伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第2章 简单回归模型【圣才出品】
《计量经济学导论》考研伍德里奇考研复习笔记二

《计量经济学导论》考研伍德里奇考研复习笔记二第1章计量经济学的性质与经济数据1.1 复习笔记一、什么是计量经济学计量经济学是以一定的经济理论为基础,运用数学与统计学的方法,通过建立计量经济模型,定量分析经济变量之间的关系。
在进行计量分析时,首先需要利用经济数据估计出模型中的未知参数,然后对模型进行检验,在模型通过检验后还可以利用计量模型来进行预测。
在进行计量分析时获得的数据有两种形式,实验数据与非实验数据:(1)非实验数据是指并非从对个人、企业或经济系统中的某些部分的控制实验而得来的数据。
非实验数据有时被称为观测数据或回顾数据,以强调研究者只是被动的数据搜集者这一事实。
(2)实验数据通常是通过实验所获得的数据,但社会实验要么行不通要么实验代价高昂,所以在社会科学中要得到这些实验数据则困难得多。
二、经验经济分析的步骤经验分析就是利用数据来检验某个理论或估计某种关系。
1.对所关心问题的详细阐述问题可能涉及到对一个经济理论某特定方面的检验,或者对政府政策效果的检验。
2构造经济模型经济模型是描述各种经济关系的数理方程。
3经济模型变成计量模型先了解一下计量模型和经济模型有何关系。
与经济分析不同,在进行计量经济分析之前,必须明确函数的形式,并且计量经济模型通常都带有不确定的误差项。
通过设定一个特定的计量经济模型,我们就知道经济变量之间具体的数学关系,这样就解决了经济模型中内在的不确定性。
在多数情况下,计量经济分析是从对一个计量经济模型的设定开始的,而没有考虑模型构造的细节。
一旦设定了一个计量模型,所关心的各种假设便可用未知参数来表述。
4搜集相关变量的数据5用计量方法来估计计量模型中的参数,并规范地检验所关心的假设在某些情况下,计量模型还用于对理论的检验或对政策影响的研究。
三、经济数据的结构1横截面数据(1)横截面数据集,是指在给定时点对个人、家庭、企业、城市、州、国家或一系列其他单位采集的样本所构成的数据集。
伍德里奇《计量经济学导论》笔记和课后习题详解(多元回归分析:OLS的渐近性)【圣才出品】

y=β0+β1x1+…+βkxk+u 检验这些变量中最后 q 个变量是否都具有零总体参数。
虚拟假设:H0:βk-q+1=0,…,βk=0,它对模型斲加了 q 个排除性约束。
3 / 12
圣才电子书 十万种考研考证电子书、题库视频学习平台
对立假设:这些参数中至少有一个异亍零。
(2)σ2 是 σ2=Var(u)的一个一致估计量。
(3)对每个 j,都有:
βˆj βj
/ se
βˆ j
a
~ Normal 0,1
其中, se βˆ j 就是通常的 OLS 标准误。
定理 5.2 的重要乊处在亍,它去掉了正态性假定 MLR.6。对误差分布唯一的限制是,
它具有有限斱差。还对 u 假定了零条件均值(MLR.4)和同斱差性(MLR.5)。
因为 Var(x1)>0,所以,若 x1 和 u 正相关,则 βˆ1 的丌一致性就为正,而若 x1 和 u 负相关,则 βˆ1 的丌一致性就为负。如果 x1 和 u 乊间的协斱差相对亍 x1 的斱差很小,那么这
种丌一致性就可以被忽略。由亍 u 是观测丌到的,所以甚至还丌能估计出这个协斱差有多 大。
二、渐近正态和大样本推断 1.定理 5.2:OLS 的渐近正态性 在高斯-马尔可夫假定 MLR.1~MLR.5 下,
④将
LM
不
χ
2 q
分布中适当的临界值
c
相比较,如果
LM>c,就拒绝虚拟假设。
(3)不 F 统计量比较
不 F 统计量丌同,无约束模型中的自由度在迚行 LM 检验时没有什么作用。所有起作用
的因素只是被检验约束的个数(q)、辅助回归 R2 的大小( Ru2 )和样本容量(n)。无约束 模型中的 df 丌起什么作用,这是因为 LM 统计量的渐近性质。但必须确定将 Ru2 乘以样本容 量以得到 LM,如果 n 很大, Ru2 看上去较低的值仍可能导致联合显著性。
伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解

读书笔记模板
01 思维导图
03 目录分析 05 读书笔记
