对称性的应用

7-7 对称性的利用
1
位移法中对称性的利用关 键是半结构的选取

奇数跨对称结构
(1)对称荷载 位移法中对称性的利用关键是半结构的选取
Z1 Z1
Z2
2
? Z1 = Z 2
Z1 = ? Z 2

偶数跨对称结构
Z1
3

偶数跨对称结构
Z1
Z2
结点转角为零
4
EI =∞
Z3
在对称轴上的结点B 和A 均无转角及水平线位移,但可 发生竖向线位移且两点相等,中央竖杆AB不发生挠曲。 截取半结构时,可将杆AB 看作刚性杆而保留,并在结 点B、A 分别加上水平链杆支承。

奇数跨对称结构
(2)反对称荷载
5
在对称轴上的截面C没有竖向位移,但可有转角和水平 位移。
Z1
Z2

偶数跨对称结构
在对称轴上,柱 CD没有轴力和 轴向位移,但有弯 矩和弯曲变形。 可将中间柱分成 两根柱,分柱的 抗弯刚度为原柱 的一半。 因为忽略轴向变形的影响,C处的竖向支杆可取消。
6

偶数跨对称结构
Z1
Z3
Z4
7
Z5 Z6
Z2
对称轴上的结点A 和B 均有转角和侧移,但无竖向线 位移,中央竖杆AB发生挠曲变形 。 在截取半结构计算时,除了取竖杆AB 刚度之半(EI/2) 外,还应在A处加一竖向链杆支承。

讨论:
8
最少未知量
Z1
Z1
M
Z2
Z3
Z2
Z1

9
M
M
M /2
M
MP
Z1
r11 Z1 + R1P = 0

10
Z1
Z1
MP
Z3 Z2 Z2
Z3

11
Z1
Z1
Z1
Z3 Z3 Z2 Z2 Z2


m q q a
12
列出用位移法并利用对称性计算图示刚架的基本结 构及典型方程。(各杆的 EI =常数)
2a
a
a
a
a

取半结构
13
m q q

对称荷载作用下基本结构
q q Z1
14
Z2
Z2
Z1
典型方程:
r11Z1 + r12 Z 2 + R1P = 0 r21Z1 + r22 Z 2 + R2 P = 0

反对称荷载作用下基本结构
Z1
15
Z2
典型方程:
r33 Z 3 + r34 Z 4 + R3 P = 0
r43 Z 3 + r44 Z 4 + R4 P = 0

取半结构示例
m q q
16
Z1
Z1

例1
17
利用对称性简化图a所示的对称结构,取出最简的 计算简图、基本体系,并作出M图。
r11 Z1 + R1P = 0

最简的基本体系及M图
5 EI r11 = 3
18
R1P = ?30kN ? m
90 Z1 = 5 EI
M = M 1 Z1 + M P

例2
图示结构, 设E I =常数, P =10kN,试画出 刚架的M 图。
P P
19
4m
D
2m 2m 2m 2m

基本方程
P
20
Z1
P
由于结构对称,荷载对称
Z2
D Z 3
4m
Z1 = Z2 = 0 Z3 = YD
P
基本方程为:
EI =∞
D
r11Z1 + R1P = 0
Z1

二次函数对称性的专题复习

二次函数图象对称性的应用 一、几个重要结论: 1、抛物线的对称轴是直线__________。 2、对于抛物线上两个不同点P1(),P2(),若有,则P1,P2两点是关于_________对称的点,且这时抛物线的对称轴是直线_____________;反之亦然。 3、若抛物线与轴的两个交点是A(,0),B(,0),则抛物线的对称轴是__________(此结论是第2条性质的特例,但在实际解题中经常用到)。 4、若已知抛物线与轴相交的其中一个交点是A(,0),且其对称轴是,则另一个交点B 的坐标可以用____表示出来(注:应由A、B两点处在对称轴的左右情况而定,在应用时要把图画出)。 5、若抛物线与轴的两个交点是B(,0),C(,0),其顶点是点A,则?ABC是____三角形,且?ABC的外接圆与内切圆的圆心都在抛物线的_______上。 二、在解题中的应用: 例1已知二次函数的图象经过A(-1,0)、B(3,0),且函数有最小值-8,试求二次函数的解析式。 例2已知抛物线,设,是抛物线与轴两个交点的横坐标,且满足 . (1)求抛物线的解析式; (2)设点P(,),Q(,)是抛物线上两个不同的点,且关于此抛物线的对称轴对称,求的值。 例3已知抛物线经过点A(-2,7)、B(6,7)、C(3,-8),则该抛物线上纵坐标为-8的另一点的坐标是。 例4已知抛物线的顶点A在直线上。 (1)求抛物线顶点的坐标; (2)抛物线与轴交于B、C两点,求B、C两点的坐标; (3)求?ABC的外接圆的面积。

