切线长定理专题

切线长定理专题
切线长定理专题

1

《切线长定理》专题

班级 姓名

(一)温故知新:

1.直线和圆有哪几种位置关系?切线的判定定理和性质定理是什么?

(二)探究新知:

探究一:如图所示,已知⊙O 及圆外一点P ,过点P 作⊙O 的切线,可以作几条? ☆ 从⊙O 外一点P 可以引⊙O 的 条切线, ☆ 切线长:经过圆外一点作圆的切线,这点与 的线段的长,叫做这点到圆的 。

问题:如图,已知⊙O 及圆外一点P ,PA 、PB 是⊙O 的切线,A 、B 是切点,连接PO ,图中有哪些相等线段,相等的角?为什么?

总结归纳: ☆ 切线长定理:从圆外一点引圆的两条切线,它们的 ,圆心和这一点的连线 两条切线的夹角. 用符号语言表示定理:

(三)学以致用:

1.填空:如图,PA 、PB 分别与⊙O 相切于点A 、B , (1)若PB=12,PO=13,则AO=___. (2)若PO=10,AO=6,则PB=___; (3)若PA=4,AO=3,则PO=___; 例 1 如图,PA 、PB 分别与⊙O 相切于点A 、B ,PO

PA=4cm,PD=2cm. 求半径OA 的长.⑵如果∠APB=50°,C 是⊙O 上异于A 、B 的任意一点,求∠ACB 的度数?

P P

探究二:如图,是一块三角形铁皮,怎样才能从中剪裁一个“最大的圆”?

作法:

总结归纳:

☆三角形的内切圆:与三角形各边都的圆叫做三角形的.内切圆的圆心是的交点,叫做三角形的。内心到的距离相等

1.已知:如图,⊙O是△ABC的内切圆,切点分别为D、E、F,图中共有几对相等线段?

⑴若AD=4,BC=5,CF=2,则△ABC的周长是__;⑵如果∠A=70°,则∠BOC= ;

⑶若AB=4,BC=5,AC=6,求AD,BE,CF的长?

例2 如图,⊙I是Rt△ABC的内切圆,切点分别为D、E、F,已知∠C=90°,AC=3,BC=4,求⊙I的半径?

直线和圆的位置关系习题课

A

2

3

1.如图1,⊙O 内切Rt △ABC ,切点分别是D 、E 、F ,则四边形OECF 是_______.

2.如图2,PA 、PB 分别切⊙O 于A 、B ,并与⊙O 的切线分别相交于C 、D ,?已知PA=7cm ,则△PCD 的周长等于_________

3.如图3,已知AB 为O ⊙的直径,

PA PC ,是O ⊙的切线,A C ,为切点,30BAC ∠=°. 则∠APC= ;

4.一个钢管放在V 形架内,右图是其截面图,O 为钢管的圆心.如果钢管的半径为25cm ,∠MPN =60?,则OP =( ) A .50cm B .253cm C .3

3

50cm D .503cm

5.如图(1),Rt △ABC 中,∠C=90°,AC=6,BC=8,则△ABC 的内切圆半径r= 。 如图(2),AD 、DC 、BC 都与⊙O 相切,且AD ∥BC ,则∠DOC= 。 如图(3),AB 、AC 与⊙O 相切于B.C 两点,∠A=50°,点P 是圆上异于B 、C 的一动点,则∠BPC= 。

6.如图(4),点O 为△ABC 的外心,点I 为△ABC 的内心,若∠BOC=140°,则∠BIC= 。

(4)

(3)

(2

(1

C A

C

B

C

7.如图,求边长为4的正三角形的内切圆半径?

图1

图4

P

图2

图3

B

C

A

4

P

8.如图,⊙O 是Rt △ABC 的外接圆,∠ABC=90°,点P 是圆外一点,PA 切⊙O 于点A ,且PA=PB ,求证:PB 是⊙O 的切线。

9已知:如图,四边形ABCD 的边AB 、BC 、CD 、DA 和⊙O 分别相切于点L 、M 、N 、P.想求证: AB+CD=AD+BC

10.如图所示,已知E 是△ABC 的内心,∠A 的平分线交BC 于点F ,且与△ABC 的外接圆相交于点D .求证:⑴ DB =DE ; ⑵ DE 2=DF·DA

11.如图所示,已知在△ABC 中,∠B=90°,O 是AB 上一点,以O 为圆心,OB ?为半径的圆与AB 交于点E ,与AC 切于点D .问DE ∥OC 是否成立?请说明你的理由。

B

九年级切线长定理练习题精选

九年级切线长定理练习 题精选 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

九年级切线长定理练习题 一、选择题 1.下列说法中,不正确的是 ( ) A.三角形的内心是三角形三条内角平分线的交点 B.锐角三角形、直角三角形、钝角三角形的内心都在三角形内部 C.垂直于半径的直线是圆的切线 D.三角形的内心到三角形的三边的距离相等 2.给出下列说法: ①任意一个三角形一定有一个外接圆,并且只有一个外接圆; ②任意一个圆一定有一个内接三角形,并且只有一个内接三角形; ③任意一个三角形一定有一个内切圆,并且只有一个内切圆; ④任意一个圆一定有一个外切三角形,并且只有一个外切三角形. 其中正确的有 ( ) A.1个 B.2个 C.3个 D.4个 3.一个直角三角形的斜边长为8,内切圆半径为1,则这个三角形的周长等于 ( ) A.21 B.20 C.19 D.18 4. 如图,PA、PB分别切⊙O于点A、B,AC是⊙O的直径,连结AB、BC、OP, 则与∠PAB相等的角(不包括∠PAB本身)有 ( ) A.1个 B.2个C.3个 D.4个 4题图 5题图 6题图 5.如图,已知△ABC的内切圆⊙O与各边相切于点D、E、F,则点O是△DEF的( ) A.三条中线的交点 B.三条高的交点 C.三条角平分线的交点 D.三条边的垂直平分线的交点 6.一个直角三角形的斜边长为8,内切圆半径为1,则这个三角形的周长等于( ) A.21 B.20 C.19 D.18 二、填空题 6.如图,⊙I是△ABC的内切圆,切点分别为点D、E、F,若∠DEF=52o, 则∠A的度为 ________. 6题图 7题图 8题图 7.如图,一圆内切于四边形ABCD,且AB=16,CD=10,则四边形ABCD的周长为________. 8.如图,已知⊙O是△ABC的内切圆,∠BAC=50o,则∠BOC为____________度.

