材料力学B试题7应力状态_强度理论.docx

材料力学B试题7应力状态_强度理论.docx
材料力学B试题7应力状态_强度理论.docx

40 MPa

.word 可编辑 .

应力状态强度理论

1. 图示单元体,试求60100 MPa

(1)指定斜截面上的应力;

(2)主应力大小及主平面位置,并将主平面标在单元体上。

解: (1)

x y x

y cos 2x sin 276.6 MPa

22

x

y sin 2x cos232.7 MPa

2

3

1 (2)max xy( x y) 2xy281.98MPa39.35

min22121.98

181.98MPa,2

,3121.98MPa

12

xy1200

0arctan()arctan39.35

2x y240

200

6060

2. 某点应力状态如图示。试求该点的主应力。129.9129.9解:取合适坐标轴令x25 MPa,x

120xy sin 2xy cos20 得

y

2

所以m ax

x y

( xy ) 2xy 2

m in 22

129.9 MPa

2525

(MPa)

125MPa

50752( 129.9)250 150100 MPa

200

1 100

MPa,20 ,3200MPa

3. 一点处两个互成45 平面上的应力如图所示,其中未知,求该点主应力。

解:y150 MPa,x120 MPa

.word 可编辑 .

由得45x

y sin 2xy cos 2x 15080 22

x10

MPa

所以max xy(x y)

22

22xy min y

x

45

45

45

214.22 MPa 74.22

1214.22 MPa,20 ,

45

374.22

MPa

4.图示封闭薄壁圆筒,内径 d 100 mm,壁厚 t 2 mm,承受内压 p 4 MPa,外力偶矩 M e 0.192 kN·m。求靠圆筒内壁任一点处的主应力。

0.19210 3

解:

xπ(0.104

40.14)0.05 5.75MPa

t

32

x y pd MPa

50

4t

pd MPa

100

2t

M e p M e

max x y(x y ) 2

xy2

min22100.7 MPa 49.35

1100.7

MPa,249.35 MPa,3 4 MPa

5.受力体某点平面上的应力如图示,求其主应力大小。

解:取坐标轴使

x

100 MPa,x 20MPa40 MPa100 MPa

xy x y

12020 MPa

22cos2x sin 2

100

y 100

y

2

2

y

43.1MPa

.word 可编辑 .

cos120 20 sin120 40

max

x

y

x

y

2

2

(

) xy

min

2

2

106.33 MPa

36.77

1

106.33 MPa , 2

36.77 MPa ,

3

20

6. 某点的应力状态如图示,求该点的主应力及最大切应力。

解:maxx

y

( x

y )

2

xy 2

40

10

min

2

2

30

30 20

252 402

5 47.16

52.16 MPa

(MPa)

2

42.16

所以 1

52.2 MPa , 2 10 MPa , 3

42.16 MPa

1

3

47.2 MPa

max

2

7. 图示工字形截面梁 AB ,截

50 kN

B

面的惯性矩 I z 72.56 10 6

m 4 , A

0.75 m

求固定端截面翼缘和腹板交 界处点 a 的主应力和主方向。

解:

50 103 0.75 0.07

36.17

MPa (压应力)

72.56

10 6

50 10

3

150 30 85 10 9

8.8 MPa

0.03

72.56 10 6

y

30

30 z 140

a 30

150

1

77.05

a 3

a

max x y

( x

y )

2

xy 2

min

2

2

2. 03

MPa

38.2

1 2.03

MPa , 2

0 , 3

38.2 MPa 1

2 xy

)

1 2 8.8 0

arctan(

arctan 77.05

2

xy

2

36.17

.word 可编辑 .

8.图示矩形截面拉杆受轴向拉力 F ,若截面尺寸 b 、 h 和材

料的弹性模量 E ,泊松比均已知,试求杆表面45方向线段AB 的改变量L AB?

解:x F

bh

F

2bh ,

y0

,xy0A

F

45h F(45 )B b 22bh

所以45 1 ( F F )F(1 v)

E 2bh2bh2Ebh

L AB AB 45

F

(1

2F (1 ) 2h)

2Ebh2Eb

9.一边长为 50 mm 的正方形硬铝板处于纯剪切状态,若切

应力80MPa,并已知材料的弹性模量 E 72 GPa,泊松比

0.34 。试求对角线 AC 的伸长量。

解:4580 MPa,13580 MPa

3

11

45

72

9(800.3480) 1.4810345 10

L

AC52

L AC52 1.4810 30.00105 mm

10.一变形体 A 四周和底边均与刚性边界光滑接触,上边受

均布压力0 。已知材料的的弹性模量 E ,泊松比,求竖向和

y

水平方向上的应变和应力。0

解:y0 ,x z , x

z0A x x

1 [x( y z )]0 ,得到x z0

E1

y 1 [y( x z )]

1

[ 0(

2

0 )]0 (1 2 2)

E E1E1

.word 可编辑 .

11. 设地层由石灰岩组成,其密度

2.5 103 kg/m 3 ,泊松比

0.2 。计算离地面

200m 深处的地压应力。

解: y

2.5 103 9.8

200 4.9 MPa

y

200 m

x

z

, x z

1

[ x

0.2 ( 4.9

z )] 0

x

x

E

z

得到 x

z

1.22 MPa

12. 一体积为 10 10 10 mm 3 的立方铝块,将其放入宽为

10 mm

的刚性槽中。

已知铝的泊松比 0.33 ,求铝块的三个主应力。

F =6 kN

解:

6 10

3

MPa,

1

3 0.01

60

0.01

由 2

1 (

2 0.3

3 60) 0

得 2

19.8 MPa

E

13. 直径为 D 的实心圆轴,受外力偶 M e 作用如图。测得轴表

面点 A 与轴线成

45 方向的线应变为

,试导出用 M e 、 D 、 表

示的切变弹性模量 G 的表达式。

解: 45

45

1 (1

) ,所以 2G

d

45

A

45

E

M e

M e

16M e

,所以 G

8M e

D 3 3

E

D

14. 直径 d 100 mm 的圆轴,受轴向拉力 F 和力偶矩 M e 作用。材料

.word 可编辑 .

的轴向线应变

500

10 6 , 方向的线应变

45

400 10 6,求 F

45

和 M e 。

解: F

E

A

785 kN

M e

M e 设力偶矩引起的切应力为

F

45

F

45

50 , 45

50

45

1 ( 45

45 )

1

10 9 [( 50 ) 106

0.3 (50 ) 106 ]

E

200

400 10 6

2

34.6 MPa ,又

16M

π (0.1)3

45

M e 6.8

kN ·m

2

15. 直径 d 100 mm 的实心钢球, 受静水压力 p 42 MPa 作用。

求直径和体积的缩减量。设钢球的弹性模量

E 210 GPa ,泊

松比

0.3 。

解:因为

1

2

3

q

42 MPa

所以

1 2 ( 12

3 )

(1 2 0.3) 3 42

0.24 10 3

11

E

16.8 210 103

[ 1

(

2

3 )]

3 8

10 5

E

210 10

V

V

0.24 10 3 ( ) 1003 1.257 10 2

mm 3

6

d

1

d

8 10 5 100

8 10 3 mm

16. 边长 a 10 0 mm 的立方体,已知弹性模量 E 200 GPa ,泊

松比

0.3 。如将立方体沉入

100 m 深的水中, 求其体积变化。

解:因为

1

2

3

gh

1 MPa

1 2 (

1 2

3 )

1 0.6 ( 3) 6 10 6

E

200 103

.word 可编辑 .

