北京交通大学-模电实验-放大电路的失真研究

北京交通大学-模电实验-放大电路的失真研究
北京交通大学-模电实验-放大电路的失真研究

国家电工电子实验教学中心

模拟电子技术

实验报告

实验题目:放大电路的失真研究

学院:电子信息工程学院

专业:通信工程

学生姓名:

学号:

任课教师:白双佟毅

2014 年 5 月27 日

目录

1 实验题目及要求 (2)

1.1基本要求 (2)

1.2发挥部分 (3)

1.3附加部分 (3)

2 实验目的与知识背景 (4)

2.1实验目的 (4)

2.2知识点 (4)

3 实验过程 (4)

3.1选取的实验电路及输入输出波形 (4)

3.1.1共射放大电路(不失真、截止失真、饱和失真、双向失真) (4)

3.1.2乙类功率放大电路及甲乙类互补推挽功率放大电路(交越失真及其消除) (8)

3.1.3差分放大电路(不对称失真及其消除) (9)

3.1.4 运算放大电路(测量增益带宽积,频率失真及改善) (11)

3.1.5语音放大器(输出语音信号,加入失真) (14)

3.2每个电路的讨论和方案比较 (14)

3.2.1共射放大电路(不失真、截止失真、饱和失真、双向失真) (14)

3.2.2乙类功率放大电路及甲乙类互补推挽功率放大电路(交越失真及其消除) (14)

3.2.3 运算放大电路(测量增益带宽积,频率失真及改善) (15)

3.3分析研究实验数据 (15)

3.3.1截止、饱和、双向失真的原理 (15)

3.3.2交越失真的原理 (17)

3.3.3不对称失真的原理 (17)

3.3.4失真分析 (17)

4 总结与体会 (18)

4.1通过本次实验那些能力得到提高,那些解决的问题印象深刻,有那些创新点。 (18)

4.2对本课程的意见与建议 (18)

5 参考文献 (19)

1 实验题目及要求

(写明实验任务要求,可复制题目原文。)

电路输出波形失真引起信号不能正确的传输,解决失真问题是电路设计工程师面对的一个重要问题。输出波形失真可发生在基本放大、功率放大和负反馈放大等电路中,输出波形失真有截止失真、饱和失真、双向失真、交越失真,以及输出产生的谐波失真和不对称失真等。

本实验要求设计并焊接电路,产生各种失真并讨论消除失真的办法。

1.1基本要求

(1)输入一标准正弦波,频率2KHz,幅度50mV,输出正弦波频率2KHz,幅度1V。

(2)下图放大电路输入是标准正弦波,其输出波形失真。设计电路并改进。讨论产生失真的机理,阐述解决问题的办法。

(3)下图放大电路输入是标准正弦波,其输出波形失真。设计电路并改进。讨论产生失真的机理,阐述解决问题的办法。思考:NPN型组成的共射放大电路和PNP型组成的共射放大电路在截止和饱和失真方面的不同。

(4)下图放大电路输入是标准正弦波,其输出波形失真。设计电路并改进。讨论产生失真的机理,阐述解决问题的办法。思考:共基放大电路、共集放大电路与共射放大电路在截止和饱和失真方面的不同。

(5)下图放大电路输入是标准正弦波,其输出波形失真。设计电路并改进。讨论产生

失真的机理,阐述解决问题的办法。

1.2发挥部分

(1)下图放大电路输入是标准正弦波,其输出波形失真。设计电路并改进。讨论产生失真的机理,阐述解决问题的办法。

(2)任意选择一运算放大器,测出增益带宽积f T。并重新完成前面基本要求和发挥部

分的工作。

(3)将运放接成任意负反馈放大器,要求负载2kΩ,放大倍数为1,将振荡频率提高至f T的95%,观察输出波形是否失真,若将振荡器频率提高至f T的110%,观察输出波形是否失真。

(4)放大倍数保持100,振荡频率提高至f T的95%或更高一点,保持不失真放大,将纯阻抗负载2kΩ替换为容抗负载20μF,观察失真的输出波形。

(5)设计电路,改善发挥部分(4)的输出波形失真。

1.3附加部分

(1)设计一频率范围在20Hz~20kHz的语音放大器。

(2)将各种失真引入语音放大器,观察、倾听语音输出。

2 实验目的与知识背景

2.1 实验目的

(1)掌握失真放大电路的设计和解决电路的失真问题——提高系统地构思问题和解决问题的能力。

(2)掌握消除放大电路各种失真技术——系统地归纳模拟电子技术中失真现象。

(3)具备通过现象分析电路结构特点——提高改善电路的能力。

2.2 知识点

(1)三极管的输入输出特性曲线、三极管静态工作点的计算及其对放大电路的影响。

(2)截止失真、饱和失真、双向失真、交越失真及不对称失真产生的原理及其消除办法。

(3)射极偏置电路、乙类功率放大电路、甲乙类互补推挽功率放大电路、差分放大电路及电压串联负反馈电路的特点及其可能产生的失真。

(4)增益带宽积的测量。频率失真产生的原理及其消除办法。

(5)语音放大器的设计及制作。

3 实验过程

3.1 选取的实验电路及输入输出波形

3.1.1共射放大电路(不失真、截止失真、饱和失真、双向失真)

实验电路及仿真波形如下图。其中输入信号幅值为50mV,频率为2KHz。上波形为输入波形,下波形为输出波形。此时输出波形不失真,电位器的电阻大小为50%。

调节电位器使电阻减小为23%,可以观察到底部失真。电路中使用的三极管为NPN型,则底部失真又叫饱和失真。

饱和失真的仿真波形如图。

调节电位器使电阻增大为65%,可以观察到顶部失真。电路中使用的三极管为NPN型,则顶部失真又叫截止失真。

截止失真的仿真波形如图。

将输入信号幅值增大到为500mV,频率仍为2KHz。可以观察到双向失真。此时电位器的电阻大小为50%。仿真波形如图。

实验得到的示波器波形如图。正常波形。

饱和失真。

截止失真。

双向失真。

3.1.2乙类功率放大电路及甲乙类互补推挽功率放大电路(交越失真及其消除)

实验电路如下图。其中输入信号幅度为2.5V,频率为2KHz。

当开关闭合时,电路为乙类功率放大电路,产生交越失真。仿真波形及实验波形如下图。

当开关断开时,电路为甲乙类互补推挽功率放大电路,会消除乙类功率放大电路产生的交越失真,输出正常波形。仿真波形及实验波形如下图。

3.1.3差分放大电路(不对称失真及其消除)

实验电路如下图。其中输入信号幅度为50mV,频率为2KHz。

当开关断开时,电路会产生不对称失真,输出上下峰值不等的不对称正弦波形。仿真波形波形如下图。可以看出,红色的输出波形产生了上下不对称的失真。

实验波形如下图。

当开关闭合时,电路中加入了电压串联负反馈,消除了之前产生的不对称失真,输出了正常波形。仿真波形波形如下图。可以看出,红色输出波形是上下对称的。

实验波形如下图。

3.1.4 运算放大电路(测量增益带宽积,频率失真及改善) 实验电路如下图。其中输入信号幅度为50mV ,频率为2KHz 。

当开关J2接在R5端时,输出峰峰值约为10V 的不失真正弦波。如图。

此时中频增益为:

10050210=?==

mV

V

U U A i o U

将频率逐渐调大,直至增益约下降-3dB ,即输出信号的电压峰峰值下降到7.07V 时,记录此时输入信号的频率f T ,则电路的增益带宽积为:

()下上f -f A GB U ?=

式中f 上即为截止频率f T ,因运算放大器的f 下太小,视为f 下=0。

当输入信号的频率调节到10kHz 时,输出波形如下图,此时电压峰峰值约为7V ,则此电路的增益带宽积约为:

()()Hz M k GB 1010100=-?=

另外,调节输入信号的频率,可以明显地看到输出波形的峰峰值会随着输入信号频率的增大而减小。这就是频率失真中的幅度失真。

当开关J2接在C1端时,输出波形产生明显的失真,即频率失真中的相位失真。如图。

实验波形如图。

再将开关J1接到R2端,调整负反馈,可以改善容性负载失真。如图。

3.1.5语音放大器(输出语音信号,加入失真)

语音放大器喇叭发声部分实验电路如图。整个语音放大器分为四个部分,分别是前置放大、驱动、滤波和发声电路,其中前置放大电路可以使用前面制作的射级放大电路或运算放大电路,驱动电路为甲乙类互补推挽功率放大电路,滤波为喇叭前面的RC滤波,最后接上喇叭就可以实现语音放大器,并加入饱和、截止、双向、交越等失真。

3.2 每个电路的讨论和方案比较

(在实验过程中遇到的问题包括自拟构思的问题、产生原因、解决方法。)

3.2.1共射放大电路(不失真、截止失真、饱和失真、双向失真)

这是实验的第一个电路,调试时我对示波器的使用还不太熟悉,给调试带来了许多问题。实验需要的输入信号为50mV,电压比较小,而示波器的带宽比较大,所以对小信号的噪声也比较多,导致前几次测量都没能调试出正确的波形,基本上全是杂波。

后来我通过查找资料,知道了小信号情况下示波器的调节技巧。例如使用平均模式、高分辨率模式、交流AC等等,解决了调试时遇到的难题,也为后面的调试和测量打下基础。

3.2.2乙类功率放大电路及甲乙类互补推挽功率放大电路(交越失真及其消除)

刚开始设计电路的时候,我直接在两个三极管的C极分别接上了正负12V的直流电压,如下图。

因为没有考虑到三极管的工作电流比较小,在调试时一接上直流电源,三极管就冒出一

阵青烟,烧毁了。我仔细检查电路才发现原来三极管C极没有加上Rc电阻,导致三极管工作电流太大烧毁了。我修改了电路并重新进行电路仿真,更换了新的三极管,正确地完成了实验。

3.2.3 运算放大电路(测量增益带宽积,频率失真及改善)

实际测量增益带宽积时,测量值会比理论值略小一些。我测量到的增益带宽积是9kHz,而理论值是1MHz。原因可能是在计算增益及带宽时都是近似取整,并没有精确计算,但这样的误差在允许范围之内。

3.3 分析研究实验数据

(各种失真对应的电路参数及测量数据与不失真电路的参数测量数据的比较分析)

3.3.1截止、饱和、双向失真的原理

产生截止失真原因:静态工作点设置过低。

消除方法:减小R b,增大I BQ,提高Q点。

NPN管构成的放大电路出现截止失真时是顶部失真,而PNP管组成的放大电路出现截止失真时是底部失真。

截止失真在三极管输出曲线上的体现如下图。

产生饱和失真原因:工作点设置过高。

消除方法:增大R b,减小I BQ,降低Q点。

NPN管构成的放大电路出现饱和失真时是底部失真,而PNP管组成的放大电路出现饱和失真时是顶部失真。

饱和失真在三极管输出曲线上的体现如下图。

产生双向失真原因:输入信号过大,使三极管同时进入饱和区和截止区。

消除方法:工作点Q要设置在输出特性曲线放大区的中间部位,减小输入的信号,选择一个合理的输入信号,使之正好工作在放大区域内。

另外,共射、共集、共基组态放大电路的区别如下表所示。

3.3.2交越失真的原理

交越失真是乙类推挽放大器所特有的失真。在推挽放大器中,由两只晶体管分别在输入信号的正、负半周导通,对正、负半周信号进行放大。而乙类放大器的特点是不给晶体管建立静态偏置,使其导通的时间恰好为信号的半个周期。但是,由于晶体管的输入特性曲线在U be较小时是弯曲的,晶体管基本上不导通,即存在死区电压V r。当输入信号电压小于死区电压时,两只晶体管基本上都不导通。这样,当输入信号为正弦波时,输出信号将不再是正弦波,即产生了失真. 这种失真是由于两只晶体管在交替工作时“交接”不好而产生的,

称为交越失真。如下图。

解决交越失真的办法给晶体管建立起始静态偏置,使它的基极电压始终不小于死区电压。为了不使电路的效率明显降低,起始静态偏置电流不应太大。这样就把乙类功率放大器变成了经常使用的甲乙类互补推挽功率放大器。

3.3.3不对称失真的原理

不对称失真是差分输入电路和乙类互补推挽功率放大电路所特有的失真。在差分电路中,由于电路结构的不对称,使两个三极管对信号的放大倍数不相同而引起的。在乙类互补推挽功率放大电路,它是由于推挽管(NPN管和PNP管)特性不对称,而使输入信号的正、负半周不对称造成的。

不对称失真的解决办法是加入负反馈。通过负反馈会形成与新的不对称失真信号,此信号恰好与原输出失真信号正负半周的幅度值相反,进行叠加后能够减弱不对称失真。

3.3.4失真分析

(1)由单电源供电的运算放大器电路会出现哪种失真?

双电源供电的功率放大器改成单电源供电会出现一部分没有波形,线性失真。

(2)负反馈可解决波形失真,解决的是哪类失真?

负反馈可以解决环内的非线性失真。

(3)测量增益带宽积f T有哪些方法?

a.可以首先测量带宽,然后测量增益,带宽乘以增益既是增益带宽积。

b.可以测量特征频率,即晶体管丧失电流放大能力的极限频率就是增益带宽积。

(4)提高频率后若失真,属于哪类失真?

频率失真。其中包括相位失真和幅度失真。

(5)电阻负载改成大容性负载会出现什么失真?

会出现相位失真。

(6)有哪些方法可以克服电阻负载改成大容性负载出现的失真?

可以在电路中加入负反馈,也可以使用相位补偿法。

4 总结与体会

4.1 通过本次实验那些能力得到提高,那些解决的问题印象深刻,有那些创新点。

本次实验对基本放大电路的失真及其改善进行了比较深入的研究,使我更深入地了解了三极管、运算放大器及其组成的放大电路的相关知识。虽然我们在模拟电子技术课程上都系统地学习过这些知识,但是纸上学来终觉浅,绝知此事要躬行。亲自动手设计、焊接、调试电路时遇到的各种问题是书本上没有的,这就需要活用书上的知识自己解决遇到的问题。

另外,这次实验也让我体会到了理论和现实的差距。本以为只要做好仿真,按照电路图焊接,就可以得到想要的结果。可是在实际操作的过程中,总是遇到很多的问题,例如买到的元件和仿真用的不一样、焊接出错等等。有时候就算电路焊接正确,也不一定能调出波形;有时候就算上一次能调出来,下一次就不一定了。这些各种各样的问题一直伴随着我的实验。最后发现其实所有的问题都来自于我不稳定的电路,在不断地修改和调试下,我的板子也算是基本完工。

虽然这次模电实验耗费了我很多的时间和精力,但是付出与收获基本是成正比的,在这三周的忙碌中,我对放大电路的失真确实是了解透彻并且印象深刻,动手能力也得到了提高。这才是工科课程应该达到的效果。

4.2 对本课程的意见与建议

据说今年的模电实验相对于去年来说做了许多改动,把之前的一周一课改成了完全自主的模式,这样虽然可以锻炼我们的独立思考及查找资料的能力,但是没有经过系统地培训的我们基本都是参考往年的学长的报告,或者在图书馆借几本模电实验书。老师只在第一堂课上简单介绍了实验的要求,而没有详细的资料。比如语音放大器,我在制作之前完全不知道它还需要四个组成部分。所以我认为,今后的模电实验应该多上几节课,让大家对模电实验有一个系统的了解。另外,实物制作的时间也可以缩短一些,一个月的时间其实太长了,真正在做的时间也只有两周,时间拖得太久效果反而不好了。

