线性方程组有解的充要条件

线性方程组有解的充要条件

线性方程组有解的充要条件

线性方程组有解的判别定理

非齐次线性方程组同解的讨论 摘要 本文主要讨论两个非齐次线性方程组有相同解的条件,即如何判定这两个非齐次线性方程组有相同的解. 关键词 非齐次线性方程组 同解 陪集 零空间 引言 无论是解齐次线性方程组,还是解非齐次线性方程组.所用的方法都是消元法,即对其系数矩阵或增广矩阵施以行的初等变换,而得到比较简单的同解方程组.用矩阵理论来说,就是系数矩阵或增广矩阵左乘以可逆矩阵后所得线性方程组与原线性方程组据有相同的解.这仅为问题的一面,而问题的反面是,如果两个非齐次线性方程组同解,则它们的系数矩阵或增广矩阵之间是否存在一个可逆矩阵?答案是肯定的,此即是本文主要解决的问题。 下面是一个非齐次线性方程组,我们用矩阵的形式写出 11121121222212n n m m mn m a x a x a x b a x a x a x b a x a x a x b +++=??+++=????+++=? 令 A= 111212122212n n m m mn a a a a a a a a a ???????????? ,b= 12m b b b ???????????? 。 即非齐次线性方程组可写成Ax b =。 一 、线性方程组同解的性质 引理 1 如果非齐次线性方程组Ax b =与Bx d =同解,则矩阵[]A b 与[]B d 的秩相等. 证明 设非齐次线性方程组Ax b =的导出组的基础解系为111,,,r ξξξ ,其中1 r 为矩阵[]A b 的秩,再设非齐次线性方程组Bx=d 的导出组的基础解系为 2 12,,,r ηηη ,其中2r 为矩阵[]B d 的秩,如果*η是非齐次线性方程组Ax=b 与Bx=d 特解,由于这两个方程组同解,所以向量组1*11,,,,r ξξξη 与向量组2*12,,,,r ηηηη 等价。从而这两个线性无关的向量组所含的向量个数相等,于是有12,r r =则矩阵[]A b 与[]B d 的秩相等. 引理[1]2 设A 、B 为m n ?矩阵,则齐次线性方程组0Ax =与0Bx =同解的充

线性方程组解的判定

1 / 3 第四节 线性方程组解的判定 从本节开始,讨论含有n 个未知量、m 个方程的线性方程组的解. 11112211211222221122n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++=??+++=????+++= ? (13—2) 主要问题是要判断出方程组(13-2)何时有解?何时无解?有解时解有多少?如何求出方程组的解。 线性方程组有没有解,以及有怎样的解,完全决定于方程组的系数和常数项。因此,将线性方程组写成矩阵形式或向量形式,以矩阵或向量作为讨论线性方程组的工具,将带来极大的方便。 方程组(13-2)中各未知量的系数组成的矩阵111212122212n n m m mn a a a a a a A a a a ??????=?????? 称为方程组(13-2)的系数矩阵.由各系数与常数项组成的矩阵,称为增广矩阵,记作A ,即 11121121 222212n n m m mn m a a a b a a a b A a a a b ??????=?????? 方程组(13-2)中的未知量组成一个n 行、1列的矩阵(或列向量),记作X ;常数项组成一个m 行、1列 的矩阵(或列向量),记作b ,即12n x x X x ??????=??????,12m b b b b ??????=?????? 由矩阵运算,方程组(13—2)实际上是如下关系111212122212 n n m m mn a a a a a a a a a ????????????12n x x x ????????????=12m b b b ???????????? 即 AX=b