17. 图示拉杆, F ,b ,h 及材料的弹性常数 E 、 均为已知。试求线段 AB 的正应变和转角。 解: x

F , 45 135

F

bh

2bh

所以

!

(

45

F

(1 )

AB

135

)

E

2bhE

又因为 x F , y Fv

bhE bhE

所以 AB

45

(

F

vF )

F (1 v)

bhE bhE

bhE

F

18. 图示曲拐 ABC 在水平面内,悬臂

端 C 处作用铅垂集中力 F 。在上表面

E

45

C

E 处,沿与母线成

45 方向贴一应变

片,已测得线应变 45 ,求载荷 F 值。 已知长度 l

、 直径 d

及材料的常数

a 、

A

d

a

l

B

E 、v 。

解:应力状态如图示,

32 Fl ,

16Fa

d 3

d 3

/2

45

2

! (

所以 45

E

45 2

45 v

45 )

E

45

d

3

/2

所以 F

16a(1 v)

16l (1 v)

19. 三个弹性常数之间的关系: G E /[ 2(1 )] 适用于 (A) 任何材料在任何变形阶段; (B) 各向同性材 料在任何变形阶段; (C) 各向同性材料应力在比例极限范围内; (D) 任何材料在 弹性变形范围内。 答: C

20. 一实心均质钢球,当其外表面处迅速均匀加热,则球心O 点处的应力状态。 (A) 单向拉伸应力状态; (B) 二向拉伸应力状态;

(C) 三向等值拉伸应力状态; (D) 三向压缩应力状态。

答: C

.word 可编辑 .

21. 混凝土立方体试样作单向压缩试验时,若在其上、下压板面上涂有润滑剂,则试样破坏时将沿纵向剖面裂开的主要

原因。

(A) 最大压应力; (B) 最大切应力; (C) 最大伸长线应变;

(D) 存在横向拉应力。答: C

22. 已知单元体的主应力为1 , 2 ,推证两相互垂直的截面

上的正应力之和为常数。

2

证:

1 2 1

2

cos2

2

2

1

1

2

1

2

cos2(

90 )

2

2

1

2

常数 得证。

23. 受内压的薄壁圆筒, 已知内压为

p ,平均直径为 D ,壁厚为 t ,弹性常

数为 E 、 。试确定圆筒薄壁上任一点的主应力、主应变及第三、 第四强度理论的相当应力。

解: 1 pD , 2 pD

, 3 0

2t

4t

1 2 )

1 pD pD pD

(2 ) 1

(

1

(

2t

)

4tE E

E

4t

2

1 ( 2

1 )

1 ( pD pD ) pD

(1 2 )

E

E 4t

2t

4tE

3

1

[0

(

1

2 )]

1

[0

3 pD ] 3 pD

E

E

4t

4tE

r3

1

3

pD

2t

r4

1

[( 1

2 )

2

( 2

3 )

2

( 3

1 )

2

]

2

D

p

3 p D

4t

24.图示正方形截面棱柱体,弹性常数 E 、均为已知。试比较在下列两种情况下的相当应力r3 。

(a)棱柱体自由受压;

(b)棱柱体在刚性方模内受压。

解: (a)120

,3

r313

(b),0(a)(b)

312

所以

12

(1 v)

所以

r313

(1 2)

)(1)y

(1

1 m 25.图示重W 1800 N的信号牌,受最大水平

风力 F 400 N,立柱直径 d 60 mm。试用第三强

度理论计算立柱危险点处的相当应力。

W M F P

解:102.68MPa 3 m

A W z

9.43 MPa

x

2

z MPa

r313

22242104.4

4

26.纯剪切状态的单元体如图,则其第三强度

理论相当应力为。

答:r 32

27.图示单元体所示的应力状态按第四

强度理论,其相当应力r4为:/2 (A) 3 / 2;(B)/ 2 ;

(C)7 / 2 ;(D)5/ 2 。

答: C

28. 第三强度理论和第四强度理论的相当应力分别为r 3 和

r 4,对于纯剪切状态,恒有r 3 /r 4。

答: 2 / 3

20 MPa

29.按第三强度理论计算图示单元30 MPa

体的相当应力50 MPa

r 3

答: 60 MPa

30.图示单元体,第三、四强度理论的相

当应力分别为

r3

r4

答:

4 2,2 3 2

2

31.图示为承受气体压力p 的封闭薄壁圆筒,平均直径为 D ,壁厚为 t ,气体压强p 均为已知,t

p

用第三强度理论校核筒壁强度的D

相当应力为r3。

答:r3pD

2t

F

.word 可编辑 .

32.铸铁轴向受压时,沿图示斜面破坏,试用莫尔强度理论

解释该破坏面与竖直线夹角应大于 45 还是小于45 ?

证:利用莫尔理论作极限莫尔圆、包络线和应力圆与单元体

间的对应关系来解释。单元体上的 O O 面对应于应力圆上的点 O ,以此为基准面及基准点。根据莫尔理论由极限莫尔圆

得到的包络线与单向受

压极限莫尔圆的交点G

(即破坏点)可以观出OG 圆弧对应的圆心角2π/ 2。由点面对应关系

G

C2

o

45

包络线

o

而知这时在单元体上的破裂面与竖直线间的夹角π/ 4。

O C1 2<π/2

33.试用强度理论证明铸铁在单向压缩时的强度条件为

[ ] 。

证:10 ,3

所以[][]

13

[[ ]

[]]所以[ ]

材料力学强度理论

9 强度理论 1、 脆性断裂和塑性屈服 脆性断裂:材料无明显的塑性变形即发生断裂,断面较粗糙,且多发生在垂直于最大正应力的截面上,如铸铁受拉、扭,低温脆断等。 塑性屈服:材料破坏前发生显著的塑性变形,破坏断面较光滑,且多发生在最大剪应力面上,例如低碳钢拉、扭,铸铁压。 2、四种强度理论 (1)最大拉应力理论(第一强度理论) 材料发生脆性断裂的主要因素是最大拉应力达到极限值,即:0 1σσ= (2)最大伸长拉应变理论(第二强度理论): 无论材料处于什么应力状态,只要发生脆性断裂,都是由于最大拉应变(线变形)达 到极限值导致的,即: 0 1εε= (3)最大切应力理论(第三强度理论) 无论材料处于什么应力状态,只要发生屈服,都是由于最大切应力达到了某一极限 值, 即: 0 max ττ=