切线长定理

《切线长定理》评课稿 舒兰十二中 曹雪松

李艳萍老师的《切线长定理》这一课体现了“阳光课堂” 的理念。所谓“阳光课堂”,它的核心理念是“积极向上、优质高效、和谐愉悦、整体提升”;“阳光课堂”的内涵:培养学生高尚健全的思想品格,自信乐观的人生态度,积极进取的阳光心态;提高学生自主学习、自我管理的能力,以达到知识与方法的优质高效;营造和谐愉悦的课堂氛围,创设轻松快乐的学习环境;整体提升学生的综合素养和教师的专业品质,全面推进教育内涵的发展。李艳萍老师此次的阳光教学行动,采用“问题导学”的教学模式,即学前准备——自主学习——合作探究——归纳提升——达标测评。 一、课前学案的充分“预设”与课堂的自由“生成”相呼应。 本节课中李老师课前以学案的形式预设问题:分别让学生画圆的一条切线,两条切线,三条切线、四条切线。以开放的形式为学生创造广泛的思考空间,同时赋予学生充分的思考时间。优秀的学生可以画出多种位置的切线发展他们思维的广泛性,学困生也可以在复习切线判定的基础上顺利完成,激发他们研究的兴趣。这样,不仅节省了课上时间,也兼顾到所有学生的发展,为课堂自由“生成”切线长的概念做好了铺垫。由于,课前学生亲自动手画出圆的切线,不仅增强了学生直观体验,更易于学生体会并发现切线和切线长的区别,完成基础目标的教学。 二、充分体现新课标中自主学习、合作探究的精神。 新课标中积极倡导自主、合作、探究的学习方式。以激发学生的学习兴趣、好奇心和求知欲。本节课中设置了三个探究问题主线:

问题一:观察从圆外一点画出圆的两条切线的图形,小组交流讨论你的发现和结论,加以验证,并向大家展示你的成果。此环节让学生经历观察、猜想、验证、最后归纳得出切线长定理,使学生的直观操作与逻辑推理有机的整合到一起,让学生在探究的过程中体验数学活动充满着探索性和创造性,感受证明的必要性,证明过程的严谨性以及结论的确定性。学生在总结出切线长定理的同时,又通过观察图形发现了圆心和这一点的连线为圆的对称轴,利用对称性还可的到更多的边等、角等、弧等的结论。然后,通过动态演示强化切线长定理这一核心知识。可以看出设置探究性的问题,可以树立学生已知与未知、简单与复杂、特殊与一般在一定条件下可以转化的思想,使学生学会把未知转化为已知,把复杂问题化为简单问题,把一般问题转化为特殊问题的思考方法。本环节教师通过学生探究、学生讲解、学生总结、归纳总结得出本节课的核心知识“切线长定理”,又通过动态演示强化核心知识。最后通过习题、生活中的实例让学生应用核心知识,树立学生的应用意识。这样多种形式、多种角度强化核心知识,更易学生接受。 这一环节结束后,教师再次创设问题二:观察圆的三条切线组成三角形的图形,此环节让学生根据题设和已有的切线长定理,经过观察推理学生水到渠成的得出三角形的内切圆的相关概念。问题二的引入自然流畅,层层递进不仅符合学生认知规律,也激发了学生进一步研究的兴趣,达成本节课知识目标的教学。最后,通过在三角形铁皮上裁下一个最大的圆的实际问题的探究,帮助学生从实际中发现数学

北京市2014届九年级数学下册 切线长定理的应用课后练习一 新人教版

专题:切线长定理的应用 重难点易错点解析 题一: 题面:⊙O 的两条切线PA 和PB 相交于点P ,与⊙O 相切于A 、B 两点,C 是⊙O 上的一点,若∠P =60°,求∠ACB 的度数. 金题精讲 题一: 题面:如图1,△ABC 中,CA =CB ,点O 在高CH 上,OD ⊥CA 于点D ,OE ⊥CB 于点E ,以O 为圆心,OD 为半径作⊙O . (1)求证:⊙O 与CB 相切于点E ; (2)如图2,若⊙O 过点H ,且AC =5,AB =6,连结EH ,求△BHE 的面积. 图1 图2 满分冲刺 题一: 题面:如图,直角梯形ABCD 中,以AD 为直径的半圆与BC 相切于E ,BO 交半圆于F ,DF 的延 长线交AB 于点P ,连DE .以下结论:①DE ∥OF ;②AB +CD =BC ;③PB =PF ;④AD 2 =4AB ?DC .其中正确的是( ) A .①②③④ B .只有①② C .只有①②④ D .只有③④

题二: 题面:如图①所示,AB为⊙O的直径,AD与⊙O相切于点A,DE与⊙O相切于点E,点C为DE 延长线上一点,且CE=CB. (1)求证:BC为⊙O的切线; (2)连接AE,AE的延长线与BC的延长线交于点G(如图②所示).若AB=25,AD=2,求线段BC和EG的长. 课后练习详解 重难点易错点解析 题一: 答案:60或120度 解析:连接OA、OB, ∵PA、PB与圆O分别相切于点A、B, ∴OA⊥AP,OB⊥PB, ∴∠OAP=∠OBP=90°,又∠P=60°, ∴∠AOB=360°-90°-90°-60°=120°, 当点C在优弧AC上时,如图

圆幂定理及其应用

[文件] sxc3jja0008.doc [科目] 数学 [年级] 初三 [章节] [关键词] 圆/圆幂定理/应用 [标题] 圆幂定理及其应用 [内容] 教学目标 1.使学生理解相交弦定理、切割线定理及其推论间的相互关系,并能综合运用它们解 决有关问题; 2.通过对例题的分析,提高学生分析问题和解决问题的能力,并领悟添加辅助线的方 法; 3.从运动的观点来统一认识圆幂定理.对学生进行事物之间是相互联系和运动变化的 观点的教育. 教学重点和难点 相交弦定理、切割线定理及其推论之间的关系以及应用是重点;灵活运用圆幂定理解题是难点. 教学过程设计 一、从学生原有的认知结构提出问题 1.根据图7-162(1)、(2)、(3),让学生结合图形,说出相交弦定理、切割线定理、割线定理的内容. 2.然后提出问题.相交弦定理、切割线定理及其推论这三者之间是否有联系? 提出问题让学生思考,在学生回答的基础上,教师用电脑或投影演示图形的变化过程, 从相交弦定理出发,用运动的观点来统一认识定理. (1)如图7-163,⊙O的两条弦AB,CD相交于点P,则PA·PB=PC·PD.这便是我们学过的相交弦定理.对于这个定理有两个特例: 一是如果圆内的两条弦交于圆心O,则有PA=PB=PC=PD=圆的半径R,此时AB,CD是直径,相交弦定理当然成立.(如图7-164)

