2009年海南省海口市高中数学优质课评选活动参赛课例导数的几何意义

2009年海南省海口市高中数学优质课评选活动参赛课例导数的几何意义
2009年海南省海口市高中数学优质课评选活动参赛课例导数的几何意义

海口市2009 年高中数学课堂教学优质课评比教学实录

1.1.3 导数的几何意义

、创设情境、导入新课师:上节课我们学习了导数的概念,请回答:函数在x x0处的导数f '(x0) 的含义?

生:函数在x x0 处的瞬时变化率.

/ y f x0 x f (x0)

f x0 lim lim

x 0

x x 0

x

师:那么,用定义求导数分哪几个步骤?同学们可参考教材第6 页例1.

y f x0 x f (x0) 生:第一步:求平均变化率;

xx

y 师:非常好,并且我们从求导数的步骤中发现:导数就是求平均变化率当x

x 趋近于O时的极限. 明确了导数的概念之后,今天我们来学习导数的几何意义.

、引导探究、获得新知

y

师:观察函数y=f(x) 的图象,平均变化率在图中

x

什么几何意义?

生:平均变化率表示的是割线AB的斜率.

第二步:求瞬时变化率,即x0 li x m0

师:是的,平均变化率的几何意义就是割线的斜率

师:请看教材第7页图1.1-2 :P是一定点,当动点P n沿着曲线y=f(x)趋近于点

生:当点P n 沿着曲线y=f(x) 趋近于点P 时,割线PP n 趋近于在P 处的切线PT. 师:看来这位同学已经预习了,他说的很对,“当点P n沿着曲线y=f(x) 逼近点P 时,即x 0,割线PP n趋近于确定的位置,这个确定位置上的直线PT 称为点P处的切线. ”这就是切线的概念.

师:观察图①,曲线y=f(x) 与它的割线有2个交点,与它的切线PT有1个交点. 那么,能否根据直线与曲线交点个数来判断直线与曲线的位置关系?

生:若曲线与直线有2 个公共点,则它们相交;若曲线与直线有1 个公共点,则它们相切.

师:观察图②,请指出( 1)直线 l 1与曲线 L 是什么位置关系?( 2)直线 l 2与曲 线 L 是什么位置关系? 生:直线 l 1与曲线 L 相交,直线 l 2与曲线 L 相切. 师:直线l 1与曲线L 有唯一公共点但它不是曲线的切线, l 2与曲线 L 不只一个公 共点,但它是曲线在 A 处的切线 .所以,今后我们不能用曲线与直线公共点的个 数来判断它们的位置关系,应该从定义出发 .

师: 由切线的定义可知,

当 x 0 时,割线 PP n 趋近于切线 PT .

那么,割线 PP n 的斜率趋近于??? 生:切线 PT 的斜率 .

师:割线PP n 的斜率k n y

,当 x 0时,切线 PT 的斜率k 就是???

x

y

生: k lim

x 0

x

f x 0 x f (x 0) /

师: 即 k lim 0 0 f / x 0 . 至此,请同学们总结,导数

x 0 x f / x 0 有什么几何意义?

生: f / x 0 是 PT 的斜率 .

师:直线 PT 是曲线 y f (x )的???

生:直线 PT 是曲线 y f (x )在x x 0 处的斜率. 师: 同学们说的非常好!(教师板书) 导数的几何意义:

函数在 x x 0处的导数就是切线 PT 的斜率 k ,即

师:那么,通过导数的几何意义,我们可以通过函数在某点处的导数,来得到其 图像在该点处切线的斜率 .

师:说出曲线 y f x 在 x 1,2,3处的切线的倾斜角 . (1) f / 1 1;(2) f / 2 0(3) f / 3 3

生: 450、 00 、 1200 四、知识应用、巩固理解

2

师:例1:求出曲线 f (x ) x 2在 x 1处的切线方程 .你们想怎样求切线方程呢 ? 生:求出函数在 x 1 处的导数 f / 1 ,就知道了所求切线的斜率 .

师: 求切线的斜率之后呢? 生:(摇头,回答不出)

师: 好,那我们不妨先求出斜率(教师板书)

k lim y lim x 0 x x 0

f x 0 x f (x 0)

x

那么,关于直线我们还知道哪些信息?

生:x 1 是切点的坐标

师:是切点的横坐标,那纵坐标呢?也是1

生:也是1,切点的坐标为( 1,1)

师:知道直线上一点的坐标和斜率,那么直线方程???生:点斜式y 1 2(x 1),即2x y 1 0 (学生回答,教师板书) 师:今后我们如何求曲线y f (x)在x x0处的切线方程?生:(1)求出f '( x0 ) ,则f '(x0) 就是曲线在x x0切线的斜率; (2)求切点;(3) 写出切线的点斜式方程,y f (x0) f '(x0 )(x x0 )

师:同学们很棒!例2. 如图,它表示跳水运动中高度随着时间的变化的函数的图像.据图回答问题.请描述、比较曲线h(t )在t0 ,t1 ,t2附近的变化情况.

生:作出曲线在这些点处的切线

师:曲线在t0处有怎样的变化趋势?生:不知道怎么表达.

线l0 重合,所以,我们可以用切线的变化趋势刻画曲线在该

师:我们观察在t0 处附近曲线几乎与切

点附近的变化情况,这种思想方法叫“以直代曲” . 那

么,l0平行于x 轴,即h'(t0) 0,说

明曲线在t0 附近曲线比较平坦,几乎没有升降.

师:在t1,t2 处呢?

生:在t1,t2切线斜率h'(t1) 0,h'(t2) 0 ,所以,在t1,t2附近曲线下降,即函数

h(t)在t t1 ,t2附近单调递减.

师:曲线在 t 1 , t 2处都是下降的,下降的速率一样吗? 生:不一样,在 t 2 处都是下降的快 .

师: 你们如何得知的?

生:图像在 t 1处的切线倾斜程度小于在 t 2 处切线的倾斜程度, 说明曲线在 t 1附近 比在 t 2 附近下降得缓慢 .

