遥感卫星影像辐射校正和大气校正的方法

遥感卫星影像辐射校正和大气校正的方法
遥感卫星影像辐射校正和大气校正的方法

北京揽宇方圆信息技术有限公司

遥感卫星影像辐射校正和大气校正的方法

辐射校正是指对由于外界因素,数据获取和传输系统产生的系统的、随机的辐射失真或畸变进行的校正,消除或改正因辐射误差而引起影像畸变的过程。

利用传感器观测目标的反射或辐射能量时,所得到的测量值与目标的光谱反射率或光谱辐射亮度等物理量之间的差值叫做辐射误差。辐射误差造成了遥感图像的失真,影响遥感图像的判读和解译,因此,必须进行消除或减弱。需要指出的是,导致遥感图像辐射量失真的因素很多,除了由遥感器灵敏度特性引起的畸变之外,还有视场角、太阳角、地形起伏以及大气吸收、散射等的强烈影响。

遥感图像辐射校正主要包括三个方面:(1)传感器的灵敏度特性引起的辐射误差,如光学镜头的非均匀性引起的边缘减光现象、光电变换系统的灵敏度特性引起的辐射畸变等;(2)光照条件差异引起的辐射误差,如太阳高度角的不同引起的辐射畸变校正、地面倾斜、起伏引起的辐射畸变校正等;(3)大气散射和吸收引起的辐射误差改正。

辐射校正的目的主要包括:1、尽可能消除因传感器自身条件、薄雾等大气条件、太阳位置和角度条件及某些不可避免的噪声等引起的传感器的测量值与目标的光谱反射率或光谱辐射亮度等物理量之间的差异;2、尽可能恢复图像的本来面目,为遥感图像的识别、分类、解译等后续工作奠定基础。

辐射校正分为辐射定标和大气校正两部分。

辐射定标是用户需要计算地物的光谱反射率或光谱辐射亮度时,或者需要对不同时间、不同传感器获取的图像进行比较时,都必须将图像的亮度灰度值转换为绝对的辐射亮度,这个过程就是辐射定标。

大气校正是指传感器最终测得的地面目标的总辐射亮度并不是地表真实反射率的反映,其中包含了由大气吸收,尤其是散射作用造成的辐射量误差。大气校正就是消除这些由大气影响所造成的辐射误差,反演地物真实的表面反射率的过程。

辐射校正流程图

1.4.3.2影像辐射校正方法

辐射定标主要分为两种类型:统计型和物理型。统计型是基于陆地表面变量和遥感数据的相关关系,优点在于容易建立并且可以有效地概括从局部区域获取的数据,例如经验线性定标法,内部平场域法等,另一方面,物理模型遵循遥感系统的物理规律,它们也可以建立因果关系。如果初始的模型不好,通过加入新的知识和信息就可以知道应该在哪部分改进模型。但是建立和学习这些物理模型的过程漫长而曲折。模型是对现实的抽象;所以一个逼真的模型可能非常复杂,包含大量的变量。例如6s模型,Mortran等。

用于大气辐射传输校正的模型主要有5S模型、6S模型、LOWTRAN模型、MODTRAN模型、ACORN模型、FLAASH模型和ATCOR模型。

1、ACORN模型

一种基于图像自身的大气校正软件,可以实现图像辐射值到表观地表反射率的转换,其工作波长范围是350-2500nm。在目前的大气校正程序一般都把地表假定为水平朗伯体,这主要是因为我们一般很难获取地表的充足信息以完成地形校正,因此大气校正的结果称为拉伸的地表反射率,又称表观反射率,在地形信息已知的情况下,可以将表观反射率转为地表反射率。

Acorn所提供的最高级的大气校正形式是基于辐射传输理论的,大气校正的方法是基

于chandrasekhar(1960,dover)公式,描述了太阳辐射源、大气、和地表对辐射的贡献关系。Caorn提供了一系列大气校正策略,包括经验法和基于辐射传输理论的方法,既可以对高光谱数据进行大气校正,也可以对多光谱图像数据进行大气校正,校正模式如下:

1)模式1:对定标后的高光谱数据进行辐射传输大气校正,输出项为地表

表观反射率。

2)模式1.5:对定标后的高光谱数据利用水气和液体水光谱你和技术进行

辐射传输大气校正。

3)模式2:对高光谱大气校正结果进行独立的光谱增强。

4)模式3:利用经验线性法对高光谱数据进行大气校正

5)模式4:对高光谱数据进行卷积处理得到多光谱数据

6)模式5:对定标的多光谱数据进行辐射传输大气校正

7)模式6:对多光谱的大气校正结果进行独立的光谱增强

2、LOWTRAN模型

LOWTRAN是一种低分辦率(分辦率大于等于20cm-1)大气辐射传输模式。它提供了6种参考大气模式的温度、气压、密度的垂直廓线,水汽、臭氧、甲烷、一氧化碳、一氧化二

氮的混合比垂直廓线,其他13种微量气体的垂直廓线,城乡大气气溶胶、雾、沙尘、火山喷发物、云、雨的廓线,辐射参量(如消光系数、吸收系数、非对称因子的光谱分布),以及地外太阳光谱。

lowtran7可以根据用户的需要,设置水平、倾斜及垂直路径,地对空、空对地等各种探测几何形式,适用对象广泛。lowtran7的基本算法包括透过率计算方法,多次散射处理和几何路径计算。

1)多次散射处理

lowtran采用改进的累加法,自海平面开始向上直至大气的上界,全面考虑整层大气和地表、云层的反射贡献,逐层确定大气分层每一界面上的综合透过率、吸收率、反射率和辐射通里。再用得到的通里计算散射源函数,用二流近似解求辐射传输方程。

2)透过率计算

该模型在单纯计算透过率或仅考虑单次散射时,采用参数化经验方法计算带平均透过率,在计算多次散射时,采用k-分布法。

3)光线几何路径计算

考虑了地球曲率和大气折射效应,将大气看做球面分层,逐层考虑大气折射效应。

3、MODTRAN模型

MODTARN(ModerateResolutionTransmission)这是由美国空军地球物理实验(AFGL)开发的计算大气透过率及辐射的软件包。MODTRAN从LOWTRAN发展而来,它提高

LOWTRAN的光谱分辨率。MODTRAN的基本算法包括透过率计算,多次散射处理和几何路径计算等。需要输入的参数有四类:计算模式,大气参数,气溶胶参数和云模式。MODTRAN有四种计算模式:透过率,热辐射,包括太阳或月亮的单次散射的辐射率,直射太阳辐照度计算。

用MODTRAN进行大气纠正的一般步骤是:首先输入反射率,运行MODTRAN得到大气层顶(TOA)光谱辐射,解得相关参数;然后利用这些参数带入公式进行大气纠正。

MODTRAN可以计算0到50000cm-1的大气透过率和辐射亮度,它在440nm到无限大的波长范围精度是2cm-1,在22680到50000cm-1紫外波(200-440nm)范围的精度是20cm-1,在给定辐射传输驱动、气溶胶和云参数、光源与遥感器的几何立体对和地面光谱信息的基础上,根据辐射传输方程来计算大气的透过率以及辐射亮度。