二是当P点逐渐远离圆心O,运动到圆上时,点P和B,D重合,这时PB=PD=O,仍然有PA·PB=PC·PD=O,相交弦定理仍然成立.(图7-165) (2)点P继续运动,运动到圆外时,两弦的延长线交于圆外一 点P,成为两条割线,则有PA·PB=PC·PD,这就是我们学过的 切割线定理的推论(割线定理).(图7-166) (3)在图7-166中,如果将割线PDC按箭头所示方向绕P点旋 转,使C,D两点在圆上逐渐靠 近,以至合为一点C,割线PCD变成切线PC.这时有PA·PB=PC·PD =PC2,这就是我们学过的切割线定理.(图7-167) (4)如果割线PAB也绕P点向外旋转的话,也会成为一条切线PA.这时应有PA2=PB2,可得PA=PB,这就是我们学过的切线长定理.(图7-168) 至此,通过点的运动及线的运动变化,我们发现,相交弦定理、切割线定理及其推论和 切线长定理之间有着密切的联系. 3.启发学生理解定理的实质. 经过一定点P作圆的弦或割线或切线,如图7-169. 观察图7-169,可以得出:(设⊙O半径为R) 在图(1)中,PA·PB=PC·PD=PE·PF =(R-OP)(R+OP) =R2-OP2;

最新人教版初中九年级上册数学《切线长定理》教案

第3课时切线长定理 【知识与技能】 理解掌握切线长的概念和切线长定理,了解三角形的内切圆和三角形的内心等概念. 【过程与方法】 利用圆的轴对称性帮助探求切线长的特征.结合求证三角形内面积最大的圆的问题,掌握三角形内切圆和内心的概念. 【情感态度】 经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力. 【教学重点】 切线长定理及其应用. 【教学难点】 内切圆、内心的概念及运用. 一、情境导入,初步认识 探究如图,纸上有一⊙O,PA为⊙O的一条切线,沿着直线PO对折,设圆上与点A重合的点为B,回答下列问题:(1)OB是⊙O半径吗?(2)PB是⊙O的切线吗?(3)PA、PB是什么关系?(4)∠APO和∠BPO有何关系? 学生动手实验,观察分析,合作交流后,教师抽取几位学生回答问题. 分析:OB与OA重合,OA是半径,∴OB也是半径.根据折叠前后的角不变,∴∠PBO=∠PAO=90°(即PB⊥OB),PA=PB,∠POA=∠POB;∠APO=∠BPO.而PB 经过半径OB的外端点,∴PB是⊙O的切线.

二、思考探究,获取新知 1.切线长的定义及性质 切线长:经过圆外一点作圆的切线,这点和切点之间的线段的长叫做这点到圆的切线长. 我们知道圆的切线是直线,而切线长是一条线段长,不是直线. 如右图中,PA、PB是⊙O的两条切线,∴OA⊥PA,OB⊥PB.又OA=OB,OP=OP,∴Rt△AOP≌Rt△BOP,∴PA=PB,∠AOP=∠BOP,∠APO=∠BPO. 由此我们得到切线长定理: 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角. 【教学说明】这个定理要让学生分清题设和结论.题设:过圆外一点作圆的切线.结论:①过圆外的这一点可作该圆的两条切线.②两条切线长相等.③这一点和圆心的连线平分两条切线的夹角. 猜想:在上图中连接AB,则OP与AB有怎样的关系? 分析:∵PA、PB是⊙O的切线,A、B是切点.∴PA=PB,∠OPA=∠OPB,∴OP ⊥AB,且OP平分AB. 2.三角形的内切圆 思考如图是一张三角形的铁皮,如何在它上面截下一块圆形的用料,并且使圆的面积尽可能大呢? 【教学说明】引导学生分析作图的关键,假设圆已经作出,圆心应满足什么条件,怎样根据这些条件确定圆心?圆心确定后,如何确定半径?教师引导,学生要互相讨

圆切线长定理、弦切角定理、切割线定理、相交弦定理

切线长定理、弦切角定理、切割线定理、相交弦定理 以及与圆有关的比例线段 1.切线长概念 切线长是在经过圆外一点的圆的切线上,这点和切点之间的线段的长度,“切线长”是切线上一条线段的长,具有数量的特征,而“切线”是一条直线,它不可以度量长度。 2.切线长定理 对于切线长定理,应明确(1)若已知圆的两条切线相交,则切线长相等;(2)若已知两条切线平行,则圆上两个切点的连线为直径;(3)经过圆外一点引圆的两条切线,连结两个切点可得到一个等腰三角形;(4)经过圆外一点引圆的两条切线,切线的夹角与过切点的两个半径的夹角互补;(5)圆外一点与圆心的连线,平分过这点向圆引的两条切线所夹的角。 3.弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角。 直线AB 切⊙O 于P ,PC 、PD 为弦,图中几个弦切角呢?(四个) 4.弦切角定理:弦切角等于其所夹的弧所对的圆周角。 5.弄清和圆有关的角:圆周角,圆心角,弦切角,圆内角,圆外角。 6.遇到圆的切线,可联想“角”弦切角,“线”切线的性质定理及切线长定理。 7.与圆有关的比例线段 定理 图形 已知 结论 证法 相交弦定理 ⊙O 中,AB 、CD 为弦,交于P. PA·PB=PC·PD . 连结AC 、BD ,证:△APC∽△DPB . 相交弦定理的推论 ⊙O 中,AB 为直径,CD⊥AB 于P. PC 2 =PA·PB . 用相交弦定理.

