分转入新相,而将待测组分留在原水相中。 4.阐述浓缩、富集和纯化三个概念的差异与联系? 答:富集:通过分离,使目标组分在某空间区域的浓度增大。浓缩:将溶剂部分分离,使溶质浓度提高的过程。纯化:通过分离使某种物质的纯度提高的过程。 根据目标组分在原始溶液中的相对含量(摩尔分数)的不同进行区分: (方法被分离组分的摩尔分数)富集<0.1;浓缩0.1-0.9;纯化>0.9。 5.回收因子、分离因子和富集倍数有什么区别和联系?

答:(1)被分离物质在分离过程中损失量的多少,某组分的回收程度,用回收率来表示。 待测组分A 的回收率,用RA 表示,QA °---为富集前待测物的量;QA---富集后待测物的量。%100?= A A A Q Q R (2)分离因子:两组分的分离程度。用SA , B 表示。B A B A B A B ,//R R Q Q Q Q S A =??= A —待测组分;B —干扰组分。如果待测组分A 符合定量要求,即可认为QA ≈ QoA ,SA,B ≈ QoB/QB = 1/RB ,常量组分测定:SA,B ≈103;分离因子越大,分离效果越好。 (3)富集倍数:目标组分和基体组分的回收率之比,用F 表示, M M T T M T Q Q Q Q R R F //== RT 为组分的回收率;RM 为基体的回收率; QT °为富集前待测物的量; QT 为富集后待测物的量;QM °为富集前基体的量;QM 为富集后基体的量。 第二章 分离过程中的热力学 2.气体分子吸附在固体吸附剂表面时,某吸附等温线可以由朗格缪尔吸附方程得到。试分析吸附物质的吸附平衡常数K 与该气体物质在气相的分压p 需满足什么条件才能使朗格缪尔吸附等温线近似为直线。 答:溶质吸附量q 与溶质气体分压p 的关系可以用朗格缪尔吸附方程表示:p K p K q q A A +=1max ,式中qmax 为溶质在固相表面以单分子层覆盖的最大容量;KA 为溶质的吸附平衡常数。在低压时,p K q q p K A A max 1=,《。 第三章 分离过程中的动力学 1.简单讨论分子运动与宏观物体机械运动的差别和共同点。

热重分析

第三节 热重分析(TG ) 一、基本原理 热重法是在程序控温下,测量物质的质量随温度(或时间)的变化关系的一种技术,简称TG 。如熔融、结晶和玻璃化转变之类的热行为,试样确无质量变化,而分解、升华、还原、解吸附、吸附、蒸发等伴有质量改变的热变化可用TG 来测。如果在程序升温的条件下不断记录试样的重量的变化,即可得到TG 曲线。 如图1所示。一般可以观察到二到三个台阶,第一个失重台阶W 0—W 2多数发生在100℃以下,这多半是由于试样的吸附水或试样内残留的溶剂挥发所致。第二个台阶往往是试样内添加的小分子助剂,如高聚物增塑剂、抗老剂和其他助剂的挥发(如纯物质试样则无此部分)。第三个台阶发生在高温是属于试样本体的分解。为了清楚地观察到每阶段失重最快的温度。经常用微分热重曲线DTG (如图1b )。这种/dW dt 曲线可以利用电子微分电路在绘制TG 曲线的同时绘出。对于分解不完全的物质常常留下残留物W R 。 在某种特殊的情况下还会发生增重现象,这可能是物质与环境气体(如空气中的氧)进行了反应所致。另外目前又出现了一种等温TG 曲线。这是在某一定温度条件下,观察试样的重量随时间的变化,所以又称“等温热失重法”即: W=f (t )(温度为定值) W 0 W 1 W 2 W 3 重 量 图1 热重分析曲线(a )与微商热重曲线(b )

炉子 它能提供很多有用的信息,如在某温度下物体的分解速度或某成分的挥发速度等。 二、基本结构 热重法的仪器称为热天平,给出的曲线为热重曲线。热重曲线以时间t 或炉温T 为横坐标,以试样的质量变化(损失)为纵坐标。热天平的基本单元是微量天平、炉子、温度程序器、气氛控制器以及同时记录这些输出的仪器。热天平的示意图如图2-1所示。通常是先由计算机存储一系列质量和温度与时间关系的数据完成测量后,再由时间转换成 温度。 三、影 响因素 虽然由于技术的进步,在设计TG 仪器时进行了周密的考虑,尽量减少各种因素的影响,但是客观上这些因素还不同程度在存在着,为了数据的可靠性,有必要分述如下: 1.坩埚的影响 坩埚是用来盛装试样的,坩埚具有各种尺寸、形状并由不同材质制成。坩埚和试样间必须无任何化学反应。一般来说坩埚是由铂、铝、石英或陶瓷制成的。石英和陶瓷将与碱性试样反应而改变TG 曲线,聚四氟乙烯在一定条件下与之生成四氟化硅。铂对某些物质有催化作用,而且不适合于含磷、硫和卤素的高聚物。因此坩埚的选择对实验结果尤为重要。 2.挥发物冷凝的影响 样品在升温加热时,分解或升华产生的挥发物可能会产生冷凝的现象,而使实验结果产生偏差。为此试样用量尽可能少,并使气体流量合适。 3.升温速率的影响 由于试样要从外面炉体和容器等传入热量,所以必然形成温差。升温速率过快,有时会掩盖相邻的失重反应,甚至把本来应出现平台的曲线变成折线,同时TG 曲线有向高温推移的现象。但速度太慢又会降低实验效率。一般以5℃/min 为宜,有时需要选择更民的速度。