MODTRAN输入输出参数

(1)控制运行参数:如何采用何种辐射传输程序,是否进行多次散射计算等;

(2)遥感器参数:如遥感器的波段参数,观测的波束(波长范围);

(3)大气参数:其中大气模型通过card1中的选项确定,其他具体参数包括气溶胶;

(4)观测几何条件:在card1中有关于几何条件的选项,另外在card3中主要为几何参数的输入选项,它通过多种方式组合来实现几何参数的输入,可根据计算的方便进行选择;

(5)地表参量:在card1中提洪了地表参数设定的初步选项,所以只能在card4根据card1中设定的参数对地表的参数进行具体设定。

所有的输入都通过card1进行控制,然后在由后续的card进行具体社这设定所有参数之后,就可以用modtran来模拟大气辐射传输过程

4、5S模型

1986年,法国里尔科技大学大气光学实验室TanreD.,DeuzeJ.L,等人为了简化大气辐射传输方程,开发了太阳光谱波段卫星信号模拟程序5S(SIMULATION OF THE SATELLITESIGNAL IN THE SOLAR SPECTRUM用来模拟地气系统中太阳辐射的传输过程并计算卫星入瞳处辐射亮度。

5、6S模型

1997年,美国马里兰大学地理系Eric Vemote对5s进行了改进,发展到6S (SECONDSIMULATION OF THE SATELLITE SIGNAL IN THE SOLAR SPECTRUM),6S吸收了最新的散射计算方法,使太阳光谱波段的散射计算精度比5S有所提高。

6S(Second Simulation of the Satellite Signal in the SolarSpectrum)大气校正模型是Eric F.Vermote etal.(1997)在5S模型的基础上发展起来的。6S模型可以很好地模拟太阳光在太阳-地面目标-传感器的传输过程中所受到的大气影响。相对于5S模型,6S模型考虑了地面目标的海拔高度、非朗伯平面的情况和新的吸收气体种类

(CH4,N20,CO)通过采用theartapproximation近似算法和S0s运算法则,提高了瑞利

和气溶胶散射作用的计算精度。光谱步长提高到了 2.5nm。6S模型建立在辐射传输理论基础之上,模型应用范围广,不受研究区特点及目标类型等的影响。

6S描述了大气如何影响辐射在太阳-地表-遥感器之间的传输。需要输入的参数有:几何参数(遥感器类型、成像年月日和经纬度);大气中的水和臭氧浓度;气溶胶浓度;附设条件、观测波段和海拔高度;地表覆盖类型和反射率。6S预先设置了50多种波段模型,包括MODIS,AVHRR,TM等常见传感器的可见光近红外波段。

它其中主要包括以下几个部分:

太阳、地物与传感器之间的几何关系:;大气模式;气溶胶模式;传感器的光谱特性:地表反射率。这5个部分便构成了辐射传输模型,考虑了大气顶的大阳辐射能里通过大气传递到地表,以及地表的辰射辐射通过大气到达传感器的整个辐射传输过程。

65的输入参数主要有9个部分组成:(1)几何参数(2)大气模式(3)气溶旋模式(4)气溶胶浓度(5)地面高度(6)探测器高度(7)探测器的光谱条件(8)地表特性(9)表观反射率

6、FLAASH模型

它是ENVI下的一个模块,FLAASH参数如下:

(1)图像中心点坐标

可以从相应的HDF文件中找到,也可以从屏幕上直接读取影橡的中心坐标,对反演结果影响不大。当影像位于西半球时,经度为负值;

(2)传感器类型

当选择传感器类型时,模块会选择相应的类型的传感器波段响应函数,同时系统一般会自动设置传感器的高度和图像的空间分辨率;

(3)海拔高度

海拔高度为研究区的平均海揣;

(4)数据获取日期和卫星过境时间

卫星过境时间为格林尼治时间,可以从相应的HDF文件中找到;

(5)大气模型

模块提供热带,中纬度夏季,中纬度冬季、极地夏季、极地冬季和美国标准大气模型,研究者根据数据获取时间选择相应的大气模型;

(6)水气反演

大多数多光谱数据不推荐反演水汽含量;

(7)气溶胶模型

可供选择的气溶胶模型有无气溶胶、城市气溶胶、乡村气溶胶、海洋气溶和对流层气溶胶模型。当能见度大于40Km时,气溶胶垫型选择对反演设有太多影响,一般情兄下利用ASTER数据不做气溶胶反演。

7、ATCOR模型

ATCOR大气校正模型由德国Wessling光电研究所Richter博士于1990年研究提出并且经过大量验证和评估的一种快速大气校正算法。ATCOR模型有两种模式,一种是适用于卫星图像的模式,包括1996年提出的用于平坦地面的ATCOR2模型和1998年提出的可以推广到山区崎岖地面的ATCOR3模型;另一种是适用于机载和航拍的ATCOR4模型。ATCOR模型算法的核心部分是一个以MODTRAN4代码计算辐射传输方程的数据库,通过输入传感器几何条件,光谱特征及成像时的气溶胶等参数,通过插值法计算查找表,从而进行精确快速的大气校正。

进行大气校正前,先利用模块的ATCOR3DeriveTerrain Files功能对DEM文件进行计算获得坡度、坡向、天空可视因子和阴影。DEM文件必须为投影坐标系,如果进行了投影转换必预保证像素的X和Y边长相等。输入DEM正确的获取时间和经纬度后就可进行计算,其中Skyview和Shadow文件计算所需时间比较长。获得上述4个文件后,就可以开始进行大气校正处理了。

ATCOR大气校正流程

北京揽宇方圆信息技术有限公司是国内的领先遥感卫星数据机构,而且是整合全球的遥感卫星数据资源,分发不同性能、技术应用上可以互补的多种卫星影像,包括光学、雷达卫星影像、历史遥感影像等各种卫星数据服务,各种专业应用目的的图像处理、解译、顾问服务以及基于卫星影像的各种解决方案等。遥感卫星影像数据贯穿中国1960年至今的所有卫星影像数

据,是中国遥感卫星数据资源最多的专业遥感卫星数据服务机构,提供多尺度、多分辨率、全覆盖的遥感卫星影像数据服务,最大限度的保证了遥感影像数据获取的及时性和完整性。

优势:

1:北京揽宇方圆国内老牌卫星数据公司,经营时间久,行业口碑相传,1800个行业用户选择的实力见证。

2:北京揽宇方圆遥感数据购买专人数据查询一对一服务,数据查询网址是卫星公司网。

3:北京揽宇方圆拥有大型正版遥感处理软件,遥感数据处理工程师有10年以上遥感处理工作经验,并有国家大型项目工作经验自主卫星数据处理软件著作权,最大限度保持遥感卫星影像处理的真实度。

4:北京揽宇方圆国家高新技术企业,通过ISO900认证的国际质量管理操作体系,无论是遥感卫星品质和遥感数据处理质量,都能得到保障。

5:影像数据官方渠道:所有的卫星数据都是卫星公司授权的原始数据,全球公众数据查询网址公开查询,影像数据质量一目了然,数据反应客观公正实事求是,数据处理技术团队国标规范操作,提供的是行业优质的专业化服务。

