电力电子spwm 调制
spwm原理

spwm原理
Spwm(全称Space Vector Pulse Width Modulation空间矢量脉宽调制)是一种脉宽调制的技术,它的工作原理是将多相电路的控制电压经由三相线性变换,转换成三相空间矢量,覆盖基三角形之下的六个等边三角形,以此来实现自变换。
在任何一个瞬间,由于只有三个相位和两个矢量之间的转换,这就解释了为什么说spwm是一种2至3状态变化,它可以将多相电路同步成为可控电流,从而可以控制多相设备的供电。
与普通的脉宽调制相比,spwm有以下优势:它可以生成更宽的调制范围,由于它加入了空间矢量,可以更好地抑制电动机电流和电压逆变;它可以更快地把电流转换完成;它还具有很高的非线性和负载容性,能够更好地应对各种环境振荡,最重要的是,其运行对环境没有辐射影响。
因此,由于其良好的特性,Spwm在电动机领域,特别是传动电机控制,驱动系统等领域,被广泛的应用。
SPWM原理以及具体实现方法

SPWMSPWM(Sinusoidal PWM)法是一种比较成熟的,目前使用较广泛的PWM法.前面提到的采样控制理论中的一个重要结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同.SPWM法就是以该结论为理论基础,用脉冲宽度按正弦规律变化而和正弦波等效的PWM波形即SPWM波形控制逆变电路中开关器件的通断,使其输出的脉冲电压的面积与所希望输出的正弦波在相应区间内的面积相等,通过改变调制波的频率和幅值则可调节逆变电路输出电压的频率和幅值.定义我们先说说什么叫PWMPWM的全称是Pulse Width Modulation(脉冲宽度调制),它是通过改变输出方波的占空比来改变等效的输出电压。
广泛地用于电动机调速和阀门控制,比如我们现在的电动车电机调速就是使用这种方式。
所谓SPWM,就是在PWM的基础上改变了调制脉冲方式,脉冲宽度时间占空比按正弦规率排列,这样输出波形经过适当的滤波可以做到正弦波输出。
它广泛地用于直流交流逆变器等,比如高级一些的UPS就是一个例子。
三相SPWM是使用SPWM模拟市电的三相输出,在变频器领域被广泛的采用。
该方法的实现有以下几种方案。
1.3.1等面积法该方案实际上就是SPWM法原理的直接阐释,用同样数量的等幅而不等宽的矩形脉冲序列代替正弦波,然后计算各脉冲的宽度和间隔,并把这些数据存于微机中,通过查表的方式生成PWM信号控制开关器件的通断,以达到预期的目的.由于此方法是以SPWM控制的基本原理为出发点,可以准确地计算出各开关器件的通断时刻,其所得的的波形很接近正弦波,但其存在计算繁琐,数据占用内存大,不能实时控制的缺点.1.3.2硬件调制法硬件调制法是为解决等面积法计算繁琐的缺点而提出的,其原理就是把所希望的波形作为调制信号,把接受调制的信号作为载波,通过对载波的调制得到所期望的PWM波形。
通常采用等腰三角波作为载波,当调制信号波为正弦波时,所得到的就是SPWM波形。
spwm原理

spwm原理SPWM原理。
SPWM(Sinusoidal Pulse Width Modulation)是一种脉冲宽度调制技术,它可以将直流电压转换成交流电压。
在现代电力电子技术中,SPWM已经被广泛应用于变频调速、逆变器、电力调制等领域。
本文将介绍SPWM的原理及其在电力电子领域中的应用。
SPWM的原理非常简单,它通过控制脉冲的宽度来实现对输出电压的调节。
在SPWM中,脉冲的宽度与输入信号的幅值成正比,通过不断改变脉冲的宽度,可以模拟出一个接近正弦波形的输出电压。
这种方法可以有效地减小谐波含量,提高输出波形的质量。
在实际应用中,SPWM主要通过比较器和可编程逻辑器件来实现。
首先,输入信号与一个三角波信号进行比较,得到一个脉冲信号。
然后,通过改变比较器的阈值电压,可以控制脉冲的宽度,从而实现对输出电压的调节。
这种方法不仅简单高效,而且可以实现高精度的输出波形控制。
SPWM在电力电子领域中有着广泛的应用。
最典型的应用就是逆变器,逆变器可以将直流电压转换成交流电压,通过控制SPWM的脉冲宽度,可以实现对输出电压的调节。
此外,SPWM还可以用于变频调速系统,通过改变输出电压的频率和幅值,可以实现对电机转速的精确控制。
