2021届步步高数学大一轮复习讲义(理科)第四章 4.3 第2课时 简单的三角恒等变换

2021届步步高数学大一轮复习讲义(理科)第四章 4.3 第2课时 简单的三角恒等变换
2021届步步高数学大一轮复习讲义(理科)第四章 4.3 第2课时 简单的三角恒等变换

第2课时 简单的三角恒等变换

三角函数式的化简

1.化简:2cos 4x -2cos 2x +

1

2

2tan ????π4-x sin 2????π4+x = .

答案 1

2

cos 2x

解析 原式=1

2

(4cos 4x -4cos 2x +1)2×sin ????π4-x cos ????π

4-x ·cos 2????

π4-x

=(2cos 2x -1)2

4sin ????π4-x cos ???

?π4-x

=cos 22x 2sin ???

?π2-2x =cos 22x 2cos 2x =1

2cos 2x .

2.当π<α<2π时,化简:(1+sin α+cos α)????sin α2

-cos α

22+2cos α= .

答案 cos α

解析 原式=

?

???2cos 2α2+2sin α2cos α2????

sin α2-cos α24cos 2

α

2

=2cos α

2?

???cos α2+sin α2????sin α2-cos α22????cos α2

=cos α

2(-cos α)

???

?cos α2.

∵π<α<2π,∴π2<α2<π.∴cos α

2<0.

∴原式=-cos α

2

cos α

-cos

α2

=cos α.

3.化简:sin 2αsin 2β+cos 2αcos 2β-1

2cos 2αcos 2β= .

答案 12

解析 方法一(从“角”入手,化复角为单角) 原式=sin 2αsin 2β+cos 2αcos 2β-1

2(2cos 2α-1)(2cos 2β-1)

=sin 2αsin 2β-cos 2αcos 2β+cos 2α+cos 2β-1

2

=sin 2αsin 2β+cos 2αsin 2β+cos 2β-1

2

=sin 2β+cos 2β-12=1-12=1

2

.

方法二(从“名”入手,化异名为同名)

原式=sin 2αsin 2β+(1-sin 2α)cos 2β-1

2cos 2αcos 2β

=cos 2β-sin 2α(cos 2β-sin 2β)-1

2cos 2αcos 2β

=cos 2β-sin 2αcos 2β-1

2cos 2αcos 2β

=cos 2β-cos 2β????sin 2α+1

2cos 2α =1+cos 2β2-12cos 2β=1

2

.

4.化简:sin (2α+β)sin α

-2cos(α+β).

解 原式=sin (2α+β)-2sin αcos (α+β)

sin α

=sin[α+(α+β)]-2sin αcos (α+β)sin α

=sin αcos (α+β)+cos αsin (α+β)-2sin αcos (α+β)

sin α

=cos αsin (α+β)-sin αcos (α+β)

sin α

sin[(α+β)-α]sin α=sin β

sin α

.

思维升华 (1)三角函数式的化简要遵循“三看”原则 一看角,二看名,三看式子结构与特征.

(2)三角函数式的化简要注意观察条件中角之间的联系(和、差、倍、互余、互补等),寻找式子和三角函数公式之间的联系点.

三角函数的求值

命题点1 给角求值

例1 (1)cos π9·cos 2π

9·cos ????-239π= . 答案 -1

8

解析 cos π9·cos 2π

9·cos ????-23π9 =cos 20°·cos 40°·cos 100°

=-cos 20°·cos 40°·cos 80° =-sin 20°·cos 20°·cos 40°·cos 80°sin 20°

=-1

2sin 40°·cos 40°·cos 80°sin 20°

=-1

4sin 80°·cos 80°sin 20°

=-1

8sin 160°sin 20°

=-1

8sin 20°sin 20°=-18.

(2)sin 10°1-3tan 10°= . 答案 14

解析

sin 10°1-3tan 10°=sin 10°cos 10°

cos 10°-3sin 10°

2sin 10°cos 10°4???

?12cos 10°-32sin 10°

=sin 20°4sin (30°-10°)=1

4.

命题点2 给值求值

例2 (1)已知cos ????θ+π4=1010,θ∈????0,π2,则sin ????2θ-π3= . 答案

4-3310

解析 由题意可得cos 2????θ+π4=1+cos ????2θ+π22=110,cos ????2θ+π2=-sin 2θ=-45

,即sin 2θ=4

5

. 因为cos ????θ+π4=1010>0,θ∈????0,π2, 所以0<θ<π

4

,2θ∈????0,π2, 根据同角三角函数基本关系式,可得cos 2θ=3

5

由两角差的正弦公式,可得 sin ????2θ-π3=sin 2θcos π3-cos 2θsin π3 =45×12-35×32=4-3310

. (2)若cos ????π4+x =35,1712π

4π,则sin 2x +2sin 2

x 1-tan x = . 答案 -28

75

解析 ∵17π12

4,

∴5π3<π

4+x <2π. 又cos ????π4+x =3

5, ∴sin ????π4+x =-4

5, ∴cos x =cos ???

?????π4+x -π4

=cos ????π4+x cos π4+sin ????π4+x sin π4=-2

10. ∴sin x =-72

10

,tan x =7.

∴sin 2x +2sin 2x 1-tan x =2sin x cos x +2sin 2x 1-tan x

=2×????-7210×????-210+2×???

?-721021-7

=-28

75

.

命题点3 给值求角

例3 已知α,β为锐角,cos α=277,sin β=3

143,则cos 2α= ,2α-β= .

答案 17 π

3

解析 因为cos α=277,所以cos 2α=2cos 2α-1=1

7

.

又因为α,β为锐角,sin β=3

14

3, 所以sin α=

217,cos β=1314

, 因此sin 2α=2sin αcos α=43

7

所以sin(2α-β)=437×1314-17×3314=3

2.

