数列的概念单元测试题含答案百度文库

数列的概念单元测试题含答案百度文库
数列的概念单元测试题含答案百度文库

一、数列的概念选择题

1.在数列{}n a 中,12a =,1

1

1n n a a -=-(2n ≥),则8a =( ) A .1-

B .

12

C .1

D .2

2.数列{}n a 的通项公式是2

76n a n n =-+,4a =( )

A .2

B .6-

C .2-

D .1

3.已知数列{}

ij a 按如下规律分布(其中i 表示行数,j 表示列数),若2021ij a =,则下列结果正确的是( )

A .13i =,33j =

B .19i =,32j =

C .32i =,14j =

D .33i =,14j =

4.已知数列{}n a ,若()12*

N

n n n a a a n ++=+∈,则称数列{}n

a 为“凸数列”.已知数列{}

n

b 为“凸数列”,且11b =,22b =-,则数列{}n b 的前2020项和为( ) A .5

B .5-

C .0

D .1-

5.在数列{}n a 中,已知11a =,25a =,()

*

21n n n a a a n N ++=-∈,则5a 等于( )

A .4-

B .5-

C .4

D .5

6.已知数列{}n a ,{}n b ,其中11a =,且n a ,1n a +是方程220n

n x b x -+=的实数根,

则10b 等于( ) A .24

B .32

C .48

D .64

7.在数列{}n a 中,114a =-,1

11(1)n n a n a -=->,则2019a 的值为( )

A .

45

B .14

-

C .5

D .以上都不对

8.删去正整数1,2,3,4,5,…中的所有完全平方数与立方数(如4,8),得到一个新数列,则这个数列的第2020项是( ) A .2072

B .2073

C .2074

D .2075

9.

3

,则 ) A .第8项

B .第9项

C .第10项

D .第11项

10.已知数列{}n a 的通项公式为2

n a n n λ=-(R λ∈),若{}n a 为单调递增数列,则实数λ的取值范围是( ) A .(),3-∞

B .(),2-∞

C .(),1-∞

D .(),0-∞

11.已知数列{}n a 的前n 项和为n S ,已知1

3n n S +=,则34a a +=( )

A .81

B .243

C .324

D .216

12.已知数列{}n a 的首项为1,第2项为3,前n 项和为n S ,当整数1n >时,

1

1

12()n

n

n S S S S 恒成立,则15S 等于( )

A .210

B .211

C .224

D .225

13.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”现有高阶等差数列,其前7项分别为1,4,8,14,23,36,54,则该数列的第19项为( )

(注:()()

2222

1211236

n n n n ++++++=

) A .1624

B .1198

C .1024

D .1560

14.设数列{},{}n n a b 满足*172

700,,105

n n n n n a b a a b n N ++==+∈若6400=a ,则( ) A .43a a >

B .43

C .33>a b

D .44

15.若数列{a n }满足1112,1n

n n

a a a a ++==-,则2020a 的值为( ) A .2

B .-3

C .12

-

D .

13

16.已知数列{}n a 满足2122

11

1,16,2

n n n a a a a a ++===则数列{}n a 的最大项为( ) A .92 B .102

C .

81

82

D .112

17.数列

1

2,16,112,120

,…的一个通项公式是( )

A .()1

1n a n n =-

B .()1

221n a n n =

-

C .111

n a n n =

-+ D .11n a n

=-

18.在数列{}n a 中,11

(1)1,2(2)n

n n a a n a --==+≥,则3a =( ) A .0

B .

53

C .

73

D .3

19.公元13世纪意大利数学家斐波那契在自己的著作《算盘书》中记载着这样一个数列:1,1,2,3,5,8,13,21,34,…满足21(1),n n n a a a n ++=+≥那么

24620201a a a a ++++

+=( )

A .2021a

B .2022a

C .2023a

D .2024a

20.数列1,3,5,7,9,--的一个通项公式为( )

A .21n a n =-

B .()1(21)n

n a n =--

C .()

1

1(21)n n a n +=--

D .()

1

1(21)n n a n +=-+

二、多选题

21.设数列{}n a 满足11

02

a <<,()1ln 2n n n a a a +=+-对任意的*n N ∈恒成立,则下列说法正确的是( ) A .