还有就是实验室的使用和管理问题。临近验收的时候是夏天,很多同学都在实验室里焊板子、调板子,实验室的空气很不好,就算开了空调也没什么改善。还有许多同学不注意电烙铁的使用,烫坏了许多仪器,给实验室造成不小的损失。南502实验室里面的小屋的地上有很多散落的线,同学们不注意就会踩来踩去,影响很不好。所以上课时老师们应该提醒同学们注意实验室秩序和整洁,或者在实验室门前张贴注意事项。另外,实验室应该有值班的同学,负责每天晚上实验室关门时打扫实验室,清点仪器等等。

5 参考文献

(列出在本次实验中参考的有关文献,包括书籍、网上信息等。书写格式应符合以下规定。顶格写,按“作者.书名或文题.地名:出版社(或期刊)名,出版年份(或期刊卷期次):页码”(中译本应在书名后加译者名)的次序排列。)

[1]路勇.模拟集成电路基础[M].北京:中国铁道出版社,2012.

[2]李学明.模拟电子技术仿真实验教程[M].北京:清华大学出版社,2013.

[3]朱定华.电子电路实验与课程设计[M].北京:清华大学出版社.2009.

[4]王冠华. Multisim 11电路设计及应用[M].北京:国防工业出版社,2010.

[5]张巍.晶体三极管放大电路的非线形失真及其解决办法[J].中小企业管理与科

技,2009,(21):264.DOI:10.3969/j.issn.1673-1069.2009.21.243.

[6]肖渊.基于Multisim的放大电路设计及仿真研究[J].陕西科技大学学报(自然科学版). 2009 (04).

[7]李健明,彭仁明.基于Multisim放大电路的仿真分析[J].四川理工学院学报(自然科学版).2006 (04)

[8]卢超.负反馈放大电路的仿真分析[J]. 现代电子技术. 2005 (16)

[9]雷芳,曾浩.Multism在电子电路教学中的应用[J].科技资讯. 2007 (25)

模拟电路典型例题讲解

3.3 频率响应典型习题详解 【3-1】已知某放大器的传递函数为 试画出相应的幅频特性与相频特性渐近波特图,并指出放大器的上限频率f H ,下限频率f L 及中频增益A I 各为多少? 【解】本题用来熟悉:(1)由传递函数画波特图的方法;(2)由波特图确定放大器频响参数的方法。 由传递函数可知,该放大器有两个极点:p 1=-102rad/s ,p 2=-105rad/s 和一个零点z =0。 (1)将A (s )变换成以下标准形式: (2)将s =j ω代入上式得放大器的频率特性: 写出其幅频特性及相频特性表达式如下: 对A (ω)取对数得对数幅频特性: (3)在半对数坐标系中按20lg A (ω)及φ(ω)的关系作波特图,如题图3.1所示。

由题图3.1(a )可得,放大器的中频增益A I =60dB ,上限频率f H =105/2π≈15.9kHz , 下限频率f L =102/2π≈15.9Hz 。 【3-2】已知某放大器的频率特性表达式为 试问该放大器的中频增益、上限频率及增益带宽积各为多少? 【解】本题用来熟悉:由放大器的频率特性表达式确定其频率参数的方法。 将给出的频率特性表达试变换成标准形式: 则 当ω = 0时,A (0) =200,即为放大器的直流增益(或低频增益)。 当ω =ωH 时, ωH =106rad/s 相应的上限频率为 由增益带宽积的定义可求得:GBW=│A (0)·f H │≈31.84MHz 思考:此题是否可用波特图求解? 【3-3】已知某晶体管电流放大倍数β的频率特性波特图如题图3.2(a )所示,试写出β的频率特性表达式,分别指出该管的ωβ、ωT 各为多少?并画出其相频特性的渐近波特图。

关于放大电路失真现象的研究

模拟电子技术研讨论文放大电路失真现象的研究 学院:电子信息工程学院 专业:通信工程 学号: 学生: 指导教师:侯建军 2013年5月

目录 引言 (3) 1.失真类型及产生原因 (3) 1.1非线性失真 (3) 1.2线性失真 (3) 2.各类失真现象分析 (4) 2.1截止、饱和和双向失真 (4) 2.1.1截止、饱和失真理论分析 (4) 2.1.2饱和失真的Mutisim仿真 (4) 2.1.3双向失真分析及改善方案 (5) 2.2交越失真 (5) 2.2.1交越失真理论分析 (5) 2.2.2传统交越失真改善方案 (6) 2.2.3基于负反馈的改善方案 (6) 2.3不对称失真 (7) 2.3.1不对称失真概念 (7) 2.3.2不对称失真理论分析 (7) 2.3.3传统负反馈改善方案 (8) 2.3.4多级反相放大改善方案 (8) 2.4线性失真 (9) 2.4.1线性失真理论分析 (9) 2.4.2线性失真电路设计及改善方案仿真 (9) 3.用双级反相放大改善不对称失真的电路设计 (10) 4.总结 (11) 【参考文献】 (12)

放大电路失真现象的研究 (北京交通大学电子信息工程学院,北京 100044) 摘要:失真问题是模拟电子技术中的一个重要问题,系统化解决失真问题,能够给放大电路在工程中的设计提供便利。本文简单地介绍了失真的类型,系统地介绍了各类失真现象产生的原因,同时设计了各类失真电路,给出了各类失真的改善方案,对部分失真问题进行了仿真实验。 关键词:非线性失真、线性失真、三极管放大电路、负反馈、Multisim仿真 引言 在放大电路中,其输出信号应当如实的反映输入信号,即他们尽管在幅度上不同,时间上也可能有延迟,但波形应当是相同的。但在实际电路中,由于种种原因,输入信号不可能与输入信号的波形完全相同,这种现象叫做失真。在工程上,电路的失真影响着放大电路的正常使用,在理论上对各种失真现象的原理的研究,有利于工程上快速检测出放大电路失真的原因,从而完善放大电路的设计。Multisim仿真软件支持模拟电路、数字电路及模数混合电路的设计仿真,仿真结果准确直观。利用Multisim进行仿真,方便了放大电路失真现象的理论研究。 1.失真类型及产生原因 放大电路产生失真的主要原因有两个,据此可以将失真分为两大类: ①非线性失真(nonlinear distortion):晶体三极管等元件的工作点进入了特性曲线的非线性区,使输入信号和输出信号不再保持线性关系,这样产生的失真称为非线性失真。 ②线性失真(linear distortion):放大器的频率特性不好,对输入信号中不同频率成分的增益不同或延时不同,这样产生的失真成为线性失真。 1.1非线性失真 非线性失真产生的主要原因来自三方面:第一是晶体三极管等特性曲线的非线性;第二是静态工作点位置设置的不合适;第三是输入信号过大。由于晶体三极管工作在非线性区而产生的非线性失真有5种:饱和失真、截止失真、双向失真、交越失真和不对称失真。 1.2线性失真 通常放大电路的输入信号是多频信号,由于放大电路中有隔直流电容、射极旁路电容、结电容和各种寄生电容,使得放大电路对信号的不同频率分量具有不同的增益幅值或者相对相移发生变化,就使输出波形发生失真,