第三章 微生物反应动力学习题答案

第三章 微生物反应动力学习题答案 1. 微生物反应的特点,其与化学反应的主要区别有那些? 答:微生物反应与化学反应相比,具有以下特点: 1)微生物反应属于生化反应,通常是在常温常压下进行;2)反应原料来源相对丰富;3)易于生产复杂的高分子化合物和光学活性物质;4)通过菌种改良,可大大提高设备的生产能力;5)副产物多,提取有一定难度;6)生产微生物受外界环境影响比较大;7)开发成本较大;8)废水BOD较大 2.简要回答微生物反应与酶促反应的最主要区别? 答:微生物反应与酶促反应的最主要区别在于,微生物反应是自催化反应,而酶促反应不是。此外,二者还有以下区别: (1)酶促反应由于其专一性,没有或少有副产物,有利于提取操作,对于微生物反应而言,基质不可能全部转化为目的产物,副产物的产生不可避免,给后期的提取和精制带来困难,这正是造成目前发酵行业下游操作复杂的原因之一。 (2)对于微生物反应,除产生产物外,菌体自身也可是一种产物,如果其富含维生素或蛋白质或酶等有用产物时,可用于提取这些物质。 (3)与微生物反应相比,酶促反应体系较简单,反应过程的最适条件易于控制。 微生物反应是利用活的生物体进行目的产物的生产,因此,产物的获得除受环境因素影响外,也受细胞因素的影响,并且微生物会发生遗传变异,因此,实际控制有一定难度。 (4)酶促反应多限于一步或几步较简单的生化反应过程,与微生物反应相比,在经济上有时并不理想。 4. 答:Monod 方程建立的基本假设:微生物生长中,生长培养基中只有一种物质的浓度(其他组分过量)会影响其生长速率,这种物质被称为限制性基质,并且认为微生物为均衡生长且为简单的单一反应。Monod 方程与米氏方程的主要区别如下表所示: Monod 方程:S K S S += max μμ 米氏方程:S K S r r m += max 方程中各项含义: μ:生长比速 μmax :最大生长比速 S: 单一限制性基质浓度 K S : 半饱和常数 方程中各项含义: r:反应速率 r max :最大反应速率 S:底物浓度 K m :米氏常数 微生物生长动力学方程 酶促反应动力学方程

分离课后习题及答案

第一章 绪论 1.分离技术的三种分类方法各有什么特点? 答:(1)按被分离物质的性质分类分为物理分离法、化学分离法、物理化学分离法。 (2)按分离过程的本质分类分为平衡分离过程、速度差分离过程、反应分离过程。 (3)场流分类法 2.分离富集的目的? 答:①定量分析的试样通常是复杂物质,试样中其他组分的存在常常影响某些组分的定量测定,干扰严重时甚至使分析工作无法进行。这时必须根据试样的具体情况,采用适当的分离方法,把干扰组分分离除去,然后才能进行定量测定。②如果要进行试样的全分析,往往需要把各种组分适当的分离,而后分别加以鉴定或测定。③而对于试样中的某些痕量组分,进行分离的同时往往也就进行了必要的浓缩和富集,于是就便于测定。因此物质的化学分离和测定具有同样重要意义。 3.什么是直接分离和间接分离? 答:直接分离是将待测组分从复杂的干扰组分分离出来;间接分离是将干扰组分转入新相,而将待测组分留在原水相中。 4.阐述浓缩、富集和纯化三个概念的差异与联系? 答:富集:通过分离,使目标组分在某空间区域的浓度增大。浓缩:将溶剂部分分离,使溶质浓度提高的过程。纯化:通过分离使某种物质的纯度提高的过程。 根据目标组分在原始溶液中的相对含量(摩尔分数)的不同进行区分: (方法 被分离组分的摩尔分数)富集 <0.1;浓缩 0.1-0.9;纯化 >0.9。 5.回收因子、分离因子和富集倍数有什么区别和联系? 答:(1)被分离物质在分离过程中损失量的多少,某组分的回收程度,用回收率来表示。 待测组分A 的回收率,用RA 表示,QA °---为富集前待测物的量;QA---富集后待测物的量。%100?= A A A Q Q R (2)分离因子:两组分的分离程度。用SA , B 表示。B A B A B A B ,//R R Q Q Q Q S A =??= A —待测组分;B —干扰组分。如果待测组分A 符合定量要求,即可认为QA ≈ Q oA ,SA,B ≈ Q oB/QB = 1/RB ,常量组分测定:SA,B ≈103;分离因子越大,分离效果越好。 (3)富集倍数:目标组分和基体组分的回收率之比,用F 表示, M M T T M T Q Q Q Q R R F //== RT 为组分的回收率;RM 为基体的回收率; QT °为富集前待测物的量; QT 为富集后待测物的量;QM °为富集前基体的量;QM 为富集后基体的量。 第二章 分离过程中的热力学 2.气体分子吸附在固体吸附剂表面时,某吸附等温线可以由朗格缪尔吸附方程得到。试分析吸附物质的吸附平衡常数K 与该气体物质在气相的分压p 需满足什么条件才能使朗格缪尔吸附等温线近似为直线。 答:溶质吸附量q 与溶质气体分压p 的关系可以用朗格缪尔吸附方程表示:p K p K q q A A +=1max ,式中qmax 为溶质在固相表面以单分子层覆盖的最大容量;KA 为溶质的吸附平衡常数。在低压时,p K q q p K A A max 1=,《。