(4)形状改变比能理论(第四强度理论) 无论材料处于什么应力状态,只要发生屈服,都是由于单元体的最大形状改变比能达到一个极限值,即: u u0 d d = 强度准则的统一形式[]σ σ≤ * 其相当应力: r11 σ=σ r2123 () σ=σ-μσ+σ r313 σ=σ-σ 222 r4122331 1 ()()() 2 ?? σ=σ-σ+σ-σ+σ-σ ?? 3、摩尔强度理论的概念与应用; 4、双剪强度理论概念与应用。 9.1图9.1所示的两个单元体,已知正应力σ=165MPa,切应力τ=110MPa。试求两个单元体的第三、第四强度理论表达式。 图9.1 [解](1)图9.1(a)所示单元体的为空间应力状态。注意到外法线为y及-y的两个界面上没有切应力,因而y方向是一个主方向,σ是主应力。显然,主应力σ对与y轴平行的斜截面上的应力没有影响,因此在xoz坐标平面内可以按照平面应力状态问题对待。外法线为x、z轴两对平面上只有切应力τ,为纯剪切状态,可知其最大和最小正应力绝对值均为τ,则图9.1(a)所示单元体的三个主应力为: τ σ τ σ σ σ- = = = 3 2 1 、 、 , 第三强度理论的相当应力为 解题范例r4σ=

第7章-应力状态和强度理论03.

西南交it 大学应用力*与工程系材#^力学教研i 图示拉伸甄压缩的单向应力状态,材料的破 坏有两种形式: 塑性屈服;极限应力为0■力=<5;或bpO2 腌性斷裂;极限应力为O ■必= CJ\ 此时,4 O>2和偽可由实验测得.由此可建 互如下S 度余件: ^mai 其中n 为安全系数? 2)纯剪应力状态: 图示纯剪应力狀态,材料的破 坏有两 种形式: 塑性屈服:极限应力为 腌性斯裂:极限应力为5 = 5 %和昭可由实验测得.由此可建立如下 =(^■1 it §7.7强度理论及其相当应力 1、概述 1)单向应力状态: a. <亠[6 n 其中, ?度条件:

前述a 度条件对材料破坏的原因并不深究.例如 图示低碳钢拉(压)时的强度条件为: r V J - b, b|nw W — — — // n 然而,其屈服是由于 YnurJl 起的,对?示单向 应力状态,有: 「niu 依照切应力强度条件,有:

4)材料破坏的形式 常温、静栽时材料的破坏形式大致可分为: ?腌性斷裂型: 例如:铸铁:拉伸、扭转等; "钢:三向拉应力状态. -塑性屈月艮型: 例如:低碳钢:拉伸、扭转寻; 铸铁:三向压缩应力状态. 可见:材料破坏的形式不仅与材料有关,还与应力状态有关. , 5)强度理论 根据一些实验资料,针对上述两种破坏形式,分别针对它们发生破坏的原因提出假说,并认为不论材料处于何种应力状态,某种类型的破坏都是由同一因素引起,此即为强度理论. 常用的破坏判据有: 旎性断裂:5,磁可皿 ?性斷裂:V; 下面将讨论常用的-基于上述四种破坏判据的?虞理论.

材料力学B试题7应力状态_强度理论.docx

40 MPa .word 可编辑 . 应力状态强度理论 1. 图示单元体,试求60100 MPa (1)指定斜截面上的应力; (2)主应力大小及主平面位置,并将主平面标在单元体上。 解: (1) x y x y cos 2x sin 276.6 MPa 22 x y sin 2x cos232.7 MPa 2 3 1 (2)max xy( x y) 2xy281.98MPa39.35 min22121.98 181.98MPa,2 ,3121.98MPa 12 xy1200 0arctan()arctan39.35 2x y240 200 6060 2. 某点应力状态如图示。试求该点的主应力。129.9129.9解:取合适坐标轴令x25 MPa,x 由 120xy sin 2xy cos20 得 y 2 所以m ax x y ( xy ) 2xy 2 m in 22 129.9 MPa 2525 (MPa) 125MPa 50752( 129.9)250 150100 MPa 200 1 100 MPa,20 ,3200MPa 3. 一点处两个互成45 平面上的应力如图所示,其中未知,求该点主应力。 解:y150 MPa,x120 MPa

.word 可编辑 . 由得45x y sin 2xy cos 2x 15080 22 x10 MPa 所以max xy(x y) 22 22xy min y x 45 45 45 214.22 MPa 74.22 1214.22 MPa,20 , 45 374.22 MPa 4.图示封闭薄壁圆筒,内径 d 100 mm,壁厚 t 2 mm,承受内压 p 4 MPa,外力偶矩 M e 0.192 kN·m。求靠圆筒内壁任一点处的主应力。 0.19210 3 解: xπ(0.104 40.14)0.05 5.75MPa t 32 x y pd MPa 50 4t pd MPa 100 2t M e p M e max x y(x y ) 2 xy2 min22100.7 MPa 49.35 1100.7 MPa,249.35 MPa,3 4 MPa 5.受力体某点平面上的应力如图示,求其主应力大小。 解:取坐标轴使 x 100 MPa,x 20MPa40 MPa100 MPa xy x y 12020 MPa 22cos2x sin 2

材料力学四个强度理论

四大强度准则理论: 1、最大拉应力理论(第一强度理论): 这一理论认为引起材料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是: σ1=σb。σb/s=[σ] 所以按第一强度理论建立的强度条件为: σ1≤[σ]。 2、最大伸长线应变理论(第二强度理论): 这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。 εu=σb/E;ε1=σb/E。由广义虎克定律得: ε1=[σ1-u(σ2+σ3)]/E 所以σ1-u(σ2+σ3)=σb。 按第二强度理论建立的强度条件为: σ1-u(σ2+σ3)≤[σ]。 3、最大切应力理论(第三强度理论): 这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。 τmax=τ0。 依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs——横截面上的正应力) 由公式得:τmax=τ1s=(σ1-σ3)/2。 所以破坏条件改写为σ1-σ3=σs。 按第三强度理论的强度条件为:σ1-σ3≤[σ]。 4、形状改变比能理论(第四强度理论): 这一理论认为形状改变比能是引起材料屈服破坏的主要因素,无论什么应力状态,只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。 发生塑性破坏的条件为: 所以按第四强度理论的强度条件为:sqrt(σ1^2+σ2^2+σ3^2-σ1σ2-σ2σ3-σ3σ1)<[σ]

第7章 应力状态和强度理论 (答案)

