天然黄酮类化合物的药理活性及分离提取

天然黄酮类化合物的药理活性及分离提取
天然黄酮类化合物的药理活性及分离提取

黄酮类化合物是自然界广泛存在的一类化合物,在高等植物体内分布较多。本文对黄酮类化合物的结构与药理活性、提取分离方法等研究进展进行了综述,并对该领域的研究热点进行了展望。

1黄酮类化合物结构特点及分布

黄酮类化合物是一类自然界中广泛分布的多酚类物质。现泛指具有15个碳原子的多元酚类化合物,其中2个芳环(A环、B环)之间以一个三碳链(C3)相连,其骨架可用C6鄄C3鄄C6表示。

由于分子中有一个酮式羰基,故第一位上的氧原子具碱性,能与强酸成盐,天然黄酮类化合物母核上常含有羟基、甲氧基、异戊烯氧基等取代基。这些助色团的存在,使该类化合物多显黄色,故称黄酮或黄碱素[1]。

根据三碳链结构的氧化程度以及B环的连接位置等特点,黄酮类化合物可分为:黄酮和黄酮醇;异黄酮;异黄烷酮(又称二氢异黄酮);黄烷酮(又称二氢黄酮)和黄烷醇(又称二氢黄酮醇);橙酮(又称澳咔);查耳酮;二氢查耳酮;黄烷和黄烷醇;黄烷二醇(3,4)(又称白花色苷元)[2]。黄酮类在植物体内大部分与糖结合成苷类,小部分以游离态(苷元)的形式存在。绝大多数植物体内都含有黄酮类化合物,它在植物的生长、发育、开花、结果以及抗菌防病等方面起着重要的作用[3]。主要存在于桦木科、芸香科、樟科、唇形科、石楠科、玄参科、豆科、苦苣苔科、杜鹃科和菊科等高等植物中[4]。

2黄酮类化合物的药理活性

现已发现数百种不同类型的黄酮类化合物具有广泛的生物活性和药理活性。大量研究表明,黄酮类化合物具有清除自由基、抗氧化、抗突变、抗肿瘤、抗菌、抗病毒和调节免疫、防治血管硬化、降血糖等功能。黄酮类化合物以纯天然、高活性、见效快、作用广泛等特点日益受到人们的关注[5]。2.1抗氧化及抗自由基作用:自由基性质活泼,有极强的氧化反应能力,对人体有很大的危害。体内脂质和自由基过氧化作用导致细胞结构改变及功能破坏而引起癌症、衰老及心血管等退变性疾病[6]。有些黄酮类化合物能够直接保护细胞抗氧化,有的则通过诱导保护细胞抗氧化损伤的酶,还有的既可直接保护细胞不被氧化又可以诱导产生抗氧化酶。羟基黄酮被证明有直接抗氧化活性,但是不能有效诱导保护细胞的酶;能够有效地诱导细胞保护酶的甲氧基黄酮类化合物能够以最小毒性保护正常细胞。A环5位被甲氧基化的黄酮类化合物能够最有效地诱导细胞保护酶,其余同等效果的黄酮类化合物细胞毒性都很大[7]。王毅红等[8]通过对石松黄酮类化合物抗氧化的研究表明:石松黄酮类化合物能显著清除羟基自由基和超氧阴离子自由基,其黄酮类化合物抗氧化性能呈量鄄效相关。

2.2抗肿瘤作用:黄酮类化合物的抗癌机制主要与其抑制癌细胞增殖并诱导凋亡、抑制新生血管形成、抑制癌细胞迁移、抗氧化、抗炎症和提高机体免疫力这几个方面有关[9]。肿瘤细胞的一个显著特点:细胞不受控制的快速增殖。如何能够有效抑制肿瘤细胞的增殖是抗肿瘤的根本。许多黄酮类化合物已被证明能够干扰三磷酸腺苷(ATP)依赖性的药物流出转运蛋白,这些转运蛋白通过不同的细胞抑制药物在对抗癌细胞中起到很大的作用,这使在肿瘤治疗中克服多药耐药性成为可能[10]。黄酮化合物对人体的正常细胞低毒甚至无毒,而对肿瘤细胞有细胞毒性和治疗作用,因此黄酮化合物被认为是颇具有应用前景的新抗癌药或抗癌辅助药。

2.3抗人类免疫缺陷病毒:很多黄酮类化合物能够抑制HIV病毒与宿主细胞的融合,并且能够抑制逆转录酶和蛋白酶的活性。染料木黄酮被发现能够干扰基质细胞衍生因子(SDF)鄄1和艾滋病介导的CD4+T细胞的肌动蛋白动力学,肌动蛋白活性的降低与染料木黄铜介导的病毒DNA在静止的CD4+T细胞中积累抑制有关,分别给3只恒河猴单剂量口服10、11、12mg/kg,没有发现明显不良反应[11]。黄芩苷是一种黄酮类化合物,其能够与艾滋病毒竞争靶细胞结合位点,并且HIV鄄1入侵细胞初期,黄芩苷能够抑制其自我复制过程。

2.4抗炎及抗免疫作用:对金樱子果实提取物对缺血再灌注损伤的研究表明,口服金樱子果实提取黄酮类物质能够明显改善存活率,并且能够预防I/R诱导的组织损伤。进一步研究表明这些天然产物具有很好的抗氧化活性,能够显著降低DNA断裂。由于其抗氧化活性、抗细胞凋亡、抗炎等功能,对缺血性脑卒中具有潜在的治疗活性[12]。黄敬群等[13]研究发现槲皮素呈剂量依赖性抑制急性痛风性关节炎模型大鼠的距小腿关节肿胀程度并且能够明显改善模型大鼠距小腿关节炎的病理改变。说明槲皮素可通过减轻炎症反应治疗急性痛风性关节炎。

DOI:10.11655/zgywylc2014.05.023

基金项目:山西医科大学科技创新基金(C01201005)

作者单位:030001太原,山西医科大学药学院(刘星雨、周敏),基础医学院(孙体健)

通信作者:孙体健·讲座·

天然黄酮类化合物的药理活性及分离提取

刘星雨周敏孙体健

2.5抗心血管疾病:黄酮类有调血脂以及抑制血栓和扩张冠状动脉等作用,银杏叶提取物能显著降低高脂饲料喂养大鼠的血清胆固醇(TC)、甘油三酯(TG)水平,对高密度脂蛋白胆固醇(HDL鄄C)水平无明显影响[14]。流行病学研究表明:高黄酮类饮食能够降低心血管病死亡和危险因子。以前很少被发现蔬菜和水果中含有黄酮类能够保护心血管的物质。虽然苹果、草莓、洋葱等含黄酮类物质的水果和蔬菜对血压、心血管、血清脂质水平等有积极的影响,还需要进一步确定最佳的用量来达到临床治疗的目的。对含黄酮类化合物的水果和蔬菜的进一步认知能够帮助人们选择对心血管健康最有效的食物[15]。

2.6雌激素样与抗雌激素样作用:更年期妇女雌激素缺乏会导致许多不适症状,如面赤红,骨密度降低,心血管疾病增多等,黄酮类化合物作为弱植物雌激素,可与雌激素受体结合,它具有双向调节功能,可以根据个体激素状态,发挥雌激素样或抗雌激素样作用。一般认为绝经前黄酮类化合物可能具有抗雌激素作用,但绝经后可能为雌激素受体激发剂。尹霞等[16]研究发现刺老苞根皮黄酮类化合物可以改善骨质量,抑制大鼠去卵巢骨质疏松的发生,具有类雌激素的效应。2.7抗阿尔兹海默病(AD):AD患者大脑内神经递质乙酰胆碱(acetylcholine,Ach)的缺失是导致AD的关键原因。乙酰胆碱酯酶(AchE)过多,会催化Ach的裂解反应,导致Ach缺失,神经信号传递失效。异黄酮衍生物较其他黄酮类化合物具有较强的AchE抑制活性;B环对位氨甲基取代的化合物较间位取代的活性高;B环氨甲基种类影响AchE抑制活性,含有吡咯烷和哌啶基的化合物具有较高的抑制活性。2.8免疫调节作用:黄酮类化合物对B细胞核T细胞免疫功能都有调节作用,陈圆圆等[17]研究发现野菊花活性部位具有双向免疫调节作用,小剂量具有免疫增强作用,而大剂量具有免疫抑制的作用。在小鸡免疫抑制实验中,蜂胶黄酮微乳在中高剂量时能够克服环磷酰胺(CTX)诱导的免疫抑制,显著增强免疫器官指数,增加淋巴细胞再生能力并且增强抗体滴度和IgG、IgM浓度[18]。

2.9保护肝脏的作用:王志旺等[19]通过对甘肃产藏药五脉绿绒蒿总黄酮对小鼠实验性肝损伤的研究表明甘肃产藏药五脉绿绒蒿总黄酮能降低过硫酸铵(AP)或四氯化碳(CCl

)诱发肝损伤小鼠肝组织丙二醛(MDA)的含量;胡成穆等[20]通过研究豹皮樟总黄酮对大鼠酒精性脂肪肝细胞脂肪变性的影响表明:豹皮樟总黄酮对正常大鼠肝细胞存活无明显影响,100mg/L时能够明显增加酒精性肝损伤大鼠肝细胞存活时间。

3提取分离方法

3.1提取方法

传统的提取方法有煎煮法、浸渍法、渗漉法、回流提取法、连续回流提取法等。传统的提取方法有浸提时间长、原料预处理能耗大、热敏性组分易破坏等缺点。一些现代高新工程技术正在不断地被借鉴到中药提取分离工艺中来,如超临界流体萃取技术、微波提取、超声波提取、酶法、高速逆流色谱法、超微粉碎技术、半仿生提取技术等。