目录
02 内容摘要 04 作者介绍 06 精彩摘录
思维导图
本书关键字分析思维导图
第版
计量经济 学
时间
习题
序列
经典
变量
笔记
教材
笔记 复习
模型
导论
笔记
第章
习题
分析
数据
回归
内容摘要
本书是伍德里奇《计量经济学导论》(第5版)教材的配套电子书,主要包括以下内容:(1)整理名校笔记, 浓缩内容精华。每章的复习笔记以伍德里奇所著的《计量经济学导论》(第5版)为主,并结合国内外其他计量经 济学经典教材对各章的重难点进行了整理,因此,本书的内容几乎浓缩了经典教材的知识精华。(2)解析课后习 题,提供详尽答案。本书参考国外教材的英文答案和相关资料对每章的课后习题进行了详细的分析和解答。(3) 补充相关要点,强化专业知识。一般来说,国外英文教材的中译本不太符合中国学生的思维习惯,有些语言的表 述不清或条理性不强而给学习带来了不便,因此,对每章复习笔记的一些重要知识点和一些习题的解答,我们在 不违背原书原意的基础上结合其他相关经典教材进行了必要的整理和分析。本书特别适用于参加研究生入学考试 指定考研考博参考书目为伍德里奇所著的《计量经济学导论》的考生,也可供各大院校学习计量经济学的师生参 考。
讨
2.1复习笔记 2.2课后习题详解
3.1复习笔记 3.2课后习题详解
4.1复习笔记 4.2课后习题详解
5.1复习笔记 5.2课后习题详解
6.1复习笔记 6.2课后习题详解
7.1复习笔记 7.2课后习题详解
学习笔记:伍德里奇《计量经济学》第五版-第二章 简单回归模型

~除了x 以外影响y 的因素?~y 和x 的函数关系?~何以确定在其他条件不变的情况下刻画了y 和x 的关系由以上得简单线性模型(simple linear regression model ):y = b0+ b1x + u (2.1)y :因变量x :自变量u :误差项(干扰项),即“观测不到的”因素(该模型没有限制x 和u 的关系,因此不能说明x 对y 的影响2.4节是如何解决x 的初始值不同时,同样变化量对y 的影响的?E(u) = 0 (2.5)(代价:方程中要包含截距b0 因为这样可以通过微调截距项来使第一个假定一定成立对u 做的第一个假定:E(u|x) = E(u)(2.6)(前提:u 和x 是随机变量均值独立假定(任何给定x 下u 的平均值都一样):E(u|x)= 0 (2.7)结合均值独立与均值为0,得零条件期望假定:E(y|x) = b0 + b1x (2.8)(E(y|x)称为总体回归函数(population regression function ,PRF ),说明了y 的均值是如何随着x 的变动而变动的结合方程(2.1)和假定(2.7)得条件均值函数:一、y 和x关系的起点随机变量:具有数值特征并由一个实验决定其结果的变量•(是为了解决协方差受度量单位影响的问题,是协方差的改进)(u 和x 不相关,u 也能和x ²相关,对于大部分回归不行)相关系数(仅衡量线性相关程度):•yi = b0 + b1xi + ui (2.9)抽取一个容量为n 的随机样本E(u)=0 (2.10)利用Cov(x,u)=E(xu)=0 (2.11)和假定(2.6)得:E(y –b0 –b1x) = 0 (2.12)E[x(y –b0 –b1x)] = 0 (2.13)因此方程(2.10)和(2.11)可写为在样本中就对应和(2.14)(2.15)结合(2.9)的均值形式(2.16)可以解出参变量(实际上就是矩法估计)( )(前提:分母大于0,即样本中所有x 不完全相等(含义:若样本中x 和y 正相关,则斜率系数为正二、普通最小二乘法(如何估计参变量)协方差:•不相关和协方差=0可互推,但不一定独立,独立一定不相关•矩法估计:利用要估计的参数与某种均值的关系,用样本矩 代替总体矩u 的解法。
计量经济学伍德里奇第五版中文版)答案

第1章解决问题的办法1.1(一)理想的情况下,我们可以随机分配学生到不同尺寸的类。
也就是说,每个学生被分配一个不同的类的大小,而不考虑任何学生的特点,能力和家庭背景。
对于原因,我们将看到在第2章中,我们想的巨大变化,班级规模(主题,当然,伦理方面的考虑和资源约束)。
(二)呈负相关关系意味着,较大的一类大小是与较低的性能。
