抗震规范第一版勘误(非官方)

抗震规范第一版勘误(非官方)
抗震规范第一版勘误(非官方)

抗震规范勘误(整理版)

1. 前言,第1行第3个字,正确的说法应该为“本规范系依据”,缺少个“系”字。

2. 第28页,倒数第8行,正确的说法应该为“...之1款规定的建筑及砌体房屋”。

3. 第38页,倒数第9行,(5.2.3-6公式)耦联系数的正确表达应该是ρjk (k为小写)。

4. 第39页,

5.2.5公式楼层剪力符号中的下标e应该为大写E。

5. 第56页,

6.2.5-1公式中应该是除以柱的净高,原来写的是乘以净高。

6. 第57页,6.2.7的第1条中,应该是“其值可采用1.2,剪力相应调整”,缺少个逗号。

7. 第68页,表6.4.5-3中应该是“一级(7、8度)”

8. 第68页,表6.4.5-3下的注释1最后那句应该为“...查表;端柱有集中荷载时,配筋构造按柱要求;”。

9. 第106页,图8.3.4-1中详图A中应该是r=35,详图B中应该是hw≈6。

10.第176页,吉林省中的长春(南关,...)。

11.第178页,宁波(北仑)。

12.第180页,山东省的临朐。

13.第184页,深圳(龙岗)。

14.第186页,成都(..,龙泉驿)。

15.第199页,公式D.1.4-1中应该为“1.1”,原来写的是“0.1”。

16.第219页,H1.7的第5条,应该是“高度之比不大于4时”。

17.第252页,最后一段中,应为“徐正忠”。

18.第341页,图14中应该为“跨高比大于6的连梁”。

1.(第49页表6.1.2中高度划分缺少24~25m之间的分类,个人认为表中25m 应为24m。)我觉得24m应该是对的,不用改!表中前一栏为小于等于24m,已包含24m。后一栏就从25m开始计算!(个人拙见,敬请指正!)

如你所述,那么高度在24~25m之间的建筑抗震等级如何确定?

2.199页D.2.3条1款“核芯区有效宽度可取梁宽与柱宽之和的平均值”应改为“核芯区有效宽度可取梁宽与柱宽的平均值”或“核芯区有效宽度可取梁宽与柱宽之和的一半”

22页表4.2.3中fak≥300的粘性土,300没给单位。

3.182页湖北武汉的“江厦”应为“江夏”

4.部分第一版第一次印刷,63页倒数第三行(6.3.7-2-2),最后缺字应为“箍筋直径不应小于8mm。”

5.189页第三组:凤县

3 抗震设防烈度为7度,设计基本地震加速度值为010g ,应为0.10g 印

刷错误

6.p341页图14“高跨比大于6的连梁”中“高跨比”应为跨高比,是跨度与高度的比值

7.P49,表6.1.2现浇钢筋混凝土房屋的抗震等级中“7度和8度一列中的25~60应为24~60,25~80应为24~80;9度一列中的25~50应为24~50,25~60应为24~60。”。

8.68页图6.4.5-1里边的翼柱,联系前文以及01版规范来看,应为翼墙9.58页式(6.2.9-1) 、式(6.2.9-2)中fc前漏写了βc

抗震报告模板参考

XX桥 (3x30米钢箱梁)抗震计算报告 设计:日期:复核:日期:审核:日期: 2020年X月

目录 1、技术标准和设计规范 (2) 1.1技术指标 (2) 1.2设计规范 (2) 2、结构用材 (3) 2.1概述 (3) 2.2结构尺寸 (3) 3、桥址区地质情况 (4) 4、计算方法 (6) 4.1抗震设防标准 (6) 4.2抗震计算模型 (6) 4.3地震输入 (7) 5、结构抗震验算 (9) 5.1 E1 地震计算 (11) 5.2 E2 地震计算 (12) 5.2.1 有效截面刚度计算 (13) 5.2.2 E2地震作用下桥墩位移验算 (14) 5.3 能力保护构件验算 (17) 5.3.1 桥墩抗剪强度验算 (17) 5.3.2支座抗震验算 (18) 6、结论 (21)

XX桥抗震计算 1、技术标准和设计规范 1.1技术指标 桥上线路等级:城市主干道; 设计行车速度:60km/h; 行车道数:双向8车道; 桥宽:0.5m(防撞栏)+0.75m(路缘带)+2*3.5m(行车道)+2m(侧分带)+3.5m(BRT车道)+0.5双黄线+3.5m(BRT车道)+2m(侧分带) +2*3.5m(行车道)+0.75m(路缘带)0.5m(防撞栏)=28m 设计活载:城—A级,按公路一级校核 1.2设计规范 《城市快速路设计规程》(CJJ 129-2009) 《城市桥梁设计规范》(CJJ11-2011) 《城市桥梁抗震设计规范》(CJJ166-2011) 《公路工程技术标准》(JTG B01-2014) 《公路桥梁抗震设计细则》(JTG/T B02-01-2008) 《公路桥涵设计通用规范》 (JTG D60-2015) 《公路钢结构桥梁设计规范》( JTG D64-2015) 《铁路桥梁钢结构设计规范》( TB 10002.2-2005) 《公路钢筋混凝土及预应力混凝土桥涵设计规范》 (JTG 3362-2018) 《公路桥涵地基与基础设计规范》 (JTG D63-2007) 《公路桥梁抗风设计规范》 (JTG/T 3360-01-2018) 《公路工程混凝土结构耐久性设计规范》(GB/T JTGT 3310-2019) 《公路交通安全设施设计规范》(JTG D81-2017) 《公路交通安全设施设计细则》(JTG D81/T-2017) 《公路桥涵施工技术规范》(JTG/T F50-2011) 《城市桥梁施工与质量验收规范》(CJJ2-2008) 《公路桥梁钢结构防腐蚀涂装技术条件》( JT/T 722-2008)