3.1.1超临界流体萃取技术(supercriticalfluidextraction,SFE):超临界流体是指高于临界温度和临界压力,物理性质介于气体与液体之间的流体,表面张力为零,这使它很容易渗透到样品的里面,带走测定组分;其既有与气体相当的高渗透能力和低黏度,又有与液体相近的密度和对许多物质优良的溶解能力。

3.1.2微波提取技术:其原理是利用磁控管所产生的每秒24.5亿次超高频率的快速震动形成的微波场的生物效应、热效应使药材内分子间相互碰撞、挤压,有利于有效成分的浸出。微波辐射诱导萃取技术具有选择性高、效率高、溶剂消耗少、有效成分吸收率高的特点,已有用于甘草、白芍、银杏及柚皮等黄酮类化合物的提取中。

3.1.3超声波提取技术:超声是频率高于20000Hz的高频声波,其原理主要是利用超声的空化效应、机械效应、热效应增大物质分子运动频率和速度,增加溶剂穿透力,提高药物溶出速度和溶出次数,具有提出率高(增大2~3倍),低温提取有利于保护有效成分等优点。现已摸索出超声提取银杏叶黄酮类化合物的最佳工艺。

3.1.4酶法:酶的作用可使细胞壁疏松、破裂,减小传质阻力,加速有效成分的释放。酶法提取可在常温和非有机溶剂下进行,所以得到的产物纯度、稳定性及活性较高,无污染,提取无需投入昂贵新设备,成本低廉、性价比高。刘志伟等[21]用酶解预处理后,再用乙醇提取,仙人草黄酮类化合物的得率比直接醇提提高了9.79%。

3.1.5高速逆流色谱提取技术:高速逆流色谱提取技术(HSCCC)是一种不用任何固态载体或支撑体,根据不同溶质在两相中的分配系数不同,溶质在两相溶剂中进行分配平衡,从而使不同成分得以分离的液鄄液分配色谱技术。红树林植物海南红豆是有名的植物杀虫剂,黄酮类物质是其生物活性成分,运用新型的高速逆流色谱技术通过调整流动相和固定相的体积比能够有效地提取分离出其3种有效成分单体。3.1.6超微粉碎技术:超微粉碎技术基于微米技术原理,利用特殊的粉碎设备,通过一定的加工工艺流程,对物料进行碾磨、冲击、剪切等,将粒径3mm以上的物料粉碎至粒径为10~25μm以下的微细颗粒,药材细胞破壁率大大增加,有效成分的溶出度增加,可低温粉碎使热敏药物不被破坏。黄其春等[22]通过比较银杏叶超微粉和细粉中总黄酮的浸出量,结果发现银杏叶超微粉浸出量比细粉高7.4%~21.7%。3.1.7半仿生提取技术:从生物药剂学的角度,先将药料以一定pH的酸水提取,继而以一定pH的碱水提取,提取水的最佳pH和其他工艺参数的选择,可用一种或几种有效成分结合主要药理作用指标,采用比例分割法来优选。模拟口服给药后药物经胃肠道转运的环境,即在中药药效物质提取中坚持“有成分论,不唯成分论,重在机体药效学反应,为经消化道给药的中药制剂提供了新的提取工艺的思路。张慧等[23]

对复方金钱草君药的半仿生提取,复方金钱草中车前子、路路通、广金钱草3种君药半仿生提取最佳条件为:料液比1g∶35ml,100℃条件下提3次,3次提取液pH分别为4.0、7.0及8.5,总时间2.5h。得到总黄酮质量分数为9.91mg/g,优于水煎煮法。

3.2分离方法

3.2.1膜分离技术:膜分离技术原理是用天然或人工合成的高分子薄膜,以外界能量或化学位差为推动力,对双组分或多组分的溶质和溶剂进行分离、分级、提纯和富集。易克传等[24]用膜分离技术对菊花总黄酮,选择截留相对分子质量为8×103的超滤膜,在溶液温度40℃、操作压力1.6MPa条件下,超滤120min,总黄酮纯度为19.81%。

3.2.2大孔吸附树脂分离技术:大孔吸附树脂是近代发展起来的一类有机高聚物吸附剂,其分离纯化的原理是利用特殊的吸附剂——

—大孔吸附树脂的吸附性和分子筛相结合的原理,有选择性地吸附中草药混合液中的有效成分,去除杂质。大孔吸附树脂本身化学结构、被吸附化合物的结构、溶剂等对吸附效果有影响,其具有吸附容量大、再生简单、效果可靠等优点,尤其适用于分离纯化苷类、黄酮类、生物碱类等成分及大规模生产。用大孔树脂吸附技术以流速为1BV/h的70%乙醇为洗脱液,以1BV/h的流速分离浓度为2.259mg/ml黄酮粗提液。经过提纯黄酮总分离率为94.44%,总黄酮的纯度达到12.45%,是粗提液(2.91%)的4倍[25]。

3.2.3分子印迹技术:分子印迹技术使用的模板分子即需要进行分离的目标分子,将目标分子与交联剂在聚合物单体溶液中通过共价键或非共价键进行聚合制备,得到单体鄄模板分子复合物,然后通过物理或化学手段除去模板分子,便得到具有目标分子的空间结构的分子印迹聚合物(MIP),分子印迹技术与色谱分离技术相比,具有分子识别性强、固定相制备简便快速、操作简单、性质稳定(耐酸碱、耐高温、高压等)、溶剂消耗量小、模板和MIP可以回收再利用等优点,在中药有效成分的提取分离中有很好的应用前景[26]。分子印迹技术大大降低了干扰和分析成本。依据黄酮类化合物不同的吸附性能来确定吸附剂,在最佳条件下从日本扁柏中分离槲皮苷、杨梅酮和穗花双黄酮的平均回收率分别为88.07%、93.59%和95.13%。这种方法对提取分离以及鉴定自然界或者其他来源的黄酮类物质或其他多酚类物质很有前景[27]。

近年来有关植物黄酮类化合物的研究热潮,为黄酮类化合物在医药、保健食品、化妆品等方面的应用提供理论依据。由于黄酮类化合物广泛存在于中药材中,是目前中药新药开发的重要宝库。而近10年来,对黄酮类化合物的研究倾向于对其药用价值的开发,更多地涉及提取分离纯化方法的应用研究、含量测定及制剂研究等。

参考文献

[1]彭程程,王青山,赵国祥,等.黄酮类化合物的研究进展[J].农产品加工·学刊,2010,6(5):38鄄42.

[2]文开新,王成章,严学兵,等.黄酮类化合物生物学活性研究进展[J].草业科学,2010,27(6):115鄄122.

[3]焦月华,朴成玉,严妍,等.黄酮类化合物分离纯化技术研究现状[J].饲料博览,2013,44(2):11鄄15.

[4]陈颢,李丽娟,李良,等.中药材中黄酮类化合物的提取及药理作用研究进展[J].云南化工,2011,38(4):50鄄52.

[5]马锐,吴胜本.中药黄酮类化合物药理作用及作用机制研究进展[J].中国药物警戒,2013,10(5):286鄄290.

[6]王倩,常丽新,唐红梅.黄酮类化合物的提取分离及其生物活性研究进展[J].河北理工大学学报(自然科学版),2011,33(1):110鄄115.

[7]TsujiPA,StephensonKK,WadeKL,et al.Structure鄄activityanalysisofflavonoids:directandindirectantioxidant,andanti鄄

inflammatorypotenciesandtoxicities[J].NutrCancer,2013,65

(6):1鄄12.

[8]王毅红,张春生,谭萍,等.石松黄酮类化合物的抗氧化作用研究[J].湖南文理学院学报(自然科学版),2013,25(2):30鄄32.[9]朱文振,马龙,李国荣.黄酮类化合物的抗癌作用及作用机制[J].生命科学,2012,24(5):444鄄447.

[10]WenzelU.Flavonoidsasdrugsatthesmallintestinallevel[J].CurrOpinionPharmacol,2013,13(5):864鄄868.

[11]GuoJ,XuX,RasheedTK,et al.GenisteininterfereswithSDF鄄1鄄andHIV鄄mediatedactindynamicsandinhibitsHIVinfectionof

restingCD4Tcells[J].Retrovirology,2013,10(6):62鄄68.[12]ZhangS,QiY,XuY,et al.Protectiveeffectofflavonoid鄄richex鄄tractfromRosalaevigataMichxoncerebralischemia鄄reperfusion

injurythroughsuppressionofapoptosisandinflammation[J].

NeurochemInt,2013,63(5):522鄄532.

[13]黄敬群,孙文娟,王四旺,等.尿酸钠致急性痛风性关节炎模型大鼠与槲皮素的抗炎作用[J].中国组织工程研究,2012,16

(15):2815鄄2819.

[14]彭亮,赵鹏,李彬,等.银杏叶提取物对大鼠血脂调节作用的研究[J].应用预防医学,2012,18(4):249鄄250.

[15]TohJY,TanVM,LimPC,et al.Flavonoidsfromfruitandveg鄄etables:a focusoncardiovascularriskfactors[J].Curr

AtherosclerRep,2013,15(12):368.

[16]尹霞,郑玲玲,张万强,等.刺老苞根皮黄酮类化合物抗去势雌性大鼠骨质疏松症实验研究[J].上海中医药杂志,2011,45

(3):67鄄69.

[17]陈园园,毕跃峰,李国栋.野菊花中萜类、黄酮类化合物对免疫调节和肝保护的协同作用研究[D].郑州:郑州大学,2012.[18]FanY,MaL,ZhangW,et al.Microemulsioncanimprovetheim鄄mune鄄enhancingactivityofpropolisflavonoidonimmunosup鄄

pressionandimmuneresponse[J].IntJBiolMacromol,2013,63:527鄄528.