第18讲 热重分析

第18讲 教学目的:使学生了解热分析的分类和术语 教学要求:掌握热重分析的定义、影响因素 教学重点:热重分析的定义、影响因素 教学难点:热重及微商热重 教学拓展:热重质谱联用 作业: 1.简述热分析的定义和分类? 2.简述热重分析的原理和影响因素? 3.热重法和微商热重法的区别是什么? 第三章热分析 第1节热重分析 1.1概述: 热分析的起源与发展 发明人:ChatelierH.Le(1887),他实际上并没有测定试样和参比物之间的温度差,而是把Pt-Pt10%Rh热电偶(用一根热电偶)插入受热的粘土试样中,加热速度为每2秒4℃,热电偶电动势用照相法记录下来,若粘土在加热过程中没有发生热变化,则照相记录是一系列距离的线条,若有热变化,则线条是由一系列疏密不同的线条组成的。由于他只用了一根热电偶,严格地说只能叫热分析,算不上差热分析。十二年后(1899),英国人Roberts-Austen W.C.改良了恰特利的装置,采用两个热电偶反相连接,一个热电偶插入样品中,另一个插到参比物内,记录试样与参比物间产生的温度差ΔT,这就是目前广泛使用的差热分析法的原始模型。 热分析的定义 热分析(Thermal Analysis),国际热分析协会(International Confederation for Thermal Analysis简称ICTA),在1968年第二次国际热分析会议上通过一个命名报告中作过阐明,而后在1977年第五次国际热分析会议上又作了修订。定义如下: “在程控温度下,测量物质的物理性质与温度关系的一类技术。”此处所说的物质是指被测样品和(或)它的反应产物,而程序温度一般采用线性程序,但也可以是温度的对数或倒数程序。 按照定义,称为热分析技术必须满足下述三条标准: 1.必须测量物质的某种物理性质。诸如热学的、力学的、电学的、光学的、磁学的和声学的等。因此,热分析技术所涉及的范围极其广泛。 2.测量的物理量必须直接或间接表示为温度关系。 3.测量的物理量必须在程控温度下测定。 上述定义,若用数学表达式,即 P=f(T) (1.1)

晶体生长第七章 晶体生长动力学

第七章 晶体生长动力学 生长驱动力与生长速率的关系(动力学规律或界面动力学规律),先解决生长机制问题。 §1 邻位面生长——台阶动力学 邻位面生长——奇异面上的台阶运动问题 1. 界面分子的势能 1→2 : 2Φ1+8Φ2; 1→3 : 4Φ1+12Φ2; 1→4 : 6Φ1+12Φ2 分子最稳定位置(相变潜热) 单分子相变潜热: l sf =W s +W k ① 流体分子 ⑴ 吸附分子 ⑵ 台阶分子⑶ 扭折 ⑷ 邻位面上不同位置的吸附分子[3] 界面上不同位置的势能曲线 体扩散 面扩散 线扩散

② 流体分子 ⑴ 吸附分子 ⑵ 扭折 ⑷ ③ 流体分子 ⑴ 扭折 ⑷ 2.面扩散 W s =2Φ1+8Φ2 吸附分子→流体需克服的势垒 sf s l 20 1 22≈Φ≈ε 面扩散激活能 υ∥ 吸附分子在界面振动频率 吸附分子在晶面发生漂移的机率为:)/ex p(kT s ε-,面 扩散系数为:D s D s =[υ∥ )/ex p(kT s ε-] 吸附分子平均寿命:τs, s τ1 脱附频率 )/ex p(/1kT W s s -=⊥υτ ) /ex p(1 kT W s s ⊥ = υτ Xs: 吸附分子在界面停留的平均寿命τs 内,由于无规则漂移而在给定方向的迁移(分子无规则漂移的方均根偏差) s s s D X τ=2 (爱因斯坦公式) kT W X s s s 2/]exp[2 1 ε-=∴ 由于对一般的晶面: sf s s l W 45.0≈-ε υ∥=υ⊥ 体扩散 面扩散 体扩散

]/22.0exp[2 1 kT l X sf s ≈∴ Xs 决定了晶体生长的途径。 3. 台阶动力学——面扩散控制 台阶的运动受面扩散控制 界面某格点出现吸附分子的机率:00 N N s s =α 界面N 0,格点Ns 有吸附分子: )/ex p(0 kT W k s -=α (对单原子或简单原子,可忽略取向效应) 若:Xs >> X 0 则到达界面便可到达台阶,扭折 平衡时,脱附分子(单独时间从界面脱附)数为:s s τα1 ? 平衡时,吸附分子数为:s s τα1 ? 0/p p =α 饱和比,在此情况下,吸附分子为: s s ταα1 ? ? Xs >> X 0 则吸附分子均能到达台阶 设台阶长度为a,则单位时间到达台阶的分子数为: a X s s s ???ταα1 20 考虑脱附分子数: a X s s s ???τα1 20

