一个向量模的多种解法

一个向量模的多种解法
一个向量模的多种解法

平面向量常见题型与解题方法归纳学生版

平面向量常见题型与解题方法归纳 (1) 常见题型分类 题型一:向量的有关概念与运算 例1:已知a是以点A(3,-1)为起点,且与向量b = (-3,4)平行的单位向量,则向量a的终点坐标是. 例2:已知| a |=1,| b |=1,a与b的夹角为60°, x =2a-b,y=3b-a,则x与y的夹角的余弦是多少 题型二:向量共线与垂直条件的考查 r r r r 例1(1),a b r r为非零向量。“a b⊥r r”是“函数()()() f x xa b xb a =+?-

为一次函数”的 A 充分而不必要条件 B 必要不充分条件 C 充要条件 D 既不充分也不必要条件 (2)已知O ,N ,P 在ABC ?所在平面内,且 ,0OA OB OC NA NB NC ==++=,且PA PB PB PC PC PA ?=?=?,则点O ,N ,P 依次是ABC ?的 A.重心 外心 垂心 B.重心 外心 内心 C.外心 重心 垂心 D.外心 重心 内心 例2.已知平面向量a =(3,-1),b =(21, 2 3).(1) 若存在实数k 和t ,便得x =a +(t 2-3)b , y =-k a +t b ,且x ⊥y ,试求函数的关系式k =f(t);(2) 根据(1)的结论,确定k =f(t)的单调区间. 例3: 已知平面向量a ?=(3,-1),b ?=(2 1,23),若存在不为零的实数k 和角α,使向量c ?=a ?+(sin α -3)b ?, d ?=-k a ?+(sin α)b ?,且c ?⊥d ?,试求实数k 的

取值范围. 例4:已知向量)1,2(),2,1(-==b a ,若正数k 和t 使得向量 b t a k y b t a x 1)1(2 +-=++=与垂直,求k 的最小值. 题型三:向量的坐标运算与三角函数的考查 向量与三角函数结合,题目新颖而又精巧,既符合在知识的“交汇处”构题,又加强了对双基的考查. 例7.设函数f (x )=a · b ,其中向量a =(2cos x , 1), b =(cos x ,3sin2x ), x ∈R.(1)若f(x )=1-3且x ∈[-

平面向量的所有公式

平面向量的所有公式 设a=(x,y),b=(x',y')。 1、向量的加法 向量的加法满足平行四边形法则和三角形法则。 AB+BC=AC。 a+b=(x+x',y+y')。 a+0=0+a=a。 向量加法的运算xx: 交换律: a+b=b+a; 结合律: (a+b)+c=a+(b+c)。 2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b= 0." 0的反向量为0 AB-AC= C B.即“共同起点,指向被减” a=(x,y) b=(x',y')则a-b=(x-x',y-y'). 3、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣?∣a∣。

当λ>0时,λa与a同方向; 当λ<0时,λa与a反方向; 当λ=0时,λa=0,方向任意。 当a=0时,对于任意实数λ,都有λa= 0。" 注: 按定义知,如果λa=0,那么λ=0或a= 0。" 实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍; 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。 数与向量的乘法满足下面的运算xx 结合律: (λa)?b=λ(a?b)=(a?λb)。 向量对于数的分配律(第一分配律): (λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律): λ(a+b)=λa+λb. 数乘向量的消去律:

①如果实数λ≠0且λa=λb,那么a=b。②如果a≠0且λa=μa,那么λ=μ。 4、向量的的数量积 定义: 已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义: 两个向量的数量积(内积、点积)是一个数量,记作a?b。若a、b不共线,则a?b=|a|?|b|?cos〈a,b〉;若a、b共线,则a?b=+-∣a∣∣b∣。 向量的数量积的坐标表示: a?b=x?x'+y?y'。 向量的数量积的运算xx a?b=b?a(交换律); (λa)?b=λ(a?b)(关于数乘法的结合律); (a+b)?c=a?c+b?c(分配律); 向量的数量积的性质 a?a=|a|的平方。 a⊥b〈=〉a?b= 0。" |a?b|≤|a|?|b|。 向量的数量积与实数运算的主要不同点 1、向量的数量积不满足结合律,即:

平面向量的模与夹角

龙文教育一对一个性化辅导教案

高中的教案 平面向量的模与夹角 学习要点: 1、向量的坐标运算:设1122(,),(,)a x y b x y ==r r ,则: (1)向量的加减法运算:12(a b x x ±=±r r ,12)y y ±。 (2)实数与向量的积:()()1111,,a x y x y λλλλ==r 。 (3)若1122(,),(,)A x y B x y ,则()2121,AB x x y y =--u u u r ,即一个向量的坐标等于表示这个向量的有向线 段的终点坐标减去起点坐标。 (4)平面向量数量积:1212a b x x y y ?=+r r (5)向量的模:222 2 ||||a a a x y ===+r r r 2、平面向量的数量积: (1)两个向量的夹角:对于非零向量a ,b ,作,OA a OB b ==u u u r r u u u r r ,AOB θ∠=()0θπ≤≤称为向量a , 的夹角,当θ=0时,,同向,当θ=π时,,反向,当θ= 2 π 时,a ,b 垂直。 (2)平面向量的数量积:如果两个非零向量a ,b ,它们的夹角为θ,我们把数量||||cos a b θr r 叫做a 与 的数量积(或内积或点积),记作:?,即?=cos a b θr r 。规定:零向量与任一向量的数量积 是0,注意数量积是一个实数,不再是一个向量。 (3)向量数量积的性质:设两个非零向量a ,b ,其夹角为θ,则: ①0a b a b ⊥??=r r r r ; ②当a ,b 同向时,a ?b =a b r r ,特别地,22,a a a a a =?==r r r r r ;当a 与b 反向时,a ?b =-a b r r ;当θ为锐角时,a ?b >0,且 a b r r 、 不同向,0a b ?>r r 可得θ为锐角;当θ为钝角时,a ?b <0,且 a b r r 、 不反向,0a b ?

立体几何典型问题的向量解法

立体几何中几类典型问题的向量解法 空间向量的引入为求立体几何的空间角和距离问题、证线面平行与垂直以及解决立体几 何的探索性试题提供了简便、快速的解法。它的实用性是其它方法无法比拟的, 因此应加强 运用向量方法解决几何问题的意识, 提高使用向量的熟练程度和自觉性, 注意培养向量的代 数运算推理能力,掌握向量的基本知识和技能,充分利用向量知识解决图形中的角和距离、 平行与垂 直问题。 「、利用向量知识求点到点,点到线,点到面,线到线,线到面,面到面的距离 (1) 求点到平面的距离除了根据定义和等积变换外还可运用平面的法向量求得,方法是: (3)求点P 到直线AB 的距离,可在 AB 上取一点Q ,令AQ 的最小值求得参数 ■,以确定Q 的位置,贝U PQ 为点P 到直线AB 的距离。还可以在AB 上 任取一点Q 先求cos ::: PQ, AB ?,再转化为sin ::: PQ, AB ?,则 点P 到直线AB 的距离。 (4)求两条异面直线li,l2之间距离,可设与公垂线段 例 1:设 A(2,3,1), B(4,1,2), C(6,3,7), D(-5,-4,8),求点 D 到平面 ABC 的距离 例2:如图,正方形 ABCD 、ABEF 的边长都是1,而且平面 ABCD 、ABEF 互相垂直。 点M 在AC 上移动,点 N 在BF 上移动,若CM 二BN 二a (0 ::: a 2)。 求出平面的一个法向量的坐标,再求出已知点 P 与平面内任一点 M 构成的向量 M P 的坐 标, 那么P 到平面的距离d = MP ?'cosen,MP > (2)求两点P,Q 之间距离,可转化求向量 PQ 的模。 sin :: PQ, AB 为 AB 平行的向量n , C,D 分别是ht 上 的任意两点,贝y h,l2之间距离 AB =

向量的坐标表示及其运算

资源信息表

(2)向量的坐标表示及其运算(2) 一、教学内容分析 向量是研究数学的工具,是学习数形结合思想方法的直观而又生动的内容.向量的坐标以及向量运算的坐标形式,则从“数、式”的角度对向量以及向量的运算作了精确的、定量的描述.本节课是向量的坐标及其运算的第二课时,一方面把“形”与“数、式”结合起来思考,以“数”入微,借“形”思考,体会并感悟数形结合的思维方式;另一方面通过例5的演绎推理教学,体会代数证明的严谨性,也为定比分点(三点共线)的教学提供基础. 二、教学目标设计 1.理解并掌握两个非零向量平行的充要条件,巩固加深充

要条件的证明方式; 2.会用平行的充要条件解决点共线问题; 3、定比分点坐标公式. 三、教学重点及难点 课本例5的演绎证明; 分类思想,数形结合思想在解决问题时的运用; 特殊——一般——特殊的探究问题意识. 五、教学过程设计: 复习向量平行的概念: 提问:(1)升么是平行向量方向相同或相反的向量叫做平行向

量。 (2)实数与向量相乘有何几何意义 (3)由此对任意两个向量,a b ,我们可以用怎样的数量关系来刻画平行对任意两个向量,a b ,若存在一个常数λ,使得 a b λ=?成立,则两向量a 与向量b 平行 (4)思考:如果向量,a b 用坐标表示为) ,(),,(2211y x y x ==能否用向量的坐标来刻画这个数量关系12 12 x x y y λλ=??=? 思考:如果向量,a b 用坐标表示为),(),,(2211y x y x ==,则 2 121y y x x =是b a //的( )条件. A 、充要 B 、必要不充分 C 、充分不必要 D 、既不充分也不必要 由此,通过改进引出 课本例5 若,a b 是两个非零向量,且1122(,),(,)a x y b x y ==, 则//a b 的充要条件是1221x y x y =. 分析:代数证明的方法与技巧,严密、严谨. 证明:分两步证明, (Ⅰ)先证必要性://a b 1221x y x y ?= 非零向量//a b ?存在非零实数λ,使得a b λ=,即