7.1已知应力状态如图所示(单位:MPa ),试求: ⑴指定斜截面上的应力; ⑵主应力; ⑶在单元体上绘出主平面位置及主应力方向; ⑷最大切应力。 解: 100x MPa σ= 200y MPa σ= 100x MPa τ= 0 30α=- (1)cos 2sin 2211.622 x y x y x ασσσσ σατα+-= + -=sin 2cos 293.32 x y x MPa ασστατα-=+= (2)max 261.82 x y MPa σσσ+= = min 38.22x y MPa σσσ+== MPa 8.2611=σ MPa 2.382=σ 03=σ (3)13 max 130.92 MPa σστ-== 7.2扭矩m kN T ?=5.2作用在直径mm D 60=的钢轴上,试求圆轴表面上任一点与母线成 30=α方向上的正应变。设E=200GPa, 0.3υ=。 解:表面上任一点处切应力为: max 59P T MPa W τ= = 表面上任一点处单元体应力状态如图 30sin 251MPa στα=-=- 120sin 251MPa στα=-= () 00430301201 3.310E εσυσ-= -=? 2 στ τ

7.3用电阻应变仪测得空心钢轴表面某点与母线成 45方向上的正应变4 100.2-?=ε,已知转速min /120r ,G=80GPa ,试求轴所传 递的功率。 解:表面任一点处应力为 max 9550P P P T n W W τ== max 9550 P W n P τ∴= 纯剪切应力状态下,0 45斜截面上三个主应力为:1στ= 20σ= 3στ=- 由广义胡克定律 ()113 1 1E E υ εσυστ+= -= 又()21E G υ= +V 2G τε∴= 代入max 9550 P W n P τ= ,得109.4P KW = 7.4图示为一钢质圆杆,直径mm D 20=,已知A 点与水平线成 60 方向上的正应变4 60101.4-?= ε,E=200GPa ,0.3υ=, 试求荷载P 。 解:0P A σ= 204D P πσ=? 斜截面上 02 060cos 4 σσσα== 2001503cos 4 σσσα== 由广义胡克定律 () 0006015060134E E υεσυσσ-= -= 将060043E εσυ = -代入2 04 D P πσ=? 解得P=36.2KN

材料力学带答疑

第七章应力和应变分析强度理论 1.单元体最大剪应力作用面上必无正应力 答案此说法错误(在最大、最小正应力作用面上剪应力一定为零;在最大剪应力作用面上正应力不一定为零。拉伸变形时,最大正应力发生在横截面上,在横截面上剪应力为零;最大剪应力发生在45度角的斜截面上,在此斜截面上正应力为σ/2。) 2. 单向应力状态有一个主平面,二向应力状态有两个主平面 答案此说法错误(无论几向应力状态均有三个主平面,单向应力状态中有一个主平面上的正应力不为零;二向应力状态中有两个主平面上的正应力不为零) 3. 弯曲变形时梁中最大正应力所在的点处于单向应力状态 答案此说法正确(最大正应力位于横截面的最上端和最下端,在此处剪应力为零。)4. 在受力物体中一点的应力状态,最大正应力作用面上切应力一定是零 答案此说法正确(最大正应力就是主应力,主应力所在的面剪应力一定是零) 5.应力超过材料的比例极限后,广义虎克定律不再成立 答案此说法正确(广义虎克定律的适用范围是各向同性的线弹性材料。) 6. 材料的破坏形式由材料的种类而定 答案此说法错误(材料的破坏形式由危险点所处的应力状态和材料的种类综合决定的)7. 不同强度理论的破坏原因不同

答案此说法正确(不同的强度理论的破坏原因分别为:最大拉应力、最大线应变、最大剪应力、形状比能。) 二、选择 1.滚珠轴承中,滚珠与外圆接触点为应力状态。 A:二向; B:单向C:三向D:纯剪切 答案正确选择C(接触点在铅垂方向受压,使单元体向周围膨胀,于是引起周围材料对接触点在前后、左右方向的约束应力。) 2.厚玻璃杯因沸水倒入而发生破裂,裂纹起始于。 A:内壁 B:外壁 C:内外壁同时 D:壁厚的中间 答案正确选择:B (厚玻璃杯倒入沸水,使得内壁受热膨胀,外壁对内壁产生压应力的作用;内壁膨胀使得外壁受拉,固裂纹起始于外壁。) 3. 受内压作用的封闭薄壁圆筒,在通过其壁上任意一点的纵、横两个截面 中。 A:纵、横两截面均不是主平面; B:横截面是主平面、纵截面不是主平面;C:纵、横二截面均是主平面; D:纵截面是主平面,横截面不是主平面; 答案正确选择:C (在受内压作用的封闭薄壁圆筒的壁上任意取一点的应力 状态为二向不等值拉伸,其σ x =pD/4t、σ y =pD/2t。单元体上无剪应力的作用, 固纵、横截面均为主平面。) 4.广义虎克定律ε i =(σ i -u(σ j +σ k )/E 适用于。

8章应力分析·强度理论

材 料 力 学 ·170 · 第8章 应力分析·强度理论 8.1 概 述 前面几章中,分别讨论了轴向拉伸与压缩、扭转和弯曲等几种基本变形构件横截面上的应力,并根据相应的实验结果,建立了危险点处只有正应力或只有切应力时的强度条件 []max σσ≤或[]max ττ≤ 式中:max σ或max τ为构件工作时最大的应力,由相关的应力公式计算;[]σ或[]τ为材料的许 用应力,它是通过直接实验(如轴向拉伸或纯扭),测得材料相应的极限应力,再除以安全因数获得的,没有考虑材料失效的原因。这些强度条件的共同特点是:其一,危险截面的危险点只有正应力或只有切应力作用;其二,都是通过实验直接确定失效时的极限应力。 上述强度条件对于分析复杂情形下的强度问题是远远不够的。例如,仅仅根据横截面上的应力,不能分析为什么低碳钢试样拉伸至屈服时,表面会出现与轴线成45°角的滑移线;也不能分析铸铁圆试样扭转时,为什么沿45°螺旋面断开;根据横截面上的应力分析和相应的实验结果,不能直接建立既有正应力又有切应力存在时的强度条件。 实际工程中,构件受力可能非常复杂,从而使得受力构件内截面上一点处往往既有正应力,又有切应力。对于这些复杂的受力情况,一方面要研究通过构件内某点各个不同方位截面上的应力变化规律,从而确定该点处的最大正应力和最大切应力及其所在的截面方位;另一方面需要研究材料破坏的规律,找出材料破坏的共同因素,通过实验确定这一共同因素的极限值,从而建立相应的强度条件。 本章主要研究受力构件内一点的应力状态,应力与应变之间的关系(广义胡克定律)以及关于材料破坏规律的强度理论,从而为在各种应力状态下的强度计算提供必要的理论基础。 8.2 一点的应力状态·应力状态分类 受力构件内一点处不同截面上应力的集合,称为一点的应力状态。为了描述一点的应力状态,在一般情况下,总是围绕这点截取一个3对面互相垂直且边长充分小的正六面体,这一六面体称为单元体。当受力构件处于平衡状态时,从构件内截取的单元体也是平衡的,单元体的任何一个局部也必是平衡的。所以,当单元体3对面上的应力已知,就可以根据截面法求出通过该点的任一斜截面上的应力情况。因此,通过单元体及其3对互相垂直面上的应力,可以描述一点的应力状态。 为了确定一点的应力状态,需要先确定代表这一点的单元体的6个面上的应力。为此,在单元体的截取时,应尽量使其各面上应力容易求得。