21

12

a << B .{}n a 是递增数列 C .2020312

a <<

D .

20203

14

a << 22.已知数列{}n a 满足0n a >,

121

n n n a n

a a n +=+-(N n *∈),数列{}n a 的前n 项和为n S ,则( )

A .11a =

B .121a a =

C .201920202019S a =

D .201920202019S a >

23.已知数列{}n a 满足()

*11

1n n

a n N a +=-∈,且12a =,则( ) A .31a =- B .201912

a =

C .332

S =

D . 2 0192019

2

S =

24.已知数列{}n a 中,11a =,1111n n a a n n +??

-=+ ???

,*n N ∈.若对于任意的[]1,2t ∈,不等式

()22212n

a t a t a a n

<--++-+恒成立,则实数a 可能为( ) A .-4

B .-2

C .0

D .2

25.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件

11a >,66771

1,

01

a a a a -><-,则下列结论正确的是( ) A .01q <<

B .681a a >

C .n S 的最大值为7S

D .n T 的最大值为6T

26.已知数列{}n a 满足112

a =-,11

1n n a a +=-,则下列各数是{}n a 的项的有( )

A .2-

B .

2

3

C .

32

D .3

27.斐波那契数列,又称黄金分割数列、兔子数列,是数学家列昂多·斐波那契于1202年提出的数列.斐波那契数列为1,1,2,3,5,8,13,21,……,此数列从第3项开始,每一项都等于前两项之和,记该数列为(){}

F n ,则(){}

F n 的通项公式为( )

A .(1)1()2

n n F n -+=

B .()()()11,2F n F n F n n +=+-≥且()()11,21F F ==

C .(

)1122n n

F n ????+-?=- ?????? D .(

)1122n n F n ?????=+ ??????

28.已知数列{}n a 的前n 项和为()0n n S S ≠,且满足140(2)n n n a S S n -+=≥,11

4

a =,则下列说法错误的是( ) A .数列{}n a 的前n 项和为4n S n = B .数列{}n a 的通项公式为1

4(1)

n a n n =+

C .数列{}n a 为递增数列

D .数列1n S ??

?

???

为递增数列 29.已知正项数列{}n a 的前n 项和为n S ,若对于任意的m ,*n N ∈,都有

m n m n a a a +=+,则下列结论正确的是( )

A .11285a a a a +=+

B .56110a a a a <

C .若该数列的前三项依次为x ,1x -,3x ,则10103

a = D .数列n S n ??

?

???

为递减的等差数列 30.等差数列{}n a 中,n S 为其前n 项和,151115,a S S ==,则以下正确的是( )

A .1d =-

B .413a a =

C .n S 的最大值为8S

D .使得0n S >的最大整数15n =

31.已知数列{}n a 的前n 项和为n S ,前n 项积为n T ,且32019

11

111

a a e e +≤++,则( ) A .当数列{}n a 为等差数列时,20210S ≥ B .当数列{}n a 为等差数列时,20210S ≤ C .当数列{}n a 为等比数列时,20210T > D .当数列{}n a 为等比数列时,20210T <

32.已知数列{}n a 的前n 项和为,n S 2

5,n S n n =-则下列说法正确的是( )

A .{}n a 为等差数列

B .0n a >

C .n S 最小值为214

-

D .{}n a 为单调递增数列

33.记n S 为等差数列{}n a 的前n 项和.已知535S =,411a =,则( ) A .45n a n =-

B .23n a n =+

C .2

23n S n n =-

D .2

4n S n n =+

34.下面是关于公差0d >的等差数列{}n a 的四个命题,其中的真命题为( ). A .数列{}n a 是递增数列 B .数列{}n na 是递增数列 C .数列{