[19]王志旺,王瑞琼,郭玫,等.甘肃产藏药五脉绿绒蒿总黄酮对小鼠实验性肝损伤的保护作用[J].中国实验方剂学杂志,2013,19(2):206鄄209.

[20]胡成穆,曹琦,解雪峰,等.豹皮樟总黄酮体外对酒精性脂肪肝大鼠肝细胞脂肪变性的影响[J].中国药理学与毒理学杂志,2013,27(2):1鄄6.

[21]刘志伟,吴和明,张晨.酶法提取仙人草黄酮类化合物的研究[J].时珍国医国药,2010,21(11):2903鄄2904.

[22]黄其春,

林艺丹,林梅香,等.银杏叶细粉与超微粉中总黄酮体外浸出量的比较研究[J].中成药,2012,34(12):2444鄄2446.[23]张慧,

谭秋龙,黎行山,等.结合响应面分析法优化复方金钱草中君药的半仿生提取工艺[J ].广东药学院学报,2013,29(1):29鄄34.

[24]易克传,曾其良,李慧.膜技术纯化菊花总黄酮的工艺研究[J].

天然产物研究与开发,2012,24(1):1449鄄1453.

[25]储晓琴,

胡叶青,岳磊.大孔吸附树脂纯化百蕊草总黄酮工艺研究[J].中药材,2013,36(3):478鄄481.

[26]夏赞韶,

贺福元,邓凯文,等.中药分子印迹技术对中医药理论的特殊影响[J].中国中药杂志,2013,38(8):1266鄄1269.[27]BiW,TianM,RowKH.Evaluationofmolecularlyimprintedan鄄

ion鄄functionalizedpoly(

ionicliquid)sbymulti鄄phasedispersiveextractionofflavonoidsfromplant[J].JChromatogrBAnalytTechnolBiomedLifeSci,2013,913鄄914:61鄄68.

(收稿日期:2013鄄10鄄29)

近十年来,由于诸多因素,医患关系发生了很大的变化,医患关系日趋紧张、医疗纠纷逐年增加、纠纷形式不断升级,甚至演化为医疗暴力。医患关系不和谐,患者对医生缺乏起码的信任,医生行医如履薄冰,多年来困扰着几乎每个医院。据不完全统计,全国95%以上的医院或多或少都出现过医疗纠纷,三甲医院平均每年医疗纠纷赔偿100例左右,

二甲医院平均每年20例左右[1]

。我院2011年9例,赔偿金额25.04

万元;2012年32例,赔偿金额102.44万元;2013年仅上半年已达24例,

赔偿尚未结束,明显呈逐年上升趋势。“大闹大赔,小闹小赔”左右了部分医疗纠纷处理,该赔的赔了,不该赔的也在赔。虽然近年来医疗纠纷的依法解决已经正在纳入正轨,但面对众多处于暴力临界点的“智慧型”医闹,法制还是显得那么苍白。

值得注意的是:①医疗纠纷逐年增多的势头仍未得到遏制,据统计,全国医疗纠纷案件仍在以每年11%的速度递

增[2]

。②索赔数额随城乡收入增高也在增高,

令医疗机构不堪重负。③聚众谩骂、

侮辱、围攻、殴打、限制医务人员自由仍程度不等地时有发生,且多处于暴力临界点,公安机关介入左右为难。④地方政府为求和谐稳定仍在干预纠纷处理。⑤媒体为吸引公众眼球在有关机构查处前就发表倾向性报道也在医患矛盾的发生、激化上起了推波助澜作用。1产生纠纷的原因1.1

医方原因:①医疗机构经费大部分需要自筹,医院为自身生存,淡化了其事业性质,在管理上不得不吸纳更多的企业化模式,分级核算,收费任务分解包干,医务人员收入与医疗收费直接挂钩不可避免地导致了过度检查、过度治疗、乱收费,甚至吃回扣等现象经久不息,直接影响着社会公众对医务人员的信任。②医患沟通欠缺。一方面医务人员未能重视传统生物医学模式早已开始向生物→心理→社会医学模式的转变,基本还停留在重视躯体病理变化,忽视心理、社会环境因素的旧模式上;另一方面通过医患沟通进行心理调整

指导在一般医院并不直接产生经济效益,医务人员对医患沟通当然缺乏热诚,也难以培养起相应的技能,仅仅侧重于预防纠纷发生的某些告知而缺乏有效的沟通。故而有资料显示

国内90%的医疗纠纷均源自医患沟通不足[

3]

。③医院解决纠纷不力,对医疗纠纷中的责任人处理不积极,不能以此教育其他人,起不到全员警示的作用,导致同类事件再次发生。1.2患方因素:①患方维权意识提高但对医院的诊疗及医学知识缺乏了解,不可能理性地看待医疗问题,对诊疗效果期望值过高,认为有病到医院就应立即明确诊断,就该治好,否则就是医院的过错。对抗菌药物的合理应用、选用也不能予以理解,常认为给药少或使用便宜药就是对患者不负责任。②多数患者不清楚自己在医疗过程中的权利、

义务,一旦对医疗过程或疗效不满,不论医院有无过错,都要问责医方。③随着法律法规的健全,信息传播的加速,医疗案例、医疗违规曝光的负面影响,患者在治疗过程中不再是被动接受治疗、护理,更会用动辄审视医方治疗、护理,问责医院。④尽管医保已普遍推开,出于患方自身利益的考虑总会对医院的收取费用提出一些疑问、不满或责难。

1.3社会因素:①政府卫生经费投入明显不足。目前我国卫生经费财政支出仅占GDP的4.89%,甚至不及古巴,在世界上处于较低水平。这一现实,决定了我国医疗卫生事业的公益性得不到应有的财政支持,医疗机构为自身生存还不得不考虑经济利益。②1978年后,随着市场经济的改革,医疗机构被迫纳入了市场经济的经营管理。市场经济是以市场经济主体追求利益最大化为特征,医院的经济收入直接决定了医院能否生存、发展。尽管近年来政府财政投入已开始有所增加,但目前的财政投入仍远远满足不了医疗机构的公益性需求,且医疗机构多年来的企业化经营理念也已深深扎根于医疗机构的管理者。③卫生行政部门为政府形象考虑没有法律依据地介入医疗纠纷,没有法律依据地要求医院赔钱了事息事宁人,助长了非法医闹漫天要价的气焰。④社会舆论和新闻媒体长期对医疗行业负面报道颇多,影响了医务人员的社会形象,导致人们对医疗行业信任度下降。患方一旦对医疗过

DOI :10.11655/zgywylc2014.05.024

作者单位:030024太原市万柏林区中心医院医务科

浅析医疗纠纷的原因及对策

卫明星

黄酮类化合物药理作用的分析

黄酮类化合物药理作用的分析 黄酮类化合物的基本结构构成为C-C-C方式,广泛存在于包括众多植物中,属于植物次级代谢产物。黄酮类化合物具有来源广、生物活性多、毒副作用小等特点,目前广泛应用于临床,古味伍绛木樨茶对其药理作用进行分析如下。 1 心血管系统作用 1.1 抗心律失常作用 动物实验表明,黄酮对心肌缺血再灌注损伤组织,可以有效地减少其心律失常发作次数,减轻发作频率,能对抗乌头碱、哇巴因和氯仿诱发的心律失常,其可能的机制为总黄酮可降低心室肌动作电位幅值(APA),延长动作电位时程(APD)。 1.2 抗动脉粥样硬化 动脉粥样硬化(AS)疾病进程的一个主要原因为,低密度脂蛋白(LDL)的氧化修饰,黄酮类化合物具有抑制LDL氧化作用,抗平滑肌增殖,清除自由基,从而有效地对抗动脉粥样硬化的损伤。 1.3 扩血管作用总黄酮具有血管紧张素转化酶抑制剂(ACEI)的作用,抑制血管内皮素(ET)的生成,扩张冠脉血管,改善心肌的血氧供应,对心血管系统起到改善作用,从而 起到血管扩张的作用。 1.4 抗凝血作用总黄酮体外给药可抑制花生四烯酸和胶原纤维引起的血小板聚集作用,改善血液流变性,延长凝血酶原时间。动物试验表明,大鼠皮下注射大剂量肾上腺素和冰水浸泡法,造出急性血瘀证大鼠模型,即血流变性呈轴稠状态的实验动物,通过饲喂山楂叶总黄酮(HLF),可显著降低红细胞(RBC)聚集指数、血浆比轴度,从而改善血瘀状态。银杏黄酮单独应用其抗凝作用不如蚓激酶,两者合用后抗凝效果加强,但溶栓作用并没有改善。 1.5 抗血脂作用维生素D3加脂肪乳剂造成大鼠高脂血症模型,在给予了麦胚总黄酮类后,可显著提高大鼠高密度脂蛋白胆固醇含量,降低实验性血清总胆固醇和三酚甘油含量。 2 抗炎调节免疫作用 黄酮类化合物具有显著的抗炎作用。作用机理为作用于细胞正常的有丝分裂过程,调节细胞间相互作用的分泌过程,抑制肥大细胞和嗜碱性细胞释放慢反应致炎物质,如中性粒细胞溶酶体酶、白三烯、组胺、前列腺素等,调节巨嗜细胞的吞噬功能,从而直到抗炎和免疫调节的作用。穿卜草中分离得到黄酮提取物可显著清除炎性因子,鸡蛋清致大鼠足肿胀、醋酸所致的小鼠腹腔毛细血管通透性增加、二甲苯所致的小鼠耳肿胀等急性炎症反应,都有明显的抑制作用。 3 抗菌抗病毒作用 3.1 抗菌作用甘草黄酮提取物在体外,可有效抑制白色念珠菌、黑根霉、灰葡萄抱、意大利青霉等真菌。同时对金黄色葡萄球菌、大肠杆菌、新型隐球菌、枯草杆菌、绿脓杆菌、烟曲霉菌、白色念珠菌等均有抑制作用,亦能明显抑制的生长。 3.2 抗病毒活性黄酮类化合物对多种病毒具有抑制作用,芦丁能抑制流感病毒、脊髓灰质炎病毒。黄芪总黄酮对人疤疹病毒(HSV21)感染的豚鼠皮肤,具有较好的抗病毒治疗效果。异黄芪282甲醚能显著抑制流感病毒。总之黄酮类对于流感病毒、呼吸道合胞病毒、脊髓灰质炎病毒、疤疹病毒、登革热病毒、腺病毒、肝炎病毒、柯萨奇病毒、冠状病毒等都具有一定的抑制作用。 3.3 抗HIV活性许多黄酮类化合物均有抗匀陨灾活性,其作用的靶点均分别为作用于HIV逆转录酶、HIV 蛋白酶、HIV整合酶,作用于HIV启动子,没有明确作用点的黄酮类化合物等。其中黄芩素可对抗中逆转录酶。 4 抗肿瘤抗癌作用 黄酮类化合物对于肿瘤细胞的增长繁殖具有显著地抑制作用。其作用机理为促进抑癌基因表达、诱导肿瘤细胞凋亡、干预肿瘤细胞信号转导、促进抗肿瘤细胞增殖等。黄酮类化合物抗癌抗肿瘤作用的效果,主要体现为具有显著的抗氧化抗自由基作用,且二者之前具有显著相关性,抗自由基及氧化应激的能力强,则