新旧《建筑抗震设计规范》内容比较-2019年文档

新旧《建筑抗震设计规范》内容比较 及新《建筑抗震设计规范》的应用 新旧《建筑抗震设计规范》主要不同之处概述: 将旧规范的第五章《多层砌体房屋》和第七章《底层框架和多层内框架砖房》合并为新规范的第7章《多层砌体房屋和底层框架、内框架房屋》; 增加了第8章《多层和高层钢结构房屋》的内容; 取消了原规范第十一章《烟囱和水塔》的内容; 增加了第12章《隔震和消能减震设计》的内容; 将原规范第二章第四节的非结构构件调整并增加内容,变为新规范的第13章《非结构构件》的独立内容。 详细内容: 进一步明确了各抗震设防类别建筑(甲、乙、丙、丁)的抗震设防标准应符合的详细要求(第3.1.3条),并且较原规范阐述的更细致; 详细说明了建筑场地的选择、明确了在Ⅰ、Ⅲ、Ⅳ类场地上,甲、乙、丙类建筑所要求采取的抗震构造措施(第3.3.1条—第3.3.3条),并在第3.3.4条中明确了地基和基础设计的有关要求: 同一结构单元的基础不宜设置在性质截然不同的地基上; 同一结构单元不宜部分采用天然地基、部分采用桩基础; 地基为软弱粘性土、液化土、新近填土或严重不均匀时,应估计地震时地基不均匀沉降或其他不利影响,并采取相应措施; 首次提出:建筑设计应符合抗震概念设计的要求,不应采用严重不规则的设计方案(第3.4.1条),合理的建筑布置在抗震设计中是头等重要的,提倡平、立面简单对称,对建筑的平、立面外形尺寸,抗侧力构件布置,质量分布,直至承载力分布等诸多因素提出综合要求,需要建筑设计和结构设计相互密切配合; 将原规范结构体系应符合的要求加以调整后,列为第3.5.2条强制性条文; 强调非结构构件应进行抗震设计,并列为第3.7.1条强制性条文; 将“抗震结构对材料和施工质量的特殊要求,应在设计文件中注明”列为第3.9.1条强制性条文; 新规范对结构材料性能指标进行了一定的调整,并列为第3.9.2条强制性条文; 砌体结构中,砖的最低强度等级由原MU7.5提高为MU10,砌筑砂浆由原MU2.5提高为MU5; 混凝土砌块最低强度等级由原MU5提高为MU7.5,砌筑砂浆由原MU5提 高为MU7.5; 钢筋混凝土构造柱、圈梁等混凝土最低强度等级由原C15提高为C20; 对施工中钢筋的代换提出了进一步的要求,既要满足钢筋受拉承载力设计值相等的原则,又要满足正常使用极限状态和抗震构造措施的要求(第3.9.5条); 将结构抗震验算应符合的有关规定列为第5.1.6条强制性条文;6度时的建筑应允许不进行截面抗震验算,但应符合有关的抗震措施要求(但建在Ⅳ类场地土上较高的高层建筑除外); 现浇钢筋混凝土框架在6度时,明确了总高度≤60米(原规范为同非抗震设计),明确了高度计算自室外地面到主要屋面板板顶(不包括局部突出屋顶部分)(第6.1.1条);现浇钢筋混凝土框架在6度时,高度≤30米(原规范为≤25米)时,为四级框架;高

桥梁抗震设计规范

桥梁抗震设计规范--基础设计方法 一、引言 近十年来,世界相继发生了多次重大地震,1989年美国 Loma Prieta地震()、1994年美国Northridge地震(、1995年日本阪神地震()、1999年土耳其伊比米特地震()、1999年台湾集集地震()等等。因此,专家们预测全球已进入一个新的地震活跃期。随着现代化城市人口的大量聚集和经济的高速发展,地震造成的损失越来越大。地震灾害不仅是大量地面构筑物和各种设施的破坏和倒塌,而且次生灾害中因交通及其他设施的毁坏造成的间接经济损失也十分巨大。以1995年日本版神地震为例,地震造成大量高速公路及高速铁路桥隧的毁坏,经济总损失高达1000亿美元。 近几次大地震造成的大量桥梁的破坏给了全世界桥梁抗震工作者惨痛的经验教训。各国研究机构纷纷重新对本国桥梁抗震规范进行反思,并进行了一系列的修订工作。日本1995年阪神地震后,对结构抗震的基本问题重新进行了大量的研究,并十分重视减振、耗能技术在结构抗震设计中的应用。桥梁、道路方面的抗震设计规范已经重新编写,并于1996年颁布实施。美国也相继在联邦公路局(FHWA)和加州交通部(CALTRANS)等的资助下开展了一系列的与桥梁抗震设计规范修订有关的研究工作,已经完成了ATC-18,ATC-32T和ATC-40等研究报告和技术指南。与旧规范相比,新规范或指南无论在设计思想,设计手法、设计程序和构造细节上都有很大的变化和深入。 大河的大跨桥梁、大型立交工程以及城市中大量高架桥的兴建,规范已大大不能适应。但是目前所有国内的桥梁设计,对抗震设计均在设计书上标明的参照规范即是《公路工程抗震设计规范》和《铁道工程抗震设计规范》。与国外如日本、美国的同类规范相比,中国现行《公路工程抗震设计规范》水准远落后于国外同类规范。若不进行改进,则必将给中国不少桥梁工程留下地震隐患。 本文主要介绍了各国桥梁抗震设计规范中基础部分的抗震设计。基础部分对全桥的地震响应以及墩柱力的分布均有非常重要的影响。基础设计不当会导致桥梁墩柱在地震中发生剪断、变形过大不能使用等等,有时甚至是桩在根部直接剪断破坏。基础设计需要考虑的方面除了基础形式的选择以外还包括抗弯强度、抗剪强度桩基础连接部分的细部构造、锚固构造等方面。本文首先对中、美、日、欧洲、新西兰五国或地区抗震设计规范中有关基础的部分进行了一般性的比较。笔者认为,相对而言中国的规范在基础抗震设计方面较为粗糙、可操作性不强。而日本规范在这方面作的最为细致,技术也较为先进。因此,在随后的部分中详细介绍了日本抗震规范的基础设计方法。 二、主要国家桥梁抗震规范基础抗震设计的概况 本文将中国桥梁抗震规范与世界上的几种主要抗震规范(美国的AASHTO规范、Cal-tans规范、ATC32美国应用技术协会建议规范,新西兰规范NZ,欧洲规范EC8,日本规范JAPAN)进行基础抗震设计方面的比较。 中国桥梁抗震设计规范有关基础设计的部分十分笼统,只以若干定性的条款,从工程选址方面加以考虑,而对基础本身的抗震设计,特别是对于桩基础等轻型基础抗震设计重视不够。这方面,日本的桥梁抗震设计规范和准则规定得比较详细,是我们应当学乱之处。基于