分离课后习题及答案

【注意事项】 1.因时间关系,详细复习总结的电子版没时间做了,大家抽空多看看课本,考试以课本基础知识为主,书上找不到答案的不会考。 2.这里主要总结了老师上课讲的课后题 参考 答案,以及部分往届复习的名词解释整合,大家参考记忆。 3.考试题型:6-7个名词解释,6-7个选择题(考察细节掌握,一个两分),填空,简答论述(接近50分)。 4.不考计算题,但依然会考公式的其他应用,复习时自己注意。 5.【P22】【P24】【P44-45】【P216-217】这几页的图和表必须会解读,【P191-192】这两页表必须背过,必考重点!考试没有画图题,但可能有读图题,常见的重点图示必须熟悉。 6.抓紧时间好好复习,今年监考比历届都要严,不要因小失大!!! 7.最后,祝都过。 ***感谢冯晓博、马阿敏、张雪琴三位热心的好学霸肯抽出时间为大家整理资料*** 第一章 绪论 1.分离技术的三种分类方法各有什么特点? 答:(1)按被分离物质的性质分类分为物理分离法、化学分离法、物理化学分离法。 (2)按分离过程的本质分类分为平衡分离过程、速度差分离过程、反应分离过程。 (3)场流分类法 2.分离富集的目的? 答:①定量分析的试样通常是复杂物质,试样中其他组分的存在常常影响某些组分的定量测定,干扰严重时甚至使分析工作无法进行。这时必须根据试样的具体情况,采用适当的分离方法,把干扰组分分离除去,然后才能进行定量测定。②如果要进行试样的全分析,往往需要把各种组分适当的分离,而后分别加以鉴定或测定。③而对于试样中的某些痕量组分,进行分离的同时往往也就进行了必要的浓缩和富集,于是就便于测定。因此物质的化学分离和测定具有同样重要意义。 3.什么是直接分离和间接分离? 答:直接分离是将待测组分从复杂的干扰组分分离出来;间接分离是将干扰组分转入新相,而将待测组分留在原水相中。 4.阐述浓缩、富集和纯化三个概念的差异与联系? 答:富集:通过分离,使目标组分在某空间区域的浓度增大。浓缩:将溶剂部分分离,使溶质浓度提高的过程。纯化:通过分离使某种物质的纯度提高的过程。 根据目标组分在原始溶液中的相对含量(摩尔分数)的不同进行区分: (方法 被分离组分的摩尔分数)富集 <0.1;浓缩 0.1-0.9;纯化 >0.9。 5.回收因子、分离因子和富集倍数有什么区别和联系? 答:(1)被分离物质在分离过程中损失量的多少,某组分的回收程度,用回收率来表示。 待测组分A 的回收率,用RA 表示,QA °---为富集前待测物的量;QA---富集后待测物的量。%100?= A A A Q Q R (2)分离因子:两组分的分离程度。用SA , B 表示。B A B A B A B ,//R R Q Q Q Q S A =??= A —待测组分;B —干扰组分。如果待测组分A 符合定量要求,即可认为QA ≈ Q oA ,SA,B ≈ Q oB/QB = 1/RB ,常量组分测定:SA,B ≈103;分离因子越大,分离效果越好。 (3)富集倍数:目标组分和基体组分的回收率之比,用F 表示, M M T T M T Q Q Q Q R R F //== RT 为组分的回收率;RM 为基体的回收率; QT °为富集前待测物的量; QT 为富集后待测物的量;QM °为富集前基体的量;QM 为富集后基体的量。