类黄酮的生理活性功能及应用

类黄酮 类黄酮(Flavonoids)是植物重要的是一类次生代谢产物,它以结合态(黄酮苷)或自由态(黄酮苷元)形式存在于水果、蔬菜、豆类和茶叶等许多食源性植物中。槲皮素(Quercetin)是最典型的类黄酮,其在C3位羟基上结合糖分子即形成植物中普遍的成分—芸香苷(芦丁)。柑橘属的多种水果均含有大量的黄酮化合物,如橘红素(Tangeretin)和川陈皮素(Nobiletin)。大豆中含有一种异黄酮化合物—大豆异黄酮,茶叶中的茶多酚是由没食子酸和类黄酮—儿茶酚组成。 在Ames检验中发现,槲皮素具有致诱变性,但没有代谢活性,但在反应系统中加入肝提取物可明显增加其诱变活性。长期的动物饲喂研究表明:槲皮素不仅不是致癌物质,而且具有一定的抗癌活性。事实上,在已发现61种黄酮化合物中,有11种具有抗突变作用,,其中有多种对致癌物诱导的动物模型恶性肿瘤有抑制作用,如橘红素和川陈皮素等。 类黄酮又称生物类黄酮,为人类饮食中含量最丰富的一类多酚化合物,广泛存于水果、蔬菜、谷物、根茎、树皮、花卉、茶叶和红葡萄酒中。目前为止,已经确认有四千多种不同的类黄酮。类黄酮可进一步分为: 黄酮醇类:最常见的类黄酮物质,如:槲皮素、芸香素。槲皮素广泛存在于蔬菜、水果中,以红洋葱的含量最高。 黄酮类或黄碱素类:如木犀草素、芹菜素,分别含于甜椒和芹菜。 黄烷酮类:主要见于柑橘类水果,如橙皮苷、柚皮苷。 黄烷醇类:主要为儿茶素,绿茶中含量最丰,红茶的儿茶素含量约减少一半。 花青素类:主要为植物中的色素,不同植物含量不一。 原花青素类:葡萄、花生皮、松树皮中都含有丰富的原花青素。 异黄酮类:主要分布于豆类食品,目前已证明具有抗乳癌和骨质疏松的作用。 3、生物类黄酮的生理功能及其应用 3.1清除自由基 黄酮类化合物属于酚类物质,可熬合金属离子,其分子物质基础是黄酮类分子中的3

天然产物化学

天然产物化学 1、天然产物是指由动物、植物及海洋生物和微生物体内分离出来的生物二次代谢产物及生 物体内源性生理活性化合物。广义:所有在自然界存在的物质。狭义:在自然界的生物体内 存在或代谢产生的有机物 2、天然产物化学(Natural Products Chemisty)是以各类生物为研究对象,以有机化学为基础, 以化学和物理方法为手段,研究生物二次代谢产物的提取、分离、结构、功能、生物合成、 化学合成与修饰及其用途的一门科学,是生物资源开发利用的基础研究。 3、天然产物化学研究的内容: 提取:从自然界的生命体中提取生命有效成分、分离、提纯 结构阐明:用各种化学及仪器方法测定有效成分的化学结构 功能:结合结构与天然产物的性能比较,得出其生理功能 合成:用有机合成手段合成该结构的化合物 生源:了解、探讨该物质的生物来源,即原料来源 应用:将该物质应用到所需领域中去 4、先导化合物(Lead compound):是指具有特征结构和生理活性并可通过结构发放造优化 其生理活性的化合物。 1、植物组织培养概念(狭义)指用植物各部分组织,如形成层。薄壁组织。叶肉组织。胚 乳等进行培养获得再生植株,也指在培养过程中从各器官上产生愈伤组织的培养,愈伤组织 再经过再分化形成再生植物。 5、溶剂提取的方法以及适合那些溶剂的提取 浸渍法:水或稀醇, 渗漉法:稀乙醇或水, 煎煮法:水, 回流提取法:有机溶剂 连续回流提取法:有机溶剂 6、聚酰胺吸附能力与哪些因素有关 ① 形成氢键的基团数目越多,则吸附能力越强。 ② 成键位置对吸附力也有影响。易形成分子内氢键者,其在聚酰胺上的吸附即相应减弱。 ③分子中芳香化程度高者,则吸附性增强;反之,则减弱。 与溶剂也有关系:一般在水中吸附能力最强,碱性溶剂中最弱 7、对天然产物化学成分进行结构测定前,如何检查其纯度 1)性状观察:观察外观颜色是否均一,晶形是否一致 2)物理常数测定:熔点(熔成小于2—3度),比旋光度,沸点等 3)色谱方法检查:常用的有薄层色谱和纸色谱等。若某成分经同一溶剂数次结晶,其晶形 一致,色泽均匀,熔点一定且熔距较小,同时在薄层色谱或纸色谱上,经数种不同展开剂系 统鉴定,均得到一个斑点,一般可认为是一个单体化合物。 8、用结晶法分离纯化天然产物化学成分时,在操作上有何要求 (1)对所需成分的溶解度随温度的不同而有显著的差别;“热时溶解,冷却即析出”。 对于 杂质,不溶或难溶。 (2)与被结晶成分不发生化学反应。 (3) 溶剂的沸点适中,若沸点过高,则附着于晶体表面不易除去,过低又不利于晶体析出。 9、、化学位移: 由于感应磁场的屏蔽或去屏效应,使得化学环境不同的质子在不同的磁场 强度下发生共振吸收的现象 )(1060ppm TMS ?-=νννδ样品

黄酮类化合物生物活性的研究进展_王慧

黄酮类化合物生物活性的研究进展 王 慧 (山东博士伦福瑞达制药有限公司,山东 济南 250101) 摘 要:黄酮类化合物是广泛存在于自然界的一类多酚化合物,有许多潜在的药用价值。现就黄酮类化合物抗肿瘤、抗心血管疾病、抗氧化抗衰老、抗菌抗病毒、免疫调节等作用的研究进展作一综述,以期为开发利用该类药物提供参考。关键词:黄酮类化合物;生物活性;综述文献 中图分类号:R282.71 文献标识码:A 文章编号:1672-979X (2010)09-0347-04 收稿日期:2010-05-31 作者简介: 王慧(1974-),女,山东临沭人,主管药师,从事质量控制工作 E-mail : wanghui0602@https://www.360docs.net/doc/163925917.html, Progress in Bioactivity of Flavonoids WANG Hui (Shandong Bausch & Lomb Freda Phar. Co., Ltd., Jinan 250101, China ) Abstract: Flavonoids are polyphenols widely found in nature and they have many potential medicinal values. This paper reviews the progress in anti-tumor, anti-cardiovascular disease, anti-oxidation and anti-aging, antibacterial and antivirus, immunological regulation of flavonoids, which can provide the references for the development and utilization of flavonoids. Key Words: flavonoids; bioactivity; review 黄酮类化合物是一类低分子植物成分,具有C6-C3-C6 基本构型,为植物体多酚类代谢物。主要分为黄酮及黄酮醇类、二氢黄酮及二氢黄酮醇类、黄烷醇类、异黄酮及二氢异黄酮类、双黄酮类,以及查尔酮、花色苷等[1]。黄酮类化合物独特的化学结构使其对哺乳动物和其它类型的细胞有重要的生物活性。黄酮类化合物有高度的化学反应性,例如清除生物体内的自由基;又有抑制酶活性、抗肿瘤、抗菌、抗病毒、抗炎症、抗过敏、抗衰老、抗心血管疾病糖尿病并发症等药理作用,且无毒无害。黄酮类化合物还是茶及黄芩、银杏、沙棘等众多中草药的活性成分。因此受到广泛关注,研究进展很快。1 黄酮类化合物的理化性质 黄酮类化合物多为晶体且有颜色,少数如黄酮苷类为无定形粉末,除二氢黄酮、二氢黄酮醇、黄烷及黄烷醇有旋光性外,余者则无。黄酮类化合物的溶解度因结构及存在状态(苷或苷元、单糖苷、双糖苷或三糖苷)不同而有差异,一般游离态苷元难溶于水,易溶于甲醇、乙醇、乙酸乙酯、乙醚等有机溶剂。其中,黄酮、黄酮醇、查儿酮等平面型分子因堆砌较紧密,分子间引力较大,故更难溶于水;而二氢黄酮及二氢黄酮醇等系非平面型分子,排列不紧密,分子间引力较小,有利于水分子进入,水溶解度稍大[2]。 2 黄酮类化合物的生物活性2.1 抗肿瘤活性 黄酮类对多种肿瘤细胞有明显的抑制作用,主要表现在抑制细胞增殖、诱导细胞凋亡、干预信号转导、影响细胞 [11] Denyer S P, Baird R M. Guide to microbiological control in pharmaceuticals and medical devices[M].2nd ed. Boca Raton: CRC Press, 2006: 325-326. [12] Mao k, Masafumi U, Takeshi K, et al Evaluation of acute corneal barrier change induced by topically applied preservatives using corneal transepithelial electric resistance in vivo [J].Cornea , 2010, 29(1): 80-85. [13] Noecker R. Effects of common ophthalmic preservatives on ocular health[J]. Adv Ther , 2001, 18: 205-215. [14] Kostenbauder H B. Physical factors influencing the activity of antimicrobial agents// Block S S. Disinfection, Sterilization and Preservation[M]. 3rd ed. PhiladelpHia: Lea and Febiger, 1983: 811-828. [15] Berry H, Michaels I. The evaluation of the bactericidal activity of ethylene glycol and some of its monoalkyl ethers against Bacterium coli [J]. J Pharm Pharmacol , 1950, 2: 243-249.