材料力学强度理论

9强度理论 1、脆性断裂与塑性屈服 脆性断裂:材料无明显得塑性变形即发生断裂,断面较粗糙,且多发生在垂直于最大正应力得截面上,如铸铁受拉、扭,低温脆断等。 塑性屈服:材料破坏前发生显著得塑性变形,破坏断面较光滑,且多发生在最大剪应力面上,例如低碳钢拉、扭,铸铁压。 2、四种强度理论 (1)最大拉应力理论(第一强度理论) 材料发生脆性断裂得主要因素就是最大拉应力达到极限值,即: (2)最大伸长拉应变理论(第二强度理论): 无论材料处于什么应力状态,只要发生脆性断裂,都就是由于最大拉应变(线变形)达到极限值导致得,即: (3)最大切应力理论(第三强度理论) 无论材料处于什么应力状态,只要发生屈服,都就是由于最大切应力达到了某一极限值, 即: (4)形状改变比能理论(第四强度理论) 无论材料处于什么应力状态,只要发生屈服,都就是由于单元体得最大形状改变比能达到一个极限值,即: 强度准则得统一形式 其相当应力:

3、摩尔强度理论得概念与应用; 4、双剪强度理论概念与应用. 9、1图9、1所示得两个单元体,已知正应力σ =165MPa ,切应力=110MPa.试求两个单元体得第三、第四强度理论表达式。 图9、1 [解] (1)图9、1(a )所示单元体得为空间应力状态。注意到外法线为y及-y 得两个界面上没有切应力,因而y方向就是一个主方向,s就是主应力。显然,主应力σ 对与y 轴平行得斜截面上得应力没有影响,因此在x oz 坐标平面内可以按照平面应力状态问题对待。外法线为x、z 轴两对平面上只有切应力t,为纯剪切状态,可知其最大与最小正应力绝对值均为t,则图9、1(a)所示单元体得三个主应力为: , 第三强度理论得相当应力为 MPa 第四强度理论得相当应力为: MPa (2)图9、1(b)所示单元体,其主应力为 第三强度理论得相当应力为: MPa 第四强度理论得相当应力为: MPa 9、2一岩石试件得抗压强度为14OMPa ,E=55GPa, μ=0、25, 承受三向压缩.己知试件破坏时得两个主应力分别为=—1、4MP a 与 —2、8MPa,试根据第四强度理论推算这时得另一个方向得主应力为多少? [解] 设另一个方向得主应力为,则根据第四强度理论可得 123220.011165, 55.022 σσσσ??=±=±==??-解题范例

材料力学B试题7应力状态_强度理论

(2) 主应力大小及主平面位置,并将主平面标在单元体上。 解:(1) MPa 6.762sin 2cos 2 2 =--+ += ατασσσσσα x y x y x MPa 7.322cos 2sin 2 -=+-=ατασστα x y x (2) 2 2min max )2 (2xy y x y x τσσσσσσ+-±+=98.12198.81-=MPa 98.811=σMPa ,02 =σ,98.1213-=σ MPa 35.3940 200 arctan 21)2arctan( 2 10== --=y x xy σστα 2. 解:取合适坐标轴令25=x σ MPa ,9.129-=x τ由02cos 2sin 2 120 =+-= ατασστxy y x 得125-=y σMPa 所以2 2m in m ax )2 (2xy y x y x τσσσσσσ+-± += 200 100 15050)9.129(755022-= ±-=-+± -= MPa 1001=σ MPa ,02=σ,2003-=σ MPa 3. 一点处两个互成 45平面上的应力如图所示,其中σ未知,求该点主应力。 解:150=y σ MPa ,120-=x τ MPa

由 ατασστ2cos 2sin 2 45 xy y x +-= 802 150 -=-= x σ 得 10-=x σ MPa 所以 2 2min max )2 (2xy y x y x τσσσσσσ+-±+= 22 .7422.214-= MPa 22.2141=σ MPa ,02=σ,22.743-=σ 4. 图示封闭薄壁圆筒,内径100=d mm ,壁厚2=t mm ,承受内压4=p MPa ,外力偶矩192.0=e M kN ·m 。求靠圆筒内壁任一 点处的主应力。 解:75.505.032 ) 1.0104.0(π1019 2.0443 =?-?= x τ MPa 504==t pd x σ MPa 1002==t pd y σ MPa 35.497.100)2 (22 2min max =+-±+=xy y x y x τσσσσσσ MPa 7.1001=σ MPa ,35.492=σ MPa ,43-=σ MPa 5. 受力体某点平面上的应力如图示,求其主应力大小。 解:取坐标轴使100=x σMPa ,20=x τ α τασσσσσα2sin 2cos 2 2 x y x y x --+ += ' 45-M e

材料力学强度理论

9 强度理论 1、 脆性断裂与塑性屈服 脆性断裂:材料无明显的塑性变形即发生断裂,断面较粗糙,且多发生在垂直于最大正应力的截面上,如铸铁受拉、扭,低温脆断等。 塑性屈服:材料破坏前发生显著的塑性变形,破坏断面较光滑,且多发生在最大剪应力面上,例如低碳钢拉、扭,铸铁压。 2、四种强度理论 (1)最大拉应力理论(第一强度理论) 材料发生脆性断裂的主要因素就是最大拉应力达到极限值,即:0 1σσ= (2)最大伸长拉应变理论(第二强度理论): 无论材料处于什么应力状态,只要发生脆性断裂,都就是由于最大拉应变(线变形)达 到极限值导致的,即: 01εε= (3)最大切应力理论(第三强度理论) 无论材料处于什么应力状态,只要发生屈服,都就是由于最大切应力达到了某一极限 值, 即: 0max ττ=

(4)形状改变比能理论(第四强度理论) 无论材料处于什么应力状态,只要发生屈服,都就是由于单元体的最大形状改变比能达到一个极限值,即:u u 0d d = 强度准则的统一形式 [] σσ≤* 其相当应力: r11σ=σ r2123()σ=σ-μσ+σ r313σ=σ-σ 2 22r41223311()()()2 ??σ=σ-σ+σ-σ+σ-σ?? 3、摩尔强度理论的概念与应用; 4、双剪强度理论概念与应用。 9、1图9、1所示的两个单元体,已知正应力σ =165MPa,切应力τ=110MPa 。试求两个单元体的第三、第四强度理论表达式。 图9、1 [解] (1)图9、1(a)所示单元体的为空间应力状态。注意到外法线为y 及-y 的两个界面上没有切应力,因而 y 方向就是一个主方向,σ就是主应力。显然,主应力σ 对与y 轴平行的斜截面上的应力没有影响,因此在xoz 坐标平面内可以按照平面应力状态问题对待。外法线为x 、z 轴两对平面上只有切应力τ,为纯剪切状态,可知其最大与最小正应力绝对值均为τ,则图9、1(a)所示单元体的三个主应力为: τστσσσ-===321、、, 第三强度理论的相当应力为 解题范例 r4σ=