因为α为锐角,所以0<2α<π. 又cos 2α>0,所以0<2α<π

2,

又β为锐角,所以-π2<2α-β<π

2,

又sin(2α-β)=

32,所以2α-β=π3

. 思维升华 (1)给角求值与给值求值问题的关键在“变角”,通过角之间的联系寻找转化方法.

(2)给值求角问题:先求角的某一三角函数值,再根据角的范围确定角. 跟踪训练 (1)cos 275°+cos 215°+cos 75°cos 15°的值等于( ) A.

62 B.32 C.54 D .1+3

4

答案 C

解析 原式=sin 215°+cos 215°+sin 15°cos 15° =1+12sin 30°=1+14=54

.

(2)已知α∈????0,π2,且2sin 2α-sin α·cos α-3cos 2α=0,则sin ???

?α+π4sin 2α+cos 2α+1= . 答案

26

8

解析 ∵α∈????0,π

2,且2sin 2α-sin α·cos α-3cos 2α=0, 则(2sin α-3cos α)·(sin α+cos α)=0, 又∵α∈????0,π

2,sin α+cos α>0, ∴2sin α=3cos α,又sin 2α+cos 2α=1,

∴cos α=

213,sin α=313

, ∴

sin ???

?α+π

4sin 2α+cos 2α+1=2

2

(sin α+cos α)(sin α+cos α)2+(cos 2α-sin 2α)

24cos α=268

. (3)已知α,β∈(0,π),且tan(α-β)=12,tan β=-1

7,则2α-β的值为 .

答案 -3π

4

解析 ∵tan α=tan[(α-β)+β] =tan (α-β)+tan β1-tan (α-β)tan β=12-171+12×17=1

3

>0, ∴0<α<π

2

.

又∵tan 2α=2tan α1-tan 2α=2×131-????132=3

4

>0,

∴0<2α<π

2

∴tan(2α-β)=tan 2α-tan β1+tan 2αtan β=34+17

1-34×1

7=1.

∵tan β=-17<0,∴π

2<β<π,-π<2α-β<0,

∴2α-β=-3π

4

.

1.计算:1-cos 210°

cos 80°1-cos 20°

等于( )

A.

22 B.12 C.32 D .-22

答案 A 解析

1-cos 210°

cos 80°1-cos 20°=sin 210°

sin 10°1-(1-2sin 2

10°)

=sin 210°2sin 210°=22

.

2.若sin ????π3-α=14,则cos ????π

3+2α 等于( ) A .-78 B .-14 C.14 D.7

8

答案 A

解析 cos ????π3+2α=cos ????π-????2

3π-2α =-cos ????23π-2α=-???

?1-2sin 2????π

3-α =-????1-2×????142=-78

. 3.已知sin ????π6-α=cos ????π

6+α,则cos 2α等于( ) A .1 B .-1 C.1

2 D .0

答案 D

解析 因为sin ????π6-α=cos ????π

6+α, 所以12cos α-32sin α=32cos α-1

2sin α,

可得sin α=-cos α, 所以cos 2α=cos 2α-sin 2α=0. 4.4cos 50°-tan 40°等于( ) A. 2 B.2+3

2

C. 3 D .22-1 答案 C

解析 4cos 50°-tan 40°=4sin 40°cos 40°-sin 40°cos 40°

=2sin 80°-sin 40°cos 40°

=2sin 100°-sin 40°cos 40°

=2sin (60°+40°)-sin 40°cos 40°

32cos 40°+2×12

sin 40°-sin 40°cos 40°

= 3.故选C.

5.计算tan ????π

4+α·cos 2α

2cos 2

???

?π4-α的值为( )

A .-2

B .2

C .-1

D .1

答案 D

解析

tan ????π

4+α·cos 2α2cos 2

???

?π4-α=

sin ????π4+α·cos 2α2sin 2

????π4+αcos ???

?π4+α

cos 2α

2sin ????π4+αcos ????π4+α=cos 2αsin 2????π4+α

cos 2αsin ???

?π2+2α=cos 2α

cos 2α=1. 6.设α∈????0,π2,β∈????0,π2,且tan α=1+sin β

cos β,则( ) A .3α-β=π

2

B .2α-β=π

2

C .3α+β=π

2

D .2α+β=π

2

答案 B

解析 因为tan α=1+sin βcos β,所以sin αcos α=1+sin β

cos β,即sin αcos β=cos α+cos αsin β,

所以sin αcos β-cos αsin β=cos α,即sin(α-β)=sin ????π2-α,又α,β均为锐角,且y =sin x 在????-π2,π2上单调递增,所以α-β=π2-α,即2α-β=π

2,故选B. 7.计算:3-sin 70°

2-cos 210°

= .

答案 2

解析 3-sin 70°2-cos 210°=3-cos 20°2-cos 210°=3-(2cos 210°-1)2-cos 210°=2.

8.若θ∈????π4,π2,sin 2θ=37

8,则sin θ等于 . 答案 3

4

解析 因为θ∈????π4,π2,所以2θ∈????π

2,π,cos 2θ≤0,所以cos 2θ=-1-sin 22θ=-1

8

.

又因为cos 2θ=1-2sin 2θ=-18,所以sin 2θ=916,sin θ=3

4

.

9.化简:????3cos 10°-

1sin 170°·cos 15°

+sin 15°cos 15°-sin 15°= . 答案 -4 3 解析 原式=

3sin 10°-cos 10°cos 10°sin 10°·1+tan 15°1-tan 15°=2sin (10°-30°)12

sin 20°

·tan 45°+tan 15°

1-tan 45°·tan 15°

=-4·tan(45°+15°)=-4 3.

10.(2020·广西百色检测)已知tan ????π4+θ=3,则sin 2θ-2cos 2θ= . 答案 -45

解析 tan ????π4+θ=3,1+tan θ1-tan θ=3,解得tan θ=1

2, sin 2θ-2cos 2θ=

2sin θcos θ-2cos 2θsin 2θ+cos 2θ=2tan θ-2tan 2θ+1

=-4

5. 11.已知tan α=-13,cos β=5

5,α∈????π2,π,β∈????0,π2,求tan(α+β)的值,并求出α+β的值. 解 由cos β=

5

5

,β∈????0,π2, 得sin β=25

5,tan β=2.