人教版高中化学选修5第一章第四节有机化合物的分离提纯练习

第1课时有机化合物的分离、提纯 课后篇巩固提升 基础巩固 1.下列各组混合物能用分液漏斗进行分离的是( ) A.四氯化碳和碘 B.苯和甲苯 C.溴苯和水 D.乙醇和乙酸 ,溶液不分层,不能用分液的方法分离,而溴苯 不溶于水,液体分层,可用分液漏斗分离,C项正确。 2.下列物质的提纯,属于重结晶法的是( ) A.除去工业酒精中含有的少量水 B.提纯苯甲酸 C.从碘水中提纯碘 D.除去硝基苯中含有的少量Br2 ,乙醇是被提纯的物质,液体的提纯常用蒸馏的方法,即工业酒精可用蒸馏的 方法提纯,A错误;苯甲酸为无色、无味片状晶体,含杂质的粗苯甲酸因制备苯甲酸的方法不同所含 的杂质不同,均可采用溶解→加入氢氧化钠溶液→过滤→加适量稀盐酸→冰水冷却→过滤→重结晶 →纯苯甲酸,B正确;碘是固态的物质,在不同溶剂中的溶解度不同,碘易溶于四氯化碳或苯,难溶于水,从碘水中提取碘单质,可以加入四氯化碳萃取,不适合用重结晶的方法,C错误;Br2易溶于硝基苯中,提纯的方法是向混合物中加入足量NaOH溶液,生成溴化钠和次溴酸钠,溶于水,但硝基苯不溶于水,然后用分液的方法分离,取上层液体得纯净的硝基苯,所以提纯硝基苯不适合用重结晶法,D错误。 3.化学家从有机反应RH+Cl2(g)RCl(l)+HCl(g)中受到启发,提出的在农药和有机合成工业中可 获得副产品的设想已成为事实,试指出从上述反应产物中分离得到盐酸的最佳方法是( ) A.水洗分液法 B.蒸馏法 C.升华法 D.有机溶剂萃取法 HCl极易溶于水,而有机物一般难溶于水的特征,采用水洗分液法得到盐酸是最简便易行 的方法。 4.工业上食用油的生产大多数采用浸出工艺。菜籽油的生产过程为将菜籽压成薄片,用有机溶剂浸泡,进行操作A;过滤,得液体混合物;对该混合物进行操作B,制成半成品油,再经过脱胶、脱色、脱 臭即制成食用油。操作A和B的名称分别是( ) A.溶解、蒸发 B.萃取、蒸馏 C.分液、蒸馏 D.萃取、过滤 A是用有机溶剂浸泡,该过程属于萃取;有机溶剂与油脂的混合物则需用蒸馏的方法分离。

黄酮类化合物

第五章黄酮类化合物 一、选择题 (一)单项选择题(在每小题的五个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内) 1.构成黄酮类化合物的基本骨架是() A. 6C-6C-6C B. 3C-6C-3C C. 6C-3C D. 6C-3C-6C E. 6C-3C-3C 2.黄酮类化合物的颜色与下列哪项因素有关() A. 具有色原酮 B. 具有色原酮和助色团 C. 具有2-苯基色原酮 D. 具有2-苯基色原酮和助色团 E.结构中具有邻二酚羟基 3.引入哪类基团可使黄酮类化合物脂溶性增加() A. -OCH3 B. -CH2OH C. -OH D. 邻二羟基 E. 单糖 4.黄酮类化合物的颜色加深,与助色团取代位置与数目有关,尤其在()位置上。 A. 6,7位引入助色团 B. 7,4/-位引入助色团 C. 3/,4/位引入助色团 D. 5-位引入羟基 E. 引入甲基 5.黄酮类化合物的酸性是因为其分子结构中含有() A. 糖 B. 羰基 C. 酚羟基 D. 氧原子 E. 双键 6.下列黄酮中酸性最强的是() A. 3-OH黄酮 B. 5-OH黄酮 C. 5,7-二OH黄酮

D. 7,4/-二OH黄酮 E. 3/,4/-二OH黄酮 7.下列黄酮中水溶性性最大的是() A. 异黄酮 B. 黄酮 C. 二氢黄酮 D. 查耳酮 E. 花色素 8.下列黄酮中水溶性最小的是() A. 黄酮 B. 二氢黄酮 C. 黄酮苷 D. 异黄酮 E. 花色素 9.下列黄酮类化合物酸性强弱的顺序为() (1)5,7-二OH黄酮(2)7,4/-二OH黄酮(3)6,4/-二OH黄酮A.(1)>(2)>(3) B.(2)>(3)>(1) C.(3)>(2)>(1)D.(2)>(1)>(3) E.(1)>(3)>(2) 10.下列黄酮类化合物酸性最弱的是() A. 6-OH黄酮 B. 5-OH黄酮 C. 7-OH黄酮 D. 4/-OH黄酮-二OH黄酮 11.某中药提取液只加盐酸不加镁粉,即产生红色的是() A. 黄酮 B. 黄酮醇 C. 二氢黄酮 D. 异黄酮 E. 花色素 12.可用于区别3-OH黄酮和5-OH黄酮的反应试剂是() A. 盐酸-镁粉试剂 B. NaBH4试剂 C.α-萘酚-浓硫酸试剂 D. 锆-枸橼酸试剂 E .三氯化铝试剂 13.四氢硼钠试剂反应用于鉴别() A. 黄酮醇 B. 二氢黄酮 C. 异黄酮

黄酮类化合物药理活性研究进度

黄酮类化合物药理活性研究进度 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 黄酮类化合物( flavonoids) 为存在于自然界中的一类结构中有 2 - 苯基色原酮( flavone) 的特殊化合物。黄酮分子中有一个酮式羰基,第一位上的氧原子具碱·性,能与强酸成盐,其羟基衍生物多具黄色,故又称黄碱素或黄酮。黄酮类化合物多与糖结合成苷类后,存在于植物体中。小部分黄酮类化合物则以游离苷元的形式存在。黄酮类化合物在大部分植物的体内都有发现,它在植物生长发育的各个时期,和植物抵抗病虫害等方面起着重要的作用。黄酮类化合物包括,黄酮和黄酮醇; 黄烷酮和黄烷酮醇; 异黄酮; 异黄烷酮;查耳酮; 二氢查耳酮; 橙酮( 又称澳咔) ; 黄烷和黄烷醇; 黄烷二醇等。黄酮类化合物中很多成分都具有一定的药理活性而有药用价值,近年来对黄酮类化合物药理活性研究主要包括以下几个方面: 1 对心脏及血液系统的影响 刘启功等发现黄酮类化合物葛根素对犬缺血心肌侧枝循环的开放和形成有一定的促进作用,对犬缺血心肌有保护作用。常志文等发现葛根素能阻滞β - 肾

上腺素受体,可降低心脏张力指数和心室内压上升速率,减慢心率,减少心肌耗氧量。王继光等研究发现,苦参总黄酮能预防室颤、缓解心律失常,对哇巴因诱发的心律失常亦有治疗作用。徐继辉等观察到,广枣总黄酮对心律失常具有抑制作用,可降低心脏停搏和心律失常发生率。有学者发现,银杏黄酮、黄蜀葵花黄酮、杜鹃花总黄酮等对缺血、缺氧的心脏肌肉具有一定的保护作用。大豆异黄酮能改善心肌舒张与收缩功能,对糖尿病心肌有治疗作用,沙棘总黄酮对心肌肥大有治疗作用。潘苏华、方秀桐等发现异银杏双黄酮能降低大鼠体内外血栓的形成比例; 可扩张血管、抑制小动脉收缩、增加血流量; 银杏双黄酮能引起实验动物心脏血管的扩张,可扩张实验动物血管,增加血流量。Horng - Huey Ko 等人的研究显示,桑树中的多种黄酮类成分如桑色烯( morusin ) 和桑素( kuwanon C) 等能够抑制家兔血小板的聚集,另外,环桑色烯( Cyclomorusin) 也可抑制血小板凝聚因子导致的血小板聚集。有实验证明甘草根及甘草叶总黄酮能延长凝血时间,山茶花总黄酮、罗汉果黄酮具有一定的抗血小板聚集作用,血竭总黄酮可防止血栓形成,改善血流,山楂叶黄酮能使血脂降低从而对动脉粥样硬化具有防治功能,大豆黄酮可以预防、治疗冠