【免费下载】线性方程组的解空间

第六章 向量空间 6.1 定义和例子 6.2 子空间 6.3 向量的线性相关性 6.4 基和维数 6.5 坐标 6.6 向量空间的同构 6.7 矩阵的秩齐次线性方程组的解空间返回教案总目录6.7矩阵的秩,齐次线性方程组的解空间一、教学思考 1、矩阵的秩与线性方程组解的理论在前面已经有过讨论,本节运用向量空间的有关理论重新认识矩阵的秩的几何意义,讨论线性方程组解的结构。2、注意:齐次线性方程组(含n 个未知量)的解的集合构成n F 的子空间,而非齐次线性方程组的解的集合非也。3、注意具体方法:1)证矩阵的行空间与列空间的维数相等;2)求齐次线性方程组的基础解系。 二、内容要求 1、内容:矩阵的秩的几何意义,齐次线性方程组的解空间。 2、要求:理解掌握矩阵的秩的几何意义,齐次线性方程组的基础解系的求法。三、教学过程 1、矩阵的秩的几何意义几个术语:设)(F M A n m ?∈,????? ??=mn m n a a a a A 1111,A 的每一行看作n F 的一个元素,叫做A 的行向量,用),2,1(m i i =α表示;由),2,1(m i i =α生成的n F 的子空间),,(1m L αα 叫做矩阵A 的行空间。 类似地,A 的每一列看作m F 的一个元素,叫做A 的列向量;由A 的n 个列向量生成的m F 的子空间叫做矩阵A 的列空间。注:)(F M A n m ?∈的行空间与列空间一般不同,分别是n F 与m F 的子空间;下证其维数相同。 引理6.7.1设)(F M A n m ?∈,1)若PA B =,P 是一个m 阶可逆矩阵,则B 与A 有相同的行空间;2)若AQ C =,Q 是一个n 阶可逆矩阵,则C 与A 有相同的列空间。分析:设()()()m m ij n m ij n m ij p P b B a A ???===,,,),2,1(m i i =α是A 的行向量,),2,1(m j j =β是B 的行向量;只需证这两组向量等价。

线性方程组解的情况及其判别准则

摘要:近年来,线性代数在自然科学和工程技术中的应用日益广泛,而线性方程组求解问题是线性代数的基本研究内容之一,同时它也是贯穿线性代数知识的主线。本文探究了线性方程组一般理论的发展,用向量空间和矩阵原理分析了线性方程组解的情况及其判别准则。介绍了线性方程组理论在解决解析几何问题中的作用,举例说明了线性方程组解的结构理论在判断空间几何图形间位置关系时的便利之处。 关键字:线性方程组;解空间;基础解系;矩阵的秩 Abstract:In recent years, linear algebra in science and engineering application, and wide linear equations solving problems is the basic content of linear algebra, at the same time, it is one of the main knowledge of linear algebra.This article has researched the development of system of linear equations theory,discussed the general theory of linear equations, vector space with the development and matrix theory to analyze the linear equations and the criterion of the situation. Introduces the theory of linear equations in solving the problem of analytic geometry, illustrates the role of linear equations of structure theory in judgment space relation between the geometry of the convenience of position. space geometric figure between time the position relations with theory of the system of linear equation with examples. Key words: linear equations, The solution space, Basic solution, Matrix rank

线性方程组解的判定

第四节 线性方程组解的判定 从本节开始,讨论含有n 个未知量、m 个方程的线性方程组的解。 11112211211222 22 11 22n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++=??+ ++= ????+++=? (13—2) 主要问题是要判断出方程组(13-2)何时有解?何时无解?有解时解有多少?如何求出方程组的解。 线性方程组有没有解,以及有怎样的解,完全决定于方程组的系数和常数项。因此,将线性方程组写成矩阵形式或向量形式,以矩阵或向量作为讨论线性方程组的工具,将带来极大的方便。 方程组(13-2)中各未知量的系数组成的矩阵11121212221 2 n n m m mn a a a a a a A a a a ? ?? ? ? ?=?? ?? ? ? 称为方程组(13-2)的系数矩阵。由各系数与常数项组成的矩阵,称为增广矩阵,记作A ,即 11121121 222212 n n m m mn m a a a b a a a b A a a a b ?? ????=??? ??? 方程组(13-2)中的未知量组成一个n 行、1列的矩阵(或列向量),记作X;常数项组成一个m 行、1 列的矩阵(或列向量),记作b ,即12n x x X x ??????=?????? ,12 m b b b b ?? ????=?????? 由矩阵运算,方程组(13-2)实际上是如下关系111212122212 n n m m mn a a a a a a a a a ? ?? ? ? ? ?? ?? ? ? 12n x x x ???????????? =12m b b b ???????????? 即 AX=b