所以tan(α+β)=tan α+tan β

1-tan αtan β

=-13+21+23

=1.

因为α∈????π2,π,β∈????0,π2, 所以π2<α+β<3π

2,

所以α+β=5π4

.

12.已知0<α<π2<β<π,cos ????β-π4=13,sin(α+β)=45. (1)求sin 2β的值;

(2)求cos ???

?α+π

4的值. 解 (1)方法一 因为cos ????β-π4=cos π4cos β+sin π4sin β=22cos β+22sin β=1

3, 所以cos β+sin β=

23

, 所以1+sin 2β=29,所以sin 2β=-7

9

.

方法二 sin 2β=cos ????π2-2β=2cos 2????β-π4-1=-7

9. (2)因为0<α<π

2<β<π,

所以π4<β-π4<34π,π2<α+β<3π2.

所以sin ????β-π

4>0,cos(α+β)<0, 因为cos ????β-π4=13,sin(α+β)=45, 所以sin ????β-π4=223,cos(α+β)=-35. 所以cos ????α+π4=cos ????(α+β)-????β-π4 =cos(α+β)cos ????β-π4+sin(α+β)sin ????β-π

4 =-35×13+45×223=82-3

15

.

13.若α∈(0,π),且3sin α+2cos α=2,则tan α

2等于( )

A.32

B.34

C.233

D.433

答案 A

解析 由已知得cos α=1-

3

2

sin α. 代入sin 2α+cos 2α=1,得sin 2α+?

??

?1-

32sin α2=1, 整理得74sin 2α-3sin α=0,解得sin α=0或sin α=43

7.

因为α∈(0,π),所以sin α=

437,故cos α=1-32×437=1

7

. 所以tan α2=sin α1+cos α=4371+

17=3

2

.

14.定义运算????

??

a b c d =ad -bc .若cos α=17,??????

sin α sin βcos α cos β =

3314,0<β<α<π

2

,则β= . 答案 π3

解析 由题意有sin αcos β-cos αsin β=sin(α-β)=3314,又0<β<α<π2,∴0<α-β<π

2,

故cos(α-β)=

1-sin 2(α-β)=13

14

又cos α=17,∴sin α=43

7,

于是sin β=sin[α-(α-β)] =sin αcos(α-β)-cos αsin(α-β) =

437×1314-17×3314=32

. 又0<β<π2,故β=π3

.

15.已知α为锐角,β为第二象限角,且cos(α-β)=12,sin(α+β)=1

2,则sin(3α-β)等于( )

A .-1

2

B.12 C .-

32

D.32

答案 B

解析 因为α为锐角,β为第二象限角,cos(α-β)>0,sin(α+β)>0,所以α-β为第四象限角,α+β为第二象限角, 所以sin(α-β)=-

32,cos(α+β)=-3

2

, 所以sin 2α=sin[(α-β)+(α+β)]=-32×????-32+12×1

2

=1. 因为α为锐角,所以2α=π

2

所以sin(3α-β)=sin(2α+α-β)=cos(α-β)=1

2.

16.已知0<α<π2<β<π,且sin(α+β)=513,tan α2=1

2.

(1)求cos α的值; (2)证明:sin β>5

13.

(1)解 ∵tan α2=1

2

∴tan α=2tan α21-tan 2α2=2×

121-???

?122=4

3.

∴?

????

sin αcos α=43,sin 2α+cos 2α=1.又α∈????0,π2,解得cos α=3

5

. (2)证明 由已知得π2<α+β<3π2.

∵sin(α+β)=513,∴cos(α+β)=-12

13.

由(1)可得sin α=4

5

∴sin β=sin[(α+β)-α]=513×3

5-????-1213×45=6365>513

.

高中数学步步高大一轮复习讲义(文科)选修45 不等式选讲

选修4-5不等式选讲 1.两个实数大小关系的基本事实 a>b?________;a=b?________;ab,那么________;如果________,那么a>b.即a>b?________. (2)传递性:如果a>b,b>c,那么________. (3)可加性:如果a>b,那么____________. (4)可乘性:如果a>b,c>0,那么________;如果a>b,c<0,那么________. (5)乘方:如果a>b>0,那么a n________b n(n∈N,n>1). (6)开方:如果a>b>0,那么n a________ n b(n∈N,n>1). 3.绝对值三角不等式 (1)性质1:|a+b|≤________. (2)性质2:|a|-|b|≤________. 性质3:________≤|a-b|≤________. 4.绝对值不等式的解法 (1)含绝对值的不等式|x|a的解集 (2)|ax+b|≤c (c>0)和|ax+b| ①|ax+b|≤c?______________; ②|ax+b|≥c?______________. (3)|x-a|+|x-b|≥c和|x-a|+|x-b|≤c型不等式的解法 ①利用绝对值不等式的几何意义求解,体现了数形结合的思想; ②利用“零点分段法”求解,体现了分类讨论的思想; ③通过构造函数,利用函数的图象求解,体现了函数与方程的思想.