新旧混凝土规范对比

新旧混凝土规范对比 新老规范变化(一):材料变化1、混凝土强度等级逐步提升4.1.2条:素混凝土结构的混凝土强度等级不应低于C15;钢筋混凝土结构的混凝土强度等级不应低于C20;采用强度级别400MPa及以上的钢筋时,混凝土强度等级不应低于C25。 承受重复荷载的钢筋混凝土构件,混凝土强度等级不应低于C30。预应力混凝土结构的混凝土强度等级不宜低于C40,且不应低于C30。2、钢筋高强-高性能发展趋势普通钢筋:淘汰低强235MPa钢筋,以300MPa光圆钢筋替代;增加高强500MPa钢筋;限制并准备淘汰335MPa钢筋;最终形成300、400、500MPa的强度梯次,与国际接轨。新规范实施后的钢筋牌号及标志为:HPB300—ΦHRB335— B HRBF335—BFHRB400—C HRBF400—CFHRB500—D HRBF500—DFRRB400—C增加了以下几条:4.2.7条:构件中的钢筋可采用并筋的配置形式。直径28mm及以下的钢筋并筋数量不应超过3根;直径32mm的钢筋并筋数量宜为2根;直径36mm及以上的钢筋不应采用并筋。并筋应按单根等效钢筋进行计算,等效钢筋的等效直径应按截面面积相等的原则换算确定。4.2.8条:当进行钢筋代换时,除应符合设计要求的构件承载力、最大力下的总伸长率、

裂缝宽度验算以及抗震规定以外,尚应满足最小配筋率、钢筋间距、保护层厚度、钢筋锚固长度、接头面积百分率及搭接长度等构造要求。4.2.9条:当构件中采用预制的钢筋焊接网片或钢筋骨架配筋时,应符合国家现行有关标准的规定。新老规范变化(二):基本构造变化1、箍筋长度:图中1 号箍筋的计算公式(按外皮计算):老规范:L=2(b+h)- 8bhc+2×1.9d+2max(10d,75)+8d新规范:L=2 (b+h) - 8bhc+2×1.9d+2max(10d,75)2、钢筋锚固:新规范中增加了基本锚固lab的计算方式:lab=a*fy/ft*d但其中ft(混凝土轴心抗拉强度设计值)取值改为“当混凝土强度等级高于C60时,按C60取值”以适应混凝土强度的提高。设计锚固长度为基本锚固长度乘锚固长度修正系数ζa的数值,以反映锚固条件的影响:la=ζa*lab其中,la不应小于200mm,锚固长度修正系数ζa,对普通钢筋按规范第8.3.2条的规定取用,当多于一项时,可按连乘计算,但不应小于0.6;对预应力筋,可取1.0.3、筋端弯钩和机械锚固:新规范对钢筋弯钩和机械锚固的形式和技术要求做了更详细的规定,如下表:4、钢筋的连接:不宜采用绑扎搭接接头的规定改为:受拉钢筋直径不宜大于25mm,受压钢筋直径不宜大于28mm。钢筋机械连接区段的长度为35d,d改为连接钢筋的较小直径。纵向受拉钢筋绑扎搭接接头的搭接长度不应小于300mm。新老规范变化(三):结构构件基本规定

日本桥梁抗震设计规范

摘要:本文对世界主要的桥梁结构抗震设计规范基础部分的现状进行了概略的比较,着重介绍日本桥梁抗震设计规范中基础的设计方法,并指出了中国现行《公路工程抗震设计规范》基础部分中存在的一些不足。 关键词:桥梁基础抗震设计日本规范 一、引言 近十年来,世界相继发生了多次重大地震,1989年美国 loma prieta地震(m7.0)、1994年美国northridge地震(m6.7)、1995年日本阪神地震(m7.2)、1999年土耳其伊比米特地震(m7.4)、1999年台湾集集地震(m7.6)等等。因此,专家们预测全球已进入一个新的地震活跃期。随着现代化城市人口的大量聚集和经济的高速发展,地震造成的损失越来越大。地震灾害不仅是大量地面构筑物和各种设施的破坏和倒塌,而且次生灾害中因交通及其他设施的毁坏造成的间接经济损失也十分巨大。以1995年日本版神地震为例,地震造成大量高速公路及高速铁路桥隧的毁坏,经济总损失高达1000亿美元。 中国现行《公路工程抗震设计规范》(jtj004-89)在80年代中期开始修订,于1989年正式发行。随着中国如年代经济起飞,交通事业迅猛发展,特别是高速公路兴建、跨越大江,大河的大跨桥梁、大型立交工程以及城市中大量高架桥的兴建,规范已大大不能适应。但是目前所有国内的桥梁设计,对抗震设计均在设计书上标明的参照规范即是《公路工程抗震设计规范》和《铁道工程抗震设计规范》。与国外如日本、美国的同类规范相比,中国现行《公路工程抗震设计规范》水准远落后于国外同类规范。若不进行改进,则必将给中国不少桥梁工程留下地震隐患。 本文主要介绍了各国桥梁抗震设计规范中基础部分的抗震设计。基础部分对全桥的地震响应以及墩柱力的分布均有非常重要的影响。基础设计不当会导致桥梁墩柱在地震中发生剪断、变形过大不能使用等等,有时甚至是桩在根部直接剪断破坏。基础设计需要考虑的方面除了基础形式的选择以外还包括抗弯强度、抗剪强度桩基础连接部分的细部构造、锚固构造等方面。本文首先对中、美、日、欧洲、新西兰五国或地区抗震设计规范中有关基础的部分进行了一般性的比较。笔者认为,相对而言中国的规范在基础抗震设计方面较为粗糙、可操作性不强。而日本规范在这方面作的最为细致,技术也较为先进。因此,在随后的部分中详细介绍了日本抗震规范的基础设计方法。 二、主要国家桥梁抗震规范基础抗震设计的概况 本文将中国桥梁抗震规范与世界上的几种主要抗震规范(美国的aashto规范、cal-tans规范、atc32美国应用技术协会建议规范,新西兰规范nz,欧洲规范ec8,日本规范japan)进行基础抗震设计方面的比较。 中国桥梁抗震设计规范有关基础设计的部分十分笼统,只以若干定性的条款,从工程选址方面加以考虑,而对基础本身的抗震设计,特别是对于桩基础等轻型基础抗震设计重视不够。这方面,日本的桥梁抗震设计规范和准则规定得比较详细,是我们应当学乱之处。基于阪神地震的经验,地震后桥梁上部结构的修复和重建都比下部基础经济和省时、省力,因此桥梁基础的抗震能力的要求应比桥墩高。