}n

a n

是递增数列 D .数列{}3n a nd +是递增数列

35.公差为d 的等差数列{}n a ,其前n 项和为n S ,110S >,120S <,下列说法正确的有( ) A .0d <

B .70a >

C .{}n S 中5S 最大

D .49a a <

【参考答案】***试卷处理标记,请不要删除

一、数列的概念选择题 1.B 解析:B 【分析】

通过递推公式求出234,,a a a 可得数列{}n a 是周期数列,根据周期即可得答案. 【详解】 解:211111=1=22a a =-

-,3211121a a =-=-=-,43

1

1112a a =-=+=, 则数列{}n a 周期数列,满足3n n a a -=,4n ≥

8521

2

a a a ∴===

, 故选:B. 【点睛】

本题考查数列的周期性,考查递推公式的应用,是基础题.

2.B

解析:B 【分析】 令4n = 代入即解 【详解】

令4n =,2

447466a =-?+=-

故选:B. 【点睛】

数列通项公式n a 是第n 项与序号n 之间的函数关系,求某项值代入求解.

3.C

解析:C 【分析】

可以看出所排都是奇数从小到大排起.规律是先第一列和第一行,再第二列和第二行,再第三列第三行,并且完整排完n 次后,排出的数呈正方形.可先算2021是第几个奇数,这个奇数在哪两个完全平方数之间,再去考虑具体的位置. 【详解】

每排完n 次后,数字呈现边长是n 的正方形,所以排n 次结束后共排了2n 个数.

20211

110112

-+=,说明2021是1011个奇数.

而22961311011321024=<<=,故2021一定是32行,

而从第1024个数算起,第1011个数是倒数第14个,根据规律第1024个数排在第32行第1列,所以第1011个数是第32行第14列,即2021在第32行第14列. 故32,14i j ==. 故选:C. 【点睛】

本题考查数列的基础知识,但是考查却很灵活,属于较难题.

4.B

解析:B 【分析】

根据数列的递推关系可求得数{}n b 的周期为6,即可求得数列{}n b 的前2020项和. 【详解】

()*

21N n n n b b b n ++=-∈,且11b =,22b =-, ∴345673,1,2,3,1,b b b b b =-=-=== ∴{}n b 是以6为周期的周期数列,且60S =,

∴20203366412345S S b b b b ?+==+++=-,

故选:B. 【点睛】

本题考查数列的新定义、数列求和,考查运算求解能力,求解时注意通过计算数列的前6项,得到数列的周期.

5.B

解析:B 【分析】

根据已知递推条件(

)*

21n n n a a a n N ++=-∈即可求得5

a

【详解】

由(

)*

21n n n a a a n N

++=-∈知:

3214a a a 4321a a a 5

43

5a a a

故选:B 【点睛】

本题考查了利用数列的递推关系求项,属于简单题

6.D

解析:D 【分析】

根据题意,得到1n n n a a b ++=,12n

n n a a +=,求得22a =,推出

1

1

2n n a a +-=,进而可求出10a ,11a ,从而可求出结果.

【详解】

因为n a ,1n a +是方程220n

n x b x -+=的实数根, 所以1n n n a a b ++=,12n

n n a a +=,

又11a =,所以22a =; 当2n ≥时,1

12

n n n a a --=,所以

11

112n n n n n n

a a a a a a ++--==, 因此4102232a a =?=,5

111232a a =?=

所以101011323264b a a =+=+=. 故选:D. 【点睛】

本题主要考查由数列的递推关系求数列中的项,属于常考题型.