五、分层练习、提升能力(看学案)

2

师:曲线 y x 2上有一点 P ,过 P 的切线平行于直线 y=4x-5 ,求 P 的坐标.

2

生:设 P 的坐标为( x 0 , x 02 ) ,

即 x 0 2

所以,P 的坐标为( 2,4)

六、课堂小结 师:非常好!这节课我们学习了哪些内容? 生:(齐声回答)

一、切线的定义:

当点 P n 沿着曲线 y f (x)逼近点 P 时,即 x 0,割线 PP n 趋近于确定的 位置,这个确定位置上的直线 PT 称为点 P 处的切线 .

f x 0 x f(x 0)

x

x 0 x x 02

x

lim x 2x 0 2x 0 4

、导数的几何意义: 导数 f '(x 0 )就是函数 f (x)的图象在 x 0处的切线的斜率,即

、导数几何意义的应用 .

1)用导数求切线斜率,进而求出切线方程; 2)利用切线判断曲线在某点附近的变化趋势

七、作业布置

完成学案! 附:板书设计

1.1.3 导数的几何意义

、切线的定义

、导数的几何意义 导数 f '(x 0 )就是函数 f (x)的图象在 x 0处的切线的斜率,即

、导数几何意义的应用 .

1)用导数求切线斜率,进而求出切线方程; 2)利用切线判断曲线在某点附近的变化趋势

2

例 1:求出曲线 f(x) x 2在x 1处的切线方程 . 解:曲线 f (x) x 2在 x 1处的切线斜率

lim y

lim

x0

f x 0

x f (x 0)

x

f / x 0

k f x 0 x f (x 0)

x

“以直代曲”)

k f '(1) 因为f (1) 1 切线方程为

2

f (1 x) f (1) ( x) 22 x 1 1 lim li x0

lim( x 2) 2 ,即切点的坐标为( 1,1),所以

y 1 2(x 1),即2x y 1 0

高中数学导数的概念、运算及其几何意义练习题

导数的概念、运算及其几何意义 黑龙江 依兰高中 刘 岩 A 组基础达标 选择题: 1.已知物体做自由落体运动的方程为21(),2 s s t gt ==若t ?无限趋近于0时, (1)(1)s t s t +?-?无限趋近于9.8/m s ,那么正确的说法是( ) A .9.8/m s 是在0~1s 这一段时间内的平均速度 B .9.8/m s 是在1~(1+t ?)s 这段时间内的速度 C .9.8/m s 是物体从1s 到(1+t ?)s 这段时间内的平均速度 D .9.8/m s 是物体在1t s =这一时刻的瞬时速度. 2. 已知函数f ’ (x)=3x 2 , 则f (x)的值一定是( ) A. 3x +x B. 3x C. 3x +c (c 为常数) D. 3x+c (c 为常数) 3. 若函数f(x)=x 2+b x +c 的图象的顶点在第四象限,则函数f / (x)的图象是( ) 4.下列求导数运算错误.. 的是( ) A. 20122013x 0132c x ='+)( (c 为常数) B. x xlnx 2lnx x 2+=')( C. 2x cosx xsinx x cosx +=')( D . 3ln 33x x =')( 5..已知曲线23ln 4x y x =-的一条切线的斜率为12 ,则切点的横坐标为( ) A . 2 B . 3 C . 12 D .1 填空题: 1.若2012)1(/ =f ,则x f x f x ?-?+→?)1()1(lim 0= ,x f x f x ?--?+→?)1()1(lim 0= ,x x f f x ??+-→?4)1()1(lim 0= , x f x f x ?-?+→?)1()21(lim 0= 。 2.函数y=(2x -3)2 的导数为 函数y= x -e 的导数为 A x D C x B

高中数学导数及微积分练习题

1.求 导:(1)函数 y= 2cos x x 的导数为 -------------------------------------------------------- (2)y =ln(x +2)-------------------------------------;(3)y =(1+sin x )2------------------------ ---------------------- (4)y =3x 2+x cos x ------------------------------------ ;(5)y =x 2cos(2x -π 3 )---------------------------------------- . (6)已知y =ln 3x e x ,则y ′|x =1=________. 2.设1ln )(2+=x x f ,则=)2('f ( ). (A).5 4 (B).5 2 (C).5 1 (D). 5 3 3.已知函数d cx bx ax x f +++=23)(的图象与x 轴有三个不同交点 )0,(),0,0(1x ,)0,(2x ,且)(x f 在1x =-,2=x 时取得极值,则21x x ?的值为 ( ) (A).4 (B).5 (C).-6 (D).不确定 34.()34([0,1])1()1 () ()0 ()1 2 f x x x x A B C D =-∈-函数的最大值是( ) 5.设底面为等边三角形的直棱柱的体积为V ,则其表面积最小时,

底面边长为( ). (A).3V (B).32V (C).34V (D).32V 6.由抛物线x y 22=与直线4-=x y 所围成的图形的面积是( ). (A).18 (B). 3 38 (C). 3 16 (D).16 7.曲线3x y =在点)0)(,(3≠a a a 处的切线与x 轴、直线a x =所围成的三角形的面积为6 1,则=a _________ 。 8.已知抛物线2y x bx c =++在点(12),处的切线与直线20x y ++=垂直,求函数2y x bx c =++的最值. 9.已知函数x bx ax x f 3)(23-+=在1±=x 处取得极值.(1)讨论)1(f 和 )1(-f 是函数)(x f 的极大值还是极小值;(2)过点)16,0(A 作曲线 )(x f y =的切线,求此切线方程.