y O x -1 -2 1 2 - 3 3 -1 1 2 -2 二次函数专题训练——对称性与增减性 一、选择 1、若二次函数 ,当x 取 , ( ≠ )时,函数值相等,则 当x 取+时,函数值为( ) (A )a+c (B )a-c (C )-c (D )c 2、抛物线2)1(2++=x a y 的一部分如图所示,该抛物线在y 轴右 侧部分与x 轴交点的坐标是 (A )( 2 1 ,0) (B )(1,0) (C )(2,0) (D )(3,0) 3、已知抛物线2 (1)(0)y a x h a =-+≠与x 轴交于1(0)(30)A x B ,,,两点,则线段AB 的长度为( ) A.1 B.2 C.3 D.4 4、抛物线c bx x y ++-=2 的部分图象如图所示,若0>y ,则的取值范围是( ) A.14<<-x B. 13<<-x C. 4-x D.3-x 5、函数y =x 2-x +m (m 为常数)的图象如图,如果x =a 时,y <0; 那么x =a -1时,函数值( ) A .y <0 B .0<y <m C .y >m D .y =m 6、抛物线y=ax 2 +2ax+a 2 +2的一部分如图所示,那么该抛物线在y 轴右侧与x 轴交点的坐标是( ) A .(0.5,0) B .(1,0) C .(2,0) D .(3,0) 7、老师出示了小黑板上的题后(如图),小华说:过点(3,0); 小彬 说:过点(4,3);小明说:a=1;小颖说:抛物线被x 轴截 得的线段长为2.你认为四人的说法中,正确的有( ) A .1个 B .2个 C .3个 D .4个 8、若二次函数2 y ax c =+,当x 取1x 、2x (12x x ≠)时,函数值相等,则当x 取12x x + 时,函数值为( ) A.a c + B.a c - C.c - D.c 9、二次函数 c bx x y ++=2的图象上有两点(3,-8)和(-5,-8),则此拋物线的对称轴是( ) A .x =4 B. x =3 C. x =-5 D. x =-1。 10、已知关于x 的方程32 =++c bx ax 的一个根为1x =2,且二次函数c bx ax y ++=2 的对称轴直线是x =2,则抛物线的顶点坐标是( ) A .(2,-3 ) B .(2,1) C .(2,3) D .(3,2) 11、已知函数215 322 y x x =- --,设自变量的值分别为x 1,x 2,x 3,且-3< x 1< x 2

巧用二次函数图象的对称性解题解析

巧用二次函数图象的对称性解题解析 新盈中学王永升 2010-6-29 二次函数是初中数学的重点内容之一,在初中代数中占有重要位置。其图象是一种直观形象的交流语言,含有大量的信息,为考查同学们的数形结合思想和应用图象信息的能力,二次函数图象信息题成了近年来各地中考的热点。所以学会从图象找出解题的突破点成了关键问题,那就要熟练掌握二次函数的基本知识。比如:二次函数的解析式,二次函数的顶点坐标对称轴方程,各字母的意义以及一些公式,对于这些知识,同学们掌握并不是很困难,但对二次函数图象的对称性,掌握起来并不是很容易,而且对于有关二次函数的一些题目,如果用别的方法会很费力,但用二次函数图象的对称性来解答,也许会有事倍功半的效果。现将这两个典型例题,供同学们鉴赏:例1、已知二次函数的对称轴为x=1,且图象过点(2,8)和(4,0),求二次函数的解析式。 分析:此题中我们可以按照常规的解法,用二次函数的一般式 来解,但运算量会很大,因为我们将会解一个三元一次方程组。 另外,我们还可以利用二次函数的对称性来解决此题。本道题 目的特点是给了抛物线的对称轴方程及一个x轴上的点坐标。因此 我们可以依据二次函数的对称性,求出抛物线所过的x轴上的另一 个点的坐标为(-2,0),这样的话我们就可以选择用二次函数的

交点式来求解析式。设二次函数的解析式为y=a(x+2)(x-4),然后将(2,8)代入即可求出a值,此题得解。 本题利用二次函数的对称性解题减少了大量的运算,既可以准确解题又节省了时间,不失为一种好的方法。 例2、若二次函数y=ax2+b(ab≠0),当x取x1、x2(x1≠x2)时,函数值相等,则当x取x1+x2时,函数值是____________ 分析:此题我们可以采用常见的将x1、x2代入解析式,由于y 值相等,则可求出x1+x2的值为0,将x=0代入解析式可得函数值为b。 我们也可以用二次函数的对称性来解题。由于二次函数的对称性,当函数值相等时,则两点为对称点,且本题中的二次函数 y=ax2+b(ab≠0)的对称轴为y轴(x=0),所以,我们也可以得到x1+x2的值为0,将x=0代入解析式可得函数值为b。 相比较我们可以知道,利用二次函数的对称性解决本题,减少了运算量,但对于知识点的理解和掌握的要求大大增加了。要求学生对二次函数的对称性的把握要进一步理解、深化。 我们还可以将上题中的解析式变为一般式y=ax2+bx+c,其他条件不变,结果为c。 下面仅以a>0时为例进行解答。当a<0时也是成立的。

对称性在结构力学中的应用

土木工程系土木5班徐亚飞529在工程实际中,有很多结构具有对称性,而结构力学研究的就是结构的杆系模型,因此对称性在结构力学中有着广泛的应用。现在业已学完了结构力学,现就对称性在结构力学中的应用做一简单的总结。 所谓结构的对称性,需要满足以下两个方面的要求: (1)结构的几何形状和支撑情况对某一轴线对称; (2)杆件截面和材料的性质也对此轴对称。结构上力的对称性有正对称和反对称两种类型,非对称的力都可以化为正对称力与反对称力的叠加。 一、对称性在求解结构内力中的应用 因为对称结构在对称荷载作用下,其对称的内力(弯矩和轴力)是正对称的,其反对称的内力(剪力)是反对称的;在反对称荷载作用下,其对称的内力(弯矩和轴力)是反对称的,其反对称的内力(剪力)是正对称的。因此,只要我们做出半边结构的内力图,也就知道了整个结构的内力图。据此,我们在对对称结构进行内力分析时,就可以取半边结构进行分析。取半边结构进行分析,可以减少超静定次数,减少基本未知量,为解题提供了很大的方便。 二、对称性在体系自由振动中的应用 我们知道,结构的频率、主振型及主振型的正交性是结构本身的固有特性,与外界因素无关。只要结构本身和质量分布都是对称的,其振型或为正对称,或为反对称,因此,我们可以选取半边结构计算其相应的自振频率。但其只能应用于两个自由度的振动体系,且自振频率小的为第一振型,较大的为第二振型。运用对称性求解结构的自振频率,避免了求解复杂的频率方程,使得计算大大简化。 三、对称性在结构稳定性分析中的应用 结构的稳定性分析,就是为了确定在新的平衡形式的荷载,即临界荷载。通常的解法是假设新的平衡形式,运用静力平衡法或能量法通过稳定方程求的