常系数线性方程组基解矩阵的计算

常系数线性方程组基解矩阵的计算

常系数线性方程组基解矩阵的计算 董治军 (巢湖学院数学系,安徽巢湖238000) 摘要:微分方程组在工程技术中的应用时非常广泛的,不少问题都归结于它的求解问题,基解矩阵的存在和具体寻求是不同的两回事,一般齐次线性微分方程组的基解矩阵是无法通过积分得到的,但当系数矩阵是常数矩阵时,可以通过方法求出基解矩阵,这时可利用矩阵指数exp A t,给出基解矩阵的一般形式,本文针对应用最广泛的常系数线性微分方程组,结合微分方程,线性代数等知识,讨论常系数齐次线性微分方程的基解矩阵的几个一般的计算方法. 关键词;常系数奇次线性微分方程组;基解矩阵;矩阵指数 Calculation of Basic solution Matrix of

Linear Homogeneous System with Constant Coefficients Zhijun Dong (Department of Mathematics, Chaohu College Anhui, Chaohu) Abstract: Differential equations application in engineering technology is very extensive, when many problems are attributable to its solving problem, base solution matrix existence and specific seek is different things, general homogeneous linear differential equations is not the base solution matrix by integral get, but when coefficient matrix is constant matrix, can pass out the base solution matrix method, then are available matrix exponential t, the general form base solution matrix, the paper discusses the most widely used differential equations with constant coefficients, combined with differential equations, linear algebra, discuss knowledge of homogeneous linear differential equation with constant coefficients of base solution matrix several general calculation method. Keyword: linear homogeneous system with constant coefficients; matrix of basic solutions; matrix exponent 引言: 线性微分方程组的求解历来是常微分方程的重点,根据线性微分方程组的解的结构理论,求解线性微分方程组的关键在于求出对应齐次线性微分方程组的基解矩阵,本文主要讨论齐次线性微分方程组 X ’=AX ★ 的基解矩阵的计算问题,这里A 是n n ?常数矩阵. 一.矩阵指数exp A 的定义和性质: 1.矩阵范数的定义和性质 定义:对于n n ?矩阵A =ij a ???? n ×n 和n 维向量X =()1,...,T n X X 定义A 的范数为A =,1 n ij i j a =∑ ,X =1 n i i x =∑ 设A ,B 是n ×n 矩阵,x ,y 是n 维向量,易得下面两个性质:

线性方程组的公共解

线性方程组的公共解 问题:如何求解线性方程组的公共解? 线性方程组是高代学习的一个重点内容,它的一般形式为 ???????=+++=+++=+++bs asnxn x as x as b nxn a x a x a b nxn a x a x a ...2211... ,22...222121,11...212111 而线性方程组的求解也是这部分学习的重点和难点。其中求解线性方程组的公共解也是高等代数学习所必须掌握的一个知识点。 例1、证明:对于n 元齐次线性方程组(Ⅰ)AX=0与(Ⅱ)BX=0,有非零公共解的充要条件是r(B A )

???=-=+0 42031x x x x 又已知某齐次线性方程组(Ⅱ)的通解为 k1(0,1,1,0)’+k2(-1,2,2,1)’ 问(Ⅰ)与(Ⅱ)是否有非零公共解?若有,则求出所有公共解,若没有,则说明理由。(出自2005年中科院) 解:方法一:将(Ⅱ)的通解代入方程组(Ⅰ)得 ???=+=+0 21021k k k k 解得k1=-k2,故方程组(Ⅰ)与(Ⅱ)有非零公共解,所有非零公共解为k (1,1,1,1)’,k ≠0为任意常数 方法二:令方程组(Ⅰ)与(Ⅱ)的通解相同,即 k1(0,1,1,0)’+k2(-1,2,2,1)’=k3(-1,0,1,0)’+k4(0,1,0,1)’ 得到关于k1,k2,k3,k4的一个方程组 ???????=-=-+=-+=-0 420 422103221032k k k k k k k k k k 可求其通解为(k1,k2,k3,k4)’=k(-1,1,1,1)’ 将k1=-1,k2=k 代入(Ⅰ)的通解可得所有非零公共解为k (1,1,1,1)’,k ≠0为任意常数 方法三:方程组(Ⅱ)可以是 ? ??=+=+-041032x x x x 解(Ⅰ)与(Ⅱ)的联立方程组可得所有非零公共解为k (1,1,1,1)’,k ≠0为任意常数 韩梦雪 20132113429