2010版新抗震规范与老版的区别

1. 继续保持现行抗震规范的基本规定 2010版继续保持了89版、2001版抗震设计规范对建筑结构抗震设计的下列基本规定:l (1) 用三个不同的概率水准和两阶段设计体现“小震不坏、中震可修、大震不倒”的基本设计原则; l (2) 以抗震设防烈度为抗震设计的基本依据,引入“设计地震分组”,体现地震震级、震中距的影响; l (3) 不同类型的结构需采用不同的地震作用计算方法;并利用“地震作用效应调整系数”,体现某些抗震概念设计的要求; l (4) 按照建筑结构设计统一标准的原则,通过“多遇地震”条件下的概率可靠度分析,建立了结构构件截面抗震承载力验算的多分项系数的设计表达式; l (5) 把抗震计算和抗震措施作为不可分割的组成部分,强调通过概念设计,协调各项抗震措施,实现“大震不倒”; l (6) 砌体结构需设置水平和竖向的延性构件形成墙体的约束,以防止倒塌; l (7) 钢筋混凝土结构需确定其“抗震等级”,从而采取相应的计算和构造措施;对框架结构还要求控制“薄弱层弹塑性变形”,通过第二阶段的设计防止倒塌; l (8) 装配式结构需设置完整的支撑系统,采取良好的连接构造,确保其整体性。 l 2010版继续保持2001版某些抗震设计基本规定: l (9) 增加了设计基本地震加速度0.15g、0.30g的设计要求; l (10) 提出了不同阻尼比的地震作用和控制结构最小地震作用的强制性要求; l (11) 明确概念设计的某些具体要求,加强各类结构的抗震构造; l (12) 纳入隔震、减震设计以及非结构构件等,向性能化设计前进. 2. 对建筑结构场地地基设计要求的改进 l (1) 建筑场地类别划分的局部调整 l 对于场地剪切波速大于800m/s的场地,新增场地类别I0类; l 对于中软土和软弱土的平均剪切波速分界,考虑覆盖层取20m,由140m/s调整为150m/s。 l (2) 液化判别方法的改进 l 调整标准贯入法液化判别公式,将自74、78版抗震规范沿用的15m深度内采用直线判别改为对数曲线判别,可延续到15m深度以下的判别,并进一步考虑震级的影响,重新定义液化判别的锤击数基本值——M7.5液化概率32%时水位2m、埋深3m的液化临界锤击数,判别结果总体上基本保持与2001版接近。 l (3) 软土震陷判别 l 新增8度(0.30g)和9度时按液性指数判别软土震陷的方法。 3 对结构抗震分析规定的改进 l (1) 改进了不同阻尼比的设计反应谱 l 2001版不同阻尼比的设计反应谱在5s后出现交叉,且阻尼比0.25的反应谱倾斜下降段按公式计算将变为倾斜上升段,条文硬性规定取0.0。本次修订,阻尼比0.05保持不变,调整后公式的形式不变,参数略有变化,使钢结构的地震作用有所减少,消能减震的最大阻尼比可取0.30,除Ⅰ类场地外,在周期6s以前,不同阻尼比基本不交叉。 l (2) 设计特征周期的调整 l 对于I0类场地,明确其特征周期比2001版I类减少0.05s。 l 对于罕遇地震的特征周期,6、7度与8、9度一样,也要求增加0.05s。 l (3) 增加了6度设防的设计参数 l 2010版增加了6度设防的一些要求,包括:不规则结构应计算地震作用;6度最小地

抗震规范新旧对比

2010抗震规范已经到货,抽空学习了一下,与去年注册工程师继续教育课时学的送审稿略有改动,以下简要记述认为对自己设计工作影响较多的修改,钢结构、砌体结构等本人接触不多的内容就不赘述了。 一、第3章新增3.10节建筑抗震性能化设计的内容,3.10.3明确给出了中震(即设防烈度)计算的αmax值(送审稿是放在表5.1.4-1处的,正式版本不知为何又改到了这里): 6度——0.12;7度(0.10g)——0.23;7度(0.15g)——0.34;8度(0.20g)——0.45;8度(0.30g)——0.68。对于平时设计来说,主要用于超限审查做的中震不屈服或中震弹性设计,一般的结构计算也没必要做。 二、4.1.6条,将场地类别中的I类细化为I0和I1两个亚类。修订原因是考虑到剪切波速为500-800m/s的场地还不是很坚硬,将此种场地定为I1类,硬质岩石场地定为I0类。相应地,表5.1.4-2提供了这两种场地类别的特征周期值,其中I1类的特征周期值与2001规范中I 类场地的周期值相同。 三、5.1.4条: 1. 增加了6度罕遇地震的αmax值。 2. 计算罕遇地震作用时,特征周期应增加0.05s。01规范只是在计算8度、9度的罕遇地震才有此要求,现要求扩大至各种地震烈度。此条对超限审查的罕遇地震弹塑性分析等有影响。 四、5.1.6条,修改了地震影响系数曲线。曲线的表达式表面上没有变化,但其中曲线下降段的衰减指数γ、直线下降段的下降斜率调整系数η1及阻尼调整系数η2的公式均有变化。 五、5.2.5条,增加了6度地震计算的结构任一楼层的水平地震剪力要求,01规范只对7-9度有要求。 六、6.1.1条,现浇钢筋混凝土房屋适用的最大高度有所调整。 1. 注4明确表中的框架结构不包括异形柱框架结构,异形柱结构的适用高度应以异形柱规范为准。 2. 8度地震的适用高度分为0.2g和0.3g两种要求。 3. 框架结构适用高度有所降低。 4. 板柱-剪力墙结构的适用高度增大较多。 七、6.1.2条抗震等级,增加了24m作为抗震等级划分的高度分界。但编委们对条文细节的把握上依然令人失望,如抗震墙结构,H≤24m为四级抗震,H为25-80m为三级抗震,那24.5m 应该按几级抗震,这不是又要让俺们和审查的老爷们扯皮吗?搞笑的是框架结构的划分——H≤24m为三级抗震,H为>24m为三级抗震就没有问题,难道结构抗震等级的划分还是一个委员确定一类结构?这种低级错误在02版高规也是俯拾即是,比如长厚比为5-8为短肢剪力墙,≥8以上为一般剪力墙,小于3为柱,长厚比为3-4之间的就不知为何物了。或许大师、专家们编制规范和我们做设计一样,也是加班加点熬出来的吧,写到后面都快睡着了,有点错误也就不足为奇矣。 八、6.1.3条第3款修改:地下一层以下抗震构造措施的抗震等级可逐层降低一级,但不应低于四级。6.1.3条第4款条文说明,明确了乙类建筑按提高一度采取抗震构造措施的方法,是按照提高一度查表6.1.2确定抗震等级,按抗震等级采取内力调整和构造措施。01规范条文及说明不够明确,没有说清楚抗震措施是否包括内力调整系数。 九、6.1.4条,防震缝的最小宽度由70mm增大至100mm。 十、6.1.9条,框支部分落地墙的两端(不包括洞口两侧)应设置端柱或与另一方向的抗震墙相连,也就是不允许一字形剪力墙落地了。一般的剪力墙也有此要求,但语气为“宜”,未必一定要按此执行。 十一、6.1.10条,抗震墙底部加强部位的高度,应从地下室顶板算起,不管地下室顶板是否作为上部结构的嵌固端。底部加强部位的高度由墙体总高度的1/8改为1/10。房屋高度≤24m