导数概念及其几何意义

导数概念及其几何意义 1、在函数的平均变化率的定义中,自变量的的增量满足() A .>0 B .<0 C D. =0 2、设函数,当自变量由改变到时,函数值的改变量是() A B C D 3、已知函数的图像上一点(1,2)及邻近一点,则等于() A 2 B 2x C D 2+ 5.函数y=f(x)在x=x0处可导是它在x=x0处连续的() A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件 6.在曲线y=2x2-1的图象上取一点(1,1)及邻近一点(1+Δx,1+Δy),则等于() A.4Δx+2Δx2 B.4+2Δx C.4Δx+Δx2 D.4+Δx 7.若曲线y=f(x)在点(x0,f(x0))处的切线方程为2x+y-1=0,则() A.f′(x0)>0 B.f′(x0)<0 C.f′(x0)=0 D.f′(x0)不存在 8.已知命题p:函数y=f(x)的导函数是常数函数;命题q:函数y=f(x)是一次函数,则命题p是命题q的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 9.设函数f(x)在x0处可导,则等于() A.f′(x0) B.0 C.2f′(x0) D.-2f′(x0) 10.设f(x)=x(1+|x|),则f′(0)等于() A.0 B.1 C.-1 D.不存在 11.若曲线上每一点处的切线都平行于x轴,则此曲线的函数必是______ 函数.(填增、减、常函数) 13.设f(x)在点x处可导,a、b为常数,则=_____. 16.已知曲线y=2x2上一点A(1,2),求(1)点A处的切线的斜率.(2)点A处的切线方程. 17.已知函数f(x)=,试确定a、b的值,使f(x)在x=0处可导.

导数的计算及其几何意义

导数的计算及其几何意义 一、导数的概念及其几何意义 1.函数的平均变化率: 定义:已知函数()y f x =,0x ,1x 是其定义域内不同的两点,记10x x x ?=- 10y y y ?=-10()()f x f x =-00()()f x x f x =+?-,则当0x ?≠时,商 00()()f x x f x y x x +?-?=??称 作函数()y f x =在区间00[,]x x x +?(或00[,]x x x +?)的平均变化率. 注意:这里x ?,y ?可为正值,也可为负值.但0x ?≠,y ?可以为0. 2.函数的瞬时变化率、函数的导数: 定义:设函数()y f x =在0x 附近有定义,当自变量在0x x =附近改变量为x ?时,函数值相应的改变00()()y f x x f x ?=+?-.如果当x ?趋近于0时,平均变化 00()()f x x f x y x x +?-?=??趋近于一个常数l (也就是说平均变化率与某个常数l 的差的绝对值越来越小,可以小于任意小的正数),那么常数l 称为函数()f x 在点0x 的瞬时变化率. “当x ?趋近于零时,00()() f x x f x x +?-?趋近于常数l ”可以用符号“→”记作:“当0 x ?→时, 00()()f x x f x l x +?-→?”,或记作“000()() lim x f x x f x l x ?→+?-=?”,符号“→”读作“趋近于”.函数在0x 的瞬时变化率,通常称为()f x 在0x x =处的导数,并记作0()f x '.这时又称()f x 在0x x =处是可导的.于是上述变化过程,可以记作“当0x ?→时, 000()() ()f x x f x f x x +?-'→?” 或 “0000 ()() lim ()x f x x f x f x x ? →+?-'=?”. 注:0'()f x 是个数. 3.可导与导函数: 定义:如果()f x 在开区间(,)a b 内每一点都是可导的,则称()f x 在区间(,)a b 可导.这样,对开区间(,)a b 内每个值x ,都对应一个确定的导数()f x '.于是,在区间(,)a b 内,()f x '构

高中数学导数经典习题

导数经典习题 选择题: 1.已知物体做自由落体运动的方程为21(),2 s s t gt ==若t ?无限趋近于0时, (1)(1)s t s t +?-?无限趋近于9.8/m s ,那么正确的说法是( ) A .9.8/m s 是在0~1s 这一段时间内的平均速度 B .9.8/m s 是在1~(1+t ?)s 这段时间内的速度 C .9.8/m s 是物体从1s 到(1+t ?)s 这段时间内的平均速度 D .9.8/m s 是物体在1t s =这一时刻的瞬时速度. 2.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒, 那么物体在3秒末的瞬时速度是( ) A .7米/秒 B .6米/秒 C .5米/秒 D .8米/秒 3. 若函数f(x)=x 2+b x +c 的图象的顶点在第四象限,则函数f /(x)的图象是( ) 4.函数)(x f y =在一点的导数值为0是函数)( x f y =在这点取极值的( ) A .充分条件 B .必要条件 C .充要条件 D .必要非充分条件 5.()f x 与()g x 是定义在R 上的两个可导函数,若()f x ,()g x 满足''()()f x g x =,则 ()f x 与()g x 满足( ) A .()f x =()g x B .()f x -()g x 为常数函数 C .()f x =()0g x = D .()f x +()g x 为常数函数 6.. 若()sin cos f x x α=-,则'()f α等于( ) A .sin α B .cos α C .sin cos αα+ D .2sin α 7. 已知函数1)(23--+-=x ax x x f 在),(+∞-∞上是单调函数,则实数a 的 取值范围是( ) A .),3[]3,(+∞--∞Y B .]3,3[- A x D C x B

高中数学《导数的概念及几何意义》公开课优秀教学设计

《导数的概念及几何意义》教学设计 教材内容分析 本节课的教学内容选自人教社普通高中课程标准实验教科书( A 版)数学选修2-2第一章第一节的《变化率与导数》,《导数的概念及几何意义》是在学习了函数平均变化率以后,过渡到瞬时变化率,从而得出导数的概念,再从平均变化率的几何意义,迁移至瞬时变化率即导数的几何意义。 导数是微积分的核心概念之一,是从生产技术和自然科学的需要中产生的,它深刻揭示了函数变化的本质,其思想方法和基本理论在在天文、物理、工程技术中有着广泛的应用,而且在日常生活及经济领域也日渐显示出其重要的功能。 在中学数学中,导数具有相当重要的地位和作用。 从横向看,导数在现行高中教材体系中处于一种特殊的地位。它是众多知识的交汇点,是解决函数、不等式、数列、几何等多章节相关问题的重要工具, 它以更高的观点和更简捷的方法对中学数学的许多问题起到以简驭繁的处理。 从纵向看,导数是函数一章学习的延续和深化,也是对极限知识的发展, 同时为后继研究导数的几何意义及应用打下必备的基础, 具有承前启后的重要作用。 学生学情分析 学生在高一年级的物理课程中已经学习了瞬时速度,因此,先通过求物体在某一时刻的平均速度的极限去得出瞬时速度, 再由此抽象出函数在某点的平均变化率的极限就是瞬时变化率的的模型, 并将瞬时变化率定义为导数,这是符合学生认知规律的. 而在第一课时平均变化率的学习中,课本给出了一个思考,观察函数 )(x f y 的图像,平均变化x y 表示什么?这个思考为研究导数的几何意义埋下 了伏笔。因此,在将瞬时变化率定义为导数之后, 立即让学生继续探索导数的几何意义,学生会对导数的几何意义有更为深刻的认识。 教学目标 1、知识与技能目标会从数值逼近、几何直观感知,解析式抽象三个角度认识导数的含义,应用导数的定义求简单函数在某点处的导数, 掌握求导数的基本步骤,初步学会求解 简单函数在一点处的切线方程。 2、过程与方法目标 通过动手计算培养学生观察、分析、比较和归纳能力,通过问题的探究体会逼近、类比、以及用已知探求未知、从特殊到一般的数学思想方法。 3、情感态度与价值观