晶体生长复习题.doc

1. 简述温度的物理意义。 2. How many atoms of argon at a pressure of one atmosphere are incident on a square centimeter of surface at room temperature in one microsecond? 3. 简要解释晶体的扩散机理有哪两种?1000%时铜在单晶硅中的扩散系数D为10_4cm2/s,而B和P等的扩散系数约为10"14cm2/s,在集成电路制作过程中,如果我们采用1000Q C高温处理,在单晶硅上使B扩散10nm的距离,请估计铜的扩散距离为多少mm? 4. 谈谈你对扩散系数的理解(气体,液体,晶体与非晶的扩散系数有什么不同?扩散系数的大小受哪些因素影响?)请写出扩散方程:Fick第一定律和第二定律的一维表达式。并请写出一维稳态条件下Fick第二定律的表达式及其解。 5. 直径为1nm的金粒子在1000°C,含金1Q/O的玻璃衬底上成核,沉淀粒子基本上是纯金,金在玻璃中的平衡浓度1000°C时为0.1。/。,假设粒子生长是由扩散控制的,1000°C时金在玻璃中的扩散系数为10_w cm2s_1。用球形粒子沉淀的稳态扩散近似计算1小时后金粒子的大小。 6. A Czochralski silicon crystal that is about one meter in length is grown in eight hours, so that a crystal can be grown by a worker in one shift. For a diffusion coefficient in the liquid D=5X l0'5cm2s'1, what is the thickness of the diffusion boundary layer? 7. 晶体熔体生长的温度梯度一般为100°C/cm。保持这样的温度梯度主要通过增加热传导的方式。对于铝,热流量为130W/cm2,氧化铝为20W/cm2, 硅为94 W/cm2,生长直径为12-inch的硅单晶,总热流量为50kW。如果:分凝系数/< = 0.1,液相线斜率m = 1 deg/%C,扩散系数D = 5x10~5 crrP/sec,温度梯度0 = 100°C/cm f 提拉速率v = 1 mm/min = 1/600 cm/sec,请问,不产生组分过冷的临界组分浓度为多少? 8. 位错生长理论模型与Kossel理论模型比较,主要解决了什么问题?根据位错理论模型,过饱和度与晶体生长速率的关系如何? 9. 在熔体中生长晶体,晶体生长速率和过冷度通常是线性关系,采用Czochralski 方法在其熔体中的生长单晶硅的速率约为5x10'5m/sec,体系的过冷度一般为 0.01°C,试求硅单晶生长的动力学系数。 10. 晶体生长动力学主要研究晶体生长的微观过程及其对晶体生长速率的影响。请简要讨论影响晶体生长速率的微观过程有哪些? 11. 如果晶体生长速率由晶体界面动力学过程控制,晶体生长速率与哪些因素有关?写出晶体生长速率的表达式。 12. 什么是stepan Problems?定性描述我们采取什么方法解决stefan Problems? 13. 谈谈你对晶体生长过程中分凝效应理解,分凝系数和有效分凝系数有什么区别。请写出定向凝固方程(scheil方程)并比较与杠杆规则的区别。 14. Crystals that are grown from solution are grown much more slowly, at a rate of perhaps 1 mm/day. For a liquid diffusivity, D=5X 10'5cm2s'1, what is the diffusion length? What does this imply about the concentration in a growth vessel that is 20cm in diameter? 15. the thermal diffusion length is the thermal diffusivity divided by

晶体生长热力学

第一章 晶体生长热力学 晶体生长是一门古老的“艺术”,但最近几十年来,由于热力学、统计物理以及其它学科在晶体生长中的应用,对解决晶体生长问题发挥了很大的作用,使晶体生长获得了牢固的科学基础,逐步发展成为材料科学中的一个重要分支,对解决工业与科研所需的材料问题做出了重要的贡献。因此,要想了解核掌握晶体生长这门学科,首先必须掌握热力学的基本知识。 晶体生长是一个动态过程,不可能在平衡状态下进行,而热力学所处理的问题一般都是属于平衡状态的问题。在研究任何过程的动力学问题之前,对其中所包含的平衡问题有所了解,则可以预测过程中所遇到的问题(如偏离平衡态的程度),以及说明或提出解决问题的线索。因而在考虑实际晶体生长情况时,必须确定问题的实质究竟是与达到的平衡状态有关,还是与各种过程进行的速率有关。如果晶体生长的速率或晶体的形态取决于某一过程进行的速率(例如,在表面上的成核速率),那么就必须用适当的速率理论来分析,这时热力学就没有什么价值了。但如果过程进行程度非常接近于平衡态(准平衡态,这在高温时常常如此),那么热力学对于预测生长量以及成分随温度、压力和试验中其它变数而改变的情况,就有很大的价值。 可以认为晶体生长是控制物质在一定的热力学条件下进行的相变过程。通过这一过程使该物质达到符合所需要的状态和性质。一般的晶体生长多半是指物质从流动相转变为固相(成为单晶体)的过程。因此将牵涉到热力学中的相平衡和相变的问题。相图(平衡图)是将物质体系中各项可能存在的状态,随成分和温度(有时还有压力)改变的情况明确地表现出来的一种图示。也可以认为相图是将晶体生长(流体相变为固相以及固态中的相变)与热力学联系起来的媒介,可以看出整个晶体生长过程的大概趋势。 §1.1相平衡及相变 相:是指体系中均匀一致的部分,它与别的部分有明显的分界线。 1.1.1热平衡 在与环境无热量和物质交换的体系内,A 与B 两相间只有热量交换条件下,T A =T B 推导方法: 设将A 和B 两个相封闭在一个与环境隔绝的体系内,A 与B 两相间只有热量交换,即A ,B 两相见得隔板完全固定,只能导热,如图1.1所示。设此时从A 有微量的热传到B 内,则A ,B 两相的内能变化为 A A A A A B B B B B dU T dS P dV dU T dS P dV =-=- (1.1) 由于隔板固定,A,B 两相的体积也固定,0A B dV dV ==。这说明此时体系内能的变化只能表现为热的改变,即 A B Q dU dU δ=-= 这里假定由A 传至B 时,对B 相来说,Q δ为正,反方向为负。式(1.1)可写为 /A A Q T dS δ-=,/B B Q T dS δ-= (1.2) 两式相加,得