有机物分离和提纯的常用方法(实用)

有机物分离和提纯的常用方法 分离和提纯有机物的一般原则是:根据混合物中各成分的化学性质和物理性质的差异进行化学和物理处理,以达到处理和提纯的目的,其中化学处理往往是为物理处理作准备,最后均要用物理方法进行分离和提纯。 方法和操作简述如下: 1. 分液法��常用于两种均不溶于水或一种溶于水,而另一种不溶于水的有机物的分离和提纯。步骤如下: 分液前所加试剂必须与其中一种有机物反应生成溶于水的物质或溶解其中一种有机物,使其分层。如分离溴乙烷与乙醇(一种溶于水,另一种不溶于水): 又如分离苯和苯酚: 2. 蒸馏法��适用于均溶于水或均不溶于水的几种液态有机混合物的分离和提纯。步骤为: 蒸馏前所加化学试剂必须与其中部分有机物反应生成难挥发的化合物,且本身也难挥发。如分离乙酸和乙醇(均溶于水):

3. 洗气法��适用于气体混合物的分离提纯。步骤为: 例如: 此外,蛋白质的提纯和分离,用渗析法;肥皂与甘油的分离,用盐析法。 有机物分离和提纯的常用方法 1,洗气 2,萃取分液溴苯(Br2),硝基苯(NO2),苯(苯酚),乙酸乙酯(乙酸) 3, a,制无水酒精:加新制生石灰蒸馏 b,酒精(羧酸)加新制生石灰(或NaOH固体)蒸馏c,乙醚中混有乙醇:加Na,蒸馏 d,液态烃:分馏 4,渗析 a,蛋白质中含有Na2SO4 b,淀粉中KI 5,升华奈(NaCl) 鉴别有机物的常用试剂 所谓鉴别,就是根据给定的两种或两种以上的被检物质的性质,用物理方法或化学方法,通过必要的化学实验,根据产生的不同现象,把它们一一区别开来.有机物的鉴别主要是利用官能团的特征反应进行鉴别.鉴别有机物常用的试剂及特征反应有以下几种: 1. 水 适用于不溶于水,且密度不同的有机物的鉴别.例如:苯与硝基苯. 2. 溴水 (1)与分子结构中含有C=C键或键的有机物发生加成反应而褪色.例如:烯烃,炔烃和二烯烃等. (2)与含有醛基的物质发生氧化还原反应而褪色.例如:醛类,甲酸. (3)与苯酚发生取代反应而褪色,且生成白色沉淀. 3. 酸性溶液 (1)与分子结构中含有C=C键或键的不饱和有机物发生氧化还原反应而褪色.例如:烯烃,炔烃和二烯烃等. (2)苯的同系物的侧链被氧化而褪色.例如:甲苯,二甲苯等. (3)与含有羟基,醛基的物质发生氧化还原反应而使褪色.例如:醇类,醛类,单糖等. 4. 银氨溶液(托伦试剂) 与含有醛基的物质水浴加热发生银镜反应.例如:醛类,甲酸,甲酸酯和葡萄糖等. 5. 新制悬浊液(费林试剂) (1)与较强酸性的有机酸反应,混合液澄清.例如:甲酸,乙酸等. (2)与多元醇生成绛蓝色溶液.如丙三醇. (3)与含有醛基的物质混合加热,产生砖红色沉淀.例如:醛类,甲酸,甲酸酯和葡萄糖等. 6. 金属钠 与含有羟基的物质发生置换反应产生无色气体.例如:醇类,酸类等. 7. 溶液 与苯酚反应生成紫色溶液. 8. 碘水 遇到淀粉生成蓝色溶液. 9. 溶液 与酸性较强的羧酸反应产生气体.如:乙酸和苯甲酸等.

黄酮类化合物的生理功能

黄酮类化合物的生理功能 黄酮类化合物广泛存在于植物中,实际上存在于植物的所有部分,包括根、心材、树皮、叶、果实和花中,光全作用中约有2%的碳源被转化成类黄酮。早在30年代人们就发现了黄酮类化合物具有维生素C样的活性,曾一度被视为是维生素P。至今法国与俄罗斯仍继续称黄酮类化合物为维生素P。Pratt等人研究了黄酮类化合物的抗氧化性质,认为黄酮是作为一级抗氧化剂而起作用的,它们具有显著的抗氧化性能。黄酮抗油脂过氧化的作用早在60年代就已经被证实了。80年代以来,对黄酮类化合物的研究逐渐转向其清除自由基的能力、抗衰老及对老年病的防治功效上。 黄酮类化合物中含有消炎、抑制异常的毛细血管通透性增加及阻力下降、扩张冠状动脉、增加冠脉流量、影响血压、改变体内酶活性、改善微循环、解痉、抑菌、抗肝炎病毒、抗肿瘤具有重要生物活性的化合物,有很高的药用价值。中草药含黄酮类化合物的很多,已经证明类黄酮是许多中草药的有效成份。例如满山红中的杜鹃素、小叶枇杷中的小叶枇杷素、矮地茶中的槲皮苷、铁包金中的芦丁、白毛夏枯草和青兰中的木犀草素、红管药中的槲皮素、葛根中的黄豆苷与葛根素、毛冬青与银杏叶中的黄酮醇苷、黄芩中的抗菌成分黄芩素和解热有效成分黄芩苷等。此外,还有很多中草药富含黄酮类成分,如槐米、陈皮、射干、红花、甘草、蒲黄、枳实、芫花、金银花、菊花、山楂、淫羊藿、桎木和地锦等。除了药用价值外,其中的部分黄酮类化合物(特别是来源自药食两用的中草药)显然可应用在功能性食品。 黄酮和黄酮醇是植物界分布最广的黄酮类化合物,广泛存在于食用蔬菜及水果中,在沙棘、山楂、洋葱等中含量较高,茶叶、蜂蜜、果汁、葡萄酒中含量丰富。椐估计人体每天从食物中摄入这类物质可达1g,产生有益的生理作用。黄酮类化合物无显著毒性,大鼠对槲皮素的经口LD50为10~50g/kg ,小鼠一次口服15g/kg,观察7d无一死亡。临床病人摄取芦丁2.25g持续7d或60mg/d连续5年,均无任何副反应。在其他一系列大剂量、长时间的动物试验中,均未发现有致癌性。显性致死试验、细胞姐妹染色体试验、微核试验证明槲皮素类衍生物无致突变作用。 黄酮类化合物的生理功能可概括为: ⑴调节毛细血管的脆性与渗透性。 ⑵是一种有效的自由基清除剂,其作用仅次于维生素E。 ⑶具有金属螯合的能力,可影响酶与膜的活性。 ⑷对维生素C有增效作用,似乎有稳定人体组织内维生素C的作用。 ⑸具有抑制细菌和抗生素的作用,这种作用使普通食物抵抗传染病的能力相当高。 ⑹在两方面表现有抗癌作用,一方面是对恶性细胞的抑制(即停止或抑制细胞的增长),另一方面是从生化方面保护细胞免受致癌物的损害。 尽管对黄酮类化合物的看法尚有矛盾的方面,但它目前仍被应用来防治下列一些疾病: ⑴毛细血管的脆性和出血。 ⑵牙龈出血。 ⑶眼的视网膜内出血。

黄酮类化合物

黄酮类化合物 黄酮类化合物泛指两个具有酚羟基的苯环(A-与B-环)通过中央三碳原子相互连结而成的一系列化合物黄酮类化 合物结构中常连接有酚羟基、甲氧基、甲基、异戊烯基等官能团。此外,它还常与糖结合成苷。多数科学家认为黄酮的基本骨架是由三个丙二酰辅酶A和一个桂皮酰辅酶A生物合成而产生的。经同位素标记实验证明了A环来自于三个丙二酰辅酶A,而B环则来自于桂皮酰辅酶A[1]。1、分类:根据中央三碳链的氧化程度、B-环连接位置(2-或3-位)以及三碳链是否构成环状等特点,可将主要的天然黄酮类化合物分类:黄酮类(flavones)、黄酮醇(flavonol)、二氢黄酮类(flavonones)、二氢黄酮醇类(flavanonol)、花色素类(anthocyanidins)、黄烷-3,4二醇类(flavan-3,4-diols)、双苯吡酮类(xanthones)、查尔酮(chalcones)和双黄酮类(biflavonoids)等十五种。另外,还有一些黄酮类化合物的结构很复杂,其中包括榕碱及异榕碱等生物碱型黄酮。2、理化性质:天然黄酮类化合物多以苷类形式存在,并且由于糖的种类、数量、联接位置及联接方式不同可以组成各种各样黄酮苷类。组成黄酮苷的糖类包括单糖、双糖、三糖和酰化糖。黄酮苷固体为无定形粉末,其余黄酮类化合物多为结晶性固体。黄酮类化合物不同的颜色为天然色素家族添加