高中数学知识点总结导数的定义及几何意义

导数的定义及几何意义 1.x x f x x f x f x ?-?+=→?)()(lim )(0000/ 叫函数)(x f y =在0x x →处的导数,记作0|/x x y = 。 注:①函数应在点0x 的附近有定义,否则导数不存在。②在定义导数的极限式中,x ?趋近 于0可正、可负、但不为0,而y ?可能为0。③x y ??是函数)(x f y =对自变量x 在x ?范围内的平均变化率,它的几何意义是过曲线)(x f y =上点(0x ,)(0x f )及点(0x +x ?, )(00x x f ?+)的割线斜率。④导数x x f x x f x f x ?-?+=→?)()(lim )(0000/是函数)(x f y =在点0x 的处瞬时变化率,它反映的函数)(x f y =在0x 点处变化的快慢程度,它的几何意义是 曲线)(x f y =上点(0x ,)(0x f )处的切线的斜率。⑤若极限x x f x x f x ?-?+→?)()(lim 000不存在,则称函数)(x f y =在点0x 处不可导。⑥如果函数)(x f y =在开区间),(b a 内每一点 都有导数,则称函数)(x f y =在开区间),(b a 内可导;此时对于每一个x ∈),(b a ,都对应 着一个确定的导数)(/x f ,从而构成了一个新的函数)(/x f ,称这个函数)(/ x f 为函数)(x f y =在开区间),(b a 内的导函数,简称导数;导数与导函数都称为导数,这要加以区分: 求一个函数的导数,就是求导函数;求一个函数在给定点的导数,就是求导函数值。 [举例1]若2)(0/=x f ,则k x f k x f k 2)()(lim 000--→等于: (A) -1 (B) -2 (C) 1 (D) 1/2 解析:∵2)(0/=x f ,即k x f k x f k ---+→-)()]([lim 000=2?k x f k x f k 2)()(lim 000--→=-1。 [举例2] 已知0,a n >为正整数设()n y x a =-,证明1'() n y n x a -=- 解析:本题可以对()n y x a =-展开后“逐项”求导证明;这里用导数的定义证明: x a x a x x y n n x ?---?+=→?)()(lim 0/ =

导数的几何意义的教学设计

导数的几何意义 【教学目标】 1.理解切线的定义 2.理解导数的几何意义 3.学会应用导数的几何意义。 【教学重点与难点】 重点:理解导数的几何意义及应用于解决实际问题,体会数形结合的思想方法。 难点:发现、理解及应用导数的几何意义。 【教学过程】

第二步:求瞬时变化率()0000 () ()lim x f x x f x f x x ?→+?-'=?. (即0x ?→,平均变化率趋近..于的确定常数....就是该点导数.. ) (2) 类比平均变化率得出导数,同样我们可以利用平均变化率的几何意义,得出导数的几何意义,我们观察函数()y f x =的图象,平均变化 率()00() f x x f x y x x +?-?=?? 的几何意义是什么 生:平均变化率表示的是割线n PP 的斜率 教师板书,便于学生 数形结合探究导数的几何意义。 突破平均变化率的 几何意义,后面在表示割线斜率时能直接联系此知识。同时引出本节课的研究问题——导数几何意义是什么 二、引导探究、获得新知 1.得到切线的新定义 要研究导数的几何意义,结合导数的概念,即要探究0x ?→,割线的变化趋势....... , ◆多媒体显示: 曲线上点P 处的切线PT 和割线n PP ,演示点n P 从右边沿着曲线逼近点P ,即0x ?→,割线n PP 的变化趋势。 教师引导学生观察割线与切线是否有某种内在联系呢 生:先观察后发现,当0x ?→,随着点n P 沿着曲线逼近点P ,割 以求导数的两个步骤为......... 依据.. ,从平均变化率的几何意义入手探索导数的几何意义,抓住0x ?→的联系,在图形上从割线入手来研究问题。 用逼近的方法体会割线逼近切线。

(完整)高中数学导数典型例题

高中数学导数典型例题 题型一:利用导数研究函数的单调性、极值、最值 1. 已知函数32()f x x ax bx c =+++ 过曲线()y f x =上的点(1,(1))P f 的切线方程为y=3x +1 。 (1)若函数2)(-=x x f 在处有极值,求)(x f 的表达式; (2)在(1)的条件下,求函数)(x f y =在[-3,1]上的最大值; (3)若函数)(x f y =在区间[-2,1]上单调递增,求实数b 的取值范围 解:(1)极值的求法与极值的性质 (2)由导数求最值 (3)单调区间 零点 驻点 拐点————草图 2. 已知).(3232)(23R a x ax x x f ∈--= (1)当4 1||≤ a 时, 求证:)x (f 在)1,1( -内是减函数; (2)若)x (f y =在)1,1( -内有且只有一个极值点, 求a 的取值范围. 解:(1)单调区间 零点 驻点 拐点————草图 (2)草图——讨论 题型二:利用导数解决恒成立的问题 例1:已知322()69f x x ax a x =-+(a ∈R ). (Ⅰ)求函数()f x 的单调递减区间; (Ⅱ)当0a >时,若对[]0,3x ?∈有()4f x ≤恒成立,求实数a 的取值范围.