【免费下载】第四章微生物反应动力学

习题与答案2.简要回答微生物反应与酶促反应的最主要区别?答:微生物反应与酶促反应的最主要区别在于,微生物反应是自催化反应,而酶促反应不是。此外,二者还有以下区别: (1)酶促反应由于其专一性,没有或少有副产物,有利于提取操作,对于微生物反应而言,基质不可能全部转化为目的产物,副产物的产生不可避免,给后期的提取和精制带来困难,这正是造成目前发酵行业下游操作复杂的原因之一。(2)对于微生物反应,除产生产物外,菌体自身也可是一种产物,如果其富含维生素或蛋白质或酶等有用产物时,可用于提取这些物质。(3)与微生物反应相比,酶促反应体系较简单,反应过程的最适条件易于控制。微生物反应是利用活的生物体进行目的产物的生产,因此,产物的获得除受环境因素影响外,也受细胞因素的影响,并且微生物会发生遗传变异,因此,实际控制有一定难度。 (4)酶促反应多限于一步或几步较简单的生化反应过程,与微生物反应相比,在经济上有时并不理想。4.Monod 方程建立的几点假设是什么?Monod 方程与米氏方程主要区别是什么?答:Monod 方程建立的基本假设:微生物生长中,生长培养基中只有一种物质的浓度(其他组分过量)会影响其生长速率,这种物质被称为限制性基质,并且认为微生物为均衡生长且为简单的单一反应。Monod 方程与米氏方程的主要区别如下表所示: Monod 方程与米氏方程的区别Monod 方程:S K S S +=max μμ米氏方程:S K S r r m +=max 经验方程理论推导的机理方程方程中各项含义:μ:生长比速(h -1)μmax :最大生长比速(h -1)S: 单一限制性底物浓度(mol/L) K S :半饱和常数(mol/L)方程中各项含义:r :反应速率(mol/L.h)r max :最大反应速率(mol/L.h)S :底物浓度(mol/L)K m :米氏常数(mol/L)适用于单一限制性基质、无抑制的微生物反应。适用于单底物、无抑制的酶促反应。 5.举例简要说明何为微生物反应的结构模型?而且高中资中资料料试卷置时

晶体生长理论

晶体生长理论 晶体生长理论是用以阐明晶体生长这一物理-化学过程。形成晶体的母相可以是气相、液相或固相;母相可以是单一组元的纯材料,也可以是包含其他组元的溶液或化合物。生长过程可以在自然界中实现,如冰雪的结晶和矿石的形成;也可以在人工控制的条件下实现,如各种技术单晶体的培育和化学工业中的结晶。 基础 晶体生长的热力学理论[1]J.W.吉布斯于1878年发表的著名论文《论复相物质的平衡》奠定了热力学理论的基础。他分析了在流体中形成新相的条件,指出自然体自由能的减少有利新相的形成,但表面能却阻碍了它。只有通过热涨落来克服形成临界尺寸晶核所需的势垒,才能实现晶体的成核。到20世纪20年代M.福耳默等人发展了经典的成核理论,并指出了器壁或杂质颗粒对核的促进作用(非均匀成核)。一旦晶核已经形成(或预先制备了一块籽晶),接下去的就是晶体继续长大这一问题。吉布斯考虑到晶体的表面能系数是各向异性的,在平衡态自由能极小的条件就归结为表面能的极小,于是从表面能的极图即可导出晶体的平衡形态。晶体平衡形态理论曾被P.居里等人用来解释生长着的晶体所呈现的多面体外形。但是晶体生长是在偏离平衡条件下进行的,表面能对于晶体外形的控制作用限于微米尺寸以下的晶体。一旦晶体尺寸较大时,表面能直接控制外形的能力就丧失了,起决定性作用的是各晶面生长速率的各向异性。这样,晶面生长动力学的问题就被突出了。 动力学理论 晶体生长的动力学理论晶面生长的动力学指的是偏离平衡的驱动力(过冷或过饱和)与晶面生长的速率的关系,它是和晶体表面的微观形貌息息相关的。从20世纪20年代就开始了这方面的研究。晶面的光滑(原子尺度而言)与否对生长动力学起了关键性的作用。在粗糙的晶面上,几乎处处可以填充原子成为生长场所,从而导出了快速的线性生长律。至于偏离低指数面的邻位面,W.科塞耳与 F.斯特兰斯基提出了晶面台阶-扭折模型,晶面上台阶的扭折处为生长的场所。由此可以导出相应的生长律。至于光滑的密集平面(这些是生长速率最低,因而在晶体生长中最常见的),当一层原子填满后,表面就没有台阶提供继续填充原子的场所,则要通过热激活来克服形成二维晶核的势垒后,方能继续生长。这样,二维成核率就控制晶面生长速率,导出了指数式的生长律。只有在甚高的驱动力(例如过饱和度达50%)作用下方可观测到生长。但实测的结果与此推论有显著矛盾。为了解释低驱动力作用下光滑晶面的生长,F.C.夫兰克于1949年提出螺型位错在晶面露头处会形成永填不满的台阶,促进晶面的生长。在晶体生长表面上观测到的螺旋台阶证实了夫兰克的设想。在W.伯顿、N.卡夫雷拉与夫兰克1951年题为《晶体生长与表面平衡结构》这一重要论文中,对于理想晶体和实际晶体的晶面生长动力学进行了全面的阐述,成为晶体生长理论发展的重要里程碑。