5.基本不等式 (1)定理:如果a ,b ∈R ,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. (2)定理(基本不等式):如果a ,b >0,那么a +b 2________ab ,当且仅当________时,等号成 立.也可以表述为:两个________的算术平均________________它们的几何平均. (3)利用基本不等式求最值 对两个正实数x ,y , ①如果它们的和S 是定值,则当且仅当________时,它们的积P 取得最________值; ②如果它们的积P 是定值,则当且仅当________时,它们的和S 取得最________值. 6.三个正数的算术—几何平均不等式 (1)定理 如果a ,b ,c 均为正数,那么a +b +c 3________3 abc ,当且仅当________时,等号 成立. 即三个正数的算术平均____________它们的几何平均. (2)基本不等式的推广 对于n 个正数a 1,a 2,…,a n ,它们的算术平均__________它们的几何平均,即 a 1+a 2+…+a n n ________n a 1a 2…a n , 当且仅当________________时,等号成立. 7.柯西不等式 (1)设a ,b ,c ,d 均为实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时等号成立. (2)设a 1,a 2,a 3,…,a n ,b 1,b 2,b 3,…,b n 是实数,则(a 21+a 22+…+a 2n )(b 21+b 22+…+b 2 n )≥(a 1b 1 +a 2b 2+…+a n b n )2,当且仅当b i =0(i =1,2,…,n )或存在一个数k ,使得a i =kb i (i =1,2,…,n )时,等号成立. (3)柯西不等式的向量形式:设α,β是两个向量,则|α·β|≤|α||β|,当且仅当β是零向量,或存在实数k ,使α=k β时,等号成立. 8.证明不等式的方法 (1)比较法 ①求差比较法 知道a >b ?a -b >0,a b ,只要证明________即可,这种方法称为求差比较法. ②求商比较法 由a >b >0?a b >1且a >0,b >0,因此当a >0,b >0时要证明a >b ,只要证明________即可,这 种方法称为求商比较法.

2015年高中数学步步高大一轮复习讲义(文科)选修4-4 坐标系与参数方程

选修4-4 坐标系与参数方程 1.极坐标系 (1)极坐标系的建立:在平面上取一个定点O ,叫做________,从O 点引一条射线Ox ,叫做________,再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就确定了一个极坐标系. 设M 是平面内一点,极点O 与点M 的距离OM 叫做点M 的________,记为ρ,以极轴Ox 为始边,射线OM 为终边的角叫做点M 的极角,记为θ.有序数对(ρ,θ)叫做点M 的极坐标,记作M (ρ,θ). (2)极坐标与直角坐标的关系:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,设M 是平面内任意一点,它的直角坐标是(x ,y ),极坐标为(ρ,θ),则它们之间的关系为x =______,y =________. 另一种关系为ρ2=________,tan θ=________. 2.简单曲线的极坐标方程 (1)直线的极坐标方程 θ=α (ρ∈R )表示过极点且与极轴成α角的直线; ρcos θ=a 表示过(a,0)且垂直于极轴的直线; ρsin θ=b 表示过??? ?b ,π 2且平行于极轴的直线; ρsin(α-θ)=ρ1sin(α-θ1)表示过(ρ1,θ1)且与极轴成α角的直线方程. (2)圆的极坐标方程 ρ=2r cos θ表示圆心在(r,0),半径为|r |的圆; ρ=2r sin θ表示圆心在????r ,π 2,半径为|r |的圆; ρ=r 表示圆心在极点,半径为|r |的圆. 3.曲线的参数方程

在平面直角坐标系xOy 中,如果曲线上任意一点的坐标x ,y 都是某个变量t 的函数? ???? x =f (t ), y =g (t ). 并且对于t 的每一个允许值上式所确定的点M (x ,y )都在这条曲线上,则称上式为该曲线的________________,其中变量t 称为________. 4.一些常见曲线的参数方程 (1)过点P 0(x 0,y 0),且倾斜角为α的直线的参数方程为________________(t 为参数). (2)圆的方程(x -a )2+(y -b )2=r 2的参数方程为________________________(θ为参数). (3)椭圆方程x 2a 2+y 2 b 2=1(a >b >0)的参数方程为________________(θ为参数). (4)抛物线方程y 2=2px (p >0)的参数方程为________________(t 为参数). 1.在极坐标系中,直线ρsin(θ+π 4 )=2被圆ρ=4截得的弦长为________. 2.极坐标方程ρ=sin θ+2cos θ能表示的曲线的直角坐标方程为____________________. 3.已知点P (3,m )在以点F 为焦点的抛物线? ???? x =4t 2 , y =4t (t 为参数)上,则PF =________. 4.直线? ???? x =-1+t sin 40° ,y =3+t cos 40°(t 为参数)的倾斜角为________. 5.已知曲线C 的参数方程是? ???? x =3t , y =2t 2 +1(t 为参数).则点M 1(0,1),M 2(5,4)在曲线C 上的是________. 题型一 极坐标与直角坐标的互化 例1 在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.曲线C 的极坐标方程为ρcos(θ-π 3)=1,M ,N 分别为C 与x 轴、y 轴的交点. (1)写出C 的直角坐标方程,并求M 、N 的极坐标;

【免费下载】高中数学步步高大一轮复习讲义文科第1讲 归纳与类比

第十二章 推理证明、算法初步、复数 第1讲 归纳与类比一、选择题 1.观察下列事实:|x |+|y |=1的不同整数解(x ,y )的个数为4,|x |+|y |=2的不同整数解(x ,y )的个数为8,|x |+|y |=3的不同整数解(x ,y )的个数为12,…,则|x |+|y |=20的不同整数解(x ,y )的个数为 ( ). A .76 B .80 C .86 D .92解析 由|x |+|y |=1的不同整数解的个数为4,|x |+|y |=2的不同整数解的个数为8,|x |+|y |=3的不同整数解的个数为12,归纳推理得|x |+|y |=n 的不同整数解的个数为4n ,故|x |+|y |=20的不同整数解的个数为80.故选B.答案 B 2.古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是 ( ).A .289 B .1 024C .1 225 D .1 378解析 观察三角形数:1,3,6,10,…,记该数列为{a n },则a 1=1,a 2=a 1+2,a 3=a 2+3,…,a n =a n -1+n .∴a 1+a 2+…+a n =(a 1+a 2+…、管路敷设技术通过管线敷设技术,不仅可以解决吊顶层配置不规范问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。 、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

2021届步步高数学大一轮复习讲义(文科)第五章 5.4复数

§5.4复数

1.复数的有关概念 (1)定义:我们把集合C ={a +b i|a ,b ∈R }中的数,即形如a +b i(a ,b ∈R )的数叫做复数,其中a 叫做复数z 的实部,b 叫做复数z 的虚部(i 为虚数单位). (2)分类: (3)复数相等:a +b i =c +d i ?a =c 且b =d (a ,b ,c ,d ∈R ). (4)共轭复数:a +b i 与c +d i 共轭?a =c ,b =-d (a ,b ,c ,d ∈R ). (5)模:向量OZ → 的模叫做复数z =a +b i 的模,记作|a +b i|或|z |,即|z |=|a +b i|=a 2+b 2(a ,b ∈R ). 2.复数的几何意义 复数z =a +b i 与复平面内的点Z (a ,b )及平面向量OZ → =(a ,b )(a ,b ∈R )是一一对应关系. 3.复数的运算 (1)运算法则:设z 1=a +b i ,z 2=c +d i ,a ,b ,c ,d ∈R .