例2:已知函数222()2()21x x f x e t e x x t =-++++,1()()2 g x f x '=. (1)证明:当22t <时,()g x 在R 上是增函数; (2)对于给定的闭区间[]a b ,,试说明存在实数 k ,当t k >时,()g x 在闭区间[]a b , 上是减函数; (3)证明:3()2 f x ≥. 解:g(x)=2e^(2x)-te^x+1 令a=e^x 则g(x)=2a^2-ta+1 (a>0) (3)f(x)=(e^x-t)^2+(x-t)^2+1 讨论太难 分界线即1-t^2/8=0 做不出来问问别人,我也没做出来 例3:已知3)(,ln )(2-+-==ax x x g x x x f (1)求函数)(x f 在)0](2,[>+t t t 上的最小值 (2)对(0,),2()()x f x g x ?∈+∞≥恒成立,求实数a 的取值范围 解:讨论点x=1/e 1/e

导数的概念及其几何意义教案

§2 导数的概念及其几何意义 第四课时 导数的几何意义习题课 一、教学目标:会利用导数的几何意义求曲线上某点处的切线方程。 二、教学重点:曲线上一点处的切线斜率的求法 教学难点:理解导数的几何意义 三、教学方法:探析归纳,讲练结合 四、教学过程 (一)、复习:导数的几何意义:函数)(x f y =在x 0处的导数就是曲线)(x f y =在点(x 0,)(0x f )处的切线的斜率。 (二)、探究新课 例1、在曲线34x y =上求一点P 使得曲线在该点处的切线满足下列条件: (1)平行于直线y =x +1; (2)垂直于直线2x -16y +1=0; (3)倾斜角为135°。 解:设点坐标为(0x ,0y ),则 202002020202020) (48)()(484)(4x x x x x x x x x x x x x x x x x y ?+?--=??+?-?-=?-?+=?? ∴当Δx 趋于0时,30 400088)(x x x x f -=-='。 (1)∵切线与直线y =x +1平行。 ∴1)(0='x f ,即1830 =-x , ∴20-=x ,10=y 。 即P (―2,1)。 (2)∵切线与直线2x -16y +1=0垂直, ∴1)16 2(·)(0-=--'x f ,即181·830-=-x ,

∴10=x ,40=y 。 即P (―1,4)。 (3)∵切线倾斜角为135°, ∴1135tan )(00-=='x f ,即1830 -=- x , ∴20=x ,10=y 。 即P (2,1)。 例2、求曲线1)(3+==x x f y 过(1,1)点的切线的斜率。 解:设过(1,1)点的切线与13+=x y 相切与点)1,(300+x x P ,则 2020320203030)(33)()(33)1(1)(x x x x x x x x x x x x x x x y ?+?+=??+?+?=?+-+?+=?? 当Δx 趋于0时, 2003)(x x f =', 由导数的几何意义可知,曲线在点P 处的切线的斜率为203x k = ① 又过(1,1)点的切线的斜率1 11030--+=x x k ② ∴由①②得:130302 -=x x x 解得:00=x 或230=x ,∴0=k 或427=k , ∴曲线13+=x y 过(1,1)点的切线的斜率为0或427。 例3、如图,它表示跳水运动中高度随时间变化的函数 2() 4.9 6.510h x x x =-++,根据图像,请描述、比较曲线()h t 在0t 、1t 、2t 附近的变化情况. 解:我们用曲线()h t 在0t 、1t 、2t 处的切线,刻画曲线()h t 在上述三个时刻附近的变化情况. (1) 当0t t =时,曲线()h t 在0t 处的切线0l 平行于x 轴,所以,在0t t =附近曲线 比较平坦,几乎没有升降. (2) 当1t t =时,曲线()h t 在1t 处的切线1l 的斜率1()0h t '<,所以,在1t t =附近

导数的概念、运算及几何意义

导数的概率、运算以及几何意义 1.函数的平均变化率: 一般地,已知函数()y f x =,0x ,1x 是其定义域内不同的两点,记10x x x ?=-, 10y y y ?=-10()()f x f x =-00()()f x x f x =+?-, 则当0x ?≠时,商00()()f x x f x y x x +?-?= ??称作函数()y f x =在区间[,]x x x +?(或00[,]x x x +?)上的平均变化率.2.函数的瞬时变化率、函数的导数: 设函数()y f x =在0x 附近有定义,当自变量在0x x =附近改变量为x ?时,函数值相应的改变00()()y f x x f x ?=+?-. 如果当x ?趋近于0时,平均变化率 00()() f x x f x y x x +?-?= ??趋近于一个常数,那么常数l 称为函数()f x 在点0x 的瞬时变化率. “当x ?趋近于零时,00()() f x x f x x +?-?趋近于常数l ”可以用符号“→”记作: “当0x ?→时,00()()f x x f x l x +?-→?”,或记作“000()() lim x f x x f x l x ?→+?-=?”,符号“→” 读作“趋近于”. 函数在0x 的瞬时变化率,通常称为()f x 在0x x =处的导数,并记作()f x '. 这时又称()f x 在0x x =处是可导的.于是上述变化过程,可以记作 “当0x ?→时,000()()()f x x f x f x x +?-'→?”或“0000()() lim ()x f x x f x f x x ?→+?-'=?”. 考点1: 导数的定义【铺垫】求下列函数在区间[]22x +?,和[]33x +?,上的平均变化率 ①()f x x = ②2()f x x = 【例1】 平均变化率与瞬时变化率 ⑴ 求下列函数在区间00[]x x x +?,上的平均变化率. ① ()f x x = ② 2()f x x = ③ 3()f x x = ④1 ()f x x = ⑤ ()f x ⑵ 求下列函数分别在1x =,2x =和3x =处的瞬时变化率. ① ()f x x = ② 2()f x x = ③ 3()f x x =④1 ()f x x =⑤()f x 【追问】从瞬时变化率角度分析每个函数的整体变化趋势,我们可以很明显的看出 对于一次函数,二次函数,三次函数来说,次数越高,往后变化越快. 【总结】由例1⑵看出一次函数的增长速度不变,二次函数三次函数的增长速度越来越快, 提高班学案1 【拓1】 求函数3()2f x x x =-在[]11x +?,上附近的平均变化率,在1x =处的瞬时变化率与 导数.