《抗震规范新变化》(参考Word)

2010版抗震规范新变化(砼部分) 一、第3章新增3.10节建筑抗震性能化设计的内容,3.10.3明确给出了中震(即设防烈度) 计算的αmax值: 6度——0.12;7度(0.10g)——0.23;7度(0.15g)——0.34;8度(0.20g)—— 0.45;8度(0.30g)——0.68。对于平时的设计工作来说,主要用于超限审查做的中 震不屈服或中震弹性设计,一般的结构计算也没必要做。 二、4.1.6条,将场地类别中的I类细化为I0和I1两个亚类。修订原因是考虑到剪切波速 为500-800m/s的场地还不是很坚硬,将此种场地定为I1类,硬质岩石场地定为I0类。 相应地,表5.1.4-2提供了这两种场地类别的特征周期值,其中I1类的特征周期值与2001规范中I类场地的周期值相同。 三、5.1.4条: 1. 增加了6度罕遇地震的αmax值。 2. 计算罕遇地震作用时,特征周期应增加0.05s。01规范只是在计算8度、9度的罕 遇地震才有此要求,现要求扩大至各种地震烈度。此条对超限审查的罕遇地震弹塑 性分析等有影响。 四、5.1.6条,修改了地震影响系数曲线。曲线的表达式表面上没有变化,但其中曲线下降 段的衰减指数γ、直线下降段的下降斜率调整系数η1及阻尼调整系数η2的公式均有变化。 五、5.2.5条,增加了6度地震计算的结构任一楼层的水平地震剪力要求,01规范只对7-9 度有要求。 六、6.1.1条,现浇钢筋混凝土房屋适用的最大高度有所调整。 1. 注4明确表中的框架结构不包括异形柱框架结构,异形柱结构的适用高度应以异形 柱规范为准。 2. 8度地震的适用高度分为0.2g和0.3g两种要求。 3. 框架结构适用高度有所降低。 4. 板柱-剪力墙结构的适用高度增大较多。 七、6.1.2条抗震等级,增加了24m作为抗震等级划分的高度分界。但编委们对条文细节的 把握上依然令人失望,如抗震墙结构,H≤24m为四级抗震,H为25-80m为三级抗震,那24.5m应该按几级抗震,这不是又要让俺们和审查的老爷们扯皮吗?搞笑的是框架结构的划分——H≤24m为三级抗震,H为>24m为三级抗震就没有问题,难道结构抗震等级的划分还是一个委员确定一类结构?这种低级错误在02版高规也是俯拾即是,比如长厚比为5-8为短肢剪力墙,≥8以上为一般剪力墙,小于3为柱,长厚比为3-4之间的就不知为何物了。或许大师、专家们编制规范和我们做设计一样,也是加班加点熬出来的吧,写到后面都快睡着了,有点错误也就不足为奇矣。 八、6.1.3条第3款修改:地下一层以下抗震构造措施的抗震等级可逐层降低一级,但不应 低于四级。6.1.3条第4款条文说明,明确了乙类建筑按提高一度采取抗震构造措施的方法,是按照提高一度查表6.1.2确定抗震等级,按抗震等级采取内力调整和构造措施。 01规范条文及说明不够明确,没有说清楚抗震措施是否包括内力调整系数。 九、6.1.4条,防震缝的最小宽度由70mm增大至100mm。 十、6.1.9条,框支部分落地墙的两端(不包括洞口两侧)应设置端柱或与另一方向的抗震 墙相连,也就是不允许一字形剪力墙落地了。一般的剪力墙也有此要求,但语气为“宜”,未必一定要按此执行。 十一、6.1.10条,抗震墙底部加强部位的高度,应从地下室顶板算起,不管地下室顶板是