对称性在积分中应用

对称性在积分中的应用 摘要:对称性是宇宙中许多事物都具有的性质,大到银河星系,小到分子原子.根据对称性,我们就可以把复杂的东西简单化,把整体的东西部分化.本文介绍运用数学中的对称性来解决积分中的计算问题,主要介绍了几种常见的对称性在积分计算过程中的一些结论及其应用,并通过实例讨论了利用积分区间、积分区域、被积函数的奇偶性,从而简化定积分、重积分、曲线积分、曲面积分的计算方法.另外对于曲面积分的计算,本文还给出了利用轮换对称性简化积分的计算.积分的计算是高等数学教学的难点,在积分计算时,许多问题用“正规”的方法解决,反而把计算复杂化,而善于运用积分中的对称性,往往能使计算简捷,达到事半功倍的效果. 关键词:积分对称定积分重积分曲线积分曲面积分区域对称轮换对称

目录 一、引言 二、相关对称的定义 (一)区域对称的定义 (二)函数对称性定义 (三)轮换对称的定义 三、重积分的对称性 (一)定积分中的对称性定理及应用(二)二重积分中的对称性定理及应用(三)三重积分中的对称性定理及应用四、曲线积分的对称性 (一)第一曲线积分的对称性定理及应用(二)第二曲线积分的对称性定理及应用五、曲线积分的对称性 (一)第一曲面积分的对称性定理及应用(二)第二曲面积分的对称性定理及应用六、小结 参考文献 谢词

一、 引言 积分的对称性包括重积分、曲线积分、曲面积分的对称性.在积分计算中,根据题目的条件,充分利用积分区域的对称性及被积函数的奇偶性,往往可以达到事半功倍的效果.下面我将从积分对称性的定理及结论,再结合相关的实例进行具体探讨.本文从积分区域平行于坐标轴、对角线的直线的对称性,平行于坐标面的平面等的对称性定义. 二、相关的定义 定义1: 设平面区域为D ,若点),(y x ),2(y x a D -?∈,则D 关于直线a x =对 称,对称点),(y x 与),2(y x a -是关于a x =的对称点.若点),(y x ∈D ?)2,(y b x - ),(y x D ∈,则D 关于直线b y =对称,称点),(y x 与)2,(y b x -是关于b y =的对称(显然 当0=a ,0=b 对D 关于y ,x 轴对称). 定义2: 设平面区域为D ,若点),(y x D ∈?),(a x a y --,则D a x y +=对称, 称点),(y x 与),(a x a y --是关于a x y +=的对称点.若点),(y x D ∈?),(x a y a -- D ∈,则D 关于直线z y ±=对称. 注释:空间区域关于平行于坐标面的平面对称;平面曲线关于平行于坐标轴的直线 对称;平面曲面以平行于坐标面对称,也有以上类似的定义. 空间对称区域. 定义3:(1)若对Ω∈?),,(z y x ,?点Ω∈-),,(z y x ,则称空间区域Ω关于xoy 面对 称;利用相同的方法,可以定义关于另外两个坐标面的对称性. (2)若对Ω∈?),,(z y x ,?点Ω∈-),,(z y x ,则称空间区域Ω关于z 轴对称;利用相同 的方法,可以定义关于另外两个坐标轴的对称性. (3)若对Ω∈?),,(z y x ,?点Ω∈---),,(z y x , 则称空间区域Ω关于坐标原点对称. (4)若对Ω∈?),,(z y x ,?点Ω∈),,(),,,(y x z x z y ,则称空间区域Ω关于z y x ,,具有 轮换对称性. 定义4:若函数)(x f 在区间()a a ,-上连续且有)()(a x f a x f +=-,则)(x f 关于 a x =对称当且仅当0=a 时)()(x f x f =-,则)(x f 为偶函数.若)()(x a f x a f +-=-,

对称性在积分计算中应用

毕业设计(论文)题目:对称性在积分计算中应用 学院:数理学院 专业名称:信息与计算科学 学号:0741210102 学生姓名:鲍品 指导教师:张晓燕 2011年5 月20 日

对称性在积分计算中的应用 摘要 对称性的应用很广泛,尤其在数学,物理学,化学等方面都有体现[1]。本论文主要是探讨一下对称性在积分计算中的应用。 积分在微积分学中既是重点又是难点,特别是在解决积分计算问题上,方法比较灵活。常见的积分方法有换元法和分部积分法,这些方法在解决一般的问题上还是奏效的,但是对于复杂的微积分计算和证明问题就显得有些心有余而力不足。假如我们稍仔细地观察题目,很多时候我们会发现积分区域或被积函数具有某种对称性。如果我们将对称性巧妙地应用到解决这类问题中去,不仅简化了计算过程而且还节省计算时间。 利用对称性解题方法比较灵活也十分重要。接下来本论文将从定积分,重积分,曲线积分以及曲面积分四大方面入手,深入探讨对称性在积分计算中的应用。最后分析利用对称性解题的条件与优势,总结出应用相关性质解题时要注意哪些方面。 关键词 定积分,重积分,曲线积分,曲面积分,对称性,奇偶性