导数的概念和几何意义同步练习题(教师版)

导数的概念和几何意义同步练习题 一、选择题 1.若幂函数()y f x =的图像经过点11(,)42 A ,则它在A 点处的切线方程是( ) A. 4410x y ++= B. 4410x y -+= C .20x y -= D. 20x y += 【答案】B 【解析】试题分析:设()a f x x =,把11(,)42A 代入,得1142a =,得12 a =,所以1 2()f x x ==() f x '= ,1 ()14f '=,所以所求的切线方程为11 24 y x - =-即4410x y -+=,选B.考点:幂函数、曲线的切线. 2.函数()x e x f x cos =的图像在点()()0,0f 处的切线的倾斜角为( ) A 、 4π B 、0 C 、4 3π D 、1 【答案】A 【解析】试题分析:由)sin (cos )('x x e x f x -=,则在点()()0,0f 处的切线的斜率1)0('==f k , 1.利用导数求切线的斜率; 2.直线斜率与倾斜角的关系 3.曲线x y e =在点2 (2)e ,处的切线与坐标轴所围三角形的面积为( ) A.2 e B.2 2e C.2 4e D.22 e 【答案】D 【解析】试题分析:∵点2 (2)e ,在曲线上,∴切线的斜率'22 2 x x x k y e e --===, ∴切线的方程为2 2 (2)y e e x -=-,即2 2 0e x y e --=,与两坐标轴的交点坐标为2 (0,)e -,(1,0), ∴22 1122 e S e =??=.考点:1.利用导数求切线方程;2.三角形面积公式. 4.函数2 ()f x x =在点(2,(2))f 处的切线方程为( ) A .44y x =- B .44y x =+ C .42y x =+ D .4y = 【答案】A 【解析】 试题分析:由x x f 2)(='得切线的斜率为4)2(='f ,又4)2(=f ,所以切线方程为)2(44-=-x y ,即44-=x y .也可以直接验证得到。考点:导数求法及几何意义 5.曲线e x y =在点A 处的切线与直线30x y -+=平行,则点A 的坐标为( ) (A )() 11,e -- (B )()0,1 (C )()1,e (D )()0,2

2009年海南省海口市高中数学优质课评选活动参赛课例导数的几何意义

海口市2009 年高中数学课堂教学优质课评比教学实录 1.1.3 导数的几何意义 、创设情境、导入新课师:上节课我们学习了导数的概念,请回答:函数在x x0处的导数f '(x0) 的含义? 生:函数在x x0 处的瞬时变化率. / y f x0 x f (x0) f x0 lim lim x 0 x x 0 x 师:那么,用定义求导数分哪几个步骤?同学们可参考教材第6 页例1. y f x0 x f (x0) 生:第一步:求平均变化率; xx y 师:非常好,并且我们从求导数的步骤中发现:导数就是求平均变化率当x x 趋近于O时的极限. 明确了导数的概念之后,今天我们来学习导数的几何意义. 、引导探究、获得新知 y 师:观察函数y=f(x) 的图象,平均变化率在图中 x 什么几何意义? 生:平均变化率表示的是割线AB的斜率. 第二步:求瞬时变化率,即x0 li x m0 师:是的,平均变化率的几何意义就是割线的斜率

师:请看教材第7页图1.1-2 :P是一定点,当动点P n沿着曲线y=f(x)趋近于点 生:当点P n 沿着曲线y=f(x) 趋近于点P 时,割线PP n 趋近于在P 处的切线PT. 师:看来这位同学已经预习了,他说的很对,“当点P n沿着曲线y=f(x) 逼近点P 时,即x 0,割线PP n趋近于确定的位置,这个确定位置上的直线PT 称为点P处的切线. ”这就是切线的概念. 师:观察图①,曲线y=f(x) 与它的割线有2个交点,与它的切线PT有1个交点. 那么,能否根据直线与曲线交点个数来判断直线与曲线的位置关系? 生:若曲线与直线有2 个公共点,则它们相交;若曲线与直线有1 个公共点,则它们相切.

(完整word)高中数学导数练习题

专题8:导数(文) 经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 。 解析:()2'2 +=x x f ,所以()3211'=+=-f 答案:3 考点二:导数的几何意义。 例 2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是1 22 y x = +,则(1)(1)f f '+= 。 解析:因为21= k ,所以()2 1 1'=f ,由切线过点(1(1))M f ,,可得点M 的纵坐标为25,所以()2 5 1=f ,所以()()31'1=+f f 答案:3 例3.曲线3 2 242y x x x =--+在点(13)-,处的切线方程是 。 解析:443'2 --=x x y ,∴点(13)-,处切线的斜率为5443-=--=k ,所以设切线方程为b x y +-=5,将点(13)-,带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程为:025=-+y x 答案:025=-+y x 点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 例 4.已知曲线C :x x x y 232 3 +-=,直线kx y l =:,且直线l 与曲线C 相切于点 ()00,y x 00≠x ,求直线l 的方程及切点坐标。 解析:Θ直线过原点,则()000 ≠= x x y k 。由点()00,y x 在曲线C 上,则02030023x x x y +-=,∴ 2302 00 0+-=x x x y 。又263'2+-=x x y ,∴ 在 () 00,y x 处曲线C 的切线斜率为()263'02 00+-==x x x f k ,∴

(精心整理)高中数学导数知识点归纳总结

§14. 导 数 知识要点 1. 导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ?,则函数值y 也引起相应的增量)()(00x f x x f y -?+=?;比值x x f x x f x y ?-?+= ??) ()(00称为函数)(x f y =在点0x 到x x ?+0之间的平均变化率;如果极限x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数, 记作)(0'x f 或0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 注:①x ?是增量,我们也称为“改变量”,因为x ?可正,可负,但不为零. ②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ?. 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系: ⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. 可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续. 事实上,令x x x ?+=0,则0x x →相当于0→?x . 于是)] ()()([lim )(lim )(lim 0000 00 x f x f x x f x x f x f x x x x +-+=?+=→?→?→