混凝土结构设计规范新旧规范对比

混凝土结构设计规范新旧规范对比 混凝土结构设计规范新旧规范对比 新旧规范对比(逐条) 混凝土结构设计规范》 GB50010-2002)新内容 关调整部分: 2002年4月1日启用,原规范(GBJ10-89)于2002年12月31日废止; 17条,具体分配为:第3章有2条、第4章有4条、第6章有1条、第9章有2条、第10章有2条、第11章有6条; 1.0.2条中明确规定:本规范适用于房屋和一般构筑物的钢筋混凝土、预应力混凝土以及素混凝土承重结构的设计,而不适用于轻骨料混凝土以及其他特种混凝土结构的设计。 3.1.1条、第3.1.2条之条文说明中明确指出:在设计时,荷载分项系数按现行国家标准《建筑结构荷载规范》(GB50009)的规定取用;对极限状态的分类,按现行国家标准《建筑结构可靠度设计统一标准》(GB50068)的规定确定。 3章“基本设计规定”之强制性条文: 3.1.8条:未经技术鉴定或设计许可,不得改变结构的用途和使用环境。 3.2.1条:根据建筑结构破坏后果的严重程度,建筑结构划分为三个安全等级。设计时应根据具体情况,按照表3.2.1的规定选用相应的安全等级。 1 建筑结构的安全等级(表3.2.1) 破坏后果建筑物类型 很严重重要的建筑物 严重一般的建筑物 不严重次要的建筑物 4章“材料”之强制性条文: 4.1.3条:混凝土轴心抗压、轴心抗拉强度标准值fck、ftk应按表4.1.3采用。 混凝土强度标准值(N/mm2) 混凝土强度等级 C15 C20 C25 C30 C35 C40 fck 10.0 13.4 16.7 20.1 23.4 26.8 ftk 1.27 1.54 1.78 2.01 2.20 2.39 4.1.4条:混凝土轴心抗压、轴心抗拉强度设计值fc、ft应按表4.1.4采用。 注:1。计算现浇钢筋混凝土轴心受压及偏心受压构件时,如截面的长变或直径<300mm,则表中混凝土的强度设计值应乘以系数0.8,当构件质量确有保证时,可不受此限制。 2.离心混凝土的强度设计值应按专门标准取用。 混凝土强度设计值(N/mm2) 混凝土强度等级

结构设计常用数据表格

建筑结构安全等级 2 纵向受力钢筋混凝土保护层最小厚度(mm) 不同根数钢筋计算截面面积(mm2)

板宽1000mm内各种钢筋间距时钢筋截面面积表(mm2) 每米箍筋实配面积 钢筋混凝土结构构件中纵向受力钢筋的最小配筋百分率(%) 框架柱全部纵向受力钢筋最小配筋百分率(%)

框架梁纵向受拉钢筋的最小配筋白分率(%) 柱箍筋加密区的箍筋最小配箍特征值λν(ρν=λνf/f)

受弯构件挠度限值 注:1 表中lo为构件的计算跨度; 2 表中括号内的数值适用于使用上对挠度有较高要求的构件; 3 如果构件制作时预先起拱,且使用上也允许,则在验算挠度时,可将计算所得的挠度值减去起拱值;对预应力混凝土构件,尚可减去预加力所产生的反拱值; 4 计算悬臂构件的挠度限值时,其计算跨度lo按实际悬臂长度的2倍取用。

注: 1 表中的规定适用于采用热轧钢筋的钢筋混凝土构件和采用预应力钢丝、钢绞线及热处理钢筋的预应力混凝土构件;当采用其他类别的钢丝或钢筋时,其裂缝控制要求可按专门标准确定; 2 对处于年平均相对湿度小于60%地区一类环境下的受弯构件,其最大裂缝宽度限值可采用括号内的数值; 3 在一类环境下,对钢筋混凝土屋架、托架及需作疲劳验算的吊车梁,其最大裂缝宽度限值应取为0.2mm;对钢筋混凝土屋面梁和托梁,其最大裂缝宽度限值应取为0.3mm; 4 在一类环境下,对预应力混凝土屋面梁、托梁、屋架、托架、屋面板和楼板,应按二级裂缝控制等级进行验算;在一类和二类环境下,对需作疲劳验算的须应力混凝土吊车梁,应按一级裂缝控制等级进行验算; 5 表中规定的预应力混凝土构件的裂缝控制等级和最大裂缝宽度限值仅适用于正截面的验算;预应力混凝土构件的斜截面裂缝控制验算应符合本规范第8章的要求; 6 对于烟囱、筒仓和处于液体压力下的结构构件,其裂缝控制要求应符合专门标准的有关规定; 7 对于处于四、五类环境下的结构构件,其裂缝控制要求应符合专门标准的有关规定; 8 表中的最大裂缝宽度限值用于验算荷载作用引起的最大裂缝宽度。 梁内钢筋排成一排时的钢筋最多根数

中美抗震设计规范地震作用主要参数比较和转换

中美抗震设计规范地震作用主要参数比较和转换 严奉婷张炎 (武汉锅炉股份有限公司湖北武汉 430205) 摘要:本文从概念上分析了中国、美国抗震设计规范的不同,提出关于影响地震作用的部分因素(阻尼比,场地类别,周期,设计地震动参数等)在中美规范中的转换,为今后国际项目抗震设计提供参考。 关键词:抗震设计;设计地震动参数;场地类别;转换;比较 COMPARISON AND CONVERSION OF MAIN PARAMETERS BETWEEN CHINESE CODES AND USA CODES IN CALCULATING SEISMIC LOADS Yan Fengting Zhang Yan (Wuhan Boiler Company Limited, Wuhan, Hubei, 430205) Abstract This paper presents a conceptive comparison of the seismic code among the seismic design codes of China and USA. It presents the conversion of main parameters (damping, site classification, period, parameters of ground motion etc.) in calculating seismic loads.Hope to provide a little help for the seismic design in the future. Keywords:seismic design; parameters of ground motion; site classification; conversion; comparison 由于电力市场的国际化,对于需要走向国际市场的国内锅炉行业来说,各个地区会根据不同规范提出相应的地质条件,如何转换为设计规范的相应地质条件成了十分实际的问题。本文就影响地震作用计算的因素如重要性系数、场地类别、地震动参数、周期等进行了中、美的比较,并给出相应的转换。 1.各国抗震规范的基本介绍: 1.1.中国:GB50011-2010《建筑抗震设计规范》 1.2.美国:ASCE/SEI 7-05《minimum design loads for buildings and other structures》 ANSI/AISC 341-05《 Seismic Provisions for Structural Steel Buildings》 ASCE/SEI 7是一个针对各种结构形式的荷载规范,除规定了直接作用(如永久荷载和可变荷载)的取值规定外,还规定了间接作用(如地震作用)的取值规定,包括抗震设防目标、场地特性、设计地震作用、地震响应计算方法、结构体系与概念设计等抗震设计方面的内容。ANSI/AISC 341-05规定了结构构件抗震承载力验算和抗震构造规定等具体的抗震设计内容。