Abstract The application of symmetry is very widespread, particularly in mathematics, physics, chemistry and other aspects of embodied. This paper is to explore the symmetry in the integral calculation. Integral calculus is difficult in both the focus, especially in solving the problem of integral calculation, the method more flexible. The common integral method are the substitution of variables and the integration by parts. These methods are effective in the solution general question, but appear regarding the complex calculus computation and the proof question somewhat has more desire than energy. If we carefully observe the subject a little, usually we will find regional integration or product function has a symmetry. If we applied the symmetry skillfully to solve such problems, this not only simplifies the calculation process but also save computing time. More flexible use of problem-solving approach symmetry is also important, Then the paper will be integral, double integral, curve and surface integrals four points in a bid to further investigate the symmetry in the integral calculation. Finally, we solve problems by analyzing the symmetry of the conditions of use and advantages, summed up the nature of problem solving application related to the attention of what. Key words definite integral, heavy integral, curvilinear integral, surface integral, symmetry, parity

函数的对称性应用

函数的对称性应用(一) ──含绝对值函数的图象 内蒙古赤峰市翁牛特旗乌丹一中熊明军 在学习函数时,若将函数的自变量或应变量带上绝对值“”,再研究其性质就不仅仅要从函数的角度来考虑,还得结合绝对值的意义来共同探讨。 图象是刻画变量之间关系的一个重要途径。函数图象是函数的一种表示形式,是形象直观地研究函数性质的常用方法,是数形结合的基础和依据。本文针对含绝对值函数的性质进行分析,然后利用对称性作出函数图象,并借助图象来展示绝对值对函数性质特征的影响。 一、含绝对值的函数常见情况的分类: 已知函数,叫做函数的自变量;叫做函数的应变量(函数值)。 ①对自变量取绝对值:;②对应变量取绝对值:; ③对全都取绝对值:;④对整个函数取绝对值:; ⑤对都取绝对值:;⑥部分自变量取绝对值:。 二、分析不同情况含绝对值函数的性质特点及图象作法: ①对自变量取绝对值: 【特征分析:】 已知函数,设是函数图象上任意一点,则该点与点关于 轴对称。因为点与都在函数上,所以其函数图象关于轴对称。 【作图步骤:】 (1)作出函数的图象; (2)保留时函数的图象; (3)当时,利用对称性作出(2)中图象关于轴对称后的图象。 【作图展示:】作函数的图象

②对应变量取绝对值:; 【特征分析:】 已知函数,设是函数图象上任意一点,则该点与点关于 轴对称。因为点与都在函数上,所以其函数图象关于轴对称。 【作图步骤:】 (1)作出函数的图象; (2)保留时函数的图象; (3)当时,利用对称性作出(2)中图象关于轴对称后的图象。 【作图展示:】作函数的图象 ③对全都取绝对值:; 【特征分析:】 已知函数,设是函数图象上任意一点,它与点关于轴对称、与点关于轴对称且与点关于原点对称。因为点、、 与都在函数上,所以函数图象关于轴、轴及原点对称。 【作图步骤:】 (1)作出函数的图象; (2)保留(第一象限)时函数的图象; (3)利用对称性作出(2)中图象关于轴、轴及原点对称后的图象。

二次函数的对称性的应用(学生) (2)

本文为本人珍藏,有较高的使用、参考、借鉴价值!! 二次函数的对称性的应用 展示讨论 1、(1)如图,抛物线的顶点坐标为(0,4),与x 轴的一个交点坐标 为M (-2,0),请写出抛物线与x 轴的另一个交点坐标N( ) (2)若抛物线上有一点A 的横坐标为1-,则A 点坐标为(1-, ),在抛物线上与其对称点B 的坐标是( ).你是怎样求出来的?请说明理由; (3)如果有一点C 的横坐标为x ,则C 点坐标怎么表示? C ( ) 则抛物线上与C 点对称点的D 的坐标是D ( ) (4)观察以上各组对称点 M ( ) A ( ) C ( ) N ( ) B ( ) D ( ) 对称点的坐标有何特点? 2、(1)如图,抛物线顶点坐标为(3,4),它的图象与x 轴的一个交点坐标为M (1,0), 请写出抛物线与x 轴的另一个交点坐标N ( ); (2)若抛物线上有一点A 的横坐标为2,则A 点坐标为( ).你是怎样求出A 点坐标的?写出A 点在抛物线上的对称点B 的坐标,B ( ) . (3)如果有一点C 在抛物线上,其横坐标为x ,则C 点怎样表示?C ( ) 其对称点D 怎样表示?D ( ) (4)M ( ) A ( ) C ( ) N ( ) B ( ) D ( ) 对称点的坐标与抛物线的对称轴之间有什么关系? 二、知识应用: 1、如图是二次函数y=ax 2+bx+c (a ≠0)的函数值y 与自变量x 的对应值. 根据表格你能找出抛物线图象上的对称点吗? 你能写出抛物线的对称轴吗? 抛物线与x 轴的交点坐标为 , 如果有一个点为 ),(n m ,则其图象上的对称点为 . 2、(1)若M 是函数 图象上对称轴右侧x 轴上方的一个动点,其横坐标为x , 42 +-=x y