共射放大电路实验报告

实验报告 课程名称:电子电路设计实验 指导老师:李锡华,叶险峰,施红军 成绩:________ 实验名称:晶体管共射放大电路分析 实验类型:设计实验 同组学生姓名: 一、实验目的 1、学习晶体管放大电路的设计方法, 2、掌握放大电路静态工作点的调整和测量方法,了解放大器的非线性失真。 3、掌握放大电路电压增益、输入电阻、输出电阻、通频带等主要性能指标的测量方法。 4、理解射极电阻和旁路电容在负反馈中所起的作用及对放大电路性能的影响。 5、学习晶体管放大电路元件参数选取方法,掌握单级放大器设计的一般原则。 二、实验任务与要求 1.设计一个阻容耦合单级放大电路 已知条件:=+10V cc V , 5.1L R k =Ω,10,600i S V mV R ==Ω 性能指标要求:30L f Hz <,对频率为1kHz 的正弦信号15/,7.5v i A V V R k >>Ω 2.设计要求 (1)写出详细设计过程并进行验算 (2)用软件进行仿真 3.电路安装、调整与测量 自己编写调试步骤,自己设计数据记录表格 4.写出设计性实验报告 三、实验方案设计与实验参数计算 共射放大电路

(一).电路电阻求解过程(β=100) (没有设置上课要求的160的原因是因为电路其他参数要求和讲义作业要求基本一样,为了显示区别,将β改为100进行设计): (1)考虑噪声系数,高频小型号晶体管工作电流一般设定在1mA 以下,取I c =1mA (2)为使Q 点稳定,取2 5 BB CC V V =,即4V, (3)0.7 3.3BB E E V R k I -≈=Ω,恰为电阻标称值 (4)2 12 124:3:2 CC BB R V V V R R R R ==+∴= 取R 2为R i 下限值的3倍可满足输入电阻的要求,即R 2=22.5k , R 1=33.75k ; 1121 10=0.1,60,40cc B B V V IR I mA R K R K IR -== =Ω=Ω由 综上:取标称值R1=51k ,R2=33k (5) 25T T e E C V V r I I =≈=Ω (6)从输入电阻角度考虑: , 取(获得4V 足够大的正负信号摆幅)得: 从电压增益的角度考虑: >15V/V,取得 : ; 为 (二).电路频率特性 (1) 电容与低频截止频率 取 ;

5章 模电习题解 放大电路的频率响应题解.

第五章 放大电路的频率响应 自 测 题 ☆一、(四版一)选择正确答案填入空内。 (1)测试放大电路输出电压幅值与相位的变化,可以得到它的频率响应,条件是 。 A.输入电压幅值不变,改变频率 B.输入电压频率不变,改变幅值 C.输入电压的幅值与频率同时变化 (2)放大电路在高频信号作用时放大倍数数值下降的原因是 ,而低频信号作用时放大倍数数值下降的原因是 。 A.耦合电容和旁路电容的存在 B.半导体管极间电容和分布电容的存在。 C.半导体管的非线性特性 D.放大电路的静态工作点不合适 (3)当信号频率等于放大电路的f L 或f H 时,放大倍数的值约下降到中频时的 。 A.0.5倍 B.0.7倍 C.0.9倍 即增益下降 。 A.3dB B.4dB C.5dB (4)对于单管共射放大电路,当f = f L 时,o U 与i U 相位关系是 。 A.+45? B.-90? C.-135? 当f = f H 时,o U 与i U 的相位关系是 。 A.-45? B.-135? C.-225? 解:(1)A (2)B ,A (3)B A (4)C C

★二、(四版二)电路如图T5.2所示。已知:V C C =12V ;晶体管的C μ=4pF ,f T = 50MHz ,'bb r =100Ω, 0=80。试求解: (1)中频电压放大倍数sm u A ; (2)' C ; (3)f H 和f L ; (4)画出波特图。 图T5.2 解:(1)静态及动态的分析估算: ∥178 )(mA/V 2 .69k 27.1k 27.1k 17.1mV 26) 1(V 3mA 8.1)1(A μ 6.22c m be e b'i s i sm T EQ m b be i e b'bb'be EQ e b'c CQ CC CEQ BQ EQ b BEQ CC BQ R g r r R R R A U I g R r R r r r I r R I V U I I R U V I u (2)估算' C : pF 1602)1(pF 214π2) (π2μc m ' μT e b'0 μπe b'0 T C R g C C C f r C C C r f

放大器的非线性失真

放大器的非线性失真 非线性失真是模拟电路中影响电路性能的重要因素之一。本章先从非线性的定义入手,确定量化非线性的一个度量标准,然后研究放大器的非线性失真及其差动电路与反馈系统中的非线性,并介绍一些线性化的技术。 12.1 概述 非线性的定义 电路非线性是指输出信号与输入信号之比不为一个常量,体现在输出与输入之间的关系不是一条具有固定斜率的直线,或体现为小信号增益随输入信号电平的变化而变化。 放大器的非线性定义:当输入为正弦信号时,由于放大器(管子)的非线性,使输出波形不是一个理想的正弦信号,输出波形产生了失真,这种由于放大器(管子)参数的非线性所引起的失真称为非线性失真。由于非线性失真会使输出信号中产生高次谐波成分,所以又称为谐波失真。 非线性的度量方法 1 泰勒级数系数表示法: 用泰勒级数展开法对所关心的范围内输入输出特性用泰勒展开来近似: )()()()(33221 +++=t x t x t x t y ααα (12.1) 对于小的x ,y (t)≈α1x ,表明α1是x ≈0附近的小信号增益,而α2,α3等即为非线性的系数,所以确定式(12.1)中的α1,α2等系数就可确定。 2 总谐波失真(THD )度量法: 即输入信号为一个正弦信号,测量其输出端的谐波成分,对谐波成分求和,并以基频分量进行归一化来表示,称为“总谐波失真”(THD )。 把x(t)=Acosωt 代入式(12.1)中,则有: +++ ++ =+++=)]3cos(cos 3[4 )]2cos(1[2 cos cos cos cos )(3 32 213332221t t A t A t A t A t A t A t y ωωαωαωαωαωαωα (12.2) 由上式可看出,高阶项产生了高次谐波,分别称为偶次与奇次谐波,且n 次谐波幅度近似正比于输入振幅的n 次方。例如考虑一个三阶非线性系统,其总谐波失真为: 2 3312 33222) 43()4()2(THD A A A A αααα++= (12.3) 3 采用输入/输出特性曲线与理想曲线(即直线)的最大偏差来度量非线性。 在所关心的电压范围[0 V i,max ]内,画一条通过实际特性曲线二个端点的直线,该直线就为理想的输入/输出特性曲线,求出它与实际的特性曲线间的最大偏差ΔV ,并对最大输出摆幅V o,max 归一化。即在如图12.1所示。

南邮模拟电子第8章-功率放大电路习题标准答案

习题 1. 设2AX81的I CM =200mA ,P CM =200mW ,U (BR)CEO =15V ;3AD6的P CM =10W (加散热板),I CM =2A ,U (BR)CEO =24V 。求它们在变压器耦合单管甲类功放中的最佳交流负载电阻值。 解:当静态工作点Q 确定后,适当选取交流负载电阻值L R ',使Q 点位于交流负载线位于放大区部分的中点,则可输出最大不失真功率,此时的L R '称为最佳交流负载电阻。 忽略三极管的饱和压降和截止区,则有L CQ CC R I U '=。 同时应满足以下限制:CM CQ CC P I U ≤?,2 (BR)CEO CC U U ≤ ,2 CM CQ I I ≤ 。 (1)对2AX81而言,应满足mW 200CQ CC ≤?I U ,V 5.7CC ≤U ,mA 100CQ ≤I 。取 mW 200CQ CC =?I U 。 当V 5.7CC =U 时,mA 7.26CQ =I ,此时L R '最大,Ω=='k 28.07 .265 .7L(max)R ; 当mA 100CQ =I ,V 2CC =U 时,此时L R '最小,Ω=='k 02.0100 2 L(min)R ; 故最佳交流负载电阻值L R '为:ΩΩk 28.0~k 02.0。 (2)对3AD6而言,应满足W 10CQ CC ≤?I U ,V 12CC ≤U ,A 1CQ ≤I 。取 W 10CQ CC =?I U 。 当V 12CC =U 时,A 83.0CQ =I ,此时L R '最大,Ω=='46.1483.012 L(max)R ; 当A 1CQ =I 时, V 10CC =U ,此时L R '最小,Ω=='101 10L(min)R ; 故最佳交流负载电阻值L R '为:ΩΩ46.14~10。 2. 图题8-2为理想乙类互补推挽功放电路,设U CC =15V ,U EE =-15V ,R L =4Ω,U CE(sat)=0,输入为正弦信号。试求 (1) 输出信号的最大功率; (2) 输出最大信号功率时电源的功率、集电极功耗(单管)和效率; (3) 每个晶体管的最大耗散功率P Tm 是多少?在此条件下的效率是多少?