7.A

解析:A 【分析】

根据递推式可得{}n a 为一个周期为3的数列,求{}n a 中一个周期内的项,利用周期性即可求2019a 的值 【详解】

由114a =-,1

11(1)n n a n a -=->知 211

15a a =-= 321415

a a =-

= 41311

14

a a a =-

=-= 故数列{}n a 是周期为3的数列,而2019可被3整除 ∴201934

5

a a == 故选:A 【点睛】

本题主要考查递推数列,考查数列的周期性,考查合情推理,属于基础题

8.C

解析:C

由于数列2

2

2

2

1,2,3,2,5,6,7,8,3,45?共有2025项,其中有45个平方数,12个立方数,有3个既是平方数,又是立方数的数,所以还剩余20254512+31971--=项,所以去掉平方数和立方数后,第2020项是在2025后的第()20201971=49-个数,从而求得结果. 【详解】

∵2452025=,2462116=,20202025<,所以从数列2

2

2

2

1,2,3,2,5,6,7,8,3,45?中去掉45个平方数,

因为331217282025132197=<<=,所以从数列2

2

2

2

1,2,3,2,5,6,7,8,3,45?中去掉

12个立方数,

又66320254<<,所以在从数列2

2

2

2

1,2,3,2,5,6,7,8,3,45?中有3个数即是平方数, 又是立方数的数,重复去掉了3个即是平方数,又是立方数的数, 所以从数列2

2

2

21,2,3,2,5,6,7,8,3,45?中去掉平方数和立方数后还有

20254512+31971--=项,此时距2020项还差2020197149-=项, 所以这个数列的第2020项是2025492074+=, 故选:C. 【点睛】

本题考查学生的实践创新能力,解决该题的关键是找出第2020项的大概位置,所以只要

弄明白在数列2

2

2

2

1,2,3,2,5,6,7,8,3,45?去掉哪些项,去掉多少项,问题便迎刃而解,属于中档题.

9.D

解析:D 【解析】 【分析】

根据根号下的数字规律,可知为等差数列.利用等差数列性质求得通项公式,即可判断为第几项. 【详解】

根据数列中的项,… 由前几项可知,根式下的数列是以5为首项, 4为公差的等差数列 则根式下的数字组成的等差数列通项公式为()51441n a n n =+-?=+

而=

所以4541n =+ 解得11n = 故选:D 【点睛】

本题考查了等差数列通项公式的求法及简单应用,属于基础题.

10.A

【分析】

由已知得121n n a a n λ+-=+-,根据{}n a 为递增数列,所以有10n n a a +->,建立关于

λ的不等式,解之可得λ的取值范围. 【详解】

由已知得22

1(1)(1)21n n a a n n n n n λλλ+-=+-+-+=+-,

因为{}n a 为递增数列,所以有10n n a a +->,即210n λ+->恒成立, 所以21n λ<+,所以只需()min 21n λ<+,即2113λ

本题考查数列的函数性质:递增性,根据已知得出10n n a a +->是解决此类问题的关键,属于基础题.

11.D

解析:D 【分析】

利用项和关系,1n n n a S S -=-代入即得解. 【详解】

利用项和关系,1332443=54=162n n n a S S a S S a S S -=-∴=-=-,

34216a a ∴+=

故选:D 【点睛】

本题考查了数列的项和关系,考查了学生转化与划归,数学运算能力,属于基础题.

12.D

解析:D 【分析】

利用已知条件转化推出1122n n a a a +-==,说明数列是等差数列,然后求解数列的和即可. 【详解】 解:结合1

1

12()n

n

n S S S S 可知,11122n n n S S S a +-+-=,

得到1122n n a a a +-==,故数列{}n a 为首项为1,公差为2的等差数列,则12(1)21n a n n =+-=-,所以1529a =,

所以11515()15(291)15

22522

a a S ++=

==, 故选:D . 【点睛】

本题考查数列的递推关系式的应用,考查数列求和,是基本知识的考查.

13.C

解析:C 【分析】

设该数列为{}n a ,令1n n n b a a +=-,设{}n b 的前n 项和为n B ,又令1+=-n n n c b b ,则

n c n =,依次用累加法,可求解.

【详解】

设该数列为{}n a ,令1n n n b a a +=-,设{}n b 的前n 项和为n B ,又令1+=-n n n c b b , 设{}n c 的前n 项和为n C ,易得n c n =,

()()()111121n n n n n n n C c c c b b b b b b +----=++

+=++++-

所以11n n b b C +=-,1213b a a -==

22n n n C +=,进而得21332n n n n

b C ++=+=+, 所以()211

33222n n n n b n -=+=-+,

()()()()

222

111

1

1212332

2

6

n n n n B n n n n +-=++

+-++

++=+

同理:()()()111112n n n n n n n B b b b a a a a a a +---=++

+=+++--

11n n a a B +-=

所以11n n a B +=+,所以191024a =. 故选:C 【点睛】

本题考查构造数列,用累加法求数列的通项公式,属于中档题.