了更多色彩。这是由于其母核内形成交叉共轭体系,并通过电子转移、重排,使共轭链延长,因而显现出颜色。黄酮苷一般易溶于水、乙醇、甲醇等级性强的溶剂中;但难溶于或不溶于苯、氯仿等有机溶剂中。糖链越长则水溶度越大。黄酮类化合物因分子中多具有酚羟基,故显酸性。酸性强弱因酚羟基数目、位置而异。3、显色:1.盐酸-镁粉(或锌粉) 反应为鉴定黄酮类化合物最常用的颜色反应,反应机理现在认为是因为生成了阳碳离子缘故[1]。2.四氢硼钠(NaBH4)是对二氢黄酮类化合物专属性较高的一种还原剂,产生红~紫色。而与其它黄酮类化合物均不显色。3. 黄酮类化合分子中常含有下列结构单元,故常可与铝盐、铅盐、锆盐、镁盐、锶盐、铁盐等试剂反应,生成有色络合物。与1%三氯化铝 或硝酸铝溶液反应,生成的络合物多为黄色(λmax=415nm),并有荧光,可用于定性及定量分析。4、黄酮对身体的好处黄酮广泛存在自然界的某些植物和浆果中,总数大约有4千 多种,其分子结构不尽相同,如芸香苷、橘皮苷、栎素、绿茶 多酚、花色糖苷、花色苷酸等都属黄酮。不同分子结构的黄酮可作用于身体不同的器官,如山楂--心血管系统,兰梅-- 眼睛,酸果--尿路系统,葡萄--淋巴、肝脏,接骨木果--免疫系统,平时我们可以通过多食葡萄、洋葱、花椰莱、喝红酒、多饮绿茶等方式来获得黄酮,作为身体的一种补充。 黄酮的功效是多方面的,它是一种很强的抗氧剂,可有效清

液体有机化合物的分离和提纯

2-5 液体有机化合物的分离和提纯 在生产和实验中,经常会遇到两种以上组分的均相分离问题。例如某物料经过化学反应以后,产生一个既有生成物又有反应物及副产物的液体混合物。为了得到纯的生成物,若反应后的混合物是均相的,时常采用蒸馏(或精馏)的方法将它们分离。 一、简单蒸馏 通过简单蒸馏可以将两种或两种以上挥发度不同的液体分离,这两种液体的沸点应相差30℃以上。 1. 简单蒸馏原理 液体混合物之所以能用蒸馏的方法加以分离,是因为组成混合液的各组分具有不同的挥发度。例如,在常压下苯的沸点为80.1℃,而甲苯的沸点为110.6℃。若将苯和甲苯的混合液在蒸馏瓶内加热至沸腾,溶液部分被汽化。此时,溶液上方蒸气的组成与液相的组成不同,沸点低的苯在蒸气相中的含量增多,而在液相中的含量减少。因而,若部分汽化的蒸气全部冷凝,就得到易挥发组分含量比蒸馏瓶内残留溶液中所含易挥发组分含量高的冷凝液,从而达到分离的目的。同样,若将混合蒸气部分冷凝,正如部分汽化一样,则蒸气中易挥发组分增多。这里强调的是部分汽化和部分冷凝,若将混合液或混合蒸气全部冷凝或全部汽化,则不言而喻,所得到的混合蒸气或混合液的组成不变。综上所述,蒸馏就是将液体混合物加热至沸腾,使液体汽化,然后,蒸气通过冷凝变为液体,使液体混合物分离的过程,从而达到提纯的目的。 2. 蒸馏过程 通过蒸馏曲线可以看出蒸馏分为三个阶段,如图2-20所示。 图2-20 简单蒸馏曲线图 在第一阶段,随着加热,蒸馏瓶内的混合液不断汽化,当液体的饱和蒸气压与施加给液体表面的外压相等时,液体沸腾。在蒸气未达到温度计水银球部位时,温度计读数不变。一旦水银球部位有液滴出现(说明体系正处于气、液平衡状态),温度计内水银柱急剧上升,直至接近易挥发组分沸点,水银柱上升变缓慢,开始有液体被冷凝而流出。我们将这部分流出液称为前馏分(或馏头)。由于这部分液体的沸点低于要收集组分的沸点,因此,应作为杂质弃掉。有时被蒸馏的液体几乎没有馏头,应将蒸馏出来的前滴液体作为冲洗仪器的馏头去掉,不要收集到馏分中去,以免影响产品质量。

黄酮类化合物

黄酮类化合物 黄酮类化合物是自然界存在的最大类别的酚类化合物之一,它广泛存在于植物的各个部位,尤其是花叶部位,主要存在于芸香科、唇形科、豆科、伞形科、银杏科、与菊科等。有文献记载约有20%药中含有黄酮类化合物,可见其资源之丰富。许多研究已表明黄酮类化合物具有多种生物活性,除利用其抗菌、消炎、抗突变、降压、清热解毒、镇静、利尿等f乍佣外,在抗氧化、抗癌、防癌、抑制脂肪氧化酶等方面也有显著效果。他是大多数氧自由基的清除剂,因而能提高SOD(过氧化物歧化酶)的活力,减少MDA(脂质过氧化物丙二醛)及OX —LDL(氧化低密度脂蛋白)的生成。他可以增加冠脉流量:对实验性心肌梗塞有对抗作用,对急性心肌缺血有保护作用,对治疗冠心病、心绞痛、高血压等有显著效果,对降低舒张压,防治心律失常、心血管病和活血化瘀也起重要作用。由于黄酮类化合物的这些生物活性使他的研究进入了—个新的阶段,掀起了黄酮类化合物研究、开发;f0用热潮,促使其在化妆品、医药、食品等工业中有广泛的应用。目前发现的黄酮类化合物已达5000多种,但研究亦发现,在这众多的黄酮类化合物中却因其结构的不同,有的表现出生物活性,有的却没有生物活性,而且生物活性亦因其结构的差异而不同。所以提取分离出具有较高生物活性的黄酮类化合物对医药及食品工业是十分重要的。 一、国内外研究现状 邢秀芳研究了纤维素酶在葛根总黄酮提取中的应用,结果显示在纤维素的作用下,葛根总黄酮的收率提高了130/0。廖亮研究了银杏叶中总黄酮提取方法结果表明乙醇提取较好。方桂珍正交实验研究仙鹤草中总黄酮的提取工艺,考察浸提液浓度、浸提温度、浸提时间、浸提次数、液科比等5个因素对f山鹤草总黄酮含量的影响,确立了仙鹤草总黄酮最佳提取条件为:浸提液体积分数40%,液料比10:1,浸提温度7d℃,回流提取3次,每次0.5h。 高红宁采用紫外分光光度法测定苦参中总黄酮的含量,研究大孔树脂AB一8对苦参总黄酮的吸附性能及原液浓度、pH、流速、洗脱剂的种类对树脂吸附性的影响,结果表明原液浓度为0285mg/ml,pH值为4,流速为3BVm洗脱剂用50%乙醇时,AB一8树脂,吸效果较好。康纯研究了微乳薄层色谱对黄酮类层分分离鉴定,以6种SDS一正丁醇一正庚烷一水徽乳液作为展开剂,通过聚酰胺薄层层析,分离和检测14种中药材、饮片及中成

(整理)天然药物化学第4章黄酮类化合物.

第4章黄酮类化合物一、选择题 1.构成黄酮类化合物的基本骨架是() A. 6C-6C-6C B. 3C-6C-3C C. 6C-3C D. 6C-3C-6C E. 6C-3C-3C 2.引入哪类基团可使黄酮类化合物脂溶性增加() A. -OCH3 B. -CH2OH C. -OH D. 邻二羟基 E. 单糖 3.黄酮类化合物的酸性是因为其分子结构中含有() A. 糖 B. 羰基 C. 酚羟基 D. 氧原子 E. 双键 4.下列黄酮中酸性最强的是() A. 3-OH黄酮 B. 5-OH黄酮 C. 5,7-二OH黄酮 D. 7,4/-二OH黄酮 E. 3/,4/-二OH黄酮 5.下列黄酮中水溶性性最大的是() A. 异黄酮 B. 黄酮 C. 二氢黄酮 D. 查耳酮 E. 花色素 6.下列黄酮中水溶性最小的是() A. 黄酮 B. 二氢黄酮 C. 黄酮苷 D. 异黄酮 E. 花色素 7.下列黄酮类化合物酸性强弱的顺序为() (1)5,7-二OH黄酮(2)7,4/-二OH黄酮(3)6,4/-二OH黄酮 A.(1)>(2)>(3) B.(2)>(3)>(1) 精品文档

C.(3)>(2)>(1) D.(2)>(1)>(3) E.(1)>(3)>(2) 8.色原酮环C2、C3间为单键,B环连接在C2位的黄酮类化合物是 A.黄酮醇 B.异黄酮 C.查耳酮 D.二氢黄酮 E.黄烷醇 9.银杏叶中含有的特征成分类型为 A.黄酮醇 B.二氢黄酮 C.异黄酮 D.查耳酮 E.双黄酮 10.黄酮类化合物大多呈色的最主要原因是 A.具酚羟基 B.具交叉共轭体系 C.具羰基 D.具苯环 E.为离子型 11.二氢黄酮醇类化合物的颜色多是 A.黄色 B.淡黄色 C.红色 D.紫色 E.无色 12.二氢黄酮、二氢黄酮醇类苷元在水中溶解度稍大是因为 A.羟基多 B.有羧基 C.离子型 D.C环为平面型 E. C环为非平面型 13.黄酮苷和黄酮苷元一般均能溶解的溶剂为 A.乙醚 B.氯仿 C.乙醇 D.水 E.酸水 14.下列黄酮类酸性最强的是 A.7-OH黄酮 B.4′-OH黄酮 C.3′,4′-二OH黄酮 D.7,4′-二OH黄酮 E.6,8-二OH黄酮 精品文档