在电力调制领域,SPWM也可以实现对电力质量的提升,减小谐波含量,改善电网稳定性。
总的来说,SPWM是一种简单高效的脉冲宽度调制技术,它可以实现对输出波形的精确控制,减小谐波含量,提高电力质量。
在现代电力电子技术中,SPWM 已经成为了不可或缺的一部分,它在逆变器、变频调速、电力调制等领域发挥着重要作用。
随着科技的不断发展,相信SPWM技术会有更广阔的应用前景。
spwm工作原理

spwm工作原理
SPWM(正弦波脉宽调制)是一种常见的电力电子技术,可用于将直流电源转换为交流电源。
其工作原理是通过改变脉冲宽度来模拟产生一个高频的正弦波信号。
SPWM的原理基于三角波和参考信号之间的比较。
首先,通
过一个三角波发生器产生一个连续的三角形波形,并设定一个参考正弦波信号。
这个正弦波信号的频率和幅值是由外部的反馈信号或控制参数决定的。
然后,将三角波和参考信号输入到一个比较器中进行比较。
比较器会将比较结果转化为一个相应的脉冲信号。
如果参考信号的幅值大于三角波的幅值,那么脉冲的宽度就更长。
反之,如果参考信号的幅值小于三角波的幅值,脉冲的宽度就变窄。
这样,通过不断改变脉冲宽度,就可以模拟生成一个高频的正弦波信号。
最后,通过电路中的滤波器将脉冲信号转换为平滑的交流信号。
滤波器可以去除脉冲信号中的高频成分,使输出信号更接近于所需的正弦波形。
通过不断调节参考信号或控制参数,可以改变输出信号的频率和幅值,实现对输出信号的调节。
总的来说,SPWM的工作原理是通过比较三角波和参考信号,根据比较结果来调节脉冲宽度,从而模拟产生一个高频的正弦
波信号。
这种技术在以太阳能逆变器、无线通信和电机控制等领域中得到广泛应用。
spwm原理

spwm原理
SPWM(Sinusoidal Pulse Width Modulation)是一种调制技术,用于将直流电压转换成交流电压。
它通过改变一个周期内脉冲的宽度,以在不同的时间点上施加不同的电压,并最终形成一个近似正弦波的输出。
SPWM的原理是通过将一个完整的周期分成很多短时间段,
并在每个时间段内施加一定的电压。
这些时间段可以被视为不同的采样点,通过改变每个时间段内脉冲的宽度来改变电压的幅值。
为了生成一个近似正弦波形的输出,这些脉冲的宽度需要按照正弦函数的规律变化。
SPWM的关键在于如何确定每个时间段内脉冲的宽度。
一种
常见的方法是使用三角波载波信号和参考信号进行比较,以得到需要施加的电压值。
三角波载波信号的频率通常比参考信号的频率高,因此每个周期内会产生多个脉冲。
通过比较三角波载波信号与参考信号的大小,确定脉冲的宽度。
如果参考信号的幅值大于三角波的幅值,则脉冲宽度增加,反之则减小。
通过不断调整每个时间段内脉冲的宽度,就可以在输出端生成一个接近正弦波形的电压信号。
这种调制技术被广泛应用于交流电压变换、电机控制等领域,能够提供高效、稳定的电压输出。
总结一下,SPWM利用调整脉冲的宽度来改变电压幅值,通
过比较三角波载波信号和参考信号来确定脉冲宽度的变化,从
而生成一个近似正弦波形的输出电压。
这种调制技术在电压变换和电机控制等领域有着广泛的应用。
spwm原理

spwm原理
脉宽调制(SPWM)是一种用于控制交流电源输出的方法。
其原理是通过调整脉冲宽度来控制电源输出的平均值。
脉宽调制通常被用于变频器、电机控制和逆变器等应用中。
脉宽调制的原理是将一个固定频率的正弦波信号与一个可调节脉冲宽度的方波信号进行比较。
比较的结果可以用来调整输出的脉冲宽度,从而实现对电源输出电压或电流的控制。
在SPWM中,首先需要确定一个基准正弦波信号,其频率通
常与所需要的输出电源频率相同。
然后,通过一个比较器来将基准正弦波信号与方波信号进行比较。
比较器的输出结果可以用来控制开关电路的开关状态。
当基准正弦波信号的幅值大于方波信号的幅值时,开关电路闭合;当基准正弦波信号的幅值小于方波信号的幅值时,开关电路断开。
通过调整方波信号的脉冲宽度和占空比,可以控制开关电路开关的时间比例。
因此,通过调整方波信号的脉冲宽度,就可以实现对输出电压或电流的控制。
脉宽调制技术具有高效、精确和可靠的特点。
它可以通过调整脉冲宽度来实现对输出功率的精确控制,从而充分利用电源的能量。