切割 线定理 ⊙O 中,PT 切⊙O 于T ,割线PB 交⊙O 于A PT 2 =PA·PB 连结TA 、TB ,证:△PTB∽△PAT 切割线定理推论 PB 、PD 为⊙O 的两条割线,交⊙O 于A 、C PA·PB=PC·PD 过P 作PT 切⊙O 于T ,用两次切割线定理 圆幂定理 ⊙O 中,割线PB 交⊙O 于A ,CD 为弦 P'C·P'D =r 2 -OP'2 PA·PB=OP 2-r 2 r 为⊙O 的半径 延长P'O 交⊙O 于M ,延 长OP'交⊙O 于N ,用相交 弦定理证;过P 作切线用切割线定理勾股定理证 8.圆幂定理:过一定点P 向⊙O 作任一直线,交⊙O 于两点,则自定点P 到两交点的两条线段之积为常数||(R 为圆半径),因为叫做点对于⊙O 的幂,所以将上述定理统称为圆幂定理。 点到直线的距离: 连接直线外一点与直线上各点的所有线段中,垂线段最短,这条垂线段的长度,叫做点到直线的距离。直线Ax+By+C=0 坐标(Xo ,Yo )那么这点到这直线的距离就为:。

切线长定理

切线长定理 教材分析: 本节内容是切线长的概念和切线长定理。通过本节教学应使学生理解切线长的概念,掌握切线长定理并会运用它解决有关问题。切线长定理再次体现了圆的轴对称性,它为证明线段相等、角相等、弧相等、垂直关系等提供了理论依据,这个定理经常用到,因此,它是本节的重点。灵活运用图形语言、文字语言、符号语言三种语言表述切线长定理,学生感觉困难;用切线长定理解决有关问题中,准确应用数学语言进行表述,学生感觉困难;从实际情境中抽象出切线长定理模型解决问题,学生感觉困难;在综合题中迅速找出切线长定理模型, 学生感觉困难;因此,综合应用切线长定理及有关知识解决问题,是本节的难点。本节内容是在学习了“切线的判定和性质”之后,并进一步了解了“三角形的内切圆”这一内容的基础上进行研究的。是前面内容的必然延伸,也是后面学习切割线定理等重要内容的基础。切线长定理的出现,可以让我们对直线与圆位置关系的研究由定性分析深入到定量研究。再次让我们感触到了圆的轴对称性。它为我们证明线段相等、角相等、弧相等、垂直关系等提供了理论依据。通过本节内容的学习,会让学生更客观地认识切线的有关问题。同时,该定理的学习对我们解决一些实际问题很有指导意义。因此,本节内容在这部分中具

有非常重要的作用,是“直线与圆的位置关系”这部分内容的纽带和桥梁。同时,它综合运用等腰三角形、直角三角形、全等三角形、相似三角形、四边形等知识解决问题。切线长定理及其研究方法又是研究两圆相切问题的基础,因此,本节内容在整个初中几何教材体系中,起着承上启下的作用。 学生分析: 1、经过前面几节的学习,学生对圆的轴对称性已经有了初步了解,掌握了等腰三角形、直角三角形、全等三角形、相似三角形、四边形等知识,具备了学习本节内容的知识基础。 2、经过前面的学习,学生已经对合情推理和逻辑推理都有了一定的认识,具备了证明线段相等、角相等、弧相等、垂直关系等的基本技能。 3、初三学生已经具备了一定的探索解决问题方法的经验,从心理学的角度分析:他们正处于想成为大人,想得到别人肯定的年龄阶段,因此,他们会不遗余力地提出他们自己的看法并能较有条例地申述自己的理由,这些是很必要的情感准备;但由于特定年龄阶段的关系,他们对问题的分析还不是很全面,用数学语言表述看法,有时还欠准确贴切。有待于教师不断地加以培养。 设计理念: 1、本着“人人都能学好数学”,“人人都学有价值的数

人教版数学九年级切线长定理—知识讲解(基础)

切线长定理—知识讲解(基础) 【学习目标】 1.了解切线长定义;理解切线的判定和性质;理解三角形的内切圆及内心的定义; 2.掌握切线长定理;利用切线长定理解决相关的计算和证明. 【要点梳理】 要点一、切线的判定定理和性质定理 1.切线的判定定理: 经过半径的外端并且垂直于这条半径的直线是圆的切线. 要点诠释: 切线的判定方法: (1)定义:直线和圆有唯一公共点时,这条直线就是圆的切线; (2)定理:和圆心的距离等于半径的直线是圆的切线; (3)判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线.(切线的判定定理中强调两点:一是直线与圆有一个交点,二是直线与过交点的半径垂直,缺一不可). 2.切线的性质定理: 圆的切线垂直于过切点的半径. 要点诠释: 切线的性质: (1)切线和圆只有一个公共点; (2)切线和圆心的距离等于圆的半径; (3)切线垂直于过切点的半径; (4)经过圆心垂直于切线的直线必过切点; (5)经过切点垂直于切线的直线必过圆心. 要点二、切线长定理 1.切线长: 经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长. 要点诠释: 切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段. 2.切线长定理: 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角. 要点诠释: 切线长定理包含两个结论:线段相等和角相等. 3.圆外切四边形的性质: 圆外切四边形的两组对边之和相等. 要点三、三角形的内切圆 1.三角形的内切圆: 与三角形各边都相切的圆叫做三角形的内切圆. 2.三角形的内心:

圆切线及切线长定理

. 切线长定理第24章圆切线的性质及判定 小题)一.选择题(共21D,AB=BC,以AB为直径的圆交AC于点D,过点?1.(2015衢州)如图,已知△ABC ,CE=4,则⊙O的半径是()的切线交的⊙OBC于点E.若CD=5 4 3 .C.A.DB . 与为切点,POO的切线,A枣庄校级模拟)如图,P是⊙O外一点,PA2.(2015?是⊙,则∠C 的度数为(上一点,连接CA,CB),⊙O相交于B点,已知∠P=28°C为⊙O 28°62°31°56°A.B.C.D. 3.(2015?河西区一模)如图,PA、PB分别切⊙O于点A、B,若∠P=70°,则∠C的大小为() 40°50°55°60°A.B.C .D. 4.(2015?杭州模拟)如图,在△ABC中,∠BCA=60°,∠A=45°,AC=2,经过点C且与边AB相切的动圆与CB,CA分别相交于点M,N,则线段MN长度的最小值是()