因为班级规模较大的性能实际上伤害,我们可能会发现呈负相关。
然而,随着观测数据,还有其他的原因,我们可能会发现负相关关系。
例如,来自较富裕家庭的儿童可能更有可能参加班级规模较小的学校,和富裕的孩子一般在标准化考试中成绩更好。
另一种可能性是,在学校,校长可能分配更好的学生,以小班授课。
或者,有些家长可能会坚持他们的孩子都在较小的类,这些家长往往是更多地参与子女的教育。
(三)鉴于潜在的混杂因素 - 其中一些是第(ii)上市 - 寻找负相关关系不会是有力的证据,缩小班级规模,实际上带来更好的性能。
在某种方式的混杂因素的控制是必要的,这是多元回归分析的主题。
1.2(一)这里是构成问题的一种方法:如果两家公司,说A和B,相同的在各方面比B公司à用品工作培训之一小时每名工人,坚定除外,多少会坚定的输出从B 公司的不同?(二)公司很可能取决于工人的特点选择在职培训。
一些观察到的特点是多年的教育,多年的劳动力,在一个特定的工作经验。
企业甚至可能歧视根据年龄,性别或种族。
也许企业选择提供培训,工人或多或少能力,其中,“能力”可能是难以量化,但其中一个经理的相对能力不同的员工有一些想法。
此外,不同种类的工人可能被吸引到企业,提供更多的就业培训,平均,这可能不是很明显,向雇主。
(iii)该金额的资金和技术工人也将影响输出。
所以,两家公司具有完全相同的各类员工一般都会有不同的输出,如果他们使用不同数额的资金或技术。
管理者的素质也有效果。
(iv)无,除非训练量是随机分配。
许多因素上市部分(二)及(iii)可有助于寻找输出和培训的正相关关系,即使不在职培训提高工人的生产力。
伍德里奇《计量经济学导论》 第 版 笔记和课后习题详解 章

使用普通最小二乘法,此时最小化的残差平方和为()211niii y x β=-∑利用一元微积分可以证明,1β必须满足一阶条件()110niiii x y x β=-=∑从而解出1β为:1121ni ii nii x yxβ===∑∑当且仅当0x =时,这两个估计值才是相同的。
2.2 课后习题详解一、习题1.在简单线性回归模型01y x u ββ=++中,假定()0E u ≠。
令()0E u α=,证明:这个模型总可以改写为另一种形式:斜率与原来相同,但截距和误差有所不同,并且新的误差期望值为零。
证明:在方程右边加上()0E u α=,则0010y x u αββα=+++-令新的误差项为0e u α=-,因此()0E e =。
新的截距项为00αβ+,斜率不变为1β。
2(Ⅰ)利用OLS 估计GPA 和ACT 的关系;也就是说,求出如下方程中的截距和斜率估计值01ˆˆGPA ACT ββ=+^评价这个关系的方向。
这里的截距有没有一个有用的解释?请说明。
如果ACT 分数提高5分,预期GPA 会提高多少?(Ⅱ)计算每次观测的拟合值和残差,并验证残差和(近似)为零。
(Ⅲ)当20ACT =时,GPA 的预测值为多少?(Ⅳ)对这8个学生来说,GPA 的变异中,有多少能由ACT 解释?试说明。
答:(Ⅰ)变量的均值为: 3.2125GPA =,25.875ACT =。
()()15.8125niii GPA GPA ACT ACT =--=∑根据公式2.19可得:1ˆ 5.8125/56.8750.1022β==。
根据公式2.17可知:0ˆ 3.21250.102225.8750.5681β=-⨯=。
因此0.56810.1022GPA ACT =+^。
此处截距没有一个很好的解释,因为对样本而言,ACT 并不接近0。
如果ACT 分数提高5分,预期GPA 会提高0.1022×5=0.511。
(Ⅱ)每次观测的拟合值和残差表如表2-3所示:根据表可知,残差和为-0.002,忽略固有的舍入误差,残差和近似为零。
第2章 简单回归模型习题

换言之,ˆ0 对 0 而言是无偏的,ˆ1 对1而言
是无偏的
引理: n 1 (xi x) 0
i 1
n
n
n
n
2 (xi x)( yi y) (xi x)yi ( xi nx) y (xi x)yi
i 1
i 1
i 1
i 1
n
xi yi y ˆ1x ˆ1xi 0
i 1
n
n
xi yi y ˆ1 xi xi x
i 1
i 1
n
n
xi x yi y ˆ1 xi x 2
i 1
i 1
普通最小二乘法的推导
n