四种强度理论(1)

由于材料的破坏按其物理本质分为脆断和屈服两类形式,所以,强度理论也就相应地分为两类,下面就来介绍目前常用的四个强度理论。 1、最大拉应力理论: 这一理论又称为第一强度理论。这一理论认为破坏主因是最大拉应力。不论复杂、简单的应力状态,只要第一主应力达到单向拉伸时的强度极限,即断裂。 破坏形式:断裂。 破坏条件:σ1 =σb 强度条件:σ1≤[σ] 实验证明,该强度理论较好地解释了石料、铸铁等脆性材料沿最大拉应力所在截面发生断裂的现象;而对于单向受压或三向受压等没有拉应力的情况则不适合。 缺点:未考虑其他两主应力。 使用范围:适用脆性材料受拉。如铸铁拉伸,扭转。 2、最大伸长线应变理论 这一理论又称为第二强度理论。这一理论认为破坏主因是最大伸长线应变。不论复杂、简单的应力状态,只要第一主应变达

到单向拉伸时的极限值,即断裂。破坏假设:最大伸长应变达到简单拉伸的极限(假定直到发生断裂仍可用胡克定律计算)。 破坏形式:断裂。 脆断破坏条件:ε1=εu=σb/E ε1=1/E[σ1?μ (σ2+σ3)] 破坏条件:σ1?μ(σ2+σ3) =σb 强度条件:σ1?μ(σ2+σ3)≤[σ] 实验证明,该强度理论较好地解释了石料、混凝土等脆性材料受轴向拉伸时,沿横截面发生断裂的现象。但是,其实验结果只与很少的材料吻合,因此已经很少使用。 缺点:不能广泛解释脆断破坏一般规律。 使用范围:适于石料、混凝土轴向受压的情况。 3、最大切应力理论: 这一理论又称为第三强度理论。这一理论认为破坏主因是最大切应力 maxτ。不论复杂、简单的应力状态,只要最大切应力达到单向拉伸时的极限切应力值,即屈服。破坏假设:复杂应力状态危险标志最大切应力达到该材料简单拉、压时切应力极限。 破坏形式:屈服。 破坏因素:最大切应力。 τmax=τu=σs/2 屈服破坏条件:τmax=1/2(σ1?σ3)

第三强度理论.

第七章 应力和应变分析 强度理论 §7.1应力状态概述 过构件上一点有无数的截面,这一点的各个截面上应力情况的集合,称为这点的应力状态 §7.2二向和三向应力状态的实例 §7.3二向应力状态分析—解析法 1.任意斜截面上的应力 在基本单元体上取任一截面位置,截面的法线n 。 在外法线n 和切线t 上列平衡方程 αασαατσc o s )c o s (s i n )c o s (dA dA dA x xy a -+ 0s i n )s i n (c o s )s i n (=-+αασαατdA dA y yx αασαατ τsin )cos (cos )cos (dA dA dA x xy a -- 0sin )sin (cos )sin (=++ααταασdA dA yx y 根据剪应力互等定理,yx xy ττ=,并考虑到下列三角关系 22sin 1sin ,22cos 1cos 22 α ααα-=+= , ααα2sin cos sin 2= 简化两个平衡方程,得 ατασσσσσα2sin 2cos 2 2 xy y x y x --+ += xy τyx τn α t

ατασστα2cos 2sin 2 xy y x +-= 2.极值应力 将正应力公式对α取导数,得 ?? ????+--=ατασσασα 2cos 2sin 22xy y x d d 若0αα=时,能使导数 0=α σα d d ,则 02cos 2sin 2 00=+-ατασσxy y x y x xy tg σστα-- =220 上式有两个解:即0α和 900±α。在它们所确定的两个互相垂直的平面上,正应力取得极值。且绝对值小的角度所对应平面为最大正应力所在的平面,另一个是最小正应力所在的平面。求得最大或最小正应力为 2 2min max )2 (2xy y x y x τσσσσσσ+-±+= ??? 0α代入剪力公式,0ατ为零。这就是说,正应力为最大或最小所在的平面,就是主平 面。所以,主应力就是最大或最小的正应力。 将切应力公式对α求导,令 02sin 22cos )(=--=ατασσα τα xy y x d d 若1αα=时,能使导数0=α τα d d ,则在1α所确定的截面上,剪应力取得极值。通过求导可得 02sin 22cos )(11=--ατασσxy y x xy y x tg τσσα221-= 求得剪应力的最大值和最小值是: 2 2min max )2 ( xy y x τσσττ+-±=??? 与正应力的极值和所在两个平面方位的对应关系相似,剪应力的极值与所在两个平面方

第7章应力状态和强度理论(答案)

已知应力状态如图所示(单位:MPa ),试求: ⑴指定斜截面上的应力; ⑵主应力; ⑶在单元体上绘出主平面位置及主应力方向; ⑷最大切应力。 解: 100x MPa σ= 200y MPa σ= 100x MPa τ= 0 30α=- (1)cos 2sin 2211.622 x y x y x MPa ασσσσσατα+-= + -= sin 2cos 293.32 x y x MPa ασστατα-=+= (2)2 2max 261.82 2x y x y x MPa σσσσστ+-??= += ??? 2 2 min 38.222x y x y x MPa σσσσστ+-??=+= ??? MPa 8.2611=σ MPa 2.382=σ 03=σ (3)13 max 130.92 MPa σστ-== 扭矩m kN T ?=5.2作用在直径mm D 60=的钢轴上,试求圆轴表面上任一点与母线成 30=α方向上的正应变。设E=200GPa, 0.3υ=。 解:表面上任一点处切应力为: max 59P T MPa W τ= = 表面上任一点处单元体应力状态如图 30sin 251MPa στα=-=- 120sin 251MPa στα=-= () 00430301201 3.310E εσυσ-= -=? 100100 200 60T α A 2 σ1 στ τ

用电阻应变仪测得空心钢轴表面某点与母线成 45方向上的正应变 4100.2-?=ε,已知转速min /120r ,G=80GPa ,试求轴所传递 的功率。 解:表面任一点处应力为 max 9550P P P T n W W τ== max 9550 P W n P τ∴= 纯剪切应力状态下,0 45斜截面上三个主应力为:1στ= 20σ= 3στ=- 由广义胡克定律 ()11311E E υ εσυστ+= -= 又()21E G υ=+V 2G τε∴= 代入max 9550 P W n P τ= ,得109.4P KW = 图示为一钢质圆杆,直径mm D 20=,已知A 点与水平线成 60方向上的正应变460101.4-?= ε,E=200GPa ,0.3υ=,试求荷载P 。 解:0P A σ= 204D P πσ=? 斜截面上 02 060cos 4 σσσα== 2001503cos 4 σσσα== 由广义胡克定律 () 0006015060134E E υεσυσσ-= -= 将060043E εσυ = -代入2 04 D P πσ=? 解得P= 45A 80120 60 A P