6:签定正规合同:影像数据服务付款前,买卖双方须签订服务合同,提供合同相应的正规发票,发票国家税网可以详细查询,有增值税普通发票和增值税专用发票两种发票类型可供选择。以最有效的法律手段来保障您的权益。

7:对公帐号转款:合同约定的对公帐号,与合同主体名发票上面的帐号名称一致,是由工商行政管理部门核准的公司银行账户,所有交易记录均能查询,保障资金安全。

8:售后服务:完善的售后服务体制,全国热线,登陆官网客服服务同步。

技术能力说明

北京揽宇方圆拥有大型正版遥感处理软件,遥感数据处理工程师有10年以上遥感处理工作经验,并有国家大型项目工作经验自主卫星数据处理软件著作权,最大限度保持遥感卫星影像处理的真实度。

11.1.4公司形象展示

11.2信誉证书、荣誉证书、相关资质证书

11.2.1卫星遥感影像技术服务ISO(9001)认证证书复印件

11.2.2卫星影像质量快速检验系统著作权登记证

11.2.3历史遥感图像检验系统著作权登记证

11.2.4锁眼卫星影像处理软件著作权登记证

11.2.7多时空多光谱数据处理系统著作权登记证

11.2.8高新技术企业认定证明文件

北京揽宇方圆信息技术有限公司

遥感图像的几何校正(配准)

遥感图像的几何校正(配准) 1.实验目的与任务: (1)了解几何校正的原理; (2)学习使用ENVI软件进行几何校正; 2.实验设备与数据: 设备:遥感图像处理系统ENVI 数据:TM数据 3 几何校正的过程: 注意:几何校正一种是影像对影像,一种是影像对地图,下面介绍的是影像对影像的配 准或几何校正。 1.打开参考影像(base)和待校正影像:分别打开,即在display#1,display#2中打开;2.在主菜单上选择map->Registration->select GCPs:image to image 3.出现窗口Image to Image Registration,分别在两边选中DISPLAY 1(左),和DISPLAY 2(右)。BASE图像指参考图像而warp则指待校正影像。选择OK! 4.现在就可以加点了:将两边的影像十字线焦点对准到自己认为是同一地物的地方, 就可以选择ADD POINT添加点了。(PS:看不清出别忘记放大)如果要放弃该点选择 右下脚的delete last point,或者点show point弹出image to image gcp list窗口,从中选择 你要删除的点,也可以进行其他很多操作,自己慢慢研究,呵呵。选好4个点后就可以 预测:把十字叉放在参考影像某个地物,点选predict则待校正影像就会自动跳转到与参 考影像相对应的位置,而后再进行适当的调整并选点。 5.选点结束后,首先把点保存了:ground control points->file->save gcp as ASCII.. 当然你没有选完点也可以保存,下次就直接启用就可以:ground control points->file->restore gcps from ASCII... 6.接下来就是进行校正了:在ground control points.对话框中选择: options->warp file(as image to map) 在出现的imput warp image中选中你要校正的影像,点ok进入registration parameters 对话框: 首先点change proj按钮,选择坐标系 然后更改象素的大小,如果本身就是你所需要大小则不用改了 最后选择重采样方法(resampling),一般都是选择双线性的(bilinear),最后的最后选择保存路径就OK了

遥感影像预处理

遥感影像预处理 预处理是遥感应用的第一步,也是非常重要的一步。目前的技术也非常成熟,大多数的商业化软件都具备这方面的功能。预处理的大致流程在各个行业中有点差异,而且注重点也各有不同。 本小节包括以下内容: ? ? ●数据预处理一般流程介绍 ? ? ●预处理常见名词解释 ? ? ●ENVI中的数据预处理 1、数据预处理一般流程 数据预处理的过程包括几何精校正、配准、图像镶嵌与裁剪、去云及阴影处理和光谱归一化几个环节,具体流程图如图所示。 图1数据预处理一般流程 各个行业应用会有所不同,比如在精细农业方面,在大气校正方面要求会高点,因为它需要反演;在测绘方面,对几何校正的精度要求会很高。 2、数据预处理的各个流程介绍

(一)几何精校正与影像配准 引起影像几何变形一般分为两大类:系统性和非系统性。系统性一般有传感器本身引起的,有规律可循和可预测性,可以用传感器模型来校正;非系统性几何变形是不规律的,它可以是传感器平台本身的高度、姿态等不稳定,也可以是地球曲率及空气折射的变化以及地形的变化等。 在做几何校正前,先要知道几个概念: 地理编码:把图像矫正到一种统一标准的坐标系。 地理参照:借助一组控制点,对一幅图像进行地理坐标的校正。 图像配准:同一区域里一幅图像(基准图像)对另一幅图像校准 影像几何精校正,一般步骤如下, (1)GCP(地面控制点)的选取 这是几何校正中最重要的一步。可以从地形图(DRG)为参考进行控制选点,也可以野外GPS测量获得,或者从校正好的影像中获取。选取得控制点有以下特征: 1、GCP在图像上有明显的、清晰的点位标志,如道路交叉点、河流交叉点等; 2、地面控制点上的地物不随时间而变化。 GCP均匀分布在整幅影像内,且要有一定的数量保证,不同纠正模型对控制点个数的需求不相同。卫星提供的辅助数据可建立严密的物理模型,该模型只需9个控制点即可;对于有理多项式模型,一般每景要求不少于30个控制点,困难地区适当增加点位;几何多项式模型将根据地形情况确定,它要求控制点个数多于上述几种模型,通常每景要求在30-50个左右,尤其对于山区应适当增加控制点。

landsat遥感影像地表温度反演教程(大气校正法)

基于辐射传输方程的Landsat数据地表温度反演教程一、数据准备 Landsa 8遥感影像数据一景,本教程以市2015年7月26日的=行列号为(128,049)影像(LC81280402016208LGN00)为例。 同时需提前查询影像的基本信息(详见下表) 注:基本信息在影像头文件中均可查询到,采集时间为格林尼治时间。 二、地表温度反演的总体流程 三、具体步骤 1、辐射定标

地表温度反演主要包括两部分,一是对热红外数据,二是多光谱数据进行辐射 定标。 (1)热红外数据辐射定标 选择Radiometric Correction/Radiometric Calibration。在File Selection对话框 中,选择数据LC81230322013132LGN02_MTL_Thermal,单击Spectral Subset 选择Thermal Infrared1(10.9),打开Radiometric Calibration面板。 (2)多光谱数据辐射定标 选择要校正的多光谱数据“LC81230322013132LGN02_MTL_MultiSpectral” 进行辐射定标。 Scale factor 不能改变,否则后续 计算会报错。保持默认1即可。

因为后续需要对多光谱数据进行大气校正,可直接单击Apply Flaash Settings,如下图。 注意与热红外数据辐射定标是的差 别,设置后Scale factor值为0.1。 2、大气校正 本教程选择Flaash 校正法。FLAASH Atmospheric Correction,双击此工具,打开辐射定标的数据,进行相关的参数设置进行大气校正。 注意:如果在多光谱数据辐射定标时Scale factor值忘记设置,可在本步骤中打开辐射定标数时设置single scale faceor 值为0.1,若已设置,则默认值为1即可。 1)Input Radiance Image:打开辐射定标结果数据; 2)设置输出反射率的路径,由于定标时候;