此外,脉宽调制技术还可以有效减小电源的谐波失真,提高电源的功率因数,以及降低电源的噪声和干扰。
总之,脉宽调制技术是一种有效的电源控制方法,通过调整脉冲宽度来实现对输出电压或电流的精确控制。
它在各种应用中
都有广泛的应用,为电力系统的稳定运行和节能减排提供了重要的支持。
SPWM变频调速的基本原理与方法

SPWM变频调速的基本原理与方法1 SPWM 逆变器的工作原理SPWM变频系统的主电路如图1-1,它工作原理是:由单片机产生的三相SPWM控制脉冲,经驱动放大电路放大后,控制主开关VT1~VT6的通断,将整流滤波后的单相直流电压逆变为三相交流电压拖动异步电动机,改变调制信号的周期与幅值,也就改变了主开关的输出脉冲周期与占空比,从而实现电机的VVVF 控制。
1)SPWM 的控制方式SPWM有两种控制方式,可以是单极式,也可以双极式。
两种控制方式调制方法相同,输出基本电压的大小和频率也都是通过改变正弦参考信号的幅值和频率而改变的,只是功率开关器件通断的情况不一样。
采用单极式控制时在正弦波的半个周期内每相只有一个开关器件开通或关断,双极式控制时逆变器同一桥臂上下两个开关器件交替通断,处于互补的工作方式。
2)逆变器输出电压与脉宽的关系在变频调速系统中,负载电机接受逆变器的输出电压而运转。
对电机来说有用的只有基波电压,通过对SPWM 输出波形的傅立叶分析可知,输出基波电压的幅值与各项脉宽有正比的关系,说明调节参考信号的幅值从而改变各个脉冲的宽度时,就实现了对逆变器输出电压基波幅值的平滑调节。
3)脉宽调制的制约条件将脉宽调制技术应用于交流调速系统要受到逆变器功率器件开关频率和调制度的制约。
逆变器各功率开关器件的开关损耗限制了脉宽调制逆变器的每秒脉冲数(即逆变器每个开关器件的每秒动作次数)。
同时,为保证主电路开关器件的安全工作,必须使所调制的脉冲波有个最小脉宽与最小间隙的限制,以保证脉冲宽度大于开关器件的导通时间与关断时间。
2 SPWM 逆变器的调制定义载波的频率fc与调制波频率fr之比为载波比N,即N= fc / fr 。
视载波比的变化与否有同步调制与异步调制之分。
三角调制波与正弦控制波的交点所确定的一组开关角决定了逆变器输出波形的频谱分布。
载波比N对逆变器输出波形的频谱分布有很大的影响。
逆变器输出的谐波分量主要集中在频率调制比N及其倍频2N、3N...的周围,在中心频率附近的谐波振幅极大值随其中心频率增大而减小,其中以N处的谐波振幅为最大,根据分析,谐波的频率可以表示为在此,基频对应于h=1。
正弦波脉宽调制SPWM

三相桥式PWM逆变器的双极性SPWM波形
上图为三相PWM波形,其中 urU 、urV 、urW为U,V,W三相的正弦调制波, uc为双极性三角载波; uUN’ 、uVN’ 、uWN’ 为U,V,W三相输出与电源
中性点N’之间的相电压矩形波形;
uUV为输出线电压矩形波形,其脉冲幅值为+Ud和
根据载波和信号波是否同步及载波比的 变化情况,PWM调制方式分为异步调制和 同步调制。
(1)异步调制 异步调制——载波信号和调制信号不 同步的调制方式。
通常保持 fc 固定不变,当 fr 变化时,载 波比 N 是变化的;
在信号波的半周期内,PWM波的脉冲个 数不固定,相位也不固定,正负半周期 的脉冲不对称,半周期内前后1/4周期的 脉冲也不对称;
为使一相的PWM波正负半周镜对称,N 应取奇数;
不易滤除;
fr 很低时,f使开关器件难以承
受。
•同步调制三 相PWM波形
u
u rU
uc
u rV
u rW
O
t
u UN'
Ud 2 Ud 2
0
t
u VN' 0 u WN' t
0
t
(3)分段同步调制
1 M sin r tD 2 /2 Tc / 2
因此可得
Tc (1 M sin r t D ) 2
三角波一周期内,脉冲两边间隙宽度
Tc 1 ' Tc (1 M sin r tD ) 2 4
根据上述采样原理和计算公式,可以用 计算机实时控制产生SPWM波形,具体实 现方法有:
VT V 1 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AE
ure
B
te
t
t1
t2
t3
Tc
t