本章介绍了线性方程组有解的充要条件和求解的方法

本章介绍了线性方程组有解的充要条件和求解的方法;为了在理论上深入的研究与此有关的问题,本章还引入了向量和向量空间的基本概念,介绍了向量的线性运算,讨论向量间的线性关系,向量的内积等有关概念和性质,并在此基础上,研究线性方程组解的性质和解的结构等问题。 一、一、线性方程组 1、Cramer法则 教材p64,定理2.1 2、线性方程组有解的判别定理 教材p72,定理2.3 3、线性方程组的消元解法 步骤:(1)对线性方程组的增广矩阵施以初等行变换,将其化为阶梯型矩阵 (2)如果系数矩阵的秩与增广矩阵的秩不相等,表明方程组无解; 如果相等,则表明有解,继续对阶梯型矩阵进行初等行变换,求出 方程的解。【详见p68】 初等行变换: (1)(1)交换两方程的位置; (2)(2)用一个非零数乘某一方程; (3)(3)把一方程的若干倍加到另一方程去 4、消元法与Cramer法则的异同:在条件的限制上,Cramer法则仅适用于 方程数与未知数相等并且系数行列式不为零的情况,而消元法对此没有限制。即便是满足Cramer法则的要求,用消元法可以区分方程组无解还是有无穷多解,而Cremer法则却不能区分 二、二、向量及向量间的线性关系 (一)向量的定义 1、向量、行向量、列向量【教材p77,定义2.1】 2、零向量【教材p78,定义2.2】 3、向量的相等【教材p78,定义2.3】 4、向量的加法、减法【教材p78,定义2.3】 5、数乘向量【教材p78,定义2.5】

6、n维向量空间【教材p78,定义2.6】 7、n维向量空间的子空间【教材p78,定义2.7】 (二)向量间的线性关系 1、线性组合 (1)一个向量可表为一个向量组的线性组合,或称此向量可由此向量组线性表出【教材p80,定义2.8 (2)一个向量可表为一向量组的线性组合的充要条件:由它们做系数及常数项组成的线性方程组有解【教材p81】 (3)几个结论 a、n维零向量是任一n维向量组的线性组合 b、任一n维向量可由n 维基本单位向量组线性表示 c、向量组中的任一向量可由此向量组线性表示 2、向量组的线性相关与线性无关 (1)向量组的线性相关与线性无关的定义【教材p82:定义2.9,2.10】 (2)几个充要条件 Ⅰ向量组线性相关的充要条件由它们做系数组成的齐次线性方程组有非零解【教材p83】 Ⅱ向量组线性无关的充要条件由它们做系数组成的齐次线性方程组仅有零解【教材p83】 Ⅲ一个向量组线性相关的充要条件是由它们做系数组成的齐次线性方程组的系数行列式等于零【教材p83】 Ⅳ一个向量组线性无关的充要条件是由它们做系数组成的齐次线性方程组的系数行列式不等于零【教材p83】: Ⅴ一个向量组线性相关的充要条件是此向量组中至少有一个向量可以表为其余向量的线性组合【教材p85:定理2.6】 Ⅵ一个向量组线性无关的充要条件是此向量组中每一个向量都不能表为其余向量的线性组合【教材p86:定理2.6 的推论】 Ⅶ若一向量可由一向量组线性表出,则表示法唯一的充要条件是此向量组线性无关 三、向量组