应力状态分析和强度理论

第八章 应力状态和强度理论 授课学时:8学时 主要内容:斜截面上的应力;二向应力状态的解析分析和应力圆。三向应力简介。 $8.1应力状态概述 单向拉伸时斜截面上的应力 1.应力状态 过构件上一点有无数的截面,这一点的各个截面上应力情况的集合,称为这点的应力状态 2.单向拉伸时斜截面上的应力 横截面上的正应力 A N =σ 斜截面上的应力 ασα cos cos ===A P A P p a a 斜截面上的正应力和切应力为 ασασ2cos cos ==a a p ασ ατ2sin 2 sin = =a a p 可以得出 0=α时 σσ=max 4 π α= 时 2 m a x σ τ= 过A 点取一个单元体,如果单元体的某个面上只有正应力,而无剪应力,则此平面称为主平面。主平面上的正应力称为主应力。 主单元体 若单元体三个相互垂直的面皆为主平面,则这样的单元体称为主单元体。三个主应力中有一个不为零,称为单向应力状态。三个主应力中有两个不为零,称为二向应力状态。三个主应力中都不为零,称为三向应力状态。主单元体三个主平面上的主应力按代数值的大小排列,即为321σσσ≥≥。 P P a a α

$8.2二向应力状态下斜截面上的应力 1. 任意斜截面上的应力 在基本单元体上取任一截面位置,截面的法线n 。 在外法线n 和切线t 上列平衡方程 αασαατσc o s )c o s (s i n )c o s (dA dA dA x xy a -+ 0sin )sin (cos )sin (=-+αασαατdA dA y yx αασααττ sin )cos (cos )cos (dA dA dA x xy a -- 0sin )sin (cos )sin (=++ααταασdA dA yx y 根据剪应力互等定理,yx xy ττ=,并考虑到下列三角关系 22sin 1sin ,22cos 1cos 22 α ααα-=+= , ααα2sin cos sin 2= 简化两个平衡方程,得 ατασσσσσα2sin 2cos 2 2 xy y x y x --+ += ατασστα2cos 2sin 2 xy y x +-= 2.极值应力 将正应力公式对α取导数,得 ?? ????+--=ατασσασα 2cos 2sin 22xy y x d d 若0αα=时,能使导数 0=α σα d d ,则 02cos 2sin 2 00=+-ατασσxy y x y x xy tg σστα-- =220 上式有两个解:即0α和 900±α。在它们所确定的两个互相垂直的平面上,正应力取 xy τyx τn α t

《材料力学》第章%B应力状态和强度理论%B习

第七章 应力状态和强度理论 习题解 [习题7-1] 试从图示各构件中A 点和B 点处取出单元体,并表明单元体各面上的应力。 [习题7-1(a )] 解:A 点处于单向压应力状态。 2244 12d F d F F A N A ππσ-=-== [习题7-1(b )] 解:A 点处于纯剪切应力状态。 331616 1d T d T W T P A ππτ-=== MPa mm mm N 618.798014.3108163 36=????= [习题7-1(b )] 解:A 点处于纯剪切应力状态。 0=∑A M 04.028.02.1=?--?B R )(333.1kN R B = A σ A τ

)(333.1kN R Q B A -=-= MPa mm N A Q A 417.01204013335.15.12-=??-=? =τ B 点处于平面应力状态 MPa m m m m m m N I y M z B B 083.21204012 130103.0333.1436=??????==σMPa m m m m m m N b I QS z z B 312.0401204012 145)3040(13334 33 *-=??????-== τ [习题7-1(d )] 解:A 点处于平面应力状态 MPa m m m m N W M z A A 064.502014.332 1103.39333=????==σ MPa m m m m N W T P A 064.502014.316 1106.78333 =????== τ [习题7-2] 有一拉伸试样,横截面为mm mm 540?的矩形。在与轴线成0 45=α角的面上切应力MPa 150=τ时,试样上将出现滑移线。试求试样所受的轴向拉力F 。 解:A F x = σ;0=y σ;0=x τ 004590cos 90sin 2 x y x τσστ+-= A F 20 45= τ 出现滑移线,即进入屈服阶段,此时, 15020 45≤= A F τ kN N mm mm N A F 6060000540/30030022==??== [习题7-3] 一拉杆由两段沿n m -面胶合而成。由于实用的原因,图中的α角限于0 60 ~0范围内。作为“假定计算”,对胶合缝作强度计算时,可以把其上的正应力和切应力分别与相应的许用应力比较。现设胶合缝的许用切应力][τ为许用拉应力][σ的4/3 ,且这一拉杆 A τ B τ B σA τA σ