导数的几何意义及运算

导数的几何意义及运算复习 一、 导数的几何意义: )(0x f ?=x y ??=x x x x x f x f 0 000)()()(-?+-?+=x f x f x x ?-?+)()(00=K 当Δx----0时, )(0x f ? =K 趋近于一常数 二、 导数的求导公式及运算 典型例题: 例1、当h 无限趋近于0时,h h 4)4(22-+无限趋近于 ;h h 44-+无限趋近于 . 练习:若 )(0x f ?=3,当Δx 无限趋近于0时,x x f x f x x ??--?+)3()(00= . 例2.已知函数y=f(x)的图像在点(1,f(1))处的切线方程是x-2y+1=0,则'(1)2(1)f f += 训练1:已知函数y=f(x)的图像在点(0,f(0))处的切线方程是2x-y+2=0,则'(0)(0)f f += 2.曲线 '2(1) 1().(0)2x f x f x e f e x =-+在点(1,f(1))处的切线方程为 题型二:求切线方程 例3、已知曲线y=3 4313+x , (1)、求曲线在点P (2,4)处的切线方程; (2)、求斜率为4的曲线的切线方程; (3)、求过点P (2,4)的切线方程;

练习1:已知曲线3 y x = (1) 求曲线在点P (1,1)处的切线方程; (2) 求与直线3x-y=0平行的直线方程; (3) 求过点P(1,1)处的直线方程; 练习2:已知kx+1=㏑x 有实数解,求k 的取值范围 题型三:告诉切线方程求参数的值 例4:函数y=12+x a 图像与直线y=x 相切,则a= . 练习: 曲线y= 13++ax x 的一条切线方程为y=2x+1则实数a= 题型四:两个曲线的公切线 例5.若存有过点(1,0)的直线与曲线3y x =和21594 y ax x =+-都相切,则实数a= 例6已知曲线C 1:y=x 2与C 2:y=-)2(2-x ,直线l 与C 1,C 2都相切,求直线l 的方程.

高二数学导数测试题(经典版)

一、选择题(每小题5分,共70分.每小题只有一项就是符合要求得) 1.设函数()y f x =可导,则0(1)(1) lim 3x f x f x ?→+?-?等于( ). A.'(1)f B.3'(1)f C.1 '(1)3f D.以上都不对 2.已知物体得运动方程就是4321 4164 S t t t =-+(t 表示时间,S 表示位移),则瞬时速度 为0得时刻就是( ). A.0秒、2秒或4秒 B.0秒、2秒或16秒 C.2秒、8秒或16秒 D.0秒、4秒或8秒 3.若曲线21y x =-与31y x =-在0x x =处得切线互相垂直,则0x 等于( ). C.23 D.23或0 4.若点P 在曲线323 3(34 y x x x =-++上移动,经过点P 得切线得倾斜角为α,则角α得取值范围就是( ). A.[0,]π B.2[0,)[,)23 ππ π C.2[,)3ππ D.2[0,)(,)223 πππ 5.设'()f x 就是函数()f x 得导数,'()y f x =得图像如图 所示,则()y f x =得图像最有可能得就是 3x ))-7.已知函数3 2 ()f x x px qx =--分别为( ). A.427 ,0 B.0,427 C.427- ,0 D.0,427 - 8.由直线21=x ,2=x ,曲线x y 1 =及x 轴所围图形得面积就是( ). A 、 415 B 、 417 C 、 2ln 21 D 、 2ln 2 9.函数3 ()33f x x bx b =-+在(0,1)内有极小值,则( ). A.01b << B.1b < C.0b > D.1 2 b < 10.21y ax =+得图像与直线y x =相切,则a 得值为( ). A.18 B.14 C.1 2 D.1

高中数学-导数的几何意义及应用

高中数学 导数及其应用复习学案 例2、若函数y f(x)的导函数在区间[a,b]上是增函数,则函数y f(x)在区间[a,b]上的图象 练习1.如右图:是f (x)的导函数 , 例3、(1)求曲线y 2x 1 在点1,1 处的切线方程。2 5 (2)求抛物线y= x过点一,6的切线方程 2 (C) (A)(B) f/(x) 的图象如右图所示,则 f ( X)的图象只可能是(

练习:若存在过点(1,0)的直线y X 3和y ax 2 15 X 9都相切,则a 等于( ) 4 25 21 _ 7 25 7 . A.-1 或- B. 1 或 C.—或- D.—或 7 64 4 4 64 4 7.曲线y = x 2— 2x + a 与直线y = 3x + 1相切时,常数a 的值是 ____________ . 类型三:利用导数研究函数的单调性 例4、已知a , b 为常数,且 0,函数f (x ) =-ax+b+axInx , f(e)=2 (e=2.71828…是自然对数的底数) (I) 求实数b 的值; (II) 求函数f (x )的单调区间; 例5、已知函数f(x)= ax _1在(一2,+^ )内单调递减,求实数 a 的取值范围 x 2 1 1 练习:若函数y= — x 3— ax 2+ (a — 1) x+1在区间(1, 4)内为减函数,在区间(6, +1 内为增函数,试 3 2 求实数a 的取值范围 类型四:导数与极值 ln x 例6求函数f x 的极值。 x 3 2 2 例7、已知f x x 3ax bx a 在x 2、直线y = a 与函数f(x) = x 3 — 3x 的图象有相异的三个公共点,则求 a 的取值范围。 类型五:导数与最值 例8、已知函数f(x)=(x-k)e (1)求f(x)的单调区间; 1有极值0,求常数a,b 的值 _ 3 2 练习 1、已知 f(x)=x +ax +(a+6)x+1 有极大值和极小值,则 a 的取值范围是() (A ) -1 v a v 2 (B ) -3 v a v 6 (C ) a v -1 或 a > 2 (D ) a v -3 或 a > 6