线性方程组解的判定与解的结构

***学院数学分析课程论文 线性方程组解的判定与解的结构 院系数学与统计学院 专业数学与应用数学(师范) 姓名******* 年级 2009级 学号200906034*** 指导教师 ** 2011年6月

线性方程组解的判定与解的结构 姓名****** (重庆三峡学院数学与计算机科学学院09级数本?班) 摘 要:线性方程组是否有解,用系数矩阵和增广矩阵的秩来刻画.在方程组有解且有 多个解的情况下,解的结构就是了解解与解之间的关系. 关键词:矩阵; 秩; 线性方程组; 解 引言 通过系数矩阵和增广矩阵的秩是否相同来给出判定线性方程组的解的判别条件.在了解了线性方程组的判别条件之后,我们进一步讨论解的结构.对于齐次线性方程组,解的线性组合还是方程组的解.在线性方程组有无穷个解时可用有限多个解表示出来.另外以下还涉及到线性方程组通解的表达方式. 1 基本性质 下面我们分析一个线性方程组的问题,导出线性方程组有解的判别条件. 对于线性方程组 1111221121122222 1122n n n n s s sn n s a x a x a x b a x a x a x b a x a x a x b ++???+=??++???+=???????++???+=? (1) 引入向量 112111s αααα??????=?????????,122222s αααα??????=?????????,…12n n n sn αααα??????=????????? ,12s b b b β?? ?? ??=??????? ?? 方程(1)可以表示为 1122n n x x x αααβ++???+= 性质 线性方程组⑴有解的充分必要条件为向量β可以表成向量组α1,α2,…,αn 的线性组合. 定理1 线性方程组⑴有解的充分必要条件为它的系数矩阵

非齐次线性方程组同解的判定和同解类

非齐次线性方程组同解的判定和同解类 摘要 本文主要讨论两个非齐次线性方程组同解的条件及当两个非齐次线性方程组的导出组的解空间相同时解集之间的关系。 关键词 非齐次线性方程组 同解 陪集 引言 无论是解齐次线性方程组,还是解非齐次线性方程组.所用的方法都是消元法,即对其系数矩阵或增广矩阵施以行的初等变换,而得到比较简单的同解方程组.用矩阵理论来说,就是系数矩阵或增广矩阵左乘以可逆矩阵后所得线性方程组与原线性方程组据有相同的解.这仅为问题的一面,而问题的反面是,如果两个非齐次线性方程组同解,则它们的系数矩阵或增广矩阵之间是否存在一个可逆矩阵?答案是肯定的,此即是本文主要解决的问题. 预备知识 定理1设,A B 是向量组C 两个线性无关的极大组,则存在可逆矩阵P ,使得 B PA =。 定理2设A 、B 为m n ?矩阵,且秩A =秩B ,如果存在矩阵C ,使得 CA B = 则存在m m ?可逆矩阵P ,使得 PA B = 证明 设秩A =秩B =r ,则存在可逆矩阵1P 与Q 使 011A P A A ??=????, 01B QB B ??=???? 其中0A ,0B 分别为秩数等于r 的r n ?矩阵,由于B CA =,则B 的行可由A 的行线性表出,从而B 的行可由0A 的行线性表出,进而0B 的行可由0A 的行线性表出, 于是矩阵00A B ?? ???? 的行向量组的极大线性无关组为0A 的各行,因为0B 的各行线性无 关且秩0B r =,所以0B 的各行亦构成一个线性无关组,则存在可逆矩阵r P 使得 00r B P A = 又设 110A C A =,12020r B C B C P A == 令 221 0r r n r P P C P C I -?? =? ?-?? 则1P 为可逆矩阵,且

线性方程组解的判定

第四节 线性方程组解的判定 从本节开始,讨论含有n 个未知量、m 个方程的线性方程组的解。 11112211211222221122n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++=??+++=????+++= ? (13—2) 主要问题就是要判断出方程组(13-2)何时有解?何时无解?有解时解有多少?如何求出方程组的解。 线性方程组有没有解,以及有怎样的解,完全决定于方程组的系数与常数项。因此,将线性方程组写成矩阵形式或向量形式,以矩阵或向量作为讨论线性方程组的工具,将带来极大的方便。 方程组(13-2)中各未知量的系数组成的矩阵111212122212n n m m mn a a a a a a A a a a ??????=?????? 称为方程组(13-2)的系数矩阵。由各系数与常数项组成的矩阵,称为增广矩阵,记作A ,即 11121121 222212n n m m mn m a a a b a a a b A a a a b ??????=?????? 方程组(13-2)中的未知量组成一个n 行、1列的矩阵(或列向量),记作X;常数项组成一个m 行、1列 的矩阵(或列向量),记作b,即12n x x X x ??????=??????,12m b b b b ??????=?????? 由矩阵运算,方程组(13-2)实际上就是如下关系111212122212 n n m m mn a a a a a a a a a ????????????12n x x x ????????????=12m b b b ???????????? 即 AX =b