3.DCA.B..22 经过圆心.若为切点,BC的切线,的弦,OAC是⊙OA是⊙天津)如图,2014.5(?AB 的大小等于(,则∠B=25∠°C)1 / 4 . °50°40°20°25 ..D .B.CAAC⊥,DEO交BC的中点于D6.(2015?临淄区校级模拟)如图,AB是⊙O的直径,⊙,则下列结论:,连接AD于E)DE是⊙O的切线, 正确的个数是(EDA=∠B;③OA=AC;④②①AD⊥BC;∠ 4个D.个C.3 个A.1 个B.2交的延长线上,弦CD的直径,点P在BA(2015?杭州模拟)已知:如图,AB是⊙O7.、交圆与GGF⊥BC,∠P=∠D,过E作弦AB于E,连接 OD、PC、BC,∠AOD=2∠ABC .则下列结论:BG两点,连接CF、F.则其中正BG弦CF的弦心距等于③OD∥GF;④①CD⊥AB;②PC是⊙O的切线;)确的是( ②③④①③④①②③①②④.D.C ..AB)圆周角的度数(2永川区期末)有下列结论:?(1)平分弦的直径垂直于弦;8.(2013秋)(5)等弧所对的圆周角相等;(4)经过三点一定可以作一个圆;等于圆心角的一半;(3)垂直于半径的直线是(6三角形的外心到三边的距 离相等; 圆的切线.)其中正确的个数为( 4个3个D.2.1个B.个C.A 上任意一点,为CD交于O,Q中,对角线.(2012?武汉模拟)正方形ABCDAC、BD9 .下列

切线长和切线长定理的应用

A 第20题 N C B D E F M O O 切线长和切线长定理的应用 例(2011·济宁)如图,AB 是⊙O 的直径,AM 和BN 是它的两条切线,DE 切⊙O 于点E ,交AM 与于点D ,交BN 于点C ,F 是CD 的中点,连接OF 。 (1) 求证:OD ∥BE; (2) 猜想:OF 与CD 有何数量关系?并说明理由。 解:(1)证明:连接OE ∵AM 、DE 是⊙O 的切线,OA 、OE 是⊙O 的半径 ∴∠ADO=∠EDO,∠DAO=∠DEO=90°…………1分 ∴∠AOD=∠EOD=2 1 ∠AOE …………2分 ∵∠ABE=2 1 ∠AOE ∴∠AOD=∠ABE ∴OD ∥BE …………3分 (2) OF = 2 1 CD …………4分 理由:连接OC ∵BE 、CE 是⊙O 的切线 ∴∠OCB=∠OCE …………5分 ∵AM ∥BN ∴∠ADO+∠EDO+∠OCB+∠OCE=180° 由(1)得 ∠ADO=∠EDO ∴2∠EDO+2∠OCE=180° 即∠EDO+∠OCE=90° …………6分 在Rt △DOC 中, ∵ F 是DC 的中点 ∴OF =2 1 CD ……7分 巩固提高 1、如图,AB 是半圆(圆心为O )的直径,OD 是半径,BM 切半圆于B ,OC 与弦AD 平行且交BM 于C 。 (1) 求证:CD 是圆O 的切线; (2)若2OA =且6AD OC +=,求CD 的长? C O D B A

2、在Rt ABC ?中,90A ∠=?,点O 在BC 上,以O 为圆心的圆O 分别与AB 、AC 相切于E 、F ,若A B a =, AC b =,则圆O 的半径为( ) A 、ab B 、a b ab + C 、ab a b + D 、2 a b + C E O F B A C E O D B A P E O F D B A 例1图 例2图 例3图 3、如图,AB BC ⊥,DC BC ⊥,BC 与以AD 为直径的圆O 相切于点E ,9AB =,4CD =,则四边形ABCD 的面积为 。 4、如图,过O 外一点P 作圆O 的两条切线PA 、PB ,切点分别为A 、B ,连结AB ,在AB 、PB 、PA 上分别取一点D 、E 、F ,使AD BE =,BD AF =,连结DE 、DF 、EF ,则EDF ∠=( ) A 、90P ?∠- B 、1902P ?-∠ C 、180P ?-∠ D 、1 452 P ?∠- 5、如图,已知ABC ?中,AC BC =, CAB α∠=(定值),圆O 的圆心O 在AB 上,并分别与AC 、BC 相切于点P 、Q 。 (1)求POQ ∠; (2)设D 是CA 延长线上的一个动点,DE 与O 相切于点M ,点E 在CB 的延长线上,试判断DOE ∠的大小是否保持不变,并说明理由。 N Q P O D C B A 6、如图,圆O 为Rt ABC ?的内切圆,点D 、E 、F 为切点,若6AD =,4BD =,则ABC ?的面积为 。 C E O F D B A

切线长定理及其应用

切线长定理及其应用 一、基础知识总结 1.内切圆和内心 定义: 与三角形各边都相切的圆叫做三角形的内切圆.内切圆的圆心是三角形三条角平分 线的交点,叫做三角形的内心. 总结:判断一个多边形是否有内切圆,就是判断能否找到一个点到各边距离都 相等。 2.直角三角形的内切圆半径与三边关系 (1)一个基本图形; (2)两个结论: 1)四边形OECF 是正方形 2)r=(a+b-c)∕2或r=ab ∕(a+b+c) (3)两个方法 代数法(方程思想);面积法 3.切线长定义:过圆外一点作圆的切线,该点和切点之间的线段长叫做切线长。 4.切线长定理: 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的交角。 二、典型例题解析 【例1】如图△ABC 的内切圆⊙O 与BC 、CA 、AB 分别相交于点D 、E 、F ,且AB=9 cm,BC=14 cm ,CA=13 cm ,求AF 、BD 、CE 的长 D E F O C B A 112 12902 a b c A B C A B C S s r p a b c p C r a b c ?∠∠∠==++∠=?=+-设、、分别为中、、的对边,面积为,则内切圆半径(),其中(); (),则()

【例2】如图,已知⊙O是△ABC的内切圆,切点为D、 E、F,如果AE=1, CD=2,BF=3,且△ABC的面积为6.求内切圆的半径r. 【例3】如图,以等腰ABC ?中的腰A B为直径作⊙O,交底边BC于点D.过点D作⊥,垂足为E. D E A C (I)求证:D E为⊙O的切线; (II)若⊙O的半径为5,60 ∠= ,求D E的长. B A C 【例4】如上图等边三角形的面积为S,⊙O是它的外接圆,点P是⌒BC的中点.(1)试判断过C所作的⊙O的切线与直线AB是否相交,并证明你的结论;(2)设直线 CP与AB相交于点D,过点B作BE⊥CD垂足为E,证明BE是⊙O的切线,并求△ BDE的面积.