图1.2.3 SPWM脉冲信号规则 采样法生成原理
AE B
te
ure 并根据相似三角形的几何关系容易得
出规则采样法SPWM脉宽 t2以及脉
t 冲间隙时间 t1 、t3 的表达式分别为
冲全为负极性脉冲。为此,必须采用使三角波形极性与正弦 调制波极性相同的所谓单极性三角载波调制,如下图所示(左
图:调制波形,右图:生成电路)
uc ur
O
π
2πt
uab ui
O
t
a)
uucr
+_A UA
-1
UG1,VT1 UG2 ,VT2
+_B UB
UG4 ,VT4
-1
UG3 ,VT3
b)
观察三角波和正弦波 可知,在正弦波的正 半周期,三角波也为 正,负半周期亦如此
如右图所示
1.1 调制方式
在SPWM逆变器中,载波频率 f c 与调制信号 频率 f c 之比 N fc / fr ,称之为载波比。根 据载波与信号波是否同步及载波比的变化 情况,SPWM逆变器调制方式分为同步调制 与异步调制
(1) 同步调制
对于任意的调制波频率 fr ,载波比N保持恒定的脉宽调制 成为同步调制。
截止,T2 导通,这时 Van -VD / 2;当 Vr > -Vc 时,使T3截止,T4导通,这 时 Vbn -VD / 2 ,当 Vr < -Vc 时,使T3导通,T4截止,这时 Vbn VD / 2 。输 出电压Vab Van Vbn ,从而 Vab 可能出现。三种情况,分别为T1、T4同时导通
得自然采样法SPWM脉宽t2的表达式为
tA
B
Msin1t
tB t
t2
Tc 2
[1
M 2
(sin 1tA
sin 1tB )
显然上式是个超越方程,运算求解较为困难。 可见,自然采样法不便应用于基于微处理器 的数字SPWM控制系统中。为此,必须对自 然采样法进行简化。
t'2 t'2'
t1
t2
Tc AE EH
2Vcm
2
Vcm
一个载波周期Tc内,输出电压的平均面积为
Vab [Tk VD (Tc Tk )VD ]/Tc (2Tk /Tc 1)VD (2D 1)VD
由上式可得
Vab
VD Vcm
Vr
由此可得,每个载波周期的输出电压的平
t3
Tc
t
图1.2.2 SPWM脉冲信号自然采 样法生成原理
(2)规则采样法
将自然采样法中的正弦调制波以阶梯调制波进 行拟合后一种简化的SPWM脉冲信号发生方法, 其原理如图所示
每个载波周期中,原正弦调制波与三角载波周 期中心线的交点就是阶梯波水平线段的中点。这 样三角载波与阶梯波水平线段的交点A、B两点就 分别落在正弦波的上下两边,从而减小了阶梯波 调制的误差。
实现方法
模拟实现
计算法
自然采样法 规则采样法 直接PWM法
专用SPWM集成电路
(1)自然采样法
✓自然采样法就是通过联立三角载波信号和正 1 弦调制波信号的函数方式,并求解三角载波信
号和正弦调制波信号交点的时间值,从而求出 相应的脉宽和脉冲时间,以生成SPWM脉冲信 号。
✓自然采样法实际上就是模拟比较法的数字实 现
ωt o
ωt
b)
当载波比N为奇数时,由于SPWM波形的对称性,无论fr高 低,都不会导致基波相位的跳动。
由于同步调制时的开关频率随 fr 的变化而变化,所以对于 需要设置输出滤波器的正弦波逆变器(如UPS逆变电源)而 言,输出滤波器参数的优化设计较为困难。
当 fr 变高时,fc 变高,从而使开关频率变高,输出谐波减 小;当 fr 变低时,fc 变低,从而使开关频率变低,输出谐波 增大。 因此采用同步调制时,SPWM的高频性能好,而低频性能较 差。为了克服这一不足,同步调制时,应尽量提高SPWM的 载波比N,但较高的载波比设计会使调制波频率变大时逆变器 的开关频率增加,从而导致开关损耗增加。
在同步调制方式中,由于载波比N保持恒定,因而当 fr 变化 时,调制波信号与载波信号应保持同步,即 fr 与 fc 成正比, 因此,同步调制具有以下特点: 由于载波频率 fc 与调制波频率 fr 成正比,因而当调制波频率 fr 变化时,载波频率 fc 也相应变化,这就使逆变器开关频率不固定。 例如,当调制波频率 fr 变高时,载波频率 fc 同步提高,从而使开 关频率变高。
FC EC
FB EA
vr Vcm
Vlm sin k Vcm
式中 k 表示第k个脉冲中心点所对应 的基波角度。