对线性方程组条件数的讨论

对线性方程组条件数的讨论 [摘要] 本文主要研究了线性方程组的病态问题,讨论衡量线性方程组病态问题的一个量—条件数,条件数对解的影响及条件数对数值算法中停机条件的影响;以Hilbert矩阵为例进行验证和讨论。 [关键字] 病态问题条件数范数奇异值分解 1.前言 在许多工程物理与力学问题中经常碰到的病态线性方程组[2]的求解问题,病态线性方程组在不同情形下需要不同的解法,才能得到更好的效果,当病态线性方程组较小型时,使用传统的数值算法求解会减轻求解过程中的计算量及避免浪费资源.但当遇到大型病态线性方程组时,因为其条件数太大,此算法的收敛性很差,若继续使用传统的数值算法求解,而很难得到满意的结果.诸如此类的问题,均可从数学上归结为病态问题。 2.病态问题 对某数学问题本身,如果输入数据有微小扰动(即误差),引起输出数据(即问题的解)的很大扰动,称此数学问题为病态问题[1]。这是数学问题本身的性质决定的,与算法无关。例如: 即有0.01的扰动,对结果产生232.67倍的误差。这里并没涉及具体的算法,是问题本身的性质造成的。实际上1.5接近,而在附近,是一个病态问题。 算法的稳定性 如果误差增长并不是数学问题本身引起,而是算法选择不当所致。则称此算法稳定性不好。例如: 选择用差商近似代替微商,取步长,用四位有效数字作近似计算 , 结果明显很差。这里并不是因为取得不够小的原因,如,将只能得到,结果更差。这是因为用相近数相减,损失了大量有效数位的原故。 3. 条件数 线性代数计算中,如求线性方程组的解,计算得到的解(计算解)通常是近似的。其原因一是系数矩阵和右端项往往由观测或计算得到,因而产生(数据)误差;另一个是求解计算过程出现舍入误差。下面来研究方程组的数据(或)的

高斯消元法解线性方程组

高斯消元法解线性方程组 在工程技术和工程管理中有许多问题经常可以归结为线性方程组类型的数学模型,这些模型中方程和未知量个数常常有多个,而且方程个数与未知量个数也不一定相同。那么这样的线性方程组是否有解呢?如果有解,解是否唯一?若解不唯一,解的结构如何呢?这就是下面要讨论的问题。 一、线性方程组 设含有n 个未知量、有m 个方程式组成的方程组 a x a x a x b a x a x a x b a x a x a x b n n n n m m mn n m 11112211211222221122+++=+++=+++=??????? (3.1) 其中系数a ij ,常数b j 都是已知数,x i 是未知量(也称为未知数)。当右端常数项b 1, b 2, …, b m 不全为0时, 称方程组(3.1)为非齐次线性方程组;当b 1=b 2= … =b m = 0时,即 a x a x a x a x a x a x a x a x a x n n n n m m mn n 111122121122221122000 +++=+++=+++=??????? (3.2) 称为齐次线性方程组。 由n 个数k 1, k 2, …, k n 组成的一个有序数组(k 1, k 2, …, k n ),如果将它们依次代入方程组(3.1)中的x 1, x 2, …, x n 后,(3.1)中的每个方程都变成恒等式,则称这个有序数组(k 1, k 2, …, k n )为方程组(3.1)的一个解。显然由x 1=0, x 2=0, …, x n =0组成的有序数组(0, 0, …, 0)是齐次线性方程组(3.2)的一个解,称之为齐次线性方程组(3.2)的零解,而当齐次线性方程组的未知量取值不全为零时,称之为非零解。 (利用矩阵来讨论线性方程组的解的情况或求线性方程组的解是很方便的。因此,我们先给出线性方程组的矩阵表示形式。) 非齐次线性方程组(3.1)的矩阵表示形式为: AX = B 其中 A = ????????????mn m m n n a a a a a a a a a 212222111211,X = ????????????n x x x 21, B = ????? ???????n b b b 21 称A 为方程组(3.1)的系数矩阵,X 为未知矩阵,B 为常数矩阵。将系数矩阵A 和常数矩阵B 放在一起构成的矩阵

线性方程组解的几何意义.

设有三元非齐次线性方程组 线性方程组解的几何意义 ???????=++=++=++,,,)1(22221111m m m m d z c y b x a d z c y b x a d z c y b x a 我们来讨论一下三元非齐次线性方程组解的几何意义.