遥感卫星影像辐射校正和大气校正的方法

北京揽宇方圆信息技术有限公司 遥感卫星影像辐射校正和大气校正的方法 辐射校正是指对由于外界因素,数据获取和传输系统产生的系统的、随机的辐射失真或畸变进行的校正,消除或改正因辐射误差而引起影像畸变的过程。 利用传感器观测目标的反射或辐射能量时,所得到的测量值与目标的光谱反射率或光谱辐射亮度等物理量之间的差值叫做辐射误差。辐射误差造成了遥感图像的失真,影响遥感图像的判读和解译,因此,必须进行消除或减弱。需要指出的是,导致遥感图像辐射量失真的因素很多,除了由遥感器灵敏度特性引起的畸变之外,还有视场角、太阳角、地形起伏以及大气吸收、散射等的强烈影响。 遥感图像辐射校正主要包括三个方面:(1)传感器的灵敏度特性引起的辐射误差,如光学镜头的非均匀性引起的边缘减光现象、光电变换系统的灵敏度特性引起的辐射畸变等;(2)光照条件差异引起的辐射误差,如太阳高度角的不同引起的辐射畸变校正、地面倾斜、起伏引起的辐射畸变校正等;(3)大气散射和吸收引起的辐射误差改正。 辐射校正的目的主要包括:1、尽可能消除因传感器自身条件、薄雾等大气条件、太阳位置和角度条件及某些不可避免的噪声等引起的传感器的测量值与目标的光谱反射率或光谱辐射亮度等物理量之间的差异;2、尽可能恢复图像的本来面目,为遥感图像的识别、分类、解译等后续工作奠定基础。 辐射校正分为辐射定标和大气校正两部分。 辐射定标是用户需要计算地物的光谱反射率或光谱辐射亮度时,或者需要对不同时间、不同传感器获取的图像进行比较时,都必须将图像的亮度灰度值转换为绝对的辐射亮度,这个过程就是辐射定标。

大气校正是指传感器最终测得的地面目标的总辐射亮度并不是地表真实反射率的反映,其中包含了由大气吸收,尤其是散射作用造成的辐射量误差。大气校正就是消除这些由大气影响所造成的辐射误差,反演地物真实的表面反射率的过程。 辐射校正流程图 1.4.3.2影像辐射校正方法 辐射定标主要分为两种类型:统计型和物理型。统计型是基于陆地表面变量和遥感数据的相关关系,优点在于容易建立并且可以有效地概括从局部区域获取的数据,例如经验线性定标法,内部平场域法等,另一方面,物理模型遵循遥感系统的物理规律,它们也可以建立因果关系。如果初始的模型不好,通过加入新的知识和信息就可以知道应该在哪部分改进模型。但是建立和学习这些物理模型的过程漫长而曲折。模型是对现实的抽象;所以一个逼真的模型可能非常复杂,包含大量的变量。例如6s模型,Mortran等。 用于大气辐射传输校正的模型主要有5S模型、6S模型、LOWTRAN模型、MODTRAN模型、ACORN模型、FLAASH模型和ATCOR模型。 1、ACORN模型 一种基于图像自身的大气校正软件,可以实现图像辐射值到表观地表反射率的转换,其工作波长范围是350-2500nm。在目前的大气校正程序一般都把地表假定为水平朗伯体,这主要是因为我们一般很难获取地表的充足信息以完成地形校正,因此大气校正的结果称为拉伸的地表反射率,又称表观反射率,在地形信息已知的情况下,可以将表观反射率转为地表反射率。

实验三 遥感图像的几何校正

实验法三遥感图像的几何校正 一实验目的 通过实验操作,掌握遥感图像几何校正的基本方法和步骤,深刻理解遥感图像几何校正的意义。 二实验内容 ERDAS软件中图像预处理模块下的图像几何校正。 几何校正就是将图像数据投影到平面上,使其符合地图投影系统的过程。而将地图投影系统赋予图像数据的过程,称为地理参考(Geo-referencing)。由于所有地图投影系统都遵循一定的地图坐标系统,因此几何校正的过程包含了地理参考过程。 1、图像几何校正的途径 ERDAS图标面板工具条:点击DataPrep图标,→Image Geometric Correction →打开Set Geo-Correction Input File对话框(图1)。 ERDAS图标面板菜单条:Main→Data Preparation→Image Geometric Correction→打开Set Geo-Correction Input File对话框(图1)。 图1 Set Geo-Correction Input File对话框 在Set Geo-Correction Input File对话框(图1)中,需要确定校正图像,有两种选择情况: 其一:首先确定来自视窗(From Viewer),然后选择显示图像视窗。 其二:首先确定来自文件(From Image File),然后选择输入图像。 2、图像几何校正的计算模型(Geometric Correction Model) ERDAS提供的图像几何校正模型有7种,具体功能如下: 表1 几何校正计算模型与功能 模型功能 Affine 图像仿射变换(不做投影变换) Polynomial 多项式变换(同时作投影变换) Reproject 投影变换(转换调用多项式变换) Rubber Sheeting 非线性变换、非均匀变换 Camera 航空影像正射校正 Landsat Lantsat卫星图像正射校正 Spot Spot卫星图像正射校正 其中,多项式变换(Polynomial)在卫星图像校正过程中应用较多,在调用多项式模型时,需要确定多项式的次方数(Order),通常整景图像选择3次方。次方数与所需要的最

遥感图像的辐射校正实验报告

遥感图像的辐射校正实验报告 1. 实验目的和内容 实验目的: (1)复习巩固课堂上所学的对遥感图像的辐射校正,掌握这些校正方法的基本原理和方法,理解遥感图像辐射校正的意义; (2)实际学习对遥感图像进行绝对大气校正、相对大气校正的FLAASH和黑暗像元法; 实验内容: (1)绝对大气校正 将遥感图像的DN值转换为地表反射率、地表辐射率、地表温度等的方法。本次实验通过FLAASH法进行绝对大气纠正。 (2)相对大气校正 校正后得到的图像,相同的DN值表示相同的地物反射率,其结果不考虑地物的实际反射率。本次实验通过黑暗像元法进行相对大气纠正。 2. 图像处理方法和流程 A.绝对大气校正 1、加载影像,打开ENVI,file>>open image file,打开L71120038_03820030128_MTL.txt

2、辐射定标 FLAASH模块需要输入的是经过辐射定标后的BIL/BIP文件,ENVI >> basic tools >>preprocessing > >calibration utilities >> Landsat calibration 3、格式转换 上述计算得到的存储方式为BSQ,FLAASH大气校正对于波段存储的要求

为BIL/BIP格式,ENVI >> basic tools>> convert data (BSQ ,BIL ,BIP) 4、FLAASH大气校正 (1)ENVI>>basic tools>>preprocessing>>calibration utilities>> FLAASH,选择需要校正的数据。选用第二种,设置Single scale factor:10。 (2)设置输入与输出文件 ①进入地理空间数据云,查询影像参数。点击数据资源—LANDSAT系列数据