(2)几何意义:复数加减法可按向量的平行四边形或三角形法则进行. 如图给出的平行四边形OZ 1ZZ 2可以直观地反映出复数加减法的几何意义,即OZ →=OZ 1→+OZ 2→ ,Z 1Z 2→=OZ 2→-OZ 1→.

概念方法微思考 1.复数a+b i的实部为a,虚部为b吗? 提示不一定.只有当a,b∈R时,a才是实部,b才是虚部. 2.如何理解复数的加法、减法的几何意义? 提示复数的加法、减法的几何意义就是向量加法、减法的平行四边形法则.

题组一 思考辨析 1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)复数z =a +b i(a ,b ∈R )中,虚部为b i.( × ) (2)复数中有相等复数的概念,因此复数可以比较大小.( × ) (3)复平面中原点是实轴与虚轴的交点.( √ ) (4)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模.( √ ) 题组二 教材改编 2.若复数z =(x 2-1)+(x -1)i 为纯虚数,则实数x 的值为( ) A .-1 B .0 C .1 D .-1或1 答案 A 解析 ∵z 为纯虚数,∴????? x 2-1=0, x -1≠0, ∴x =-1. 3.在复平面内,向量AB →对应的复数是2+i ,向量CB →对应的复数是-1-3i ,则向量CA → 对应的复数是( ) A .1-2i B .-1+2i C .3+4i D .-3-4i 答案 D 解析 CA →=CB →+BA → =-1-3i +(-2-i)=-3-4i. 4.若复数z 满足()3+4i z =1-i(i 是虚数单位),则复数z 的共轭复数z 等于( ) A .-15-75 i B .-15+75 i

最新2015年高中数学步步高大一轮复习讲义(文科)第3讲平面向量的数量积

2015年高中数学步步高大一轮复习讲义(文科)第3讲平面向量 的数量积

第3讲平面向量的数量积 一、选择题 1.设x∈R,向量a=(x,1),b=(1,-2),且a⊥b,则|a+b|=() A.5 B.10 C.2 5 D.10 解析∵a⊥b,∴x-2=0,∴x=2.∴|a+b|=a2+b2+2a·b=a2+b2=4+1+1+4=10.故选B. 答案 B 2.设向量a=(1,cos θ)与b=(-1,2cos θ)垂直,则cos 2θ等于() A. 2 2 B. 1 2 C.0 D.-1 解析∵a⊥b,∴1×(-1)+cos θ·2cos θ=0,即2cos2θ-1=0.又cos 2θ=2cos2θ-1. 答案 C 3.若向量a,b,c满足a∥b,且a⊥c,则c·(a+2b)= ().A.4 B.3 C.2 D.0 解析由a∥b及a⊥c,得b⊥c,则c·(a+2b)=c·a+2c·b=0. 答案 D 4.已知非零向量a,b,c满足a+b+c=0.向量a,b的夹角为60°,且|b|=|a|,则向量a与c的夹角为() A.60°B.30° C.120°D.150°解析由a+b+c=0得c=-a-b, ∴|c|2=|a+b|2=|a|2+|b|2+2|a||b|cos 60°=3|a|2, ∴|c|=3|a|,

又a ·c =a ·(-a -b )=-|a |2-a ·b =-|a |2-|a ||b |cos 60°=-32|a |2. 设a 与c 的夹角为θ, 则cos θ=a ·c |a ||c |= -32|a |2 |a |·3|a |=-32, ∵0°≤θ≤180°,∴θ=150°. 答案 D 5.在平面直角坐标系中,O 为坐标原点,已知向量OA →=(2,2),OB →=(4,1),在x 轴上取一点P ,使AP →·BP →有最小值,则P 点的坐标是 ( ). A .(-3,0) B .(2,0) C .(3,0) D .(4,0) 解析 设P 点坐标为(x,0), 则AP →=(x -2,-2),BP →=(x -4,-1). AP →·BP →=(x -2)(x -4)+(-2)×(-1) =x 2-6x +10=(x -3)2+1. 当x =3时,AP →·BP →有最小值1. ∴此时点P 坐标为(3,0),故选C. 答案 C 6.对任意两个非零的平面向量α和β,定义αβ=α·ββ· β.若平面向量a ,b 满足 |a |≥|b |>0,a 与b 的夹角θ∈? ????0,π4,且a b 和b a 都在集合???? ??n 2| n ∈Z 中,则a b = ( ). A.12 B .1 C.3 2 D.52 解析 由定义αβ=α·ββ2可得b a =a ·b a 2=|a |·|b |cos θ|a |2=|b |cos θ |a |,由|a |≥|b |>0,及