半个载波周期内,输出电压的平均面积为
Vab
Vd
Tk Tc / 2
Vd
Vlm sin k
Vcm
当载波比很高时,逆变器输出基波电压瞬时值为
Vabl
(t)
Vd
Vrm Vcm
t2
Tc 2
(1
M
sin 1te )
t1
t2
t3
Tc
t
t1
t3
1 2
(Tc
t2 )
由S的P于数W字MteS脉P、宽WMttc2控M的制均计。为算已较知为量简,单因,此适,合规基则于采微样处法理器
图1.2.4 SPWM脉冲信号规则 采样法生成原理
二、单极性SPWM控制
所谓单极性SPWM控制是指输出脉冲具有单极性特征。即当输入 正半周时,输出脉冲全为正极性脉冲;当输入负半周时,输出脉
异步调制具有以下特点
由于异步调制时的开关频率固定,所以对于需要设置输出滤波 器的正弦波逆变器(如UPS逆变电源)而言,输出滤波器参数的 优化设计较为容易。
由于一个调制波周期中脉冲波形的不对称性,将导致基波相位的 跳动。对于三相正弦波逆变器,这种基波相位的跳动会使三相输出 不对称。
当 fr 较低时,由于一个调制波周期中的脉冲数较多,脉冲波形 的不对称性所造成的基波相位跳动的相角相对较小;而当 fr 较高
sin rt
MVd
sin rt
Vlm
sin rt
式中,Vlm 为输出基波电压幅值,M为调制比
M Vrm Vlm
Vc m
Vd
由上式可得,输出基波电压与调制波具有相同的频率和相位,所以改变调制
波的频率和相位就可以改变输出基波电压的频率和相位。并且,输出基波电压大
小和调制比成正比,如果取 Vcm 为常数,则改变 Vrm 就可以改变输出基波电压。
由于载波比N保持一定,当调制波频率 fr 变化时,一个调制波周 期中的脉冲数将固定不变。
当载波比N为奇数时,一个调制波正负半个周期以及半个周期 中的前后1/4周期的脉冲波形具有对称性。
不同调制波频率 fr 时的同步调制SPWM波形如下图所示
u
uc
ur
u uc ur
o
ωt o
ωt
up o
a)
up
控制过程如下:
对主电路的T1、T2桥臂和T3、T4桥臂分别进行双极性SPWM调制。两桥 臂共用一个调制波 Vr ,所不同的是T1、T2桥臂的三角波为 Vc ,而T3、 T4桥臂的三角载波是将 Vc 反相或移相得到的 -Vc 。
当 Vr>Vc 时,使T1导通,T2截止,这时Van VD / 2 ,当 Vr<Vc 时,使T1
内,在Vr Vc 的 Tk 期间,T1与T4导通,Vab VD 。在其余的 (Tc -Tk ) 期间,Vr Vc
,T3与T2导通,Vab VD 由图中的几何关系可以得到T1、T4同时处于导通的占空比为
D Tk AB BF Vcm vr 1 (1 Vr )
效,而VT2、VT3关断有效。此时逆变器输出正极性的
SPWM电压脉冲。此时的 Vab VD 。同理,当Vr Vc 时,
比较器输出极性为负,VT2、VT3导通有效,而VT1、
2π
t
VT4关断有效此时的 Vab -VD。
与单极性SPWM相比,双极性SPWM采用了正负对称 的三角载波,从而简化了SPWM控制信号发生。
t1
✓其原理如右图所示
A
B
Msin1t
tA tB t
t'2 t'2'
t2
t3
Tc
t
图1.2.1 SPWM脉冲信号自然采 样法生成原理
若令三角载波幅值 ucm=1,调制度为M,正弦调制波角频率
为 1 ,则正弦调制波的瞬时值为
ur M si三角形的几何关系可
演讲人:王宁
➢主要内容
一、SPWM工作原理
SPWM(Sinusoide Pulse Width Modulation)即正弦波
脉冲宽度调制,它是脉冲宽度按正弦函数变化的
PWM调试。
在采样控制理论中有一个重要的结论—冲量等 效原理: 大小、波形不相同的窄脉冲变量作 用于惯性系统时,只要它们的冲量(面积), 即变量对时间的积分相等,其作用效果相同。 这里所说的效果基本相同,是指惯性系统的输 出或响应是基本相同的。
-1 b)
UG1,UG4(VT1, VT4) UG2,UG3(VT2,VT3 )
设右图中正弦调制波Vr 幅值为 载波Vc 幅值为 Vcm ,频率为 fc
。Vrm,当频载率波为频率fr ,fVc 远r (t大) 于V调rm s制in波r