02实验二-共射基本放大电路的研究

姓名班级学号台号 日期节次成绩教师签字 模拟电子技术实验 实验二共射基本放大电路的研究 一、实验目的 二、实验仪器名称及型号 三、设计要求 1.设计任务 设计一具有静态工作点稳定特性的共射极基本放大电路: (1)电源电压V CC=12V,使用硅材料NPN晶体管3DG6(硅小功率高频管),其电流放大系数β≈75,(实际放大系数会有所不同,在此为了方便按75计算)。 (2)选择参数,使I CQ≈1.5mA,3V≤U CEQ≤6V。 2.设计提示 为了使放大器获得尽可能高的放大倍数,同时又不因进入非线性区而产生波形失真,就必须设置一个合适的静态工作点。若工作点设置得过高,则晶体管易进入饱和区而产生饱和失真;反之则晶体管易进入截止区而产生截止失真。 根据要求,所选电路如图1所示。

R b2 +12V R I 1 图1 共射极放大电路直流通路 为保证静态工作点的稳定,要求: I 1=(5~10)I B U BQ =(3~5)U BEQ 选BQ 3V U =,由BQ BE CQ e U U I R -≈得:BQ BE e CQ 2.3 1.5k 1.5 U U R I -==≈Ω 由b2BQ CC b1b2R U V R R ≈ ?+可确定b2b11 3 R R =;又CQ BQ 1.5mA 20A 75I I ===μβ,令1BQ 10200A I I ==μ,则b1b212V 60k 200A R R += =Ωμ。可选择b145k R =Ω b1215k R =Ω。 根据CEQ CC CQ c e 3V ()6V U V I R R <=-+<,可求得c 2.5k 4.5k R Ω<<Ω,可选择 c 3k R =Ω。这样就完成了电路的设计。所得数据为 b145k R =Ω,b215k R =Ω,e 1.5k R =Ω,c 3k R =Ω 当然读者可根据所给条件做出自己的设计,上述这组数据仅供参考。 图2 单级晶体管放大电路线路板

晶体管共射极单管放大电路实验报告

晶体管共射极单管放大 电路实验报告 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

实验二 晶体管共射极单管放大器 一、实验目的 1.学会放大器静态工作点的调式方法和测量方法。 2.掌握放大器电压放大倍数的测试方法及放大器参数对放大倍数的影 响。 3.熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图2—1为电阻分压式工作点稳定单管放大器实验电路图。偏置电阻R B1、R B2组成分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号后,在放大器的输出端便可得到一个与输入信号相位相反、幅值被放大了的输出信号,从而实现了电压放大。 三、实验设备 1、信号发生器 2、双踪示波器 3、交流毫伏表 4、模拟电路实验箱 5、万用表 四、实验内容 1.测量静态工作点 实验电路如图2—1所示,它的静态工作点估算方法为: U B ≈ 2 11B B CC B R R U R +?

图2—1 共射极单管放大器实验电路图 I E = E BE B R U U -≈Ic U CE = U C C -I C (R C +R E ) 实验中测量放大器的静态工作点,应在输入信号为零的情况下进行。 1)没通电前,将放大器输入端与地端短接,接好电源线(注意12V 电源位置)。 2)检查接线无误后,接通电源。 3)用万用表的直流10V 挡测量U E = 2V 左右,如果偏差太大可调节静态工作点(电位器RP )。然后测量U B 、U C ,记入表2—1中。 表2—1 测 量 值 计 算 值 U B (V ) U E (V ) U C (V ) R B2(K Ω) U BE (V ) U CE (V ) I C (mA ) 2 60 2 B2所有测量结果记入表2—1中。 5)根据实验结果可用:I C ≈I E = E E R U 或I C =C C CC R U U -

模拟电子电路例题负反馈放大电路例题

模拟电子电路例题_负反馈放大电路例题: 1. 1.电流并联负反馈可稳定放大器的输出____,这种负反馈放大器的输入电阻____,输出电阻____。 答案:电流,低,高 2.要求多级放大器输入电阻低,输出电阻也低,应该在多级放大器间引入____负反馈。 答案:电压并联 3.要求多级放大器输入电阻高,输出电压稳定,应该在多级放大器中引入____负反馈。 答案:电压串联 4.直流负反馈只能影响放大器的____,交流负反馈只影响放大器的交流____。 答案:静态工作点,性能 5.将放大电路的____的一部分或全部通过某种方式反送到____称作反馈。 答案:输出信号,输入端 6.负反馈使放大电路____降低,但使____得以提高,改善了输出波形的____,展宽了放大电路的____。 答案:放大倍数,闭环放大倍数的稳定性,非线性失真,通频带 7.串联负反馈使输入电阻____,而并联负反馈使输入电阻____。 答案:提高,降低 8.电压负反馈使输出电阻____,而电流负反馈使输出电阻____。 答案:降低,提高 9.反馈深度用____来表示,它体现了反馈量的大小。

答案: 2. 电路如图示,试分别说明 (1)为了使从引到T2基极的反馈为负反馈,图中运放的正反馈应如何标示。 (2)接成负反馈情况下,若,欲使,则R F= (3)在上述情况下,若运放A的A vo或电路中的RC值变化5%,问值也变化5%吗 解:(1)电路按瞬时极性法可判断,若A上端标示为(+)极时为电压串联负反馈,否则为正反馈。可见上(+)下(-)标示才正确。

(2)若为电压串联负反馈,因为,则 成立。由,可得 (3)由于只决定于R F和R b2两个电阻的值,因而基本不变,所以值不会改变。 3. 下列电路中,判别哪些电路是负反馈放大电路属于何种负反馈类型那些属于直流反馈,起何作用

放大电路的失真研究 模电实验报告

模拟电子技术 实验报告 实验题目:放大电路的失真研究 2013年12月1日

目录 1、实验题目及要求 (1) 2、实验目的及知识背景 (1) 2.1实验目的 2.2知识点 2.2.1饱和失真与截止失真 3、实验过程 (5) 3.1 选取的实验电路及输入输出波形 3.1.1饱和失真与截止失真 3.2 每个电路的讨论和方案比较 3.2.1饱和失真与截止失真 3.3 分析研究实验数据 3.3.1饱和失真与截止失真 4、总结与体会 (11) 4.1 通过本次实验那些能力得到提高,那些解决的问题印象深刻,有那些创新点。 4.2 对本课程的意见与建议

1、实验题目及要求 1.1实验题目 放大电路的失真研究 1.2实验要求 1.2.1基本要求 输入一标准正弦波,频率2KHz,幅度50mV,输出正弦波频率2KHz,幅度1V。 2、实验目的与知识背景 2.1 实验目的 (1)掌握失真放大电路的设计和解决电路的失真问题——提高系统地构思问题和解决问题的能力。 (2)掌握消除放大电路各种失真技术——系统地归纳模拟电子技术中失真现象。 (3)具备通过现象分析电路结构特点——提高改善电路的能力。 2.2 知识点 2.2.1.1饱和失真与截止失真 如图1所示的电路,对于NPN 管放大电路。在发生饱和失真时,输出波形的负半周产生失真,即为削底真,在发生截止失真时,输出波形的正半周产生失真,即为削顶失真。而对于PNP管放大电路来说,波形失真情况恰恰相反,在发生饱和失真时,输出波形的正半周产生失真,即为削顶失真,在发生截止失真时,输出波形的负半周产生失真,即为削底失真