最新高中数学步步高大一轮复习讲义(文科)第三章 3.1汇总

2015年高中数学步步高大一轮复习讲义(文科)第三章 3.1

§3.1导数的概念及运算

1.函数y=f(x)从x0到x1的平均变化率 Δy Δx=f(x1)-f(x0) x1-x0 = f(x0+Δx)-f(x0) Δx. 2.函数y=f(x)在x=x0处的导数 (1)定义 当x1趋于x0,即Δx趋于0时,如果平均变化率趋于一个固定的值,那么这个值就是函数y=f(x)在x0点的瞬时变化率.在数学中,称瞬时变化率为函数y=f(x)在x0点的导 数,通常用符号f′(x0)表示,记作f′(x0)=lim x1→x0f(x1)-f(x0) x1-x0 =lim Δx→0 f(x0+Δx)-f(x0) Δx. (2)几何意义 函数f(x)在点x0处的导数f′(x0)的几何意义是曲线y=f(x)在点(x0,f(x0))处的切线的斜率.相应地,切线方程为y-f(x0)=f′(x0)(x-x0). 3.函数f(x)的导函数 如果一个函数f(x)在区间(a,b)上的每一点x处都有导数,导数值记为f′(x):f′(x)= lim Δx→0f(x+Δx)-f(x) Δx,则f′(x)是关于x的函数,称f′(x)为f(x)的导函数,通常也简称为 导数. 4.基本初等函数的导数公式 5. (1)[f(x)±g(x)]′=f′(x)±g′(x); (2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);

(3)?? ??f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x ) [g (x )]2 (g (x )≠0). 1. 判断下面结论是否正确(请在括号中打“√”或“×”) (1)f ′(x 0)与(f (x 0))′表示的意义相同. ( × ) (2)求f ′(x 0)时,可先求f (x 0)再求f ′(x 0). ( × ) (3)曲线的切线不一定与曲线只有一个公共点. ( √ ) (4)与曲线只有一个公共点的直线一定是曲线的切线. ( × ) (5)若f (x )=a 3+2ax -x 2,则f ′(x )=3a 2+2x . ( × ) (6)函数f (x )=x 2ln x 的导函数为f ′(x )=2x ·1x =2. ( × ) 2. (2013·江西)设函数f (x )在(0,+∞)内可导,且f (e x )=x +e x ,则f ′(1)=________. 答案 2 解析 设e x =t ,则x =ln t (t >0),∴f (t )=ln t +t ∴f ′(t )=1 t +1,∴f ′(1)=2. 3. 已知曲线y =x 3在点(a ,b )处的切线与直线x +3y +1=0垂直,则a 的值是 ( ) A .-1 B .±1 C .1 D .±3 答案 B

2021届步步高数学大一轮复习讲义(理科)第十三章 13.1 第2课时参数方程

第2课时参数方程 1.参数方程和普通方程的互化 (1)曲线的参数方程和普通方程是曲线方程的不同形式.一般地,可以通过消去参数从参数方程得到普通方程.

(2)如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一 个变数与参数的关系y =g (t ),那么? ???? x =f (t ), y =g (t )就是曲线的参数方程. 2.常见曲线的参数方程和普通方程 概念方法微思考

1.在直线的参数方程? ???? x =x 0+t cos α, y =y 0+t sin α(t 为参数)中, (1)t 的几何意义是什么? (2)如何利用t 的几何意义求直线上任意两点P 1,P 2的距离? 提示 (1)t 表示在直线上过定点P 0(x 0,y 0)与直线上的任一点P (x ,y )构成的有向线段P 0P 的数量. (2)|P 1P 2|=|t 1-t 2|=(t 1+t 2)2-4t 1t 2. 2.圆的参数方程中参数θ的几何意义是什么? 提示 θ的几何意义为该圆的圆心角. 题组一 思考辨析 1.判断下列结论是否正确(请在括号中打“√”或“×”)

(1)参数方程? ???? x =f (t ), y =g (t )中的x ,y 都是参数t 的函数.( √ ) (2)方程? ???? x =2cos θ, y =1+2sin θ(θ为参数)表示以点(0,1)为圆心,以2为半径的圆.( √ ) (3)已知椭圆的参数方程? ???? x =2cos t ,y =4sin t (t 为参数),点M 在椭圆上,对应参数t =π 3,点O 为原 点,则直线OM 的斜率为 3.( × ) (4)参数方程??? ?? x =2cos θ,y =5sin θ ????θ为参数且θ∈????0,π2表示的曲线为椭圆.( × ) 题组二 教材改编 2.曲线? ???? x =-1+cos θ, y =2+sin θ(θ为参数)的对称中心( ) A .在直线y =2x 上 B .在直线y =-2x 上 C .在直线y =x -1上 D .在直线y =x +1上 答案 B 解析 由????? x =-1+cos θ,y =2+sin θ,得????? cos θ=x +1, sin θ=y -2. 所以(x +1)2+(y -2)2=1.曲线是以(-1,2)为圆心,1为半径的圆,所以对称中心为(-1,2),在直线y =-2x 上. 3.直线????? x =t +1,y =t (t 为参数)与圆? ???? x =2+cos θ,y =sin θ(θ为参数)的位置关系为( ) A .相离 B .相切 C .相交且直线过圆心 D .相交但直线不过圆心 答案 D 解析 消去参数,得直线方程为x -y -1=0, 圆的方程为(x -2)2+y 2=1,圆心为(2,0),半径R =1, 圆心到直线的距离为d =|2-0-1|2 =2 2<1,

2015年高中数学步步高大一轮复习讲义(文科)第三章 专题一

专题一 高考中的导数应用问题 1. 函数f (x )=(x -3)e x 的单调递增区间是 ( ) A .(-∞,2) B .(0,3) C .(1,4) D .(2,+∞) 答案 D 解析 函数f (x )=(x -3)e x 的导数为f ′(x )=[(x -3)·e x ]′=1·e x +(x -3)·e x =(x -2)e x . 由函数导数与函数单调性的关系,得当f ′(x )>0时,函数f (x )单调递增,此时由不等式f ′(x )=(x -2)e x >0,解得x >2. 2.若函数f (x )=x 3-6bx +3b 在(0,1)内有最小值,则实数b 的取值范围是 ( ) A .(0,1) B .(-∞,1) C .(0,+∞) D.??? ?0,1 2 答案 D 解析 f (x )在(0,1)内有最小值,即f (x )在(0,1)内有极小值,f ′(x )= 3x 2-6b , 由题意,得函数f ′(x )的草图如图, ∴????? f ′(0)<0,f ′(1)>0, 即????? -6b <0, 3-6b >0, 解得0