遥感图像辐射校正

实验名称:遥感图像辐射矫正 实验目的:通过实验,了解并掌握辐射矫正的原理、基本方法,深刻理解遥感辐射矫正的意义。 实验原理:辐射矫正是指对由于外界因素,数据获取和传输系统产生的系统的、随机的辐射失真或畸变进行矫正,消除或改正辐射误差而引起的影响畸变的过程。 辐射矫正的一般方法有: 1.大气校正:大气会引起太阳光的吸收、散射,也会引起来自目标的反射及散射光的吸收、散射,入射到传感器的除目标物的反射光外,还有大气引起的散射光,消除并校正这些影响的处理过程叫大气校正。 2.太阳高度及地形等引起的畸变校正:视场角和太阳角的关系所引起的亮度变化的校正;地形倾斜的影响校正。 3.传感器的灵敏度特性引起的畸变校正:(1)由光学系统的特性引起的畸变校正。(2)由光电变化系统的特性引起的畸变校正。 辐射误差:传感器观测目标的反射或辐射能量时,观测值与目标的光谱反射率或光谱辐射亮度等物理量之间的差值。

两个基本概念 反射率:反射率是反射辐射通量与入射通量的比值,是0-1之间的无量纲的值 ρλ=Φreflectedλ/ Φiλ 通常用反射率描述各种地物的光谱反射特性。一般分为镜面反射、方向反射、漫反射(各向同性),反射率是地物自身的属性。 朗伯反射体:发光强度和亮度的概念不仅适用于自己发光的物体,也可以应用到反射体。光线射到光滑的表面上,定向地发射出去;射到粗糙的表面上时,它将朝向所有方向漫射。一个理想的漫射面,应是遵循朗伯定律的,即不管入射光来自何方,沿各方向漫射光的发光强度总与cosθ成正比,从而亮度相同。积雪、刷粉的白墙或十分粗糙的白纸表面,都很接近这类理想的漫射面。这类物体称为朗伯反射体。 大气影响的定量分析 进入大气的太阳辐射会发生反射、折射、吸收、散射和透射。其中对传感器接收影响较大的是吸收和散射。

基于6S模型TM遥感影像大气校正

毕业论文 题目:基于6S模型的TM遥感影像大气校正 研究--以张掖地区为例 学院:地理与环境科学学院 专业:地理信息系统 毕业年限:2011年 学生姓名:秦麟 学号:200775000126 指导教师:李净

基于6S模型的TM遥感影像大气校正研究--以张掖地区为例 秦麟 摘要:受大气吸收与散射的影响,电磁波在大气--目标物--遥感器途径传输过程中发生失真,造成目标地物反射辐射能量到达遥感器时被衰减。给计算地表反照率、反射率和地表温度等关键参数带来较大的误差。本文以张掖地区Landsat TM热红外波的遥感图像数据为例,通过利用6S大气辐射传输模型进行大气校正,并在窄波段反照率与宽波段反照率之间存在线性关系的前提下,反演该地区的地表反照率。 关键词:6S模型;大气校正;地表反照率 6S Model Based Atmospheric Correction of Remote Sensing Image in zhangye QIN Lin Abstract : Due to the distortions and noises caused by the presence of the atmosphere on the Sun-target-Sensor path, the space-based and airborne remote sensing information in the solar spectral range do not directly characterize the surface objects. It becomes serious impediments for the quantitative analysis and measurement of resources and environment. This paper discussed the atmospheric correction with 6S model (Second Simulation of Satellite Signal in the Solar Spectrum), reversing surface albedos under the linear relationship between narrow band albedos and broadband albedos in the remote sensing image in zhangye city. Key words: 6S model; atmospheric correction; surface albedo.

遥感图像几何校正

第4讲遥感图像几何校正 遥感成像的时候,由于飞行器的姿态、高度、速度以及地球自转等因素的影响,造成图像相对于地面目标发生几何畸变,这种畸变表现为像元相对于地面目标的实际位置发生挤压、扭曲、拉伸和偏移等,针对几何畸变进行的误差校正就叫几何校正。 几何校正是利用地面控制点和几何校正数学模型来矫正非系统因素产生的误差,由于校正过程中会将坐标系统赋予图像数据,所以此过程包括了地理编码。 在开始介绍ENVI的几何校正操作之前,首先对ENVI的几何校正几个功能要点做一个说明。 1几何校正方法 (1)利用卫星自带地理定位文件进行几何校正 对于重返周期短、空间分辨率较低的卫星数据,如A VHRR、MODIS、SeaWiFS等,地面控制点的选择有相当的难度。这时,可以利用卫星传感器自带的地理定位文件进行几何校正,校正精度主要受地理定位文件的影响。 (2) image to image几何校正 通过从两幅图像上选择同名点(或控制点)来配准另外一幅栅格文件,使相同地物出现在校正后的图像相同位置 (3)image to map几何校正 通过地面控制点对遥感图像几何进行平面化的过程。 (4)image to image 自动图像配准 根据像元灰度值或者地物特征自动寻找两幅图像上的同名点,根据同名点完成两幅图像的配置过程。 (5)image registration workflow流程化工具

将具有不同坐标系、不同地理位置的图像配准到同一坐标系下,使图像中相同地理位置包含相同的地物。 2控制点选择方式 ENVI提供以下选择方式: ?从栅格图像上选择 如果拥有需要校正图像区域的经过校正的影像、地形图等栅格数据,可以从中选择控制点,对应的控制点选择模式为Image to Image。 ?从矢量数据中选择 如果拥有需要校正图像区域的经过校正的矢量数据,可以从中选择控制点,对应的模式为Image to Map。 ?从文本文件中导入 事先已经通过GPS测量、摄影测量或者其他途径获得了控制点坐标数据,保存为以[Map (x,y), Image (x,y)]格式提供的文本文件可以直接导入作为控制点,对应的控制点选择模式为Image to Image 和Image to Map。 ?键盘输入 如果只有控制点目标坐标信息或者只能从地图上获取坐标文件(如地形图等),只好通过键盘敲入坐标数据并在影像上找到对应点。 3详细操作步骤 3.1基于自带定位信息的几何校正 下面以MODIS Level 1B级数据为例学习利用自带几何定位文件进行几何校正,数据在"第4讲遥感图像预处理\基于自带定位信息的几何校正\数据\1-Modis"中,具体操作如下: 第一步:打开数据文件