药物综述——黄酮类化合物

药物综述——黄酮类化合物 关键词:黄酮类;来源;发展史;药理作用;不足之处 摘要:黄酮类化合物分布广泛,具有多种生物活性,但目前,黄酮类药物仍有些不足之处。 正文: 1.发展史:黄酮类化合物的发现历史十分悠久。早在二十世30年代初,欧洲一 位药物化学家在研究柠檬皮的乙醇提取物时无意中得到一种白色结晶,将其命名为“维生素P”。动物试验证实:维生素P的抗坏血作用胜过维生素C10倍。2年后,这位科学家进一步发现:维生素 P实际上是一种由黄酮组成的混合物而非单一物质,故后来有人形象化地将维生素P更名为柠檬素。黄酮类化合物作为保健产品首次引起国际医药界的注意是在二十世纪八十年代末。法国一家保健食品厂商率先推出具有市场引导作用的黄酮类保健新品“碧萝芷”。它是从法国地中海沿岸地区生长的一种主要树种“滨海松”树皮中提取的一种黄酮混合物。由于碧萝芷能预防和治疗西方国家极为常见的冠心病与心肌梗塞等心血管疾病,故上市后销售情况极为红火。在上市10年以后,临床医学研究人员不断发现碧萝芷有不少令人感兴趣的新用途,其中包括抗哮喘、防止长期抽烟引起的脑动脉硬化与脑血栓形成以及降血压作用等。据科学家研究,法国生产的碧萝芷含有极其复杂的黄酮成分,其中包括:儿茶素、表倍儿茶素、紫杉素、原花青素及其单体、2倍体、3倍体与多倍体混合物。正是这些复杂的黄酮构成碧萝芷多样化药理作用的基础。 2.来源:天然黄酮类化合物是植物体多酚类的内信号分子及中间体或代谢物, 包括黄酮、异黄酮、黄酮醇、异黄酮醇、黄烷酮、异黄烷酮、查耳酮等,最集中分布于被子植物中。如黄酮类以唇形科、爵麻科、苦苣苔科、玄参科、菊科等植物中存在较多;黄酮醇类较广泛分布于双子叶植物;二氢黄酮类特别在蔷薇科、芸香科、豆科、杜鹃花科、菊科、姜科中分布较多;二氢黄酮醇类较普遍地存在于豆科植物中;异黄酮类以豆科蝶形花亚科和鸢尾科。 植物中存在较多。在裸子植物中也有存在,如双黄酮类多存在松柏纲、银杏纲和凤尾纲等植物中。黄酮类化合物具有能够改变机体对变能反应原、病毒及致癌物反应的能力,并保护机体组织不受氧化性侵袭的伤害,因此具有"天然生物反应调节剂"的美称。黄酮类化合物一般存在于蔬菜和水果的可食性果肉中。当把它们从中分离出来后,其味道有些发苦,如桔子、柠檬、葡萄和柚等这些柑桔类植物是黄酮类化合物特别丰富的来源。许多植物如樱桃、葡萄、蔷薇果、青椒、花茎甘蓝、洋葱和番茄等,以及许多草药如越桔、银杏、乳蓟等都含有高质量的黄酮类化合物。此外,多种植物的叶、干和根部也发现了一些黄酮类化合物,如山茶花报春黄甙(干燥后用来生产绿茶和黑茶)的叶子,松树皮和成熟和葡萄籽是各种黄酮类化合物的最好来源。 3.药理活性: a.心血管系统活性。不少治疗冠心病有效的中成药均含黄酮类化合物。研究发现黄酮类化合物不仅有明显的扩冠作用,对缺血性脑损伤有保护作用,对心肌缺血性损伤有保护作用,对心肌缺氧性损伤有明显保护作用,还有有抗心率失常作用。

(整理)黄酮类化合物-

第七章 黄酮类化合物 黄酮类化合物(flavonoids )是广泛存在于自然界的一大类化合物,大多具有颜色。这一类化合物主要存在于双子叶植物和裸子植物中,在菌类、藻类、地衣类等低等植物中较少见。此类化合物在植物体中大部分与糖结合成苷,一部分以游离状态存在。 黄酮类化合物有多方面的生物活性。例如在心血管系统方面,槐米中的芸香苷和陈皮中的橙皮苷等成分有调节血管通透性和维生素P 样作用,可用作防治高血压及动脉硬化的辅助药物;银杏中的银杏黄酮、葛根中的葛根素等成分有明显的扩张冠状动脉作用。在抗肝脏毒方面,水飞蓟素有护肝的作用,可用作治疗急慢性肝炎、肝硬化及多种中毒性肝损伤。在抗菌作用方面,黄芩中的黄芩苷、黄芩素等成分有一定程度的抗菌作用。此外,黄酮类化合物在镇咳、祛痰、解痉等方面也有一定治疗作用。因此黄酮类化合物是天然药物中的一类重要的有效成分。 第一节 黄酮类化合物的结构与分类 以前,黄酮类化合物主要是指基本母核为2-苯基色原酮类化合物,现在则是泛指两个苯环(A 环与B 环)通过中央三碳链相互连接而成,具有6C-3C-6C 基本骨架的一系列化合物。 O O O O H 1 234 5 6 78A B C 1 / 2/ 3/4/ 5/ 6/ 根据中央三碳链的氧化程度、三碳链是否成环及B 环连接位置等特点,可将黄酮类化合物进行分类(表7-1)。 色原酮(苯并-γ-吡喃酮) 2-苯基色原酮(黄酮)

黄酮类化合物多为上述基本母核的衍生物,在A环和B环上常有羟基、甲氧基、异戊烯基等取代基。组成苷的糖类常有D-葡萄糖、D-半乳糖、L-鼠李糖、L-阿拉伯糖、D-木糖及D-葡萄糖醛酸等。也有双糖和三糖,如芸香糖、龙胆二糖、龙胆三糖等。糖多结合在C3、C5、C7位,其它位置也有连接。 下面将黄酮类化合物的主要类型举例如下: 一、黄酮和黄酮醇类 基本结构: O R O R=H 黄酮R=OH 黄酮醇

天然产物:黄酮类化合物

黄酮类化合物 摘要:绝大多数植物体内都含有黄酮类化合物,它在植物的生长、发育、开花、结果以及 抗菌防病等方起着重要的作用,更为重要的是,它有很多药理活性,如心血管系统活性、抗菌及抗病毒活性、抗肿瘤活性、抗氧化自由基活性、抗炎、镇痛活性、保肝活性等。随着生活水平的提高和生活节奏的改变,不管是癌症还是心血管疾病都已成为人类死亡病因的重大杀手,也是人们健康的“无声凶煞”!而抗衰老则是更古至今不变的话题。因此近几年对该类物质的研究如火如荼,并取得重大突破。本文主要阐述几种提取和测定黄酮类化合物的方法及其功能,为工业中从植物中提取黄酮类化合物提供依据。 关键字:黄酮类化合物提取方法功能 正文:黄酮类化合物(flavonoids)泛指两个具有酚羟基的苯环(A-与B-环)通过中央三 碳原子相互连结而成的一系列化合物,以黄酮(2-苯基色原酮)为母核而衍生的一类黄色色素。其中包括黄酮的同分异构体及其氢化的还原产物,也即以C6-C3-C6为基本碳架的一系列化合物。黄酮类化合物在植物界分布很广,在植物体内大部分与糖结合成苷类或碳糖基的形式存在,也有以游离形式存在的。天然黄酮类化合物母核上常含有羟基、甲氧基、烃氧基、异戊烯氧基等取代基。由于这些助色团的存在,使该类化合物多显黄色。又由于分子中γ-吡酮环上的氧原子能与强酸成盐而表现为弱碱性,因此曾称为黄碱素类化合物。在了解黄酮类化合物化学结构的基础上,科研工作者创造了多种黄酮类化合物提取和测定方法。 1提取方法 1.1碱液提取法 黄酮类化合物大多具有酚羟基,易溶于碱水,酸化后又可沉淀析出其原因一是由于黄酮酚羟基的酸性,二是由于黄酮母核在碱性条件下开环形成 2 -羟基查耳酮,极性增大而溶解因此可用碱性水( 碳酸钠氢氧化钠氢氧化钙水溶液) 或碱性稀醇( 50%乙醇) 浸出,浸出液经酸化后析出黄酮类化合物氢氧化钠水溶液的浸出能力高,但杂质较多,不利于纯化当植物材料( 如花和果实) 含有较多的果胶黏液质及水溶性杂质时,宜采用石灰水,使它们与氢氧化钙生成钙盐沉淀滤除但浸出效果不如氢氧化钠水溶液好,同时有些黄酮类化合物能与钙结合成不溶性物质被滤除,一般可以根据不同的原料使用不同碱性溶液在用碱酸法提取纯化时,但应避免用强碱,用强碱尤其在加热时易破坏黄酮母核在加酸酸化时,酸性也不宜过强,以免生成盐使析出的黄酮类化合物重新溶解影响产率,pH 值为 10的氢氧化钠溶液从菊花中提取黄酮类物质时,效果较好 1.2水提法 水提法适于黄酮贰物质提取该法成本低对环境及人类无毒害设备简单,适合工业化大生产,但提取率低,提取物中杂质较多( 如无机盐蛋白质糖类等),后续分离麻烦,但如果直接用提取液作原料生产制剂或饮料等,因消耗溶剂的费用比其他方法低,仍为一种可取的提取方法胡敏等[4]研究水浸提银杏叶黄酮苷并用树脂精制的工艺,探讨了影响黄酮苷浸出的主要因素以及最适的精制方法结果表明: 以水为提取剂,在 90℃水溶回流浸提银杏叶 2 次, 4 h /次,经沉淀过滤浓缩后,用树脂精制,冷冻干燥后,制得总黄酮苷含量高的提取物,产品得率为银杏叶干重1. 2% ~ 1. 5% 1.3酶解法

相关文档
最新文档