xi x yi y
ˆ1 i1 n
xi x 2
i 1 n
在假设前提 xi x 2 0下 i 1
•回归元和OLS残差的样本协方差为零
–代数表示
n
xiuˆi 0
i 1
(xi , yi )
–由OLS的一阶条件得出
n
n1 xi yi ˆ0 ˆ1xi 0
i 1
OLS的操作技巧——OLS统计量的代数性质
•点 x, y 总在OLS回归线上
–代数表示 –可以由
y ˆ0 ˆ1x
n
在简单回归中加入非线性因素——自然对数形式
在简单回归中加入非线性因素——自然对数 形式
“线性”回归的含义
OLS估计量的期望值和方差
–OLS的无偏性 –OLS估计量的方差
OLS的无偏性
–我们首先在一组简单假定的基础上构建OLS 的无偏性。 –假定SLR.1(线性于参数) –在总体模型中,因变量y与自变量x的误差 项u的关系如下:
计量经济学导论-伍德里奇02及应用

误差项干扰项斜率参数截距参数对解释变量的假设解释变量X是确定变量,不是随机变量;、解释变量X在所抽取的样本中具有变异性,随着样本容量的无限增加,解释变量X的样本方差趋于一有限常数。
即;伪回归问题对随机干扰项的假设假设3、假设4、假设5、经典假设高斯(Gauss)假设经典线性回归模型yf(y)..E(y|x) = β0+ β1x...x x x x }}{{u 1u 2u 3u 4E(y|x ) = β0 + β1x ●●●●矩估计法,利用样本矩来估计总体中相应的参数计法是用一阶样本原点矩来估计总体的期望而用二阶样本中心矩来估计总体的方差.▪..x {●●●●●●●●=拟合值=残差例(1)线性性(2)无偏性(3)有效性(4)渐近无偏性(5)一致性(6)渐近有效性小样本性质。
最佳线性无偏估计量大样本渐近性质高斯—马尔可夫定理(Gauss-Markov theorem)在给定经典线性回归的假定下,最小二乘估计量是具有最小方差的线性无偏估计量。
2、无偏性3、有效性(最小方差性),普通最小二乘估计量最佳线性无偏估计量BLUE2、随机误差项µ的方差σ2的估计在估计的参数的方差表达式中,都含有随机扰动项的方差。
由于实际上是未知的,因此的方差实际上无法计算,这就需要的对其进行估计。
由于随机项µi不可观测,只能从µi的估计——残差e i出发,对总体方差进行估计。
可以证明最小二乘估计量极大似然法σ2的极大似然估计量不具无偏性,但却具有一致性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章
简单回归模型
2.1复习笔记
一、简单回归模型的定义1.简单线性回归模型一个简单的方程是:
01y x u
ββ=++假定方程在所关注的总体中成立,它便定义了一个简单线性回归模型。
因为它把两个变量x 和y 联系起来,所以又把它称为两变量或者双变量线性回归模型。
变量u 称为误差项或者干扰项,表示除x 之外其他影响y 的因素。
1β就是y 与x 的关系式中的斜率参数,表示在其他条件不变的情况下,x 变化一个单位y 平均变化。
0β被称为截距参数,在一般的模型中除非有很强的理论依据说明模型没有截距项,否则一般情况下都要带上截距项。
2.回归术语
表2-1
简单回归的术语
3.零条件均值假定(1)零条件均值
u 的平均值与x 值无关。
可以把它写作:
()()
|E u x E u =当方程成立时,就说u 的均值独立于x。
(2)零条件均值假定的意义
①零条件均值假定给出1β的另一种非常有用的解释。
以x 为条件取期望值,并利用()|0E u x =,便得到:
()01|E y x x
ββ=+方程表明,总体回归函数(PRF)()|E y x 是x 的一个线性函数,线性意味着x 变化一个单位,将使y 的期望值改变1β。
对任何给定的x 值,y 的分布都以()|E y x 为中心。
1β就是斜率参数。
②给定零条件均值假定()|0E u x =,把方程中的y 看成两个部分是比较有用的。
一部分是表示()|E y x 的01x ββ+,被称为y 的系统部分,即由x 解释的那一部分,另一个部分是被称为非系统部分的u,即不能由x 解释的那一部分。
二、普通最小二乘法的推导1.最小二乘估计值
从总体中找一个样本。
令(){} 1 i i x y i n =,
:,…,表示从总体中抽取的一个容量为n 的随机样本。