14.C

解析:C 【分析】 由题意有13

28010

n n a a +=+且6400=a ,即可求34,a a ,进而可得34,b b ,即可比较它们的大小. 【详解】 由题意知:13

28010

n n a a +=

+,6400=a , ∴345400a a a ===,而700n n a b +=, ∴34300b b ==, 故选:C

【点睛】

本题考查了根据数列间的递推关系比较项的大小,属于简单题.

15.D

解析:D 【分析】

分别求出23456,,,,a a a a a ,得到数列{}n a 是周期为4的数列,利用周期性即可得出结果. 【详解】

由题意知,212312a +==--,3131132a -==-+,41

1121312a -

==+,5

1132113

a +

==-,612312

a +==--,…,

因此数列{}n a 是周期为4的周期数列, ∴20205054413

a a a ?===. 故选D. 【点睛】

本题主要考查的是通过观察法求数列的通项公式,属于基础题.

16.B

解析:B 【分析】

本题先根据递推公式进行转化得到21

112n n n n a a a a +++=.然后令1n n n

a b a +=,可得出数列{}n b 是等比数列.即11322n

n n a a +??

= ???

.然后用累乘法可求出数列{}n a 的通项公式,根据通项公式及二

次函数的知识可得数列{}n a 的最大项. 【详解】

解:由题意,可知: 21

112n n n n

a a a a +++=. 令1n n n a

b a +=,则11

2

n n b b +=. 2

11

16a b a =

=, ∴数列{}n b 是以16为首项,

1

2

为公比的等比数列.

1

11163222n n

n b -??

??

∴== ?

???

??

∴11322n

n n a a +??

= ???

. ∴1

211322a

a ??

= ???

, 2

3

21322a a ??

= ???

1

11322n n n a a --??

= ???

各项相乘,可得: 1

2

1

11

111(32)222n n n

a a --??????=? ? ? ???????

(1)

2

511()22n n n --??

= ?

??

2115(1)

22

1122n n n ---????= ? ?????

211

5522

12n n n --+??= ???

21

(1110)

2

12n n -+??= ???

令2()1110f n n n =-+,

则,根据二次函数的知识,可知:当5n =或6n =时,()f n 取得最小值. ()2551151020f =-?+=-,()2661161020f =-?+=-,

()f n ∴的最小值为20-. ∴2

11

(1110)(20)10

2

2

101112222n n -+?--??????=== ? ? ???

??

??

∴数列{}n a 的最大项为102.

故选:B . 【点睛】

本题主要考查根据递推公式得出通项公式,构造新数列的方法,累乘法通项公式的应用,以及利用二次函数思想求最值;

17.C

解析:C 【分析】

根据选项进行逐一验证,可得答案. 【详解】 选项A. ()

1

1n a n n =-,当1n =时,无意义.所以A 不正确.

选项B. ()1221n a n n =-,当2n =时,()2

111

22221126

a ==≠???-,故B 不正确. 选项C.

11122=-,111162323==-?,1111123434==-?,1111204545==-? 所以11

1

n a n n =

-+满足.故C 正确. 选项D. 11n a n =-,当1n =时, 111

1012

a =-=≠,故D 不正确. 故选:C

18.B

解析:B 【分析】

由数列的递推关系式以及11a =求出2a ,进而得出3a . 【详解】

11a =,21123a a ∴=+

=,3215

23

a a -=+= 故选:B

19.A

解析:A 【分析】

根据数列的递推关系式即可求解. 【详解】

由21(1),n n n a a a n ++=+≥ 则2462020246210201a a a a a a a a a ++++

+++++=+

3462020562020201920202021a a a a a a a a a a =+++

=+++=+=.