微生物反应动力学

4 微生物反应动力学 教学基本内容: 微生物反应的特点;微生物反应的质量衡算,包括碳素衡算、碳源衡算、氧衡算;微生物反应的能量衡算。微生物反应动力学,包括生长动力学、基质消耗动力学和产物生成动力学 4.1 微生物反应的特点 4.2 微生物反应过程的质量与能量衡算 4.2.1 碳素衡算 4.2.2 碳源衡算 4.2.3 氧衡算 4.2.3 能量衡算 4.3 微生物反应动力学 4.3.1 生长动力学 4.3.2 基质消耗动力学 4.3.3 产物生成动力学 授课重点: 1. 微生物反应与酶促反应的比较。 2. 微生物反应式及微生物反应平衡式的概念。 3. 菌体实验化学式的概念与测定方法。 4. 微生物反应中的动力学变量。 5. 微生物反应的得率系数的概念。 6. 微生物反应的维持常数的概念。 7. 碳素衡算。 8. 碳源衡算。 9. 氧衡算。 10. 能量衡算。 11. 莫诺方程。 12. 产物的Gaden模型。 难点: 1. 微生物反应涉及到的动力学变量和参数远多于酶促反应。 2.微生物反应过程中碳源衡算、氧衡算和能量衡算间的关系。

3. 自由能消耗对菌体得率Y KJ的计算。 本章主要教学要求: 1. 理解微生物反应与酶促反应的区别。 2. 掌握菌体实验化学式的测定方法。 3. 掌握微生物反应式中系数的确定方法。 4. 掌握微生物反应中动力学变量及参数的数学定义。 5. 理解碳素衡算式。 6. 理解碳源衡算式。 7 理解氧衡算式。 8. 理解碳源衡算与氧衡算、能量衡算之间的内在联系。 9. 掌握有效电子转移的概念,掌握Y KJ的计算方法。 10. 了解生长模型的分类。 11. 理解莫诺方程与米氏方程的区别。掌握莫诺方程中动力学参数的测定方法。 12. 理解产物的Gaden模型。

热重分析的原理及应用

热重法,是在程序控制温度下,测量物质的质量与温度或时间的关系的方法。 进行热重分析的仪器,称为热重仪,主要由三部分组成,温度控制系统,检测系统和记录系统。 通过分析热重曲线,我们可以知道样品及其可能产生的中间产物的组成、热稳定性、热分解情况及生成的产物等与质量相联系的信息。 从热重法可以派生出微商热重法,也称导数热重法,它是记录TG曲线对温度或时间的一阶导数的一种技术。实验得到的结果是微商热重曲线,即DTG曲线,以质量变化率为纵坐标,自上而下表示减少;横坐标为温度或时间,从左往右表示增加。 DTG曲线的特点是,它能精确反映出每个失重阶段的起始反应温度,最大反应速率温度和反应终止温度;DTG曲线上各峰的面积与TG曲线上对应的样品失重量成正比;当TG曲线对某些受热过程出现的台阶不明显时,利用DTG曲线能明显的区分开来。 热重法的主要特点,是定量性强,能准确地测量物质的质量变化及变化的速率。根据这一特点,可以说,只要物质受热时发生质量的变化,都可以用热重法来研究。图中给出可用热重法来检测的物理变化和化学变化过程。我们可以看出,这些物理变化和化学变化都是存在着质量变化的,如升华、汽化、吸附、解吸、吸收和气固反应等。但象熔融、结晶和玻璃化转变之类的热行为,样品没有质量变化,热重分析方法就帮不上忙了。 热重法测定的结果与实验条件有关,为了得到准确性和重复性好的热重曲线,我们有必要对各种影响因素进行仔细分析。影响热重测试结果的因素,基本上可以分为三类:仪器因素、实验条件因素和样品因素。 仪器因素包括气体浮力和对流、坩埚、挥发物冷凝、天平灵敏度、样品支架和热电偶等。对于给定的热重仪器,天平灵敏度、样品支架和热电偶的影响是固定不变的,我们可以通过质量校正和温度校正来减少或消除这些系统误差。 气体浮力和对流的影响 气体浮力的影响:气体的密度与温度有关,随温度升高,样品周围的气体密度发生变化,从而气体的浮力也发生变化。所以,尽管样品本身没有质量变化,但由于温度的改变造成气体浮力的变化,使得样品呈现随温度升高而质量增加,这种现象称为表观增重。表观增重量可用公式进行计算。式中p为气体在273K时的密度,V为样品坩埚和支架的体积。 对流的影响:它的产生,是常温下,试样周围的气体受热变轻形成向上的热气流,作用在热天平上,引起试样的表观质量损失。