材料力学研究的是材料的强度

材料力学研究的是材料的强度、刚度和稳定性!其中强度和刚度涉及的是微观角度的应力和应变,稳定性只是很少的一部分,在课本中只有一章,也没有考过大题! 弯曲变形这章说的是梁在受力情况下的挠度,可以说是宏观的应变。所以除了少数几章外,材料力学研究的都是应力应变的问题。 首先应该了解各种力的定义,其实材料在受力的情况下只包括正应力,剪应力。但是具体的称呼在不同的情况下有所不同,有轴向拉压应力,弯曲内力,弯曲应力,各种应力引起不同的变形,对于变形的叫法也各不相同。因此要对各种应力应变的情况分得非常清楚。其次要掌握各种应力,角度的方向问题,通常正应力以拉应力为正,切应力以顺时针转向为正,还有一些角度正负的判定。 对力的掌握还包括力的计算,因此对力的各种计算公式要掌握,最重要的是轴力,扭转切应力,弯曲正应力,弯曲切应力。课本中的公式都是有使用范围的,这个要非常清楚。比如弯曲切应力的书上只给出了矩形截面的公式,但是对于其他截面,包括圆形截面都没有给出。圆形截面的应力情况只需要了解中心位置的应力。对于基本公式的推导过程要非常熟悉,虽然考试不会考这个,但是这对了解和分析题目是非常有益的。不单是力的公式需要了解适用范围,同样其他的公式和各种推导过程的基本假设也应该清楚 绘图:需要很好的掌握轴力图,扭矩图,弯矩图和弯曲剪力图的绘制,特别是弯矩图和弯曲剪力图的绘制。其中弯曲变形这章就需要对弯曲图有非常高的要求,而且这章是考试的重点,不管是用书上的计算梁位移的积分法,还是单位载荷法都需要用到弯矩图,通常每年会考两道大题,所以这章很重要 考试的基本内容:全应力,斜截面上的应力。横截面拉压杆变形计算,绝对变形,线应变,泊松比,三个弹性常数之间的关系和使用范围。拉压胡克定理,剪切胡克定理,剪应力互等定理,纯剪切。低碳钢的拉伸力学性能,包括四个阶段,强度指标,弹性指标和塑性指标,冷作硬化,名义屈服极限,延伸率和断面收缩率。简单拉压超静定的解法,轴力的分配,装配应力,温度应力的概念,连接件剪切挤压实用计算及相关假设,剪切面与挤压面的确定与计算(前三章) 扭转:只要求掌握圆形截面的。扭转剪应力强度条件,扭转时的刚度条件。扭转剪应力的推导过程,基本假设,圆形实杆和空心杆的极惯性矩和抗扭截面系数。圆轴扭转的合理设计 弯曲内力:三种不同支撑形式(活动铰支座,固定铰支座,固定端)的受力方式,剪力和弯矩的计算方法和正负的判定,梁的剪力图和弯矩图的绘制,集中力和集中力偶处剪力图和弯矩图的变化。剪力、弯矩与载荷之间的微分关系以及在图形中的表现(与高等数学联系起来),铰链和刚节点传递力与弯矩的情况。 弯曲应力:主要掌握弯曲正应力和弯曲剪应力。包括平行移轴公式,截面情况的抗弯截面系数。弯曲正应力的分布规律,危险点在危险截面的位置,弯曲正应力的强度条件及其应用。弯曲剪应力的分布规律,危险点的位置,弯曲剪应力强度条件及其应用。不同截面的弯曲剪应力分布情况。提高弯曲强度的措施,合理截面及不对称梁的使用。等强度梁的定义与设计。脆性材料的许用拉压应力 弯曲变形:挠度和转角的定义,计算梁位移和转角的积分法,各种梁的挠度和转角最好自己能推导一遍,课本后面有一张表!不过推导过程会比较复杂,如果会单位载荷法的话将会变得非常简单。计算梁位移的叠加法及适用范围。静不定梁的计算,也最好用单位载荷法。这章需要好好练习,需要对弯矩图有非常深刻的了解。 应力应变状态分析:平面应力状态下斜截面的应力公式,方位角正负的判定,应力圆,应力圆半径,圆心坐标,极值应力与主应力,主应力的方位。广义胡克定理及其适用范围,几种常见情况下的应力圆,如单向拉伸和纯剪切。这一

《工程力学》第7次作业(应力状态与强度理论).

《工程力学》第7次作业(应力状态与强度理论) 2009-2010学年第2学期3系、5系各班 班级学号姓名成绩 一、填空题 1.过构件内某点各个截面中的最大正应力和最小正应力就是该点处的。 2.最大切应力作用面与主应力作用面成度角。 3.研究点的应力状态,通常是该点取单元体,由于单元体尺寸为,所以可认为单元体每个侧面上的应力是;两相互平行的侧面上相应的应力大小是的,符号是的。 4.若单元体某一截面上的,则该截面称为主平面;主平面上的称为主应力。一个单元体上有相互的三对主平面,因此有三个主应力,它们按代数值大小的排列顺序是。 5.人们把从生产实践和力学试验中观测到的材料失效现象与构件的应力分析相结合,提出了一些解释材料在复杂应力状态下失效原因的假说,这些假说称为。材料失效的现象尽管多种多样,但其主要形式不外乎两种:一是,二是。 6.第一强度理论认为是引起材料失效的原因,其强度条件为。 7.第三强度理论认为是引起材料失效的原因,其强度条件为。 8.第四强度理论认为是引起材料失效的原因,其强度条件为。 二、问答题 1、什么叫一点处的应力状态?为什么要研究一点处的应力状态?如何研究一点处的应力状态? 2、.什么叫单元体?什么叫主平面和主应力?主应力与正应力有什么区别?

三、计算题 1、试画出图示简支梁上点A和B处的应力单元体,并算出这两点的主应力数值。 2、试求各单元体中指定斜截面上的正应力和切应力。

3、对于下列所示的单元体,试求: (1)求出主应力和主平面方位; (2)画出主单元体; (3)最大切应力。 4、如图所示的圆轴,直径30=d mm ,如拉力50=F KN ,扭矩2.0=M KN·m , []120 =σMPa 。试按第三和第四强度理论,校核其强度。

高分子材料力学强度

第三节 高分子材料的力学强度 在高分子材料诸多应用中,作为结构材料使用是其最常见、最重要的应用。在许多领域,高分子材料已成为金属、木材、陶瓷、玻璃等的代用品。之所以如此,除去它具有制造加工便利、质轻、耐化学腐蚀等优点外,还因为它具有较高的力学强度和韧性。理论上,根据完全伸直链晶胞参数求得的聚乙烯最高理论强度达1.9x104MPa ,是钢丝的几十倍。实验室中,已经获得高拉伸聚酰胺纤维在液氮中的最高实际强度达2.3x103MPa 。 为了评价高分子材料使用价值,扬长避短地利用、控制其强度和破坏规律,进而有目的地改善、提高材料性能,需要掌握高分子材料力学强度变化的宏观规律和微观机理。本节一方面介绍描述高分子材料宏观力学强度的物理量和演化规律;另一方面从分子结构特点探讨影响高分子材料力学强度的因素,为研制设计性能更佳的材料提供理论指导。鉴于高分子材料力学状态的复杂性,以及力学状态与外部环境条件密切相关,高分子材料的力学强度和破坏形式也必然与材料的使用环境和使用条件有关。 一、高分子材料的拉伸应力-应变特性 (一) 应力-应变曲线及其类型 测量材料的应力-应变特性是研究材料强度和破坏的重要实验手段。一般是将材料制成标准试样,以规定的速度均匀拉伸,测量试样上的应力、应变的变化,直到试样破坏。常用的哑铃型标准试样如图4-26所示,试样中部为测试部分,标距长度为l 0,初始截面积为A 0。 图4-26 哑铃型标准试样 设以一定的力F 拉伸试样,使两标距间的长度增至l ,定义试样中的应力和应变为: A F =σ (4-57) 000l l l l l ?=-= ε (4-58) 注意此处定义的应力σ等于拉力除以试样原始截面积A 0,这种应力称工程应力或公称应力,并不等于材料所受的真实应力。同样这儿定义的应变为工程应变,属于应变的Euler 度量。典型高分子材料拉伸应力-应变曲线如图4-27所示。 图4-27 典型的拉伸应力-应变曲线 图中曲线有以下几个特征:OA 段,为符合虎克定律的弹性形变区,应力-应变呈直线关系变化,直线斜率E d d =εσ相当于材料弹性模量。越过A 点,应力-应变曲线偏离直线,说明材料开始发生塑性形变,极大值Y 点称材料的屈服点,其对应的应力、应变分别称屈服应力(或屈服强度)y σ和屈服应变y ε。发生屈服时,试样上某一局部会出现“细颈”

相关文档
最新文档