2021届步步高数学大一轮复习讲义(文科)第四章 4.4三角函数的图象与性质

§4.4三角函数的图象与性质 1.用五点法作正弦函数和余弦函数的简图

(1)在正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),????π2,1,(π,0),??? ?3π2,-1,(2π,0). (2)在余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),????π2,0,(π,-1),??? ?3π2,0,(2π,1). 2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z )

概念方法微思考 1.正(余)弦曲线相邻两条对称轴之间的距离是多少?相邻两个对称中心的距离呢? 提示 正(余)弦曲线相邻两条对称轴之间的距离是半个周期;相邻两个对称中心的距离也为半个周期. 2.函数f (x )=A sin(ωx +φ)(A ≠0,ω≠0)是奇函数,偶函数的充要条件分别是什么? 提示 (1)f (x )为偶函数的充要条件是φ=π 2+k π(k ∈Z ). (2)f (x )为奇函数的充要条件是φ=k π(k ∈Z ).

题组一 思考辨析 1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)y =sin x 在第一、第四象限是增函数.( × ) (2)由sin ????π6+2π3=sin π6知,2π 3是正弦函数y =sin x (x ∈R )的一个周期.( × ) (3)正切函数y =tan x 在定义域内是增函数.( × ) (4)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1.( × ) 题组二 教材改编 2.函数f (x )=cos ????2x +π 4的最小正周期是________. 答案 π 3.y =3sin ????2x -π6在区间????0,π 2上的值域是________. 答案 ??? ?-3 2,3 解析 当x ∈????0,π2时,2x -π 6∈????-π6,5π6, sin ????2x -π6∈????-1 2,1, 故3sin ? ???2x -π6∈????-3 2,3, 即y =3sin ????2x -π6在????0,π2上的值域为??? ?-3 2,3. 4.函数y =-tan ????2x -3π 4的单调递减区间为________________. 答案 ???? π8+k π2,5π8+k π2(k ∈Z )

2018年步步高高中数学大一轮复习选修4-4 第1讲 坐标系

选修4-4 坐标系与参数方程 第1讲 坐标系 一、填空题 1.在极坐标系中,点P (ρ0,θ0)(ρ0≠0)关于极点的对称点的极坐标是________. 解析 设点P (ρ0,θ0)关于极点的对称点为(ρ,θ),则ρ+ρ0=0,θ=θ0+π,∴对称点为(-ρ0,θ0). 答案 (-ρ0,θ0) 2.过点(2,π4)平行于极轴的直线的极坐标方程是________. 解析 设直线上点坐标P (ρ,θ), 则ρsin θ=2cos (90°-45°)= 2. 答案 ρsin θ= 2 3.在极坐标系中,ρ=4sin θ是圆的极坐标方程,则点A ? ?? ??4,π6到圆心C 的距离是________. 解析 将圆的极坐标方程ρ=4sin θ化为直角坐标方程为x 2+y 2-4y =0,圆心 坐标为(0,2).又易知点A ? ?? ??4,π6的直角坐标为(23,2),故点A 到圆心的距离为(0-23)2+(2-2)2=2 3. 答案 2 3 4.在极坐标系中,点M ? ????4,π3到曲线ρcos ? ????θ-π3=2上的点的距离的最小值为________. 解析 依题意知,点M 的直角坐标是(2,23),曲线的直角坐标方程是x +3y -4=0,因此所求的距离的最小值等于点M 到该直线的距离,即为

|2+23×3-4| 12+(3) 2=2. 答案 2 5.从极点作圆ρ=2a cos θ的弦,则各条弦中点的轨迹为________. 解析 设所求曲线上动点M 的极坐标为(r ,φ), 由图可知???φ=θ r =12ρ . 把θ=φ和ρ=2r 代入方程ρ=2a cos θ, 得2r =2a cos φ,即r =a cos φ.(? ????-π2 ≤φ≤π2, 这就是所求的轨迹方程. 由极坐标方程可知,所求轨迹是一个以(a 2,0)为圆心,半径为a 2的圆. 答案 以(a 2,0)为圆心,以a 2为半径的圆 6.在极坐标系中,曲线C 1:ρ=2cos θ,曲线C 2:θ=π4,若曲线C 1与C 2交于A 、 B 两点,则线段AB =________. 解析 曲线C 1与C 2均经过极点,因此极点是它们的一个公共点.由??? ρ=2cos θ, θ=π4得??? ρ=2,θ=π4,即曲线C 1与C 2的另一个交点与极点的距离为2,因此AB = 2.

2018年步步高大一轮高考理科数学总复习

第1课时集合 1.元素与集合 (1)集合元素的特性:确定性、互异性、无序性. (2)集合与元素的关系:若a属于集合A,记作a∈A;若b不属于集合A,记作b?A. (3)集合的表示方法:列举法、描述法、图示法. (4) 2. A B或 B A ?B且B≠?3. (1) U (2) ①A∪B=A?B?A,A∩B=A?A?B. ②A∩A=A,A∩?=?. ③A∪A=A,A∪?=A. ④A∩?U A=?,A∪?U A=U,?U(?U A)=A. 4.判断下列结论的正误(正确的打“√”,错误的打“×”) (1)若集合A={x|y=x2},B={y|y=x2},C={(x,y)|y=x2},则A,B,C表示同一个集合.(×) (2)若a在集合A中,则可用符号表示为a?A.(×) (3)若A B,则A?B且A≠B.(√) (4)N*N Z.(√) (5)若A∩B=A∩C,则B=C.(×) (6)对于任意两个集合A,B,都有(A∩B)?(A∪B)成立.(√) (7)?U(A∪B)=(?U A)∩(?U B),?U(A∩B)=(?U A)∪(?U B).(√) (8)若{x2,1}={0,1},则x=0,1.(×) (9){x|x≤1}={t|t≤1}.(√) (10)若A∪B=A∪C,则B=C.(×) 考点一集合的概念