图 1 图 2 图 3 饱和失真的观察:当将放大电路基极偏置电阻Rb的阻值设置成较小值时,两放大电路工作点变高,接近饱和区。适当增大输入信号幅度时,则出现饱和失真,输出波形如图4所示。其中上边波形为PNP管放大电路的输出波形,出现削顶失真。下边为NPN 管放大电路的输出波形,出现削底失真。 图 4 截止失真的观察:当将放大电路基极偏置电阻Rb的阻值设置成较大值时.两放大电路工作点变低,按近截止区。当适当增大输入信号幅度时,则出现截止失真,输出波形如图5所示。其中上边波形为PNP管放大电路的输出波形,出现削底失真。下边为NPN 管放大电路的输出波形,出现削顶失真。

单管放大电路实验报告王剑晓

单管放大电路实验报告

电03 王剑晓 2010010929 单管放大电路报告 一、实验目的 (1)掌握放大电路直流工作点的调整与测量方法; (2)掌握放大电路主要性能指标的测量方法; (3)了解直流工作点对放大电路动态特性的影响; (4)掌握发射极负反馈电阻对放大电路动态特性的影响; (5)掌握信号源内阻R S对放大电路频带(上下截止频率)的影响; 二、实验电路与实验原理

实验电路如课本P77所示。 图中可变电阻R W是为调节晶体管静态工作点而设置的。 (1)静态工作点的估算与调整; 将图中基极偏置电路V CC、R B1、R B2用戴维南定理等效成电压源,得到直流通路, 如下图1.2所示。其开路电压V BB和内阻R B分别为: V BB= R B2/( R B1+R B2)* V CC; R B= R B1// R B2; 所以由输入特性可得: V BB= R B I BQ+U BEQ+(R E1+ R E2)(1+Β) I BQ; 即:I BQ=(V BB- U BEQ)/[Β(R E1+ R E2)+ R B]; 因此,由晶体管特性可知: I CQ=ΒI BQ; 由输出回路知: V CC= R C I CQ + U CEQ+(R E1+ R E2) I EQ; 整理得: U CEQ= V CC-(R E1+ R E2+ R C) I CQ; 分析:当R w变化(以下以增大为例)时,R B1增大,R B增大,I BQ减小;I CQ减 小;U CEQ增大,但需要防止出现顶部失真;若R w减小变化相反,需要考虑底部 失真(截止失真); (2)放大电路的电压增益、输入电阻和输出电阻 做出电路的交流微变等效模型: 则:

北京交通大学-模电实验-放大电路的失真研究

国家电工电子实验教学中心 模拟电子技术 实验报告 实验题目:放大电路的失真研究 学院:电子信息工程学院 专业:通信工程 学生姓名: 学号: 任课教师:白双佟毅 2014 年 5 月27 日

目录 1 实验题目及要求 (2) 1.1基本要求 (2) 1.2发挥部分 (3) 1.3附加部分 (3) 2 实验目的与知识背景 (4) 2.1实验目的 (4) 2.2知识点 (4) 3 实验过程 (4) 3.1选取的实验电路及输入输出波形 (4) 3.1.1共射放大电路(不失真、截止失真、饱和失真、双向失真) (4) 3.1.2乙类功率放大电路及甲乙类互补推挽功率放大电路(交越失真及其消除) (8) 3.1.3差分放大电路(不对称失真及其消除) (9) 3.1.4 运算放大电路(测量增益带宽积,频率失真及改善) (11) 3.1.5语音放大器(输出语音信号,加入失真) (14) 3.2每个电路的讨论和方案比较 (14) 3.2.1共射放大电路(不失真、截止失真、饱和失真、双向失真) (14) 3.2.2乙类功率放大电路及甲乙类互补推挽功率放大电路(交越失真及其消除) (14) 3.2.3 运算放大电路(测量增益带宽积,频率失真及改善) (15) 3.3分析研究实验数据 (15) 3.3.1截止、饱和、双向失真的原理 (15) 3.3.2交越失真的原理 (17) 3.3.3不对称失真的原理 (17) 3.3.4失真分析 (17) 4 总结与体会 (18) 4.1通过本次实验那些能力得到提高,那些解决的问题印象深刻,有那些创新点。 (18) 4.2对本课程的意见与建议 (18) 5 参考文献 (19)

单级共射放大电路实验报告(完整资料).doc

【最新整理,下载后即可编辑】 单级共射放大电路实验报告 1.熟悉常用电子仪器的使用方法。 2.掌握放大器静态工作点的调试方法及对放大 器电路性能的影响。 3.掌握放大器动态性能参数的测试方法。 4.进一步掌握单级放大电路的工作原理。 二、实验仪器 1.示波器 2.信号发生器 3.数字万用表 4.交流毫伏表 5.直流稳压源 三、预习要求 1.复习基本共发射极放大电路的工作原理,并进 一步熟悉示波器的正确使用方法。 2.根据实验电路图和元器件参数,估算电路的静 态工作点及电路的电压放大倍数。 3.估算电路的最大不失真输出电压幅值。 4.根据实验内容设计实验数据记录表格。 四、实验原理及测量方法 实验测试电路如下图所示:

1.电路参数变化对静态工作点的影响: 放大器的基本任务是不失真地放大信号,实现输入变化量对输出变化量的控制作用,要使放大器正常工作,除要保证放大电路正常工作的电压外,还要有合适的静态工作点。放大器的静态工作点是指放大器输入端短路时,流过电路直流电流IBQ、ICQ及管子C、E极之间的直流电压UCEQ和B、E 极的直流电压UBEQ。图5-2-1中的射极电阻BE1、RE2是用来稳定放大器的静态工作点。其工作原理如下。 ○1用RB和RB2的分压作用固定基极电压UB。 由图5-2-1可各,当RB、RB2选择适当,满足I2远大于IB时,则有

UB=RB2·VCC/(RB+RB2)式中,RB、RB2和VCC都是固定不随温度变化的,所以基极电位基本上是一定值。 ○2通过IE的负反馈作用,限制IC的改变,使工作点保持稳定。具体稳定过程如下: T↑→IC↑→IE↑→UE↑→UBE ↓→IB↓→IC↓ 2.静态工作点的理论计算: 图5-2-1电路的静态工作点可由以下几个关系式确定 UB=RB2·VCC/(RB+RB2) IC≈IE=(UB-UBE)/RE UCE=VCC-IC(RC+RE) 由以上式子可知,,当管子确定后,改变V CC、RB、RB2、RC、(或RE)中任一参数值,都会导致静态工作点的变化。当电路参数确定后,静态工作点主要通过RP调整。工作点偏高,输出信号易产生饱和失真;工作点偏低,输出波形易产生截止失真。但当输入信号过大时,管子将工作在非线性区,输出波形会产生双向失真。当输出波形不很大时,静态工作点的设置应偏低,以减小电路的表态损耗。3.静态工作点的测量与调整: 调整放大电路的静态工作点有两种方法(1)将放大电路的输入端电路(即Ui=0),让其工作在直流状态,用直流电压表测量三极管C、E间的电压,调整电位器RP使UCE稍小于电源电压的1/2(本实