故选:A

20.C

解析:C 【分析】

分别观察各项的符号、绝对值即可得出. 【详解】

数列1,-3,5,-7,9,…的一个通项公式()()112n

n a n =--. 故选C . 【点睛】

本题考查了球数列的通项公式的方法,属于基础题.

二、多选题 21.ABD 【分析】

构造函数,再利用导数判断出函数的单调性,利用单调性即可求解. 【详解】 由, 设, 则,

所以当时,,

即在上为单调递增函数, 所以函数在为单调递增函数, 即, 即, 所以 ,

解析:ABD 【分析】

构造函数()()ln 2f x x x =+-,再利用导数判断出函数的单调性,利用单调性即可求解. 【详解】

由()1ln 2n n n a a a +=+-,1102

a << 设()()ln 2f x x x =+-, 则()11122x

f x x x

-'=-

=--, 所以当01x <<时,0f x

即()f x 在0,1上为单调递增函数, 所以函数在10,2?? ???

为单调递增函数, 即()()102f f x f ??<<

???

即(

)131

ln 2ln ln 1222

f x <<<+<+=, 所以()1

12

f x << , 即

1

1(2)2

n a n <<≥, 所以

2112a <<,20201

12

a <<,故A 正确;C 不正确; 由()f x 在0,1上为单调递增函数,

1

12

n a <<,所以{}n a 是递增数列,故B 正确; 2112a <<,所以 231

32131113ln(2)ln ln 222234

a a a e =+->+>+=+> 因此20202020333

144

a a a ∴<><>,故D 正确 故选:ABD 【点睛】

本题考查了数列性质的综合应用,属于难题.

22.BC 【分析】

根据递推公式,得到,令,得到,可判断A 错,B 正确;根据求和公式,得到,求出,可得C 正确,D 错. 【详解】 由可知,即,

当时,则,即得到,故选项B 正确;无法计算,故A 错; ,所以,则

解析:BC 【分析】

根据递推公式,得到11n n n

n n a a a +-=-,令1n =,得到121

a a =,可判断A 错,B 正确;

根据求和公式,得到1

n n n

S a +=,求出201920202019S a =,可得C 正确,D 错. 【详解】

由121n n n a n a a n +=+-可知2111

n n n n n

a n n n a a a a ++--==+,即11n n n n n a a a +-=-, 当1n =时,则12

1

a a =

,即得到121a a =,故选项B 正确;1a 无法计算,故A 错; 1221321111

102110n n n n n n n n n n S a a a a a a a a a a a a +++??????-=++

+=-+-+

+-=-= ? ?

???????,

所以1n n S a n +=,则201920202019S a =,故选项C 正确,选项D 错误. 故选:BC. 【点睛】 方法点睛:

由递推公式求通项公式的常用方法:

(1)累加法,形如()1n n a a f n +=+的数列,求通项时,常用累加法求解; (2)累乘法,形如

()1

n n

a f n a +=的数列,求通项时,常用累乘法求解; (3)构造法,形如1n n a pa q +=+(0p ≠且1p ≠,0q ≠,n ∈+N )的数列,求通

项时,常需要构造成等比数列求解;

(4)已知n a 与n S 的关系求通项时,一般可根据11,2

,1n n n S S n a a n --≥?=?=?求解.

23.ACD 【分析】

先计算出数列的前几项,判断AC ,然后再寻找规律判断BD . 【详解】

由题意,,A 正确,,C 正确; ,∴数列是周期数列,周期为3. ,B 错; ,D 正确. 故选:ACD . 【点睛】 本

解析:ACD 【分析】

先计算出数列的前几项,判断AC ,然后再寻找规律判断BD . 【详解】

由题意211122a =-=,31

1112a =-=-,A 正确,313

2122

S =+-=,C 正确;

41

121

a =-

=-,∴数列{}n a 是周期数列,周期为3. 2019367331a a a ?===-,B 错;

201932019

67322

S =?=,D 正确.