第一章 集合与常用逻辑用语大一轮复习 数学(理)[例1] (1)已知集合A ={0,1,2},则集合B ={x -y |x ∈A ,y ∈A }中元素的个数是( ) A .1 B .3 C .5 D .9 解析:∵A ={0,1,2},∴B ={x -y |x ∈A ,y ∈A }={0,-1,-2,1,2}.故集合B 中有5个元素. 答案:C (2)若集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,则a =( ) A.92 B.98 C .0 D .0或98 解析:当a =0时,显然成立;当a ≠0时,Δ=(-3)2-8a =0,即a =98 . 答案:D [方法引航] (1)研究一个集合,首先要看集合中的代表元素,然后再看元素的限制条件.当集合用描述法表示时,注意弄清其元素表示的意义是什么. (2)对于含有字母的集合,在求出字母的值后,要注意检验集合是否满足互异性. 1.已知a ∈R ,若{-1,0,1}=??????1a ,a 2,0,则a =________. 解析:由题意1a ≠0,a ≠0,a 2≠-1,所以只有a 2=1. 当a =1时,1a =1,不满足互异性,∴a =-1. 答案:-1 2.(2017·福建厦门模拟)已知P ={x |2<x <k ,x ∈N },若集合P 中恰有3个元素,则k 的取值范围为________. 解析:因为P 中恰有3个元素,所以P ={3,4,5},故k 的取值范围为5<k ≤6. 答案:(5,6] 考点二 集合间的关系及应用 [例2] (1)设P ={y |y =-x 2+1,x ∈R }A .P ?Q B .Q ?P C .?R P ?Q D .Q ??R P 解析:因为P ={y |y =-x 2+1,x ∈R }={y |y ≤1},Q ={y |y =2x ,x ∈R }={y |y >0},所以?R P ={y |y >1},所以?R P ?Q ,选 C. 答案:C (2)已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B ?A ,则实数m 的取值范围为________. 解析:∵B ?A , ∴①若B =?,则2m -1<m +1,此时m <2. ②若B ≠?,则????? 2m -1≥m +1,m +1≥-2, 2m -1≤5. 解得2≤m ≤3. 由①、②可得,符合题意的实数m 的取值范围为(-∞,3]. 答案:(-∞,3] [方法引航] 1.集合间基本关系的两种判定方法 (1)化简集合,从表达式中寻找两集合的关系 (2)用列举法(或图示法等)表示各个集合,从元素(或图形)中寻找关系. 2.根据两集合的关系求参数的方法 已知两个集合之间的关系求参数时,要明确集合中的元素,对子集是否为空集进行分类讨论,做到不漏解. (1)若集合元素是一一列举的,依据集合间的关系,转化为解方程(组)求解,此时注意集合中元素的互异性; (2)若集合表示的是不等式的解集,常依据数轴转化为不等式(组)求解,此时需注意端点值能否取到. 1.在本例(1)中,集合P 变为P ={y |y =x 2 +1},Q 不变,如何选答案. 解析:P ={y |y ≥1},Q ={y |y >0},∴P ?Q ,选A.

2015年高中数学步步高大一轮复习讲义(文科)第三章 3.1

§3.1导数的概念及运算 1.函数y=f(x)从x0到x1的平均变化率 Δy Δx=f(x1)-f(x0) x1-x0 = f(x0+Δx)-f(x0) Δx. 2.函数y=f(x)在x=x0处的导数 (1)定义 当x1趋于x0,即Δx趋于0时,如果平均变化率趋于一个固定的值,那么这个值就是函数y=f(x)在x0点的瞬时变化率.在数学中,称瞬时变化率为函数y=f(x)在x0点的导数, 通常用符号f′(x0)表示,记作f′(x0)=lim x1→x0f(x1)-f(x0) x1-x0 =lim Δx→0 f(x0+Δx)-f(x0) Δx. (2)几何意义 函数f(x)在点x0处的导数f′(x0)的几何意义是曲线y=f(x)在点(x0,f(x0))处的切线的斜率.相应地,切线方程为y-f(x0)=f′(x0)(x-x0). 3.函数f(x)的导函数 如果一个函数f(x)在区间(a,b)上的每一点x处都有导数,导数值记为f′(x):f′(x)=lim Δx→0 f(x+Δx)-f(x) Δx,则f′(x)是关于x的函数,称f′(x)为f(x)的导函数,通常也简称为导数.4.基本初等函数的导数公式

5. (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)?? ??f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x ) [g (x )]2 (g (x )≠0). 1. 判断下面结论是否正确(请在括号中打“√”或“×”) (1)f ′(x 0)与(f (x 0))′表示的意义相同. ( × ) (2)求f ′(x 0)时,可先求f (x 0)再求f ′(x 0). ( × ) (3)曲线的切线不一定与曲线只有一个公共点. ( √ ) (4)与曲线只有一个公共点的直线一定是曲线的切线. ( × ) (5)若f (x )=a 3+2ax -x 2,则f ′(x )=3a 2+2x . ( × ) (6)函数f (x )=x 2ln x 的导函数为f ′(x )=2x ·1 x =2. ( × ) 2. (2013·江西)设函数f (x )在(0,+∞)内可导,且f (e x )=x +e x ,则f ′(1)=________. 答案 2 解析 设e x =t ,则x =ln t (t >0),∴f (t )=ln t +t ∴f ′(t )=1 t +1,∴f ′(1)=2. 3. 已知曲线y =x 3在点(a ,b )处的切线与直线x +3y +1=0垂直,则a 的值是 ( ) A .-1 B .±1 C .1 D .±3 答案 B 解析 由y =x 3知y ′=3x 2, ∴切线斜率k =y ′|x =a =3a 2.

相关文档
最新文档