天津理工模电习题 2章 基本放大电路题解1

第二章基本放大电路 自测题 一、在括号内用“”或“×”表明下列说法是否正确。 (1)只有电路既放大电流又放大电压,才称其有放大作用;( ) (2)可以说任何放大电路都有功率放大作用;() (3)放大电路中输出的电流和电压都是由有源元件提供的;( ) (5)放大电路必须加上合适的直流电源才能正常工作;()(6)由于放大的对象是变化量,所以当输入信号为直流信号 时,任何放大电路的输出都毫无变化;() (7)只要是共射放大电路,输出电压的底部失真都是饱和失 真。() 解:(1)× (2)√ (3)× (4)× (5)√ (6)× (7)× 三、在图T2.3所示电路中,已知V CC=12V,晶体管的=100,=100kΩ。填空:要求先填文字表达式后填得数。 (1)当=0V时,测得U BEQ=0.7V,若要基极电流I BQ=20μA, 则和R W之和R b=≈ kΩ;而若测得U CEQ=6V,则R c=≈ kΩ。 (2)若测得输入电压有效值=5mV时,输出电压有效值= 0.6V,则电压放大倍数 = ≈。 若负载电阻R L值与R C相等,则带上负载 图T2.3后输出电压有效值==V。 解:(1)。 (2)。 四、已知图T2.3所示电路中V CC=12V,R C=3kΩ,静态管压 降U CEQ=6V;并在输出端加负载电阻R L,其阻值为3kΩ。选择一 个合适的答案填入空内。 (1)该电路的最大不失真输出电压有效值U om≈ ;

A.2V B.3V C.6V (2)当=1mV时,若在不失真的条件下,减小R W,则输出电压的幅值将; A.减小 B.不变 C.增大 (3)在=1mV时,将R w调到输出电压最大且刚好不失真,若此时增大输入电压,则输出电压波形将; A.顶部失真 B.底部失真 C.为正弦波 (4)若发现电路出现饱和失真,则为消除失真,可将。 A.R W减小 B.R c减小 C.V CC减小 解:(1)A (2)C (3)B (4)B 2.5在图P2.5所示电路中,已知晶体管的=80,r be=1kΩ,= 20mV;静态时U BEQ=0.7V,U CEQ=4V,I BQ=20μA。判断下列结论是否正确,凡对的在括号内打“”,否则打“×”。 图P2.5 (1)()(2)() (3)()(4)() (5)()(6)() (7)()(8)() (9)()(10)() (11)≈20mV ( ) (12)≈60mV ( ) 2.10已知图P2.10所示电路中晶体管的=100,r be=1kΩ。 (1)现已测得静态管压降U CEQ=6V,估算R b约为多少千欧;(2)若测得和的有效值分别为1mV和100mV,则负载电阻R L为多少千欧? 图P2.10

运算放大电路实验报告

实验报告 课程名称:电子电路设计与仿真 实验名称:集成运算放大器的运用 班级:计算机18-4班 姓名:祁金文 学号:5011214406

实验目的 1.通过实验,进一步理解集成运算放大器线性应用电路的特点。 2.掌握集成运算放大器基本线性应用电路的设计方法。 3.了解限幅放大器的转移特性以及转移特性曲线的绘制方法。 集成运算放大器放大电路概述 集成电路是一种将“管”和“路”紧密结合的器件,它以半导 体单晶硅为芯片,采用专门的制造工艺,把晶体管、场效应管、 二极管、电阻和电容等元件及它们之间的连线所组成的完整电路 制作在一起,使之具有特定的功能。集成放大电路最初多用于各 种模拟信号的运算(如比例、求和、求差、积分、微分……)上, 故被称为运算放大电路,简称集成运放。集成运放广泛用于模拟 信号的处理和产生电路之中,因其高性价能地价位,在大多数情 况下,已经取代了分立元件放大电路。 反相比例放大电路 输入输出关系: i o V R R V 12-=i R o V R R V R R V 1 212)1(-+=

输入电阻:Ri=R1 反相比例运算电路 反相加法运算电路 反相比例放大电路仿真电路图

压输入输出波形图 同相比例放大电路 输入输出关系: i o V R R V )1(12+=R o V R R V R R V 1 2i 12)1(-+=

输入电阻:Ri=∞ 输出电阻:Ro=0 同相比例放大电路仿真电路图 电压输入输出波形图

差动放大电路电路图 差动放大电路仿真电路图 五:实验步骤: 1.反相比例运算电路 (1)设计一个反相放大器,Au=-5V,Rf=10KΩ,供电电压为±12V。

模电放大电路的例题

4-1.在图示的单管共射放大电路中,已知三极管的β=50,r bb’=200Ω. ①试估算放大电路的静态工作点Q ; ②试估算r be和A v; ③假设换上β=100 三极管,电路其他参数不变,则Q 点将如何变化? ④如果换上β=100 的三极管后,仍保持I EQ(≈I CQ) 不变(此时需调整基极电阻R b), 则A v如何变化? ⑤假设仍用原来β=50的三极管,但调整R b使I EQ 增大一倍,则A v= ? ①估算Q I CQ≈βI BQ= 50×0.02 = 1mA≈I EQ V CEQ=V CC-I CQ R C= 12-1×5 = 7V ②估算r be和A v

③当β=100时,如电路其他参数不变,则I BQ不变,即I BQ仍为0.02mA,但是I CQ和V CEQ将发生变化,此时 I CQ=100×0.02 = 2mA ≈I EQ V CEQ=12-2×5=2V 可见当β=100 增大时,I CQ增大V CEQ减小,静态工作点移近饱和区。 ④当β=100,I EQ不变时 r be = 200+=2826Ω≈2.8kΩ A v = - =- 89.3 计算结果表明,当β由50增大到100,而I EQ 保持不变时,由于r be增大了将近一倍,因此|A v| 虽略有增加,但不显著。 ⑤当β=50,I EQ=2mA时 r be= 200 +=856Ω

A v= - =-145.3 上面计算得到的A v值表明,虽然虽然三极管的β不变,但是由于I EQ提高,使r be减小,结果有效地提高了|A v| 。但应注意,不能为了增大|A v| 而无限度地提高I EQ,因为I EQ太大将使静态工作点进入饱和区,从而导致输出波形出现明显的非线性失真。 4-2.试用微变等效电路法估算所示放大电路 的电压放大倍数和输入、输出电阻。已知三极管的β=50, r bb’=100Ω。假设电容C1 , C2和C e足够大。

负反馈放大电路实验报告

负反馈放大电路实验报告

3)闭环电压放大倍数为10s o sf -≈=U U A u 。 (2)参考电路 1)电压并联负反馈放大电路方框图如图1所示,R 模拟信号源的内阻;R f 为反馈电阻,取值为100 kΩ。 图1 电压并联负反馈放大电路方框图 2)两级放大电路的参考电路如图2所示。图中R g3选择910kΩ,R g1、R g2应大于100kΩ;C 1~C 3容量为10μF ,C e 容量为47μF 。考虑到引入电压负反馈后反馈网络的负载效应,应在放大电路的输入端和输出端分别并联反馈电阻R f ,见图2,理由详见“五 附录-2”。 图2 两级放大电路 实验时也可以采用其它电路形式构成两级放大电路。 3.3k ?