抗震规范常用表格

土的类型岩土名称和性状土层剪切波速范围(m/s) 岩石坚硬、较硬且完整的岩石υS>800 坚硬土或软 质岩石 破碎和较破碎的岩石或软和较软的岩石,密实的碎石土800≥υS>500 中硬土中密、稍密的碎石土,密实、中密的砾、粗、中砂,fak >150 的黏性土和粉土,坚硬黄土 500≥υS>250 中软土稍密的砾、粗、中砂,除松散外的细、粉砂,f ak≤150的 黏性土和粉土,fak>130的填土,可塑新黄土 250≥υS>150 软弱土淤泥和淤泥质土,松散的砂,新近沉积的黏性土和粉土, fa k≤130的填土,流塑黄土;新近沉积砂属于软弱土 υS≤150表4.1.6各类建筑场地的覆盖层厚度(m) 岩石的剪切波速或土的等效剪切波速(m/s) 场地类别 Ⅰ0Ⅰ1ⅡⅢⅣ υS>8000 800≥υS>5000 500≥υS>250<5 ≥5 250≥υS>150<3 3~50 >50 υS≤150<3 3~15 15~50 >80 注:表中υS系岩石的剪切波速。 设计地震分 组 场地类别 Ⅰ0 Ⅰ1 ⅡⅢⅣ 第一组0.20 0.25 0.35 0.45 0.65 第二组0.25 0.30 0.40 0.55 0.75 第三组0.30 0.35 0.45 0.65 0.90 A.0.2河北省 1 抗震设防烈度为8度,设计基本地震加速度值为0.20g: 第一组:唐山(路北、路南、古冶、开平、丰润、丰南),三河,大厂,香河,怀来,涿鹿; 第二组:廊坊(广阳、安次)。 2 抗震设防烈度为7度,设计基本地震加速度值为0.15g: 第一组:邯郸(丛台、邯山、复兴、峰峰矿区),任丘,河间,大城,滦县,蔚县,磁县,宣化县,张家口(下花园、宣化区),宁晋*; 第二组:涿州,高碑店,涞水,固安,永清,文安,玉田,迁安,卢龙,滦南,唐海,乐亭,阳原,邯郸县,大名,临漳,成安。 3 抗震设防烈度为7度,设计基本地震加速度值为0.lOg: 第一组:张家口(桥西、桥东),万全,怀安,安平,饶阳,晋州,深州,辛集,赵县,隆尧,任县,南和,新河,肃宁,柏乡; 第二组:石家庄(长安、桥东、桥西、新华、裕华、井陉矿区),保定(新市、北市、南市),沧州(运河、新华),邢台(桥东、桥西),衡 水,霸州,雄县,易县,沧县,张北,兴隆,迁西,抚宁,昌黎,

新旧规范对比及对工程造价的影响

《混凝土结构设计规范》GB 50010-2010(新规范) VS 《混凝土结构设计规范》GB 50010-2002(老规范) 一、材料变化: 1、混凝土强度等级逐步提升 4.1.2 素混凝土结构的混凝土强度等级不应低于C15;钢筋混凝土结构的混凝土强度等级不应低于C2 0;采用强度级别400MPa及以上的钢筋时,混凝土强度等级不应低于C25。承受重复荷载的钢筋混凝土构件,混凝土强度等级不应低于C30。预应力混凝土结构的混凝土强度等级不宜低于C40,且不应低于C30。 2、钢筋高强-高性能发展趋势 普通钢筋:淘汰低强235Mpa钢筋,以300Mpa光圆钢筋替代;增加高强500Mpa钢筋;限制并准备淘汰335Mpa钢筋;最终形成300、400、500Mpa的强度梯次,与国际接轨。新规范实施后的钢筋牌号及标志为: HPB300—Φ HRB335—B HRBF335—BF HRB400—C HRBF400—CF HRB500—D HRBF500—DF RRB400—C 增加了以下几条: 4.2.7当采直径50mm的钢筋时,宜有可靠的工程经验。构件中的钢筋可采用并筋的配置形式。直径2 8mm及以下的钢筋并筋数量不应超过3根;直径32mm的钢筋并筋数量宜为2根;直径36mm及以上的钢筋不应采用并筋。并筋应按单根等效钢筋进行计算,等效钢筋的等效直径应按截面面积相等的原则换算确定。 4.2.8当进行钢筋代换时,除应符合设计要求的构件承载力、最大力下的总伸长率、裂缝宽度验算以及抗震规定以外,尚应满足最小配筋率、钢筋间距、保护层厚度、钢筋锚固长度、接头面积百分率及搭接长度等构造要求。 4.2.9当构件中采用预制的钢筋焊接网片或钢筋骨架配筋时,应符合国家现行有关标准的规定。 新老规范变化(二) 基本构造变化 1、混凝土保护层:

新旧建筑抗震设计规范的对比与解读

新旧建筑抗震设计规范的对比与解读 主讲人:李生广 联系方式:**************** 黑龙江省安平施工图审查咨询有限公司 实线为新增内容 虚线为原有内容删除 1 总则 1.0.1为贯彻执行国家有关建筑工程、防震减灾的法律{《中华人民共和国建筑法》和《中华人民共和国防震减灾法》}并实行以预防为主的方针,使建筑经抗震设防后,减轻建筑的地震破坏,避免人员伤亡,减少经损失,制定本规范。 按本规范进行抗震设计的建筑,其基本的抗震设防目标是:当遭受低于本地区抗震设防烈度的多遇地震影响的,主体结构(一般)不受损坏或不需修理可继续使用;当遭受相当于本地区抗震设防烈度的设防地震影响时,可能发生损坏,但经一般性修理仍可继续使用;当遭受高于本地区抗震设防烈度的罕遇地震影响时,不致倒塌或发生危及生命的严重破坏。使用功能或其他方面有专门要求的建筑,当采用抗震性能设计时,具有更具体或更高的抗震设防目标。 第一阶段设计是承载力验算,取为第一水准的地震动参数计算结构的弹性地震作用标准和相应的地震作用效应,采用《工程结构可靠性设计统一标准》GB50153规定的分项系数设计表达式进行结构构件的截面承载力抗震验算,可靠度水平同78规范相当,并由于非抗震构件设计可靠性水准的提高而有所提高,即满足了在第一水准下具有必要的承载力可靠度,又满足第二水准的损坏可修的目标。对大多数的结构,可只进行第一阶段设计,而通过概念设计和抗震构造措施来满足第三水准的设计要求。 第二阶段设计是弹塑性变形验算,对地震时易倒塌的结构有明显薄弱层的不规则结构以及有专门要求的建筑,除进行第一阶段设计外,还要进行结构薄弱部位的弹塑性层间变形验算并采取相应的抗震构造措施,实现第三水准的设防要求。也就是结构在罕遇地震作用下的薄弱层的弹塑性变形验算。 1.0.2抗震设防烈度为6度及以上地区的建筑,必须进行抗震设计。 强条,新旧一样 1.0.3本规范适用于抗震设防烈度为6、7、8和9度地区建筑工程的抗震设计以及隔震、消能减震设计。建筑的抗震性能化设计,可采用本规范规定的基本方法。 抗震设防烈度大于9度地区的建筑及行业有特殊要求的工业建筑,其抗震设计应按有关专门规定执行。