01i i i
y x u ββ=++在总体中,u 与x 不相关。
因此有:
()()()0cov 0
E u x u E xu ===,和用可观测变量x 和y 以及未知参数0β和1β表示为:
()010
E y x ββ--=()010
E x y x ββ--=⎡⎤⎣⎦得到
()
011
1ˆˆ0n
i i
i y x n ββ=--=∑和
()
011
1ˆˆ0n
i i i
i x y x n ββ=--=∑这两个方程可用来解出0ˆβ和1
ˆβ01
ˆˆy x ββ=+则
01
ˆˆy x ββ=-一旦得到斜率估计值1
ˆβ,则有:()1
11
ˆˆ0n
i
i
i
i x y y x x ββ=⎡⎤---=⎣⎦
∑整理后便得到:
()
()
11
1
ˆn
n
i
i
i i i i x y
y x x x β==-=-∑∑
根据求和运算的基本性质,有:
()()
2
1
1
n n
i i i i i x x x x x ==-=-∑∑()
()()
1
1
n
n
i
i
i i i i x y
y x x y y
==-=--∑∑因此,只要有
()
2
1
n
i
i x x =->∑估计的斜率就为:
()()
()
1
1
2
1
ˆn
i
i i n
i i x
x y y
x x β==--=-∑∑所给出的估计值称为0β和1β的普通最小二乘(OLS)估计值。
2.普通最小二乘估计的合理性已知
01ˆˆˆi i
y x ββ=+第i 次观测的残差是y i 的实际值与其拟合值之差:
01ˆˆˆˆi i i i i
u y y y x ββ=-=--选择0β和1β最小化残差平方和:
()
2
2011
1
ˆˆˆn
n
i i i i i u y x ββ===--∑∑
“普通最小二乘法”之所以得名,就是因为这些估计值最小化了残差平方和。
求得0β和1β使得残差平方和最小,就是用上式对0β和1β分别求偏导,OLS 估计的一阶条件为:
()
011
ˆˆ0n
i
i
i y
x ββ=--=∑()
011
ˆˆ0n
i
i
i
i x y
x ββ=--=∑一旦确定了OLS 截距和斜率估计值,就能够建立OLS 回归线:
01
ˆˆˆy x ββ=+方程又被称为样本回归函数(SRF),因为它是总体回归函数()01|E y x x ββ=+的一个样本估计。
总体回归函数是固定而又未知的。
而样本回归函数则是来自一组给定的数据样本,所以利用不同的样本将使得方程中产生不同的斜率和截距。
三、OLS 的操作技巧1.拟合值和残差
假定从给定数据样本中得到截距和斜率的估计值0ˆβ和1ˆβ。
给定0ˆβ和1
ˆβ,能够获得每次观测的拟合值ˆi y。
根据定义,ˆi y 的每个拟合值都在OLS 回归线上。
与第i 次观测相联系的OLS 残差ˆi u
是i y 与其拟合值之差。
若ˆi u 为正,则回归线低估了y i ;若ˆi u
为负,则回归线高估了y i 。
第i 次观测最理想的情况是ˆ=0i u ,但在大部分情形中,并非每个残差都等于零。
换言之,实际上没有一个数据点必须在OLS 线上。
OLS 的思想就是使得这些数据点尽可能接近于OLS 回归线。
2.OLS 统计量的代数性质
(1)OLS 残差和及其样本均值都为零。
数学表述为:
1
ˆ0
n
i
i u
==∑(2)回归元和OLS 残差的样本协方差为零。
1
ˆ0
i
n
i
i x u
==∑(3)点() x y ,
总在OLS 回归线上。
3.定义总平方和(SST)、解释平方和(SSE)和残差平方和(SSR)
()
2
1n
i i y y
==-∑SST ()
2
1
ˆn
i i y
y ==-∑SSE 21
ˆn
i i u
==∑SSR SST 度量了y i 中的总样本变异;这就是说,它度量了y i 在样本中的分散程度,称为总平方和。
SSE 度量了y i 的样本变异,即样本的变异中能由回归方程所能解释的部分,因此称为解释平方和。
SSE 度量了u i 的样本变异,即不能由回归线解释的部分,称为残差平方和。
y 的总变异SST 总能表示成解释了的变异SSE 和未解释的变异SSR 之和,即有:
SST SSE SSR
=+不能把残差平方称为“误差平方和”,因为误差和残差是不同的两个量。
4.拟合优度。