维格纳关于对称性思想的应用及其意义

龙源期刊网 https://www.360docs.net/doc/1b16188391.html, 维格纳关于对称性思想的应用及其意义 作者:赵旭 来源:《教育界·下旬》2018年第01期 【摘要】维格纳因发现基本粒子的对称性及支配质子与中子相互作用的原理,于1963年获得了诺贝尔物理学奖。他基于对称性问题的研究形成的独特而深刻的哲學见解,对对称性的扩展和重新解释做出了历史性贡献,对于解读对称性的物理学及哲学意义有着重要而深远的影响。 【关键词】维格纳;对称性;群论;量子力学;哲学意义 尤金·保罗·维格纳(Eugene Paul Wigner, 1902-1995),美籍匈牙利人,20世纪杰出的物理学家之一。在他的科学文献中,对称性扮演了核心的角色。特别是他在量子力学中关于对称性和不变性原理方面的开创性工作。 一、维格纳将对称性应用于量子力学 (一)1927年,维格纳首先用对称性成功地分析了原子光谱,发现了宇称守恒定律 宇称是描写微观粒子在空间反演下变换性质的物理量,记为P,有奇偶之分。如果在空间反演下描述某一粒子的波函数保持不变,则该粒子具有偶宇称;如果改变符号,则为奇宇称。粒子系统的总宇称等于各个粒子宇称的乘积,还要乘上轨道运动的宇称。宇称守恒定律表明,粒子或粒子系统在相互作用前后的总宇称不变,它反映了物理规律在空间反演下的对称性。 维格纳在解释拉波特选择定则时提出了“宇称守恒”的观点。1924年,拉波特在研究铁原子辐射的光谱后,发现铁原子具有两类不同的能级,即奇能级和偶能级。在通过单光子的吸收或发射而发生的能级跃迁中,一个奇能级总是改变到一个偶能级,或者反过来,处在偶能级的电子只会跃迁到奇能级。当时的拉波特并没有解释为什么会存在这一选择定则。 1927年,维格纳用严格的推导证明了由拉波特揭示的实验规律是原子内部的电磁力具有 左右对称的结果。由此,维格纳引入“宇称”的概念,并完成了《量子力学中的守恒定律》这一论文。用宇称守恒来分析原子光谱,拉波特总结的规律就很容易得到解释。因为原子内部的电磁相互作用力是左右对称的,原子的各个能级都有确定的宇称。同时光子的宇称确定为奇的(-1)。如果初态原子处于宇称为奇(-1)的能级状态,当其吸收或发射光子跃迁到末态后,总宇称为原子末态能级的宇称与光子宇称的乘积,这个乘积数也必须为奇(-1)。由光子的宇称为奇(-1)可知,原子的末态能级宇称为偶(+1)。这正是实验观察到的情况。由于宇称守恒定律用于分析原子光谱的成功,后来被进一步应用于原子核物理和粒子物理中,在大量现象中宇称守恒的讨论都取得了很大的成效。直到1956年李政道、杨振宁提出弱相互作用过程中宇称不守恒,这一定律的局限性才被揭示。

高中的函数对称性的总结

高中函数对称性总结 新课标高中数学教材上就函数的性质着重讲解了单调性、奇偶性、周期性,但在考试测验甚至高考中不乏对函数对称性、连续性、凹凸性的考查。尤其是对称性,因为教材上对它有零散的介绍,例如二次函数的对称轴,反比例函数的对称性,三角函数的对称性,因而考查的频率一直比较高。以笔者的经验看,这方面一直是教学的难点,尤其是抽象函数的对称性判断。所以这里我对高中阶段所涉及的函数对称性知识做一个粗略的总结。 一、对称性的概念及常见函数的对称性 1、对称性的概念 ①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。 ②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。 2、常见函数的对称性(所有函数自变量可取有意义的所有值) ①常数函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。 ②一次函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。 ③二次函数:是轴对称,不是中心对称,其对称轴方程为x=-b/(2a)。 ④反比例函数:既是轴对称又是中心对称,其中原点为它的对称中心,y=x与y=-x均为它的对称轴。 ⑤指数函数:既不是轴对称,也不是中心对称。 ⑥对数函数:既不是轴对称,也不是中心对称。 ⑦幂函数:显然幂函数中的奇函数是中心对称,对称中心是原点;幂函数中的偶函数是轴对称,对称轴是y轴;而其他的幂函数不具备对称性。 ⑧正弦函数:既是轴对称又是中心对称,其中(kπ,0)是它的对称中心,x=kπ+π/2是它的对称轴。 ⑨正弦型函数:正弦型函数y=Asin(ωx+φ)既是轴对称又是中心对称,只需从ωx+φ=kπ中解出x,就是它的对称中心的横坐标,纵坐标当然为零;只需从ωx+φ=kπ+π/2中解出x,就是它的对称轴;需要注意的是如果图