遥感数据辐射校正

遥感数据辐射校正的原理及方法 遥感1班 彭睿20123225 摘要由于传感器响应特性和大气的吸收、散射以及其它随机因素影响,导致图像模糊失真,造成图像的分辨率和对比度相对下降,这些都需要通过辐射校正复原。辐射校正包括三部分的内容:传感器端的辐射校正,大气校正,地表辐射校正。 关键字辐射校正大气校正照度校正辐射传输过程ERDAS 引言近年来,随着航天技术、计算机技术、卫星定位技术和地理信息技术的发展,摄影测量与遥感已成为地球空间信息科学的基础技术,遥感图像在人类生活的诸多领域被广泛应用。然而,在遥感成像时,由于各种因素的影响,遥感图像会存在一定的辐射量失真现象,这些失真影响了图像的质量和应用,必须对其做消除或减弱处理,遥感图像辐射校正就是针对遥感图像的这一缺陷而发展起来的。在遥感影像辐射校正中,大气辐射校正是最重要的一部分,本文主要讨论大气辐射校正的方法和过程。 消除遥感图像数据中依附在辐亮度中的各种失真的过程称为辐射量校正(Radiometric Calibration),简称辐射校正。 1.辐射校正概述 辐射校正的目的: 尽可能消除因传感器自身条件、大气条件、太阳位置和角度条件及某些不可避免的噪声引起的传感器所得到的目标测量值与目标的光谱反射率或光谱辐亮度等物理量之间的差异,尽可能恢复遥感图像本来的面目,为遥感图像的分割、分类、解译等后续工作打下基础。 辐射误差来源 1.1 传感器端 1.1.1 光学摄影机引起的辐射误差 1.1.2 光电扫描仪引起的辐射误差 1.2 外部因素 1.2.1 大气 1.2.2太阳辐射 2.辐射校正包括三部分的内容: 2.1.传感器端的辐射校正 2.2.大气校正 2.3.地表辐射校正 3.辐射传输过程:如图-1

landsat遥感影像地温度反演教程大气校正法

基于辐射传输方程的Landsat数据地表温度反演教程 一、数据准备 Landsa 8遥感影像数据一景,本教程以重庆市2015年7月26日的=行列号为(128,049)影像(LC81280402016208LGN00)为例。 同时需提前查询影像的基本信息(详见下表) 标识日期采集时间中心经度中心纬度LC81280402016208LGN00 2016/7/26 3:26:56 106.11288 30.30647 …………………………注:基本信息在影像头文件中均可查询到,采集时间为格林尼治时间。 二、地表温度反演的总体流程 三、具体步骤 1、辐射定标 地表温度反演主要包括两部分,一是对热红外数据,二是多光谱数据进行辐射定标。

(1)热红外数据辐射定标 选择Radiometric Correction/Radiometric Calibration。在File Selection对话框 中,选择数据LC81230322013132LGN02_MTL_Thermal,单击Spectral Subset 选择Thermal Infrared1(10.9),打开Radiometric Calibration面板。 Scale factor 不能改变,否则后续 计算会报错。保持默认1即可。 (2)多光谱数据辐射定标 选择要校正的多光谱数据“LC81230322013132LGN02_MTL_MultiSpectral” 进行辐射定标。 因为后续需要对多光谱数据进行大气校正,可直接单击Apply Flaash Settings, 如下图。

注意与热红外数据辐射定标是的差 别,设置后Scale factor值为0.1。 2、大气校正 本教程选择Flaash 校正法。FLAASH Atmospheric Correction,双击此工具,打开辐射定标的数据,进行相关的参数设置进行大气校正。 注意:如果在多光谱数据辐射定标时Scale factor值忘记设置,可在本步骤中打开辐射定标数时设置single scale faceor 值为0.1,若已设置,则默认值为1即可。 1)Input Radiance Image:打开辐射定标结果数据; 2)设置输出反射率的路径,由于定标时候; 3)设置输出FLAASH校正文件的路径,最优状态:路径所在磁盘空间足够大; 4)中心点经纬度Scene Center Location:自动获取;

ERDAS遥感图像的几何校正

遥感图像的几何校正 实验目的:通过实习操作,掌握遥感图像几何校正的基本方法和步骤,深刻理解遥感图像几何校正的意义。 实验内容:ERDAS软件中图像预处理模块下的图像几何校正。 几何校正就是将图像数据投影到平面上,使其符合地图投影系统的过程。而将地图投影系统赋予图像数据的过程,称为地理参考(Geo-referencing)。由于所有地图投影系统都遵循一定的地图坐标系统,因此几何校正的过程包含了地理参考过程。 1、图像几何校正的途径 ERDAS图标面板工具条:点击DataPrep图标,→Image Geometric Correction →打开Set Geo-Correction Input File对话框(图1)。 ERDAS图标面板菜单条:Main→Data Preparation→Image Geometric Correction→打开Set Geo-Correction Input File对话框(图1)。 图1 Set Geo-Correction Input File对话框 在Set Geo-Correction Input File对话框(图1)中,需要确定校正图像,有两种选择情况: 其一:首先确定来自视窗(FromViewer),然后选择显示图像视窗。 其二:首先确定来自文件(From Image File),然后选择输入图像。 2、图像几何校正的计算模型(Geometric Correction Model) ERDAS提供的图像几何校正模型有7种,具体功能如下:

3、图像校正的具体过程 第一步:显示图像文件(Display Image Files) 首先,在ERDAS图标面板中点击Viewer图表两次,打开两个视窗(Viewer1/Viewer2),并将两个视窗平铺放置,操作如下:ERDAS图表面板菜单条:Session→Title Viewers 然后,在Viewer1中打开需要校正的Lantsat图像:tmatlanta.img 在Viewer2中打开作为地理参考的校正过的SPOT图像:panatlanta.img 第二步:启动几何校正模块(Geometric Correction Tool) Viewer1菜单条:Raster→Geometric Correction →打开Set Geometric Model对话框,如图2

遥感实习2卫星数据的预处理流程

数据预处理的一般过程包括几何校正、图像镶嵌与裁剪、辐射定标与大气校正等环节。

图1 数据预处理一般流程 通常我们直接从数据提供商获取未定标的DN 图像,然后定标为辐射亮度图像,对辐射率亮度图像进行大气校正得到地表反射率图像。 一、辐射定标与大气校正 1、辐射定标Radiometric calibration :将记录的原始DN 值转换为大气外层表面反射率(或称为辐射亮度值)。 目的:消除传感器本身的误差,确定传感器入口处的准确辐射值 方法:实验室定标、机上/星上定标、场地定标 不同的传感器,其辐射定标公式不同。L=gain*DN+Bias 在ENVI 中,定标模块:Basic Tools>Preprocessing>Calibration Utilities>模块 2、大气校正Atmospheric correction :将辐射亮度或者表面反射率转换为地表实际反射率 目的:消除大气散射、吸收、反射引起的误差。 分类:统计型和物理型 目前遥感图像的大气校正方法按照校正后的结果可以分为2种: 1) 绝对大气校正方法:将遥感图像的DN(Digital Number)值转换为地表反射率、地表辐射率、地表温度等的方法。包括:基于辐射传输模型、基于简化辐射传输模型的黑暗像元法、基于统计学模型的反射率反演 2) 相对大气校正方法:校正后得到的图像,相同的DN 值表示相同的地物反射率,其结果不考虑地物的实际反射率。包括:基于统计的不变目标法、直方图匹配法等。 方法的选择问题,一般而言: 1) 如果是精细定量研究,那么选择基于辐射传输模型的大气校正方法。 2) 如果是做动态监测,那么可选择相对大气校正或者较简单的方法。 3) 如果参数缺少,没办法了只能选择较简单的方法了。 在ENVI 中,Basic tools>preprocessing>calibration utilities>FLAASH 二、数字图像镶嵌与裁剪 1、镶嵌 当研究区超出单幅遥感图像所覆盖的范围时,通常需要将两幅或多幅图像拼接起来形成一幅或一系列覆盖全区的较大的图像。 在进行图像的镶嵌时,需要确定一幅参考影像,参考图像将作为输出镶嵌图像的基准,决定镶嵌图像的对比度匹配、以及输出图像的像元大小和数据类型等。镶嵌得两幅或多幅图像选择相同或相近的成像时间,使得图像的色调保持一致。但接边色调相差太大时,可以利 Digital Numbers Radiance TOA Reflectance Geometric correction Step 1 Step 2 Surface Reflectance Step 3 Step 4 Analysis