切线长定理专题

1 《切线长定理》专题 班级 姓名 (一)温故知新: 1.直线和圆有哪几种位置关系?切线的判定定理和性质定理是什么? (二)探究新知: 探究一:如图所示,已知⊙O 及圆外一点P ,过点P 作⊙O 的切线,可以作几条? ☆ 从⊙O 外一点P 可以引⊙O 的 条切线, ☆ 切线长:经过圆外一点作圆的切线,这点与 的线段的长,叫做这点到圆的 。 问题:如图,已知⊙O 及圆外一点P ,PA 、PB 是⊙O 的切线,A 、B 是切点,连接PO ,图中有哪些相等线段,相等的角?为什么? 总结归纳: ☆ 切线长定理:从圆外一点引圆的两条切线,它们的 ,圆心和这一点的连线 两条切线的夹角. 用符号语言表示定理: (三)学以致用: 1.填空:如图,PA 、PB 分别与⊙O 相切于点A 、B , (1)若PB=12,PO=13,则AO=___. (2)若PO=10,AO=6,则PB=___; (3)若PA=4,AO=3,则PO=___; 例 1 如图,PA 、PB 分别与⊙O 相切于点A 、B ,PO PA=4cm,PD=2cm. 求半径OA 的长.⑵如果∠APB=50°,C 是⊙O 上异于A 、B 的任意一点,求∠ACB 的度数? P P

探究二:如图,是一块三角形铁皮,怎样才能从中剪裁一个“最大的圆”? 作法: 总结归纳: ☆三角形的内切圆:与三角形各边都的圆叫做三角形的.内切圆的圆心是的交点,叫做三角形的。内心到的距离相等 1.已知:如图,⊙O是△ABC的内切圆,切点分别为D、E、F,图中共有几对相等线段? ⑴若AD=4,BC=5,CF=2,则△ABC的周长是__;⑵如果∠A=70°,则∠BOC= ; ⑶若AB=4,BC=5,AC=6,求AD,BE,CF的长? 例2 如图,⊙I是Rt△ABC的内切圆,切点分别为D、E、F,已知∠C=90°,AC=3,BC=4,求⊙I的半径? 直线和圆的位置关系习题课 A 2

湘教版九年级数学下册2.5.3 切线长定理教案与反思

*2.5.3 切线长定理 原创不容易,为有更多动力,请【关注、关注、关注】,谢谢! 师者,所以传道,授业,解惑也。韩愈 1.理解和掌握切线长定理;(重点) 2.初步学会用切线长定理进行计算与证明.(难点) 一、情境导入 有一天,同学们去王老师家做客,王老师正在洗锅,就问:谁能测出这个锅盖的半径,就可以得到一根雪糕,同学们都跃跃欲试,但老师家里只有一个曲尺,到底谁能得到这根雪糕呢? 教师引导学生发现A、B分别为⊙O与PA、PB的切点,连接OB,OA,则四边形OAPB是正方形,所以,圆的半径为A点或B点的刻度,PA=PB. 如果这根尺子的夹角不是90°,是否还能得到PA=PB? 二、合作探究 探究点:切线长定理及应用 【类型一】利用切线长定理求线段的长 如图,从⊙O外一点P引圆的两条切线PA、PB,切点分别是A、B,如果∠APB=60°,线段PA=10,那么弦AB的长是( ) A.10 B.12 C.5 3 D.10 3

解析:∵PA 、PB 都是⊙O 的切线,∴PA =PB .∵∠APB =60°,∴△PAB 是等边三角形,∴AB =PA =10.故选A. 方法总结:切线长定理是判断线段相等的主要依据,在圆中经常用到. 变式训练:见《学练优》本课时练习“课堂达标训练”第1题 【类型二】 利用切线长定理求三角形的周长 如图,PA 、PB 分别与⊙O 相切于点A 、B ,⊙O 的切线EF 分别交PA 、PB 于点E 、F ,切点C 在AB ︵上.若PA 长为2,则△PEF 的周长是________. 解析:因为PA 、PB 分别与⊙O 相切于点A 、B ,所以PA =PB .因为⊙O 的切线EF 分别交PA 、PB 于点E 、F ,切点为C ,所以EA =EC ,CF =BF ,所以△PF 的周长=PE +EF +PF =PE +EC +CF +PF =(PE +EA )+(BF +PF )=PA +PB =2+2=4.故答案为4. 变式训练:见《学练优》本课时练习“课堂达标训练”第4题 【类型三】 利用切线长定理求角的大小 如图,PA 、PB 是⊙O 的切线,切点分别为A 、B ,点C 在⊙O 上,如果∠ACB =70°,那么∠OPA 的度数是________度. 解析:如图所示,连接OA 、OB .∵PA 、P 是⊙O 的切线,切点分别为A 、B ,∴OA ⊥PA ,OB ⊥PB ,∴∠OAP =∠OBP =90°.又∵∠AOB =2∠ACB =140°,∴∠APB =360°-∠PAO -∠AOB -∠OBP =360°-90°-140°-90°=40°.又易 证△POA ≌△POB ,∴∠OPA =12 ∠APB =20°.故答案为20. 方法总结:由公共点引出的两条切线,可以运用切线长定理得到等腰三角形.另外根据等的判定,可得到PO 平分∠APB . 变式训练:见《学练优》本课时练习“课堂达标训练”第2题

切线长定理的证明及其运用

《切线长定理》教学设计 1、教材分析 重点、难点分析 重点:切线长定理及其应用.因切线长定理再次体现了圆的轴对称性,它为证明线段相等、角相等、弧相等、垂直关系等提供了理论依据,它属于工具知识,经常应用,因此它是本节的重点. 难点:与切线长定理有关的证明和计算问题.不仅应用切线长定理,还用到方程的知识,是代数与几何的综合题,学生往往不能很好的把知识连贯起来.2、教法建议 本节内容需要一个课时. (1)在教学中,组织学生自主观察、猜想、证明,并深刻剖析切线长定理的基本图形;对重要的结论及时总结; (2)在教学中,以“观察——猜想——证明——剖析——应用——归纳”为主线,开展在教师组织下,以学生为主体,活动式教学. 教学目标 1.理解切线长的概念,掌握切线长定理; 2.通过对例题的分析,培养学生分析总结问题的习惯,提高学生综合运用知识解题的能力,培养数形结合的思想. 3.通过对定理的猜想和证明,激发学生的学习兴趣,调动学生的学习积极性,树立科学的学习态度. 教学重点: 切线长定理是教学重点 教学难点: 切线长定理的灵活运用是教学难点 教学过程设计: (一)观察、猜想、证明,形成定理 1、切线长的概念. 如图,P是⊙O外一点,PA,PB是⊙O的两条切线,我们把线段PA,PB 叫做点P到⊙O的切线长. 引导学生理解:切线和切线长是两个不同的概念,切线是直线,不能度量;