运用平移、对称、旋转求二次函数解析式-教师版

运用平移、对称、旋转求二次函数解析式 一、运用平移求解析式 1.将二次函数223y x x =-++的图象向左平移1个单位,再向下平移2个单位,求平移后的抛物线的解析式. 【答案】因为()2 22314y x x x =-++=--+,所以平移后的解析式为22y x =-+ 2.将抛物线2y x bx c =++先向左平移2个单位,再向上平移3个单位,得到抛物线221y x x =-+,求b 、c 的值. 【答案】因为()22211y x x x =-+=-,所以平移前的解析式为:()2 33y x =-- 所以可得6b =-,6c = 3.已知抛物线2y ax bx c =++与x 轴交于点()10A ,,()30B ,,且过点()03C -,,请你写出一种平移的方法,使平移后抛物线的顶点落在直线y x =-上,并写出平移后抛物线的解析式. 【答案】可得()()13y a x x =--,代入()03C -, ,可得1a =-, 所以()()()2 2134321y x x x x x =---=-+-=--+,所以顶点为()21,, 向左平移3个单位得到()211y x =-++ 二、运用对称求解析式 4.将抛物线()214y x =--沿直线32 x = 翻折,得到一个新抛物线,求新抛物线的解析式. 【答案】可得顶点()14-,,顶点翻折后得到()24-,,所以新抛物线解析式为()224y x =-- 5.如图,已知抛物线1C :2216833 y x x = ++与抛物线2C 关于y 轴对称,求抛物线2C 的解析式.

【答案】因为()2221628843333y x x x =++=+-,顶点为843??-- ?? ?,,关于y 轴对称后顶点为 843??- ?? ?,,所以对称后的解析式为:()2228216483333y x x x =--=-+ 三、运用旋转求解析式 6.将抛物线221y x x =-+的图象绕它的顶点A 旋转180°,求旋转后的抛物线的解析式. 【答案】因为()2 2211y x x x =-+=-,顶点()10A ,,旋转180°即为沿x 轴翻折后对称 所以()21y x =--

数学的对称性及其在若干数学问题中的应用本科毕业论文

编号: 本科毕业论文 数学的对称性及其在若干数学问题中的应用 系院:数学科学系 姓名:冯克飞 学号:0831130103 专业:小学教育(数学方向) 年级:2008级 完成日期:2012年5月

对称是自然界和人类社会中普遍存在的形式之一,是其运动、变化和发展的规律之一。人们在认识和解决具有对称或对等以及反对等性的问题过程中产生和形成的思想、方法,我们称之为对称思想方法;数学家们用数学的思想、方法解决这类问题所产生和形成的思想与方法,我们称之为数学对称思想方法。数学的对称性在数学解题与分析中具有重要的作用。本文将围绕着数学对称性的基本性质及其在实际的数学解题中的应用展开对数学对称性的全面分析,旨在充分揭示对称性在数学中作为一种工具和方法的优势,加深对数学对称性的理解和认识,以求在数学教学或实际解题中充分发挥对称性的应用。 关键字:数学对称;几何运用;对称思想;对称原理 Abstract Symmetry is one of the common form in nature and human society, is one of the movement, change and development of the law. People understand and resolve with symmetric or opposition of the process and the formation of ideas, methods, which we call a symmetric way of thinking; mathematicians use mathematical thinking, methods to solve such problems and the formation of ideas and methods, which we call the mathematical symmetry of thinking. Mathematical symmetry plays an important role in mathematical problem solving and analysis. This article will focus on the basic nature of the mathematical symmetry and its actual mathematical problem solving to commence a comprehensive analysis of mathematical symmetry, to fully reveal the symmetry in mathematics as a tool and method of the advantages of deepen understanding and awareness of mathematical symmetry, in order to give full play to the application of symmetry in mathematics teaching, or practical problem solving. Keywords: mathematical symmetry; geometry use; symmetrical thinking; symmetry principle

结构力学对称性应用

对称性应用 在工程问题中,有很多结构都具有对称性。我们对这些结构进行受力分析的时候,常常将结构简化为杆系模型,而结构力学研究的就是结构的杆系模型,因此对称性在结构力学中有着广泛的应用。现在就对称性在结构力学中的应用做一简单的总结。 结构的对称性是指结构的几何形状和支座形式均对称于某一几何轴线。而荷载的对称则分为正对称荷载和反对称荷载。另外需要注意的是杆件截面和材料的性质也要对于此轴对称。在对称荷载作用下,结构内力呈对称分布。在反对称荷载作用下,结构内力呈反对称分布。如下图所示: 对称性在求解结构内力中的应用: 对称结构在正对称荷载作用下,其对称的内力(弯矩和轴力)和位移是正对称的,其反对称的内力(剪力)是反对称的;在反对称荷载作用下,其对称的内力(弯矩和轴力)和位移是反对称的,其反对称的内力(剪力)是正对称的。因此,只要我们做出半边结构的内力图,也就知道了整个结构的内力图。据此,我们在对对称结构进行内力分析时,就可以取半边结构进行分析。取半边结构进行分析,可以减少超静定次数,减少基本未知量,为解题提供了很大的方便。 在用力法解决超静定问题时,对于对称的结构,可利用对称性简化计算。简化步骤如下:1、选取对称的基本结构。2、将未知力及荷载分组。3、取半结构反对称正对称

进行计算。对于对称结构承受一般非对称荷载时,利用荷载分组,将荷载分解为正、反对称的两组,并将他们分别作用于结构上求解内力,然后将计算结果叠加。在计算对称结构时,根据对称结构特性,可以选取半个结构计算。选取半结构的原则: 1、在对称轴的截面或位于对称轴的节点处 2、按原结构的静力和位移条件设置相应的支撑,使半结构与原结构的内力和变形完全等效 奇数跨对称结构: 偶数跨对称结构:

浅谈对称思想在数学教学中的应用

目录 1引言 (1) 2对称思想的本质 (1) 3数学的对称性 (2) 3 .1公式的对称性 (2) 3 .2图形的对称性 (2) 3 .3对称式和轮换式 (3) 3 .4对称的其他应用 (4) 4数学思维在对称思想中的应用 (6) 4.1对称思想的简洁性 (6) 4.2对称思想的灵活性 (6) 4.3对称思想的广泛性 (7) 5数学能力在对称思想中的培养 (8) 5.1数学判断能力在对称思想中的培养 (8) 5.2数学记忆能力在对称思想中的培养 (8) 5.3数学转化能力在对称思想中的培养 (9) 5.4数学解题能力在对称思想中的培养 (9) 6结论 (10) 参考文献 (12) 致谢 (13)

浅谈对称思想在数学教学中的应用 数学系本1202班李然 指导教师:杨树勍 摘要:对称好像是世间万物的一种表象或形式,而且它已经成为各种学科的一些表现形式和理论之一,我们所讲的对称是解题的思想方法,因为它合乎情理。应用好对称思想对初中生学习数学有很大的帮助,尤其是对学生的思维品质、学习数学的能力的培养有极大的好处。对称既可以锻炼学生的思维、又可以拓展学生的视野、丰富学生的想象能力、成就学生强大的数学头脑...... 关键词:数学能力,思维品质,对称思想。 On the application of symmetry thought in Mathematics Teaching Ran Yi Class 2, Mathematics Department Tutor: Yang ShuQing Abstract:symmetry seems to be all things in the world to a representation or form, and it has become one of a variety of disciplines, some form of expression and the theory, we speak of symmetry is the thinking method of solving, because of its reasonable. Good use of symmetry thought of junior high school students' mathematical learning a great help, especially on students' thinking quality, the cultivation of ability in mathematics learning have great benefits. Symmetry can exercise the students' thinking, and can broaden the students' horizons, enrich the students' imagination, student achievement powerful mathematical mind... Key words: mathematical ability, thinking quality, symmetrical thought.

结构力学对称性应用

对称性应用 在工程问题中,有很多结构都具有对称性。我们对这些结构进行受力分析的时候,常常将结构简化为杆系模型,而结构力学研究的就是结构的杆系模型,因此对称性在结构力学中有着广泛的应用。现在就对称性在结构力学中的应用做一简单的总结。 结构的对称性是指结构的几何形状和支座形式均对称于某一几何轴线。而荷载的对称则分为正对称荷载和反对称荷载。另外需要注意的是杆件截面和材料的性质也要对于此轴对称。在对称荷载作用下,结构内力呈对称分布。在反对称荷载作用下,结构内力呈反对称分布。如下图所示: 对称性在求解结构内力中的应用: 对称结构在正对称荷载作用下,其对称的内力(弯矩和轴力)和位移是正对称的,其反对称的内力(剪力)是反对称的;在反对称荷载作用下,其对称的内力(弯矩和轴力)和位移是反对称的,其反对称的内力(剪力)是正对称的。因此,只要我们做出半边结构的内力图,也就知道了整个结构的内力图。据此,我们在对对称结构进行内力分析时,就可以取半边结构进行分析。取半边结构进行分析,可以减少超静定次数,减少基本未知量,为解题提供了很大的方便。 在用力法解决超静定问题时,对于对称的结构,可利用对称性简化计算。简化步骤如下:1、选取对称的基本结构。2、将未知力及荷载分组。3、取半结构进行计算。对于对称结构承受一般非对称荷载时,利用荷载分组,将荷载分解为正、反对称的两组,并将他们分别作用于结构上求解内力,然后将计算结果叠加。在计算对称结构时,根据对称结构特性,可以选取半个结构计算。选取半结构的反对称 正对称

原则: 1、在对称轴的截面或位于对称轴的节点处 2、按原结构的静力和位移条件设置相应的支撑,使半结构与原结构的内力和变形完全等效 奇数跨对称结构: 偶数跨对称结构: 在用位移法求解超静定结构的时候,同样可以利用对称性简化计算。分析可