envi遥感图像处理之大气纠正

大气校正说明文档 步骤一:辐射定标 本实验采用的是绝对辐射定标,直接建立遥感影像DN 值与接收到的能量的 之间的关系。 建立关系所采用的公式是:offset DN gain L += * 其中,λ λ λ λ λ λ min max min max min max DN DN L L e fullDNrang L L gain --= -= , λ min L offset = Lmax λ和Lmin λ通过参看遥感影像的头文件进行确定。fullDNrange 取的是 255。 具体操作如下: 1) 打开遥感影像文件及其头文件 2) 根据头文件信息计算gain 和offset 的值 3) 在envi 的Basic Tools 中打开 Band Math 像,将本步骤采用的公式 写入band math 中,计算出L 。

至此,就完成了遥感影像的辐射定标过程。 步骤二:未进行大气校正所得到的反射率 本步骤讲述如何从经过辐射定标的遥感影像直接生成地物的反射率的影像,制作该影像的目的是为了与后面经过大气校正后的影像进行对比。 本步骤所采用的公式是:))cos(*/(**2 θπρESUN d L = 其中,L 是由上步所算出来的,d 指的是实际的日地距离,单位是天文距离,ESUN 指的是太阳平均辐射强度,θ为太阳天顶角。 d 值可以由观测时间查阅相关资料获得。ESUN 值也可以由相关资料获取。 θ可以从头文件中获得。 具体操作如下: 1) 查阅相关资料,确定参数θ、d 、ESUN

2)在envi的Basic Tools中打开Band Math像,将本步骤采 用的公式写入band math中 3)确定变量b2为上步所算的L,并由此计算出未进行大气校正的反射率。 由此,我们就得到了未经大气校正的反射率。 步骤三:进行大气校正,得到地物反射率 由于大气的影响,会使得遥感影像的反射率发生较大的变化,为了得到地表

影像到影像的卫星影像的几何校正

卫星影像的几何校正 以具有地理参考的SPOT 4 10m全色波段为基础,进行Landsat 5 TM 30m影像的几何校正过程,其流程如图1所示。 图1 几何精校正流程 目的: 1、掌握利用地面控制点(GCP)进行影像到影像几何校正的方法 2、影像上GCP的选取方法 数据准备: bldr_tm.img 没有地理坐标的影像 bldr_Sp.img Boulder SPOT带地理坐标的影像 bldr_Sp.hdr ENVI对应的头文件 bldr_Sp.grd Boulder SPOT地理公里网参数 bldr_Sp.ann Boulder SPOT地图标记

利用GCP进行几何校正的具体操作 第一步打开并显示影像文件 (1)在#1窗口中打开bldr_tm.img作为待校正图像,在#2窗口中打开bldr_sp.img作为参考图像(图2)。 图2 参考图像(左)与待校正图像(右) 第二步启动几何校正模块 (1)一旦两幅图像都已经显示,选择主菜单Map→Registration→Select GCPs: Image to Map,打开几何校正模块。 (2)在Image to Image Registration对话框中,选择显示SPOT影像的Display作为基准图像(Base Image),显示TM影像的Display为待校正图像(Warp Image)(图3)。点击OK,进入采集地面控制点。

图3 指定参考图像与待校正图像第三步采集地面控制点 (1)控制点工具对话框说明: 图4 地面控制点工具对话框

①当基准图像没有地理投影时选择这种配准命令;如果基准图像具有地理投影时选择此命令,得到的结果诸如投影参数、像元大小将与基准图像相同。 ②当基准图像有地理投影时,可以选择这种配准命令,在输出结果时候还可以更改校正图像的输出像元大小和投影参数 表2其它功能按钮及功能 ①当控制点数量达到一定数量时才能更改,如控制点数达到6,Degree值可以改为2,最大为3。 (2)地面控制点采集 在图像几何校正过程中,采集地面控制点是一项重要和繁重的工作,直接影响最后的校正结果,具体过程如下: 1)在两个Display中移动方框位置,寻找明显的地物特征点作为输入GCP。 2)在Zoom窗口中,通过将十字光标放置在两幅影像的相同地物点上。

遥感影像辐射校正实习报告

遥感实习报告(4)遥感影像辐射校正 专业: 班级: 姓名: 学号: 成绩: 指导教师: 2013年6月15日

目录 一:实验目的 (3) 二、影像数据 (3) 三、实验内容 (3) 四、实验步骤 (4) (一)、绝对大气校正 (4) (二)、相对大气校正——回归分析法 (7) (三)、多时相影像匹配法 (9) 五、心得体会 (13) 六:程序设计 (14)

一:实习目的: 进一步巩固、掌握遥感影像绝对及相对大气校正基本方法。二:影像数据: 1.交大犀浦校区2003年、2005年SPOT5多光谱影像 影像空间分辨率10米,波段1—近红外(0.78 - 0.89μm);波段2—红色(0.61 - 0.68μm);波段3—绿色(0.50 - 0.59μm);波段4—短波红外(1.58 - 1.75μm)。 2. 交大犀浦校区2006年QuickBird(快鸟)多光谱影像 影像空间分辨2.44—2.88米,波段1—蓝(450-520nm);波段2—绿(520-660nm);波段3—红(630-690nm);波段4—近红外(760-900nm)。 三:实习具体内容: (一)、绝对大气校正 以实测或从光谱数据库中查得的光谱数据,采用基于ELC的大气校正方法,对交大犀浦校区2006年QuickBird多光谱影像中的第1波段影像进行绝对大气校正。 基本步骤: (1)、从QuickBird多光谱影像文件中提取出第1波段影像;(2)、从影像中判读出一些典型地物;

(3)、从以前实测的光谱物据或光谱数据库中,读出步骤2中判读出的那些地物对应QuickBird第1波段的反射率值; (4)、基于步骤3的反射率值,采用基于ELC的大气校正方法,对交大犀浦校区2006年QuickBird多光谱影像中的第1波段影像进行绝对大气校正。 (二)、相对大气校正——回归分析法 以交大犀浦校区2006年QuickBird多光谱影像中的第4波段影像为参考,采用回归分析法,对第1波段影像进行相对大气校正。(三)、多时相影像匹配法 以交大犀浦校区2003年SPOT5多光谱影像中的第3波段(绿波段)影像为参考,采用多时相影像匹配法,对交大犀浦校区2005年SPOT5多光谱影像中的第3波段(绿波段)影像进行相对大气校正。四:实验步骤 (一)、绝对大气校正 1:从QuickBird多光谱影像文件中提取出第1波段影像 启动ERDAS软件在Viewer #1中打开影像:quickbird_multi_2006_xipu..img,在ERDAS软件界面中选择Interpreter Utilities Layer Stack:如图4.1-1