导数的运算及几何意义

个性化教学辅导教案 1、某校从参加高三年级期中考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段后得到如图的频率分布直方图,请你根据频率分布直方图中的信息,估计出本次考试数学成绩的平均数为________. 2、已知△ABC 的顶点B 、C 在椭圆x 23 +y 2 =1上,顶点A 是椭圆的一个焦点,且 椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( ) A .2 3 B .6 C .4 3 D .12 3、如图已知圆的半径为,其内接的内角分别为和,现向圆内随机撒一粒豆子,则豆子落在内的概率为( ) A. B. C. D. 10ABC ?,A B 6045ABC ?3316π+334π+433π+1633 π +

1、导数的概念: 用定义法求函数f (x )=x 2-2x -1在x =1处的导数. 2.导数的几何意义: 曲线221y x =+在P (-1,3)处的切线方程是______________ 3.导数的运算: 求下列函数的导数: (1)y =e x ·ln x ; (2)y =x ????x 2+1x +1x 3 (3)y =sin 2????2x +π 3 (4)y =ln(2x +5) 1.学生对导数的概念不理解,没有学会利用定义求函数的导数; 2.本节课的知识点对于学生而言开始引入导数内容,难度中等,需要在对导数的定义理解的基础上,通过老师的总结引导,能够进行函数的导数运算,同时掌握导数的几何意义; 3.学生在学习导数时对公式的记忆不够熟练,对函数求导的练习量不够,学生学习比较积极,但是缺乏将知识融汇在一起的能力,总结归纳能力还需提高。

函数极限与导数高中数学基础知识与典型例题

知识网 数学归纳法、数列的极限与运算1.数学归纳法: (1)由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法. 归纳法包含不完全归纳法和完全归纳法. ①不完全归纳法:根据事物的部分(而不是全部)特殊事例得出一般结论的推理方法. ②完全归纳法: 根据事物的所有特殊事例得出一般结论的推理方法 数学归纳法常与不完全归纳法结合起来使用,用不完全归纳法发现规律, 用数学归纳法证明结论. (2)数学归纳法步骤: ①验证当n取第一个 n时结论 () P n成立; ②由假设当n k =( , k N k n + ∈≥)时,结论() P k成立,证明当1 n k =+时,结论(1) P k+成立; 根据①②对一切自然数 n n ≥时,() P n都成立. 2.数列的极限 (1)数列的极限定义:如果当项数n无限增大时,无穷数列{}n a的项n a无限地趋近于某个常数a(即 n a a -无限地接近于),那么就说数列 {} n a以a为极限,或者说a是数列{} n a的极限.记为 lim n n a a →∞ =或当n→∞时, n a a →. (2)数列极限的运算法则: 如果{}n a、{}n b的极限存在,且lim,lim n n n n a a b b →∞→∞ ==, 那么lim() n n n a b a b →∞ ±=±;lim(); n n n a b a b →∞ ?=?lim(0) n n n a a b b b →∞ =≠ 特别地,如果C是常数,那么lim()lim lim n n n n n C a C a Ca →∞→∞→∞ ?=?=. ⑶几个常用极限: ①lim n C C →∞ =(C 为常数)②lim0 n a n →∞ = k (,a k 均为常数且N* ∈ k) ③ (1) 1 lim0(1) (1或1) 不存在 n n q q q q q ④首项为 1 a,公比为q(1 q<)的无穷等比数列的各项和为lim 1 n n a S q →∞ = - . 注:⑴并不是每一个无穷数列都有极限. ⑵四则运算法则可推广到任意有限个极限的情况,但不能推广到无限个情况. 数 学 归 纳 法 、数 列 的 极 限 与 运 算 例 1. 某个命题与正整数有关,若当) (* N k k n∈ =时该命题成立,那么可推得当 = n1 + k时该命题也成立,现已知当5 = n时该命题不成立,那么可推得() (A)当6 = n时,该命题不成立(B)当6 = n时,该命题成立 (C)当4 = n时,该命题成立(D)当4 = n时,该命题不成立 例2.用数学归纳法证明:“)1 ( 1 1 1 2 1 2≠ - - = + + + + + +a a a a a a n n ”在验证1 = n时,左端 计算所得的项为 ( ) (A)1 (B)a + 1 (C)2 1a a+ + (D)3 2 1a a a+ + + 例3.2 2 21 lim 2 n n n →∞ - + 等于( ) (A)2 (B)-2 (C)- 2 1 (D) 2 1 例4. 等差数列中,若 n n S Lim ∞ → 存在,则这样的数列( ) (A)有且仅有一个(B)有无数多个 (C)有一个或无穷多个(D)不存在 例5.lim(1) n n n n →∞ +-等于( ) (A) 1 3 (B)0 (C) 1 2 (D)不存在 例6.若2 012 (2)n n n x a a x a x a x +=++++, 12 n n A a a a =+++,则2 lim 83 n n n A A →∞ - = + ( ) (A) 3 1 -(B) 11 1(C) 4 1(D) 8 1 - 例7. 在二项式(13)n x +和(25)n x+的展开式中,各项系数之和记为,, n n a b n是正整 数,则 2 lim 34 n n n n n a b a b →∞ - - =. 例8. 已知无穷等比数列{}n a的首项N a∈ 1 ,公比为q,且 n n a a a S N q + + + = ∈ 2 1 , 1, 且3 lim= ∞ → n n S,则= + 2 1 a a_____ . 例9. 已知数列{ n a}前n项和1 1 (1) n n n S ba b =-+- + , 其中b是与n无关的常数,且0 <b<1,若lim n n S →∞ =存在,则lim n n S →∞ =________. 例10.若数列{ n a}的通项21 n a n =-,设数列{ n b}的通项 1 1 n n b a =+,又记 n T是数 列{ n b}的前n项的积. (Ⅰ)求 1 T, 2 T, 3 T的值;(Ⅱ)试比较 n T与 1+ n a的大小,并证明你的结论. 例 1.D 2.C 例 3.A 例 4.A例 5.C将分子局部有理化,原式 =11 lim lim 2 11 11 n n n n n n →∞→∞ == ++ ++ 例6.A例7. 1 2 例8. 3 8 例9.1 例10(见后面)

相关文档
最新文档