对称性在数学解题中的应用

中国校外教育学 科 教 育 08/2009 对称性在数学解题中的应用 ◆ 胡晓明(湖南女子职业大学经济管理系,湖南 长沙) 在数学领域,对称性问题很多,重视对称性的研究,不仅增强解题技巧,而且对数学的发展也是十分有益的。本文主要介绍对称 性在解题中的应用,分为三个部分:第一部分介绍对称性在几何中的应用;第二部分介绍对称性在积分中的应用;第三部分介绍对称性在方程中的应用 。 对称性几何积分方程 数学是研究美的科学,几何是数学中对美的研究尤其突出的,对称是数学中完美性最突出的,生活中的对称是美的表现,宇宙中有许许多多具有某种对称性东西,它必然反映到研究物质空间形式和数量关系的数学中来。数学的许多研究对象、研究手段都与对称性有关,大量的公式及定理的形式也具有赏心悦目的对称美。因此,如果能在分析问题、处理问题时有意识地利用事物的对称性,并使人们的思维过程与之相适应,不但可以更好的把握事物的本质,还可以使思维和推理过程更简洁,更快地打开思路,并能快捷地解决问题。 在几何、积分、方程中,许多问题的解决都采用了对称性原理。下面,以三种类型题为例,初步讨论对称性在数学解题中的应用。 几何中的对称主要是轴对称和中心对称。轴对称:任一对对应点的连线段被对称轴垂直平分;中心对称:任一对对应点的连线段过对称中心,且被中心平分, 几何中的对称性是极为普遍的,并有相对的固定规律。一、对称性在几何中的应用 在几何方面,对称性较为直观,通过画出几何图形就能容易地发现具有对称性的对象。球、圆、双曲线、抛物线等的对称性是很直观的,利用它们的对称性可以解决许多几何问题。 图1 1.解决平面几何问题 例1.证明等腰三角形的两底角相等。分析:此题的常规证法是通过作等腰三角形底边上的高而得到两个全等的三角形,从而由对应角相等来证明命题成立。若我们能发现△ABC 与△ACB 的对称性就能够更简单地证明。 证明:如图1所示,在△ABC 与△ACB,因为∠A =∠A,AB =AC,AC =AB.所以△ABC ≌△ACB.因此∠B =∠C 。 当然,此题用常规思维,通过作底边上的高同样比较容易证到所要证的结论。但利用对称性来证明是一种很好的证明方法,更加简单,能够培养人的发散思维。 2. 解决解析几何问题 此题的关键是挖掘直线x =2是y =f (x )的图像的对称轴的隐含条件,在此可以体会到对称性的重要作用。 二、对称性在积分中的应用 以上各种类型的积分,都是利用对称性来解题,充分体现了数学分析的对称美,其中包括公式的对称、符号的对称、运算的对称,达到事半功倍的效果,更有利于人们开拓视野,发现新知。 三、对称性在方程中的应用 中国古代数学在方程方面创造了辉煌的业绩。中国古代的方程就是现代的线性方程组,方程术就是线性方程组的解法,在方程的计算中,应用了对称方法。首先,方程的列法必须掌握各数量关系的平衡、和谐。才能够准确地为实际问题建立模型。其次,解方程也是利用对称性的,开始我们是利用等式的基本性质来解方程,后来我们利用等式的基本性质推出移项法则,利用它来解,但是我们还是利用了对称性。 例3.同学们乘坐公共汽车去参观,出发半小时后,小明乘高速客车追赶,问多少时间追上?公共汽车速度:60km /h 高速客车:80km /h 。 分析:这是一道初中的数学问题,也是常见的物理现象,我们根据题意可以很快列出方程。由题意知这是相对速度问题或者为等距离问题: (1)等距离思路 解:设经过x 小时追上,则经过x 小时后,公车行驶时间为,距离为0.5 +x;高速客车行驶时间为60(0.5+x ),距离为x .两者从同一地点出发,追 上时肯定行驶距离相等。 60(0.5+x )=80x x =1.5(小时)(2)相对速度思路 公车早出发半个小时,也就是说,在小明开始出发时,公车已经行驶60×0.5=30km 了,这距离也就是两者相比多出来的。但是小明的车快啊,所以这部分多出来的距离必须靠速度的差距来弥补。他们的速度差距是多少?就是了,用这个速度80-60=20km /h,行驶x 小时后赶上,方程式不是很简单吗? (80-60)x =60×0.5 结果还是1.5小时. 无论用那种方法列方程,都体现了对称思想,解的过程也一样。通过以上运用对称性解答题目,可知解题的简洁和快捷。参考文献: [1]王择.初等数学中的对称性及其应用[J ].蒙自师专学报,1995, (12):54-63. [2]孔令辉.对称性在数学中的应用[J ].赣南师范学院学报,2002, (6):83-85. [3]陈运新.对称性在积分中的应用[J ].数学理论与应用,2000,(4): 40-43. [4]陈自高.数学中的对称美与应用[J ].科学教育创新论坛,2006, (5):242-254. 1 5 4

二次函数在实际生活中的应用

二次函数在实际生活中的应用 【经典母题】 某超市销售一种饮料,每瓶进价为9元,经市场调查表明,当售价在10元到14元之间(含10元,14元)浮动时,每瓶售价每增加元,日均销量减少40瓶; 当售价为每瓶12元时,日均销量为400瓶.问销售价格定为每瓶多少元时,所得日均毛利润(每瓶毛利润=每瓶售价-每瓶进价)最大最大日均毛利润为多少元 解:设售价为每瓶x元时,日均毛利润为y元,由题意,得日均销售量为400-40[(x-12)÷]=1 360-80x, y=(x-9)(1 360-80x) =-80x2+2 080x-12 240(10≤x≤14). -b 2a=-2 080 2×(-80)=13, ∵10≤13≤14,∴当x=13时,y取最大值, y最大=-80×132+2 080×13-12 240=1 280(元). 答:售价定为每瓶13元时,所得日均毛利润最大,最大日均毛利润为1 280元. 【思想方法】本题是一道复杂的市场营销问题,在建立函数关系式时,应注意自变量的取值范围,在这个取值范围内,需了解函数的性质(最大最小值,变化情况,对称性,特殊点等)和图象,然后依据这些性质作出结论. 【中考变形】 1.[2017·锦州]某商店购进一批进价为20元/件的日用商品,第一个月,按进价提高50%的价格出售,售出400件,第二个月,商店准备在不低于原售价的基础上进行加价销售,根据销售经验,提高销售单价会导致销售量的减少.销售量y(件)与销售单价x(元)的关系如图Z8-1所示. (1)图中点P所表示的实际意义是__当售价定为35元 /件时,销售量为300件__;销售单价每提高1元时, 销售量相应减少__20__件; (2)请直接写出y与x之间的函数表达式:__y=20x图Z8-1

相关文档
最新文档