切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量. 2、观察 利用PPT来展示P 的位置的变化,观察图形的特征和各量之间的关系. 3、猜想 引导学生直观判断,猜想图中PA是否等于PB.PA=PB. 4、证明猜想,形成定理. 猜想是否正确。需要证明. 组织学生分析证明方法.关键是作出辅助线OA,OB, 要证明PA=PB. 想一想:根据图形,你还可以得到什么结论? ∠OPA=∠OPB(如图),连接AB,有AD=BD等. 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角. 5、归纳: 把前面所学的切线的5条性质与切线长定理一起归纳切线的性质 6、切线长定理的基本图形研究(小组合作交流) 如图,PA,PB是⊙O的两条切线,A,B为切点.直线OP交⊙O于点D,E,交AB于C 要求:就你所知晓的几何知识,写出你认为正确 的结论,小组交流,看哪个小组的结论最多,用最简 短的话语证明你的结论是正确的。 说明:对基本图形的深刻研究和认识是在学习几 何中关键,它是灵活应用知识的基础. (二)应用、归纳、反思 例1、已知:如图,PA、PB是⊙O的切线,切点分别是A、B,Q为AB上一点,过Q点作⊙O的切线,交PA、PB于E、F点,已知PA=12CM,求△PEF的周 长。

九年级切线长定理练习题

九年级切线长定理练习 题 This model paper was revised by LINDA on December 15, 2012.

九年级切线长定理练习题 一、选择题 1.下列说法中,不正确的是 ( ) A.三角形的内心是三角形三条内角平分线的交点 B.锐角三角形、直角三角形、钝角三角形的内心都在三角形内部 C.垂直于半径的直线是圆的切线 D.三角形的内心到三角形的三边的距离相等 2.给出下列说法: ①任意一个三角形一定有一个外接圆,并且只有一个外接圆; ②任意一个圆一定有一个内接三角形,并且只有一个内接三角形; ③任意一个三角形一定有一个内切圆,并且只有一个内切圆; ④任意一个圆一定有一个外切三角形,并且只有一个外切三角形. 其中正确的有 ( ) A.1个 B.2个 C.3个 D.4个3.一个直角三角形的斜边长为8,内切圆半径为1,则这个三角形的周长等于 ( ) A.21 B.20 C.19 D.18 4. 如图,PA、PB分别切⊙O于点A、B,AC是⊙O的直径,连结AB、BC、OP, 则与∠PAB相等的角(不包括∠PAB本身)有 ( ) A.1个 B.2个C.3个 D.4个4题图5题图 6题图5.如图,已知△ABC的内切圆⊙O与各边相切于点D、E、F,则点O是△DEF的 ( ) A.三条中线的交点 B.三条高的交点 C.三条角平分线的交点 D.三条边的垂直平分线的交点 6.一个直角三角形的斜边长为8,内切圆半径为1,则这个三角形的周长等于 ( ) A.21 B.20 C.19 D.18 二、填空题

P B A O 6.如图,⊙I 是△ABC 的内切圆,切点分别为点D 、E 、F ,若∠DEF=52o , 则∠A 的度为________. 6题图 7题图 8题图 7.如图,一圆内切于四边形ABCD ,且AB=16,CD=10,则四边形ABCD 的周长为________. 8.如图,已知⊙O 是△ABC 的内切圆,∠BAC=50o ,则∠BOC 为____________度. 三、解答题 9. 如图,AE 、AD 、BC 分别切⊙O 于点E 、D 、F ,若AD=20,求△ABC 的周长. 10. 如图,PA 、PB 是⊙O 的两条切线,切点分别为点 A 、 B ,若 直径AC= 12,∠P=60o ,求弦AB 的长. 11. 如图,PA 、PB 是⊙O 的切线,A 、B 为切点,∠OAB = 30°. (1)求∠APB 的度数; (2)当OA =3时,求AP 的长. 12.已知:如图,⊙O 内切于△ABC ,∠BOC =105°,∠ACB =90°,AB =20cm .求BC 、AC 的 长. 13.已知:如图,△ABC 三边BC =a ,CA =b ,AB =c , 它的内 切圆O 的半径长为r .求△ABC 的面积S . 14. 如图,在△ABC 中,已知∠ABC=90o ,在AB 上取一点E ,以BE 为直径的⊙O 恰与AC 相切于点D ,若AE=2 cm , AD=4 cm . (1)求⊙O 的直径BE 的长; (2)计算△ABC 的面积. 15.已知:如图,⊙O 是Rt △ABC 的内切圆,∠C =90°. (1)若AC =12cm ,BC =9cm ,求⊙O 的半径r ; (2)若AC =b ,BC =a ,AB =c ,求⊙O 的半径r . 四、体验中考 16.(2011年安徽)△ABC 中,AB =AC ,∠A 为锐角,CD 为AB 边上的高,I 为△ACD 的内切圆圆心,则∠AIB 的度数是( )

理解切线长的概念掌握切线长定理并运用它

理解切线长的概念-掌握切线长定理-并运用它

————————————————————————————————作者:————————————————————————————————日期:

第十八讲 知识要点: 1、理解切线长的概念,掌握切线长定理,并运用它解决有关问题; 2、理解弦切角的定义,掌握弦切角定理及其推论,并运用它解决有关角的问题; 3、掌握圆的相交弦定理及推论,能进行有关计算、证明,会作两条线段的比例中项; 4、掌握切割线定理及其推论,并会利用它进行有关的计算和证明; 难题解疑: 例题1:⊙O是△ABC 的内切圆,D 、E、F 为切点,AB =12c m,BC =14cm,CA=18c m,求A E、B F、CD 的长; 例题2:PA 、P B切⊙O 于点A 、B,CD切⊙O于点Q,交PA 、 PB 于点C 、D,求证:(1)△P CD 的周长=2PA ; (2)∠COD =90°-21∠P ; 例题3:△ABC 是⊙O 的内接三角形,B T为⊙O的切线,B 为切点,P 为直线AB 上一点,过P 作BC 的平行线交直线BT 于点E ,交线段AC 于点F , (1)如图(1),当点P 在线段AB 上时,求证:PA ·PB =PE ·PF ; (2)如图(2),当点P 在线段BA 延长线时,第(1)题的结论还成立吗?如果成立,请证明;如果不成立,请说明理由;