故选:ACD . 【点睛】

本题考查由数列的递推式求数列的项与和,解题关键是求出数列的前几项后归纳出数列的性质:周期性,然后利用周期函数的定义求解.

24.AB 【分析】

由题意可得,利用裂项相相消法求和求出,只需对于任意的恒成立,转化为对于任意的恒成立,然后将选项逐一验证即可求解. 【详解】 ,, 则,,,,

上述式子累加可得:,, 对于任意的恒成立

解析:AB 【分析】 由题意可得

111

11n n a a n n n n +-=-++,利用裂项相相消法求和求出122n a n n

=-<,只需()222122t a t a a --++-+≥对于任意的[]1,2t ∈恒成立,转化为

()()210t a t a --+≤????对于任意的[]1,2t ∈恒成立,然后将选项逐一验证即可求解.

【详解】

111

n n n a a n n

++-=,11111(1)1n n a a n n n n n n +∴-==-+++, 则

11111n n a a n n n n --=---,12111221n n a a n n n n ---=-----,,2111

122

a a -=-, 上述式子累加可得:111n a a n n -=-,1

22n a n n

∴=-<,

()222122t a t a a ∴--++-+≥对于任意的[]1,2t ∈恒成立,

整理得()()210t a t a --+≤????对于任意的[]1,2t ∈恒成立,

对A ,当4a =-时,不等式()()2540t t +-≤,解集5,42??-????

,包含[]1,2,故A 正确;

对B ,当2a =-时,不等式()()2320t t +-≤,解集3,22??-????

,包含[]1,2,故B 正确;

对C ,当0a =时,不等式()210t t +≤,解集1,02??-????

,不包含[]1,2,故C 错误; 对D ,当2a =时,不等式()()2120t t -+≤,解集12,2

??-???

?

,不包含[]1,2,故D 错误,

故选:AB. 【点睛】

本题考查了裂项相消法、由递推关系式求通项公式、一元二次不等式在某区间上恒成立,考查了转化与划归的思想,属于中档题.

25.AD 【分析】

分类讨论大于1的情况,得出符合题意的一项. 【详解】 ①, 与题设矛盾. ②符合题意. ③与题设矛盾. ④ 与题设矛盾. 得,则的最大值为. B ,C ,错误. 故选:AD. 【点睛】

解析:AD 【分析】

分类讨论67,a a 大于1的情况,得出符合题意的一项. 【详解】

①671,1a a >>, 与题设

671

01

a a -<-矛盾. ②671,1,a a ><符合题意.

③671,1,a a <<与题设

671

01

a a -<-矛盾. ④ 671,1,a a <>与题设11a >矛盾.

得671,1,01a a q ><<<,则n T 的最大值为6T .

∴B ,C ,错误.

故选:AD. 【点睛】

考查等比数列的性质及概念. 补充:等比数列的通项公式:()1

*

1n n a a q

n N -=∈.

26.BD 【分析】

根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论. 【详解】 因为数列满足,, ; ;

数列是周期为3的数列,且前3项为,,3; 故选:. 【点睛】 本题主要

解析:BD 【分析】

根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论. 【详解】

因为数列{}n a 满足112

a =-,11

1n n a a +=-,

2121

31()

2

a ∴=

=--;

32

1

31a a =

=-; 41311

12

a a a =

=-=-; ∴数列{}n a 是周期为3的数列,且前3项为12-

,2

3

,3; 故选:BD . 【点睛】

本题主要考查数列递推关系式的应用,考查数列的周期性,解题的关键在于求出数列的规律,属于基础题.

27.BC 【分析】

根据数列的前几项归纳出数列的通项公式,再验证即可; 【详解】

解:斐波那契数列为1,1,2,3,5,8,13,21,……, 显然,,,,,所以且,即B 满足条件; 由, 所以 所以数列

解析:BC 【分析】

根据数列的前几项归纳出数列的通项公式,再验证即可; 【详解】

解:斐波那契数列为1,1,2,3,5,8,13,21,……,

相关主题