实验二 遥感图像的几何校正

实验二、遥感图像的几何校正 实验目的:通过实习操作,掌握遥感图像几何校正的基本方法和步骤,深刻理解遥感图像几何校正的意义。 实验内容:ERDAS软件中图像预处理模块下的图像几何校正。 几何校正就是将图像数据投影到平面上,使其符合地图投影系统的过程。而将地图投影系统赋予图像数据的过程,称为地里参考(Geo-referencing)。由于所有地图投影系统都遵循一定的地图坐标系统,因此几何校正的过程包含了地理参考过程。 1、图像几何校正的途径 ERDAS图标面板工具条:点击DataPrep图标,→Image Geometric Correction →打开Set Geo-Correction Input File对话框(图2-1)。 ERDAS图标面板菜单条:Main→Data Preparation→Image Geometric Correction→打开Set Geo-Correction Input File对话框(图2-1)。 图2-1 Set Geo-Correction Input File对话框 在Set Geo-Correction Input File对话框中,选择输入图像,确定校正图像。 2、图像几何校正的计算模型(Geometric Correction Model) ERDAS提供的图像主要几何校正模型,具体功能如下:

表2-1 几何校正计算模型与功能 模型功能 Affine 图像仿射变换(不做投影变换) Polynomial 多项式变换(同时作投影变换) Reproject 投影变换(转换调用多项式变换) Rubber Sheeting 非线性变换、非均匀变换 Camera 航空影像正射校正 Landsat Lantsat卫星图像正射校正 Spot Spot卫星图像正射校正 3、图像校正的具体过程 第一步:显示图像文件(Display Image Files) 首先,在ERDAS图标面板中点击Viewer图表两次,打开两个视窗(Viewer1/Viewer2),并将两个视窗平铺放置,操作过程如下: 在Viewer1中打开需要校正的图像(或通过图2-1已打开):tmAtlanta.img 在Viewer2中打开作为地理参考的校正过的图像:panAtlanta.img 第二步:启动几何校正模块(Geometric Correction Tool) Viewer1菜单条:Raster→ Geometric Correction →打开Set Geometric Model对话框(2-2) →选择多项式几何校正模型:Polynomial→OK →同时打开Geo Correction Tools对话框(2-3)和Polynomial Model Properties对话框(2-4)。 在Polynomial Model Properties对话框中,定义多项式模型参数以及投影参数: →定义多项式次方(Polynomial Order):2 →定义投影参数:(PROJECTION):略 →Apply→Close →打开GCP Tool Referense Setup 对话框(2-5)

ERDAS遥感图像的辐射校正

遥感图像的辐射校正 实验目的:通过实习操作,掌握遥感图像辐射校正的基本原理和和方法,理解遥感图像辐射校正的意义。 实验内容:ERDAS软件中图像预处理模块下的图像辐射校正。 由于遥感检测系统、大气散射和吸收等原因引起的图像模糊失真、分辩率和对比度下降等辐射畸变,其中,大气散射是图像辐射畸变的主要因素,实验中主要是消除由大气散射引起的辐射误差。 大气校正有两种方法,一种是直方图图,一种是线性回归法。 1、直方图法(注意:是否满足应用该方法的前提条件) 打开TM影像,通过视窗viewer的图标,查找最小灰度值,利用空间建模模块(Modeler)的建模工具(Model Maker)图像象元灰度值减去该最小灰度。 点击modeler → model maker ,打开建模对话框见下图: 双击输入要校正的某一波段的影像,双击输入运算方程式,双击输出校正后的新 图像名称,点击工具栏中的运行图标,计算机自动进行运算。

2、线性回归分析法 在视窗viewer打开要校正的图像,Raster→Profile Tools 弹出对话框,选择spectral→ ok,弹出Spectral Profile对话框如下: 利用Spectral Profile 中的图标选取一系列由暗到亮的目标地物点,在对话框中得到地物点在各个波段的的光谱曲线,通过Spectral Profile对话框菜单栏的viewer → Tabular Data查看地物点在各个波段的的具体光谱灰度值。

利用一系列目标地物点的灰度值建立线性回归方程L b=aL a+b,求出线性方程的常数项a、b,该值b即为大气影响值,在空间建模工具中,图像灰度值减去该值即可消除大气散射对图像影响。

遥感大气校正

实验四遥感图像的大气校正 实验目的:通过实习操作,掌握遥感图像大气校正的基本方法和步骤,掌握遥感图像波段计算及其应用。 实验内容: 环境小卫星的数据读取; 辐射定标、图像配准、大气校正; 植被反演、植被覆盖变化监测 1、实验相关知识及背景 ◆传感器定标就是将图像的数字量化值(DN)转化为辐射亮度值或者反射率或者表面 温度等物理量的处理过程;传感器定标可分为绝对定标和相对定标,绝对定标是获取图像上目标物的绝对辐射值等物理量。 ◆遥感图像的大气校正方法很多,这些校正方法按照校正后的结果可以分为2种:绝 对大气校正方法:将遥感图像的DN(Digital Number)值转换为地表反射率、地表辐射率、地表温度等的方法。相对大气校正方法:校正后得到的图像,相同的DN值表示相同的地物反射率,其结果不考虑地物的实际反射率。 ◆ENVI下FLAASH大气校正工具是基于MODTRAN4+辐射传输模型,FLAASH对图 像文件有以下几个要求: (1)数据是经过定标后的辐射亮度(辐射率)数据,单位是:(μW)/(cm2*nm*sr)。 (2)数据带有中心波长(wavelenth)值,如果是高光谱还必须有波段宽度(FWHM),这两个参数都可以通过编辑头文件信息输入(Edit Header)。 (3)数据类型支持四种数据类型:浮点型(floating)、长整型(long integer )、整型(integer)和无符号整型(unsigned int)。数据存储类型:ENVI标准栅格格式文件,且是BIP或者BIL。 (4)波谱范围:400-2500nm ◆浑善达克地区位于内蒙古草原锡林郭勒高原中部。近年来频频发生在京津地区的沙 尘暴与该地区生态环境恶化相关。据统计,京津地区沙尘暴70%的沙源来自于这个区域。通过对该区域植被覆盖度的定量反演,植被覆盖的变化检测,可以实现草原植被的高频率、大范围、高实时的变化监测。 2、实验步骤 根据环境小卫星CCD数据特点及草原植被变化监测的要求,采用以下处理流程: 一、数据预处理: https://www.360docs.net/doc/1718807111.html,D数据读取; 2.辐射定标; 3.大气校正; 4.研究区裁剪; 二、反演模型建立 1.归一化植被指数; 2.植被覆盖度;

相关文档
最新文档