(3)实验方法与步骤 1)两级放大电路的调试 a. 电路图:(具体参数已标明) ? b. 静态工作点的调试 实验方法: 用数字万用表进行测量相应的静态工作点,基本的直流电路原理。 第一级电路:调整电阻参数, 4.2 s R k ≈Ω,使得静态工作点满足:I DQ约为2mA,U GDQ < - 4V。记录并计算电路参数及静态工作点的相关数据(I DQ,U GSQ,U A,U S、U GDQ)。 实验中,静态工作点调整,实际4 s R k =Ω

第二级电路:通过调节R b2,2 40b R k ≈Ω,使得静态工作点满足:I CQ 约为2mA ,U CEQ = 2~3V 。记录电路参数及静态工作点的相关数据(I CQ ,U CEQ )。 实验中,静态工作点调整,实际2 41b R k =Ω c. 动态参数的调试 输入正弦信号U s ,幅度为10mV ,频率为10kHz ,测量并记录电路的电压放大倍数 s o11U U A u = 、s o U U A u =、输入电阻R i 和输出电阻R o 。 电压放大倍数:(直接用示波器测量输入输出电压幅值) o1 U s U o U 1 u A 输入电阻: 测试电路:

模拟电子技术课程习题第五章放大电路的频率响应

模拟电子技术课程习题第五章放大电路的频率响应 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

第五章 放大电路的频率响应 5.1具有相同参数的两级放大电路在组成它的各个单管的截止频率处,幅值下降 [ ] A. 3dB B. 6dB C. 10dB D. 20dB 5.2在出现频率失真时,若u i 为正弦波,则u o 为 [ ] A. 正弦波 B. 三角波 C. 矩形波 D. 方波 5.3 多级放大电路放大倍数的波特图是 [ ] A. 各级波特图的叠加 B. 各级波特图的乘积 C. 各级波特图中通频带最窄者 D. 各级波特图中通频带最宽者 5.4 当输入信号频率为f L 或f H 时,放大倍数的幅值约为中频时的 [ ] 倍。 A.0.7 B.0.5 C.0.9 D.0.1 5.5 在阻容耦合放大器中,下列哪种方法能够降低放大器的下限频率?[ ] A .增大耦合电容 B .减小耦合电容 C .选用极间电容小的晶体管 D .选用极间电容大的晶体管 5.6 当我们将两个带宽均为BW 的放大器级联后,级联放大器的带宽 [ ] A 小于BW B 等于BW C 大于BW D 不能确定 5.7 填空: 已知某放大电路电压放大倍数的频率特性为 6100010 (1)(1) 1010 u f j A f f j j = ++ (式中f 单位:Hz ) 表明其下限频率为 ,上限频率为 ,中频电压增益为 dB ,输出电压与输入电压在中频段的相位差为 。 5.8 选择正确的答案填空。

幅度失真和相位失真统称为失真(a.交越b.频率),它属于失真(a.线性b.非线性),在出现这类失真时,若u i为正弦波,则u o为波(a.正弦b.非正弦),若u i为非正弦波,则u o与u i的频率成分 (a.相同b.不同)。 饱和失真、截止失真、交越失真都属于失真(a.线性b.非线性),在出现这类失真时,若u i为非正弦波,则u o为波(a.正弦b.非正弦),u o与u i的频率成分 (a.相同b.不同)。 5.9 选择正确的答案填空。 晶体管主要频率参数之间的关系是。 a.f a

放大电路失真现象及改善失真地研究

模拟电子技术研讨论文放大电路失真现象及改善失真的研究

学院:电子信息工程学院专业:通信工程 组长:南海蛟 组员:达川宇涵 指导教师:颖

目录 一、引言 3 二、放大电路失真类型 3 2.1线性失真 3 2.1.1幅度失真 4 2.1.2相位失真 4 2.1.3改善线性失真的方法 4 2.2非线性失真 6 2.2.1饱和失真 6 2.2.2截止失真 6 2.2.3双向失真7 2.2.4交越失真7

2.2.5谐波失真8 2.2.6互调失真8 2.2.7不对称失真 8 2.2.8瞬态互调失真9 2.2.9改善非线性失真的方法9 2.3负反馈对失真现象的影响11 三、失真电路仿真13 总结15 参考文献15 放大电路失真现象及改善失真的研究 南海蛟 (交通大学电子信息工程学院100044)

摘要:本文介绍了不同种类的放大电路失真类型,并分别提出了改善失真的方法,另外还分析了负反馈对线性失真和非线性失真的改善原理。 关键词:三极管放大电路线性失真非线性失真负反馈 一、引言 运算放大器广泛应用在各种电路中.不仅可以实现加法和乘法等线性运算电路功能,而且还能构成限幅电路和函数发生电路等非线性电路,不同的连接方式就 能实现不同的电路功能。集成运放将运算放大器和一些外围电路集成在一块硅片 上,组合成了具有特定功能的电子电路。集成运放体积小.使用方便灵活,适合 应用在移动通信和数码产品等便携设备中。但在实际工程应用中,由于种种原因, 总是会出现输入波形不能正常放大,这就是放大电路的失真现象。失真现象主要 有两大种类型:线性失真和非线性失真。造成线性失真的主要原因是放大器的频 率特性不够好。而造成非线性失真的原因有晶体管等特性的非线性和静态工作点 位置设置的不合适或输入信号过大。而在集成电路中经常用来改善失真的方法就 是负反馈,下面将就每一种失真现象和如何改善失真以及加入负反馈之后对失真 电路的影响进行具体分析讨论。 二、放大电路失真类型 2.1线性失真 又称为频率失真,在放大电路的输入信号是多频信号时,如果放大电路对信号的不同频率分量具有不同的增益幅值,就会使输出波形发生失真,称为幅度失 真;如果相对相移发生变化,称为相位失真,两者统称为频率失真。频率失真是

负反馈放大电路实验报告

实验二由分立元件构成的负反馈放大电路 一、实验目的 1?了解N沟道结型场效应管的特性和工作原理; 2?熟悉两级放大电路的设计和调试方法; 3?理解负反馈对放大电路性能的影响。 二、实验任务 设计和实现一个由N沟道结型场效应管和NPN型晶体管组成的两级负反馈放大电路。结型场效应管的型号是2N5486,晶体管的型号是9011。 三、实验内容 1.基本要求:利用两级放大电路构成电压并联负反馈放大电路。 (1)静态和动态参数要求 1)放大电路的静态电流I DQ和I CQ均约为2mA结型场效应管的管压降U G DQ< - 4V ,晶体管的管压降U C EQ= 2?3V; 2)开环时,两级放大电路的输入电阻要大于90k Q,以反馈电阻作为负载时的电压放大倍数的数值 >120 ; 3)闭环电压放大倍数为A usf二U°,.U s、-10。 (2)参考电路 1)电压并联负反馈放大电路方框图如图1所示,R模拟信号源的内阻;R为反馈电阻, 取值为100 k Q o Rt 图1电压并联负反馈放大电路方框图 2)两级放大电路的参考电路如图2所示。图中%选择910k Q, R1、R2应大于100k Q; G?G容量为10疔,C e容量为47犷。考虑到引入电压负反馈后反馈网络的负载效应,应在放大电路的输入端和输出端分别并联反馈电阻R,见图2,理由详见五附录一2”。 i㈡ R T 井肘成大电谿 图2两级放大电路 实验时也可以采用其它电路形式构成两级放大电路。

(3)实验方法与步骤 1)两级放大电路的调试 a. 电路图:(具体参数已标明) b. 静态工作点的调试 实验方法: 用数字万用表进行测量相应的静态工作点,基本的直流电路原理。 第一级电路:调整电阻参数, R^^4.2kQ ,使得静态工作点满足:I D 哟为2mA U G DQ < -4V 。记录并计算电路参数及静态工作点的相关数据( I DQ , U G SQ LA ,U S 、U G D Q 。 实验中,静态工作点调整,实际 -4k '1 第二级电路:通过调节 氐,&2 : 40^ 1 ,使得静态工作点满足:I CQ 约为2mA U C EQ = 2? 3V 。记录电路参数及静态工作点的相关数据( | CQ L C EQ )。 实验中,静态工作点调整,实际 R b ^41k 11 c. 动态参数的调试 输入正弦信号 U S ,幅度为 10mV 频率为10kHz ,测量并记录电路的电压放大倍数 A1 =U °1 -U s 、A =U o.. U s 、输入电阻R 和输出电阻R °o XSC1 Rf1 100k| ?

相关文档
最新文档