内蒙古自治区高层建筑工程结构抗震基本参数表(2016年版)

内蒙古自治区高层建筑工程结构抗震基本参数表(2016年 版) 内蒙古自治区高层建筑工程结构抗震基本参数表(2016年版) 填表日期: 工程名称楼栋号设计阶段 场地类别建筑抗震设防烈度计算用设防烈度抗震措施所用设防烈度 抗震设防类别嵌固端所在楼层号地下室层数基础埋深(m) 主体结构高度主楼层数主楼结构类型主楼基础类型高度限值(m) (m) 裙楼层数裙楼基础类型裙楼结构高度(m) 是否转换层结构是否加强层结构是否连体结构是否多塔结构是否错层结构大跨屋盖结构类型屋盖跨度(m) 悬挑长度(m) 单向最大长度(m) 计算值或规计算值或规计算值或序号限值A 限值B 限值C 定规定定 a 在规定水平地震力作用下,考虑偶然偏心的扭转位移比 ?1.20 b 裙房以上较多楼层的扭转位移比 ?1.40 1 c 偏心率或相邻层质心偏心距与相应边长的比值 ?0.15 ?0.20 结构扭转为主的第一自振周期Tt与平动为主的第一自振周期T1的2 按表三要求填比值 a 结构平面凹进或凸出的一侧尺寸与相应投影方向总尺寸的百分比 ?30% ?40% b 结构平面突出部分长度与其宽度的比值6、7度(8度) ?2.00(1.50) 3 c 角部重叠的结构平面其角部重叠面积与较小一侧面积的比值 ?0.30 ?0.20 d 结构平面中部两侧收进的总尺寸占平面宽度的百分比 ?30% ?40% a 楼板有效宽度占该层楼板典型宽度的百分比 ?50% b 楼板开洞面积占该层楼面面积的百分比 ?30% 4 楼板开洞后任一方向的净宽(m),且楼板开洞后洞口周边任一边的净c ?5.0、2.0 宽(m)

d 楼层错层限值为“无” 填“有”或“无” a 框架结构本层侧向刚度与相邻上层侧向刚度的比值 ?0.7 ?0.5 b 框架结构本层侧向刚度与相邻上部三层侧向刚度平均值的比值 ?0.8 框架-剪力墙、板柱-剪力墙、剪力墙、框架-核心筒、筒中筒结构, c ?0.9 ?0.7 本层与相邻上层侧向刚度的比值 框架-剪力墙、板柱-剪力墙、剪力墙、框架-核心筒、筒中筒结构, d 当本层层高大于相邻上层层高的1.5倍时,本层与相邻上层侧向 刚?1.1 ?0.9 5 度的比值 e 结构底部嵌固层侧向刚度与相邻上层侧向刚度的比值 ?1.5 上部楼层收进部位的高度H1与房屋总高度H之比大于0.2时,上部f ?0.75 楼层收进后的水平尺寸B1与下部楼层水平尺寸B的比值;多塔 上部结构楼层水平尺寸B1(外挑)与下部结构楼层水平尺寸B的比g ?1.1 值;多塔 h 竖向构件水平外挑尺寸a(m) ?4 j 单塔或多塔与大底盘的质心偏心距占底盘相应边长的百分比 ?20% 6 抗侧力结构的层间受剪承载力与相邻上一层的比 值 ?0.80 7 上下墙、柱、支撑不连续(不包括屋顶设备用房及装饰构件) 限值为“无” 填“有”或“无” 8 局部的穿层柱、斜柱、夹层、个别构件错层或转换,个别楼层错层限值为“无” 填“有”或“无” 转换结构转换层与相邻上层的等效剪切刚度、侧向刚度比值 9 按表三要求填转换层下部结构与相邻上部结构的等效抗侧刚度比值 10 框支剪力墙结构在地面以上设置转换层的位置限值为“无” 填“有”或“无” 按表四要求填 11 7,9度设防的厚板转换结构限值为“无” 填“有”或“无” 12 限值为“无” 填“有”或“无” 各部分层数或层刚度相差超过30%的错层结构

2018最新规程规范清单调整表

考试大纲 2014大纲规范真题 备注 内编号出现几率 43《110KV~750KV架空输电线路设计规范》GB50545-2010★★★★★线路71《220kV~500kV紧凑型架空送电线路设计技术规定DL/T5217-2013★★★》 51《光纤复合架空地线》DL/T832-2016★★OPGW 48《高压直流架空送电线路技术导则》DL/T436-2005★★★ 直流输电56《高压直流输电大地返回运行系统设计技术规定》DL/T5224-2014★★ 75发电厂电力网络计算机监控系统设计技术规程DL/T5226-2013★★★ 17《高压交流架空送电线无线电干扰限值》GB15707-1995★★★ 《输电线路对电信线路危险和干扰影响防护设计规干扰 58DL/T5033-2006★★★程》 7《电信线路遭受强电线路危险影响的容许值》GB6830-1986★★★ 37《交流电气装置的接地设计规范》GB/T50065-2011★★★★★接地83《水力发电厂接地设计技术导则》NB/T35050-2015★★★电流互感器和电压互感器选择及计算规程DL/T866-2015★★★★★导体73《导体和电器选择设计技术规定》DL/T5222-2005★★★★★导体39《电力工程电缆设计规范》GB50217-2007★★★★★电缆40《并联电容器装置设计规范》GB50227-2017★★★★★无功76《35kV~220kV变电站无功补偿装置设计技术规定》DL/T5242-2010★★★★ 56《330kV~750kV变电站无功补偿装置设计技术规定DL/T5014-2010★★★★》 35《电力装置的电测量仪表装置设计规范(附条文说 GB/T50063-2017★★★★★测量明)》 69《电能量计量系统设计技术规程》DL/T5202-2004★★★★计量

相关文档
最新文档