例题4:从不在⊙O上的一点A作⊙O的割线,交⊙O于B、C,且AB·AC=64,OA=10,求⊙O的半径; 例题5:小张、小李、小王三位同学解下列作图题:“已知线段a、b,求作线段x,使 2=”,他们所作的图形如下: “ab x2 他们作图的方法: A.小张正确,小李、小王都不正确B.小王正确,小张、小李都不正确 C.小张、小李都正确,小王不正确 D.小张、小李、小王都正确 例题6:如图,PQ切⊙O于点Q,PAB、PCD是⊙O的两条割线,连结AC、AD,且∠P 2 AC=∠BAD,求证:AD = -2 PQ? PA AC 例题7:已知AD是⊙O的直径,AB是⊙O的切线,割线BMN交AD的延长线于C,且BM=MN=NC,若AB=2,求(1)BC;(2)半径r;

最新人教版初中九年级数学上册《切线长定理》导学案

24.2.2直线和圆的位置关系 第3课时切线长定理 一、新课导入 1.导入课题: 情景:如图,纸上有一个⊙O, PA为⊙O的一条切线,沿着直线PO将纸对折,设与点A重合的点为B. 问题1:OB是⊙O的半径吗?PB是⊙O的切线吗? 问题2:猜一猜图中的PA与PB有什么关系?∠APO与∠BPO有什么关系? 这节课我们继续探讨圆的切线的性质——切线长定理(板书课题). 2.学习目标: (1)知道什么是圆的切线长,能叙述并证明切线长定理. (2)会作三角形的内切圆,知道三角形内心的含义和性质. (3)能用切线长定理和三角形内心的性质来解决简单的问题. 3.学习重、难点: 重点:切线长定理及其运用. 难点:切线长定理的应用及如何作三角形的内切圆. 二、分层学习 1.自学指导: (1)自学内容:教材第99页“思考”之前的内容. (2)自学时间:8分钟. (3)自学方法:完成探究提纲. (4)探究提纲: ①过⊙O外一点P画⊙O的切线.动手画图,看看这样的切线能作几条?能作两条. ②在经过圆外一点的圆的切线上,这点和切点之间线段的长叫做这点到圆的切线长, 如图的线段PA与线段PB的长就是点P到⊙O的切线长. ③PA与PB,∠APO与∠BPO有什么关系?你能证明它们成立吗? PA=PB,∠APO=∠BPO.可利用HL证明Rt△AOP≌Rt△BOP,进而得出结论.

④分别用文字语言和几何语言写出切线长定理. 文字语言:从圆外一点引圆的两条切线,它们的切线长相等, 这一点和圆心的连线平分两条切线的夹角. 几何语言:∵PA切⊙O于点A,PB切⊙O于点B. ∴PA = PB,OP平分∠APB . 2.自学:学生结合自学指导进行自学. 3.助学: (1)师助生: ①明了学情:看学生能否顺利完成定理的证明. ②差异指导:根据学情确定指导方案. (2)生助生:小组内相互交流、研讨. 4.强化: (1)切线长定理及它的证明. (2)交流:在提纲④的几何图形中,若连接AB交OP于点C,则图中有哪些垂直关系?哪些全等三角形?若设线段OP与⊙O的交点为D,且PA=4,PD=2,你能求出⊙O的半径长吗? 解:AB⊥OP,OA⊥AP,OB⊥BP;△OAC≌△OBC,△OAP≌△OBP,△ACP≌△BCP.设⊙O的半径为r,则OP=OD+PD=r+2,在Rt△OAP中,OA2+AP2=OP2,即r2+42=(r+2)2. 解得r=3. 即⊙O的半径长为3. 1.自学指导: (1)自学内容:教材第99页“思考”到第100页的内容. (2)自学时间:8分钟. (3)自学方法:阅读,画图,推理,猜想. (4)自学参考提纲: ①如图,作与△ABC的三边都相切的⊙I. 因为⊙I与BA,BC都相切,所以点I在∠ABC的平分线上; 因为⊙I与CA,CB都相切,所以点I在∠ACB的平分线上; 所以点I是∠ABC与∠ACB平分线的交点. a.作∠ABC的平分线,∠ACB的平分线,交于点I; b.过I作ID⊥BC于D,以I 为圆心,ID为半径画圆,则⊙I即为所求.

九年级数学:切线长定理

切 线 长 定 理 胜利中学刘秀峰 学习目标:理解切线长、切线长定理,并会用切线长定理解决实际问题。培养学生的观察、 分析能力,转化思想。 重点:切线长定理及实际应用。 难点:切线长定理的实际应用。 学习过程: 一、如图:在同一平面内,你能过已知点,作出已知圆的切线吗? 二填空: 1、经过 一点作圆的切线, 和 之间的 叫做这点到圆的 2、如图:(1)直线PA ,PB 叫 。 (2)线段PA 、PB 的长叫 。 3、切线和切线长是两个不同的概念: (1)、切线是一条与圆相切的 ,不能 ; (2)、切线长是 ,这条线段的两个端点分别是 和切点,可以 。 4、切线长定理:从 可以引圆的两条切线,它们的 相等,这一点和圆心的连线 这两条切线的夹角. 5、切线长定理的数学语言是: ∵ ∵ 6、如图:PA 、PB 是∵O 的两条切线,A 、B 为切点;由切线长定理可以得出哪些结论? (1) 图中所有的直角三角形是: (2) 图中所有的等腰三角形是: (3) 图中所有的全等三角形是: 三、尝试应用(一),我最棒! 如图:已知∵O 的半径为3cm ,PO =5cm ,PA ,PB 分别切∵O 于A ,B , (1)PA = ,PB = . (2)若PO 交∵O 于点Q ,直线CD 切∵O 于点Q ,交PA 、PB 于点C 、D ,则 ∵PCD 的周长是______. · O · O · O ·P ·P ·P O B A P O B A P C Q D Q D C 。 A O C P B

四、如图:有一张三角形铁皮,如何在它上面截一个面积最大的圆形铁皮? 五、尝试应用(二) 已知:在∵ABC 中,BC =14厘米,AC =9厘米,AB =13厘米,它的内切圆I 分别和BC ,AC ,AB 相切于点D ,E ,F ,求AF ,BD 和CE 的长 六、小结: 1、本节课你有什么收获? 2、你还有什么不明白的问题吗? 七、课堂检测,我是高手!要求认真读题、回扣知识点! 1、直角三角形的两直角边分别是3cm,4cm 则其内切圆的半径为______。 2.已知:AB,BC,CD 分别与⊙O 相切于E,F,G 三点,且AB ∥CD ,BO=6cm ,CO=8cm.求BC 的长.. A B C ● I D E F B A C a b c r A F E C B O

相关文档
最新文档