第四章微生物反应动力学

习题与答案 2.简要回答微生物反应与酶促反应的最主要区别? 答:微生物反应与酶促反应的最主要区别在于,微生物反应是自催化反应,而酶促反应不是。此外,二者还有以下区别: (1)酶促反应由于其专一性,没有或少有副产物,有利于提取操作,对于微生物反应而言,基质不可能全部转化为目的产物,副产物的产生不可避免,给后期的提取和精制带来困难,这正是造成目前发酵行业下游操作复杂的原因之一。 (2)对于微生物反应,除产生产物外,菌体自身也可是一种产物,如果其富含维生素或蛋白质或酶等有用产物时,可用于提取这些物质。 (3)与微生物反应相比,酶促反应体系较简单,反应过程的最适条件易于控制。微生物反应是利用活的生物体进行目的产物的生产,因此,产物的获得除受环境因素影响外,也受细胞因素的影响,并且微生物会发生遗传变异,因此,实际控制有一定难度。 (4)酶促反应多限于一步或几步较简单的生化反应过程,与微生物反应相比,在经济上有时并不理想。 4.Monod 方程建立的几点假设是什么?Monod 方程与米氏方程主要区别是什么? 答:Monod 方程建立的基本假设:微生物生长中,生长培养基中只有一种物质的浓度(其他组分过量)会影响其生长速率,这种物质被称为限制性基质,并且认为微生物为均衡生长且为简单的单一反应。Monod 方程与米氏方程的主要区别如下表所示: Monod 方程与米氏方程的区别 Monod 方程:S K S S +=max μμ 米氏方程:S K S r r m += max 经验方程 理论推导的机理方程 方程中各项含义: μ:生长比速(h -1) μmax :最大生长比速(h -1 ) S: 单一限制性底物浓度(mol/L) K S :半饱和常数(mol/L) 方程中各项含义: r :反应速率(mol/L.h) r max :最大反应速率(mol/L.h) S :底物浓度(mol/L) K m :米氏常数(mol/L) 适用于单一限制性基质、无抑制 的微生物反应。 适用于单底物、无抑制的酶促反应。 5.举例简要说明何为微生物反应的结构模型? 答:由于细胞的组成是复结的,当微生物细胞内部所含有的蛋白质、脂肪、碳水化合物、

晶体生长原理与技术课程教学大纲

晶体生长原理与技术课程教学大纲 一、课程说明 (一)课程名称、所属专业、课程性质、学分; 课程名称:晶体生长原理及电化学基础 所属专业:金属材料物理学 课程性质:专业方向选修课,学位课,必修环节 学分: 4 学时: 72 (二)课程简介、目标与任务; 课程简介:本课程将在绪论中,对人工晶体生长的基本概念,研究范畴,研究历史和晶体生长 方法分类等基本概念进行简要介绍。然后分4篇进行论述。第一篇为晶体生长的基本原理,将分5 章,对晶体生长过程的热力学和动力学原理,结晶界面形貌与结构,形核与生长的动力学过程进行 描述。第二篇为晶体生长的技术基础,将分3章,对晶体生长过程的涉及的传热、传质及流体流动 原理,晶体生长过程的化学原理和晶体生长过程控制涉及的物理原理进行论述。第三篇为晶体生长 技术,将分4章对熔体生长、溶液生长、气相生长的主要方法及其控制原理进行论述。第四篇,晶 体的性能表征与缺陷,将分2章,分别对晶体的结构、性能的主要表征方法,晶体的结构缺陷形成 与控制原理进行论述。 目标与任务:掌握晶体生长的基本物理原理,学会将基本物理知识运用与晶体生长过程分析讨论。 (三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接; 修完普通物理学及四大力学课程、固体物理课程后才可学习该课程,该课程向前联系基本物理知识的运用,向后衔接研究生科学研究中遇到的实际结晶学问题。 (四)教材与主要参考书。 教材两本: 《晶体生长原理与技术》,介万奇,北京:科学出版社,2010 参考书: 《晶体生长科学与技术》[上、下册],张克从,凝聚态物理学丛书,北京:科学出版社,1997 《人工晶体:生长技术、性能与应用》,张玉龙,唐磊,化学工业出版社,2005 《晶体生长基础》,姚连增,中国科学技术大学出版社,1995

第四章微生物反应动力学

习题与答案 2.简要回答微生物反应与酶促反应的最主要区别? 答:微生物反应与酶促反应的最主要区别在于,微生物反应是自催化反应,而酶促反应不是。此外,二者还有以下区别: (1)酶促反应由于其专一性,没有或少有副产物,有利于提取操作,对于微生物反应而言,基质不可能全部转化为目的产物,副产物的产生不可避免,给后期的提取和精制带来困难,这正是造成目前发酵行业下游操作复杂的原因之一。(2)对于微生物反应,除产生产物外,菌体自身也可是一种产物,如果其富含维生素或蛋白质或酶等有用产物时,可用于提取这些物质。 (3)与微生物反应相比,酶促反应体系较简单,反应过程的最适条件易于控制。微生物反应是利用活的生物体进行目的产物的生产,因此,产物的获得除受环境因素影响外,也受细胞因素的影响,并且微生物会发生遗传变异,因此,实际控制有一定难度。 (4)酶促反应多限于一步或几步较简单的生化反应过程,与微生物反应相比,在经济上有时并不理想。 4.Monod方程建立的几点假设是什么?Monod方程与米氏方程主要区别是什么? 答:Monod方程建立的基本假设:微生物生长中,生长培养基中只有一种物质 的浓度(其他组分过量)会影响其生长速率,这种物质被称为限制性基质,并且认为微生物为均衡生长且为简单的单一反应。Monod方程与米氏方程的主要区 别如下表所示: Monod方程与米氏方程的区别 ?SrS maxmax???r米氏方程:Monod方程:K?SK?S mS 经验方程理论推导的机理方程 方程中各项含义:方程中各项含义: (mol/L.h) :反应速率r-1(hμ:生长比速 )(mol/L.h) :最大反应速率r max-1μ:最大生长比速(h) max(mol/L) S:底物浓度S: 单一限制性底物浓度(mol/L) (mol/L) K:米氏常数m K:半饱和常数(mol/L) S 适用于单一限制性基质、无抑制适用于单底物、无抑制的酶促反应。的微生物反应。 5.举例简要说明何为微生物反应的结构模型?

相关文档
最新文档