2) 有唯一解这时方程组(1) 中的m 个方?? ???=+--=--=+,423, 32,123z y x y x z x 该方程组有唯一解.817,21,4 7??? ??--则方程组(1) 的解有以下三种情况: 1) 无解这时方程组(1) 中的m 个方程所表示的平面既不交于一点, 也不共线、共面. 程所表示的平面交于一点. 例如

其几何意义如图3 -11 所示. 2x-y=-3 3x+2z=-1 x-3y+2z=4 图3-11

交直线所确定.3) 有无穷多组解这时又可分为两种情形:情形一自由变量, 基础解系中有两个向量,其一般解的形式为 γ=c 1η1+ c 2η2+ γ0(c 1, c 2为任意常数).这时方程组的所有解构成一个平面, 而这个平面是由过点γ0且分别以η1、η2为方向向量的两条相A 的秩=A 的秩= 1 .此时,有两个γ=c 1η1+ c 2η2+ γ0 称为平面的参数方程.

例如, 设保留方程组为 x + y + z = 3, 则可求得其通解为 . 11110101121???? ? ??+????? ??-+????? ??-=c c x

则过点P (1,1,1) 分别以(1,-1,0)T , (1,0,-1)T 为方向,1 10111:,01111 1:21--=-=--=--=-z y x L z y x L 则这两条相交直线L 1, L 2所确定的平面的方程即向量的两直线的方程分别为 为x + y + z = 3 . 如图3-12

1、 为何值时,线性方程组 有解,并求一般解

1、λ为何值时,线性方程组123412341 23251321383x x x x x x x x x x x λ++-=??+++=??++=?有解,并求一般解。 2、λ为何值时,线性方程组123412341 2341222 44x x x x x x x x x x x x λ+++=??-+-=??+++=?有解,并求一般解。 3、λ为何值时,线性方程组123412341232312341x x x x x x x x x x x λ++-=??++-=-??++=? 有解,并求一般解。 4、λ为何值时,线性方程组123412341 234233221 25x x x x x x x x x x x x λ+-+=??++-=??++-=?有解, 并求一般解。 填空: 1、若()4r A =,则齐次线性方程组

45510A X ??=解的情况为( )。 A .有唯一零解 B .有非零解 C .无解 D .不能确定是否有非零解 2、设非齐次线性方程组(0)AX b b =≠有无穷多解,那么齐次线性方程组0AX =( ) A. 只有零解 B. 有非零解 C. 无解 D. 不能确定是否有解 3、设A 为n 阶方阵,E 为n 阶单位阵,且22A A E O -+=,则1A -=( ) A. 2E A - ; B. 2A - ; C. 2A - ; D. A E - 4、设A ,B 均为n 阶方阵,则下列结论不正确的是( ) A ()222 A B AB = B . 222()A B A AB BA B -=--+ C . T T T A B AB =)( D . 若A 、B 都可逆,,则()111AB B A ---=

线性方程组解的判定与证明

21.线性方程组解的判定与证明 一、基础知识 (1)线性方程组有4种表示形式: ○ 1标准型 11112211 211222221122 n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++=?? +++=??+++=? ○ 2矩阵型 令A =''1212[],(,, ),(,,)ij m n n m A a x x x x B b b b ?==,那么上面的方程可以表述为 Ax B = ○ 3列向量型 令11112212221212,,,n n n m m mn a a a a a a a a a a a a ?? ???? ????????? ???===???????????????? ?? , 那么方程又可表述为 1122n n x a x a x a B ++ += ○ 4行向量型 ''''1122n n x a x a x a B +++= (2)在方程组○ 2的表述方式中,若0B =,即0Ax =,称为齐次线性方程组,若0B ≠,称为非齐次线性方程组。 (3)称0Ax =为Ax B =的导出组。 (4)方程组○ 2中,称(,)A A B =为○2的增广矩阵。 (5) 方程组○2中,若0,Ax B =则称0 x 为它的一个解。 (6) 方程组○ 2中,若A 为m n ?矩阵,则方程组○2的解的情况为 ◇ 1秩A =秩A =n ,方程组○2有唯一解; ◇ 2秩A =秩A

相关文档
最新文档