向量运算法则知识讲解

(1)实数与向量的运算法则:设λ、μ为实数,则有: 1)结合律:a a )()(λμμλ=。 2)分配律:a a μλμλ+=+)(,b a b a λλλ+=+)(。 (2)向量的数量积运算法则: 1)a b b a ??=。 2))()()(b a b a b a b a λλλλ===???。 3)c b c a c b a ???+=+)(。 (3)平面向量的基本定理。 21,e e 是同一平面内的两个不共线向量,则对于这一平面内的任何一向量a ,有且仅有一对实数21,λλ,满足2211e e a λλ+=。 (4)a 与b 的数量积的计算公式及几何意义:θcos ||||b a b a =?,数量积b a ?等于a 的 长度||a 与b 在a 的方向上的投影θcos ||b 的乘积。 (5)平面向量的运算法则。 1)设a =11(,)x y ,b =22(,)x y ,则a +b =1212(,)x x y y ++。 2)设a =11(,)x y ,b =22(,)x y ,则a -b =1212(,)x x y y --。 3)设点A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--u u u r u u u r u u u r 。 4)设a =(,),x y λ∈R ,则a λ=(,)x y λλ。 5)设a =11(,)x y ,b =22(,)x y ,则a ? b =1212()x x y y +。 (6)两向量的夹角公式: cos θ(a =11(,)x y ,b =22(,)x y )。 (7)平面两点间的距离公式: ,A B d =||AB u u u r (A 11(,)x y ,B 22(,)x y )。 (8)向量的平行与垂直:设a =11(,)x y ,b =22(,)x y ,且b ≠0,则有: 1)a ||b ?b =λa 12210x y x y ?-=。 2)a ⊥b (a ≠0)? a ·b =012120x x y y ?+=。 (9)线段的定比分公式: 设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12 P P 的分点,λ是实数,且12P P PP λ=u u u r u u u r ,则

一道向量题的7种解法

一道向量题的7种解法 本文给出一道高考题的七种解法,希望能够帮助同学们更好地掌握向量问题的最一般的转化策略和方法,希望能够提高同学们的发散思维能力.另外,本题也是一个复习三角函数和基本不等式很好题目,希望同学们仔细研究这个典型题目. 原题:给定两个长度为1的平面向量,OA OB ,它们的夹角为120.如图1所示,点C 在以O 为圆心的圆弧AB 上变动.若,OC xOA yOB =+其中 ,x y R ∈,则x y +的最大值是______. 思考方向一 考虑特值法 解法1 当C 与A 重合时,10,OC OA OB =?+?1x y +=, 当C 与B 重合时,01,OC OA OB =?+?1x y +=, 当C 从AB 的端点向圆弧内部运动时,1x y +>, 于是猜想当C 是AB 的中点时,x y +取到最大值. 当C 是AB 的中点时,由平面几何知识OACB 是菱形, ∴,OC OA OB =+∴11 2.x y +=+= 猜想x y +的最大值是2. 思考方向二 考虑坐标法 建立如图3,所示的平面直角坐标系,设AOC α∠=, 则1(1,0),((cos ,sin )2A B C αα-. 于是OC xOA yOB =+可化为: 1(cos ,sin )(1,0)(2x y αα=+-, ∴1cos ,2sin .x y y αα?=-????=?? (1)

解法2 函数法求最值 由方程组(1)得: cos ,.x y ααα?=+????=?? ∴cos 2sin(30)x y ααα+=+=+,又0120α≤≤, ∴当30α=时,max () 2.x y += 解法3 不等式法求最值 由方程组(1)得:222221sin cos ()3x y xy x y xy αα=+=+-=+-, ∴21 1()33 xy x y =+-, 由0,0x y >> ,及x y +≥2()4x y xy +≥, ∴2()4x y +≤,∴2x y +≤,当且仅当1x y ==时取等号. ∴max () 2.x y += 思考方向三 考虑向量的数量积的运算 解法4 两边点乘同一个向量 ∵,OC xOA yOB =+ ∴,. OC OA xOA OA yOB OA OC OB xOA OB yOB OB ??=?+????=?+??? 设AOC α∠=,则 120BOC α∠=-,又||||||1OC OA OB ===, ∴1cos ,21cos(120).2x y x y αα?=-????-=-+?? ∴2[cos cos(120)]2sin(30)x y ααα+=+-=+, ∴当30α=时,max () 2.x y +=

高中数学例题:平面向量模的问题

高中数学例题:平面向量模的问题 例.已知|a |=|b |=4,向量a 与b 的夹角为 23π,求|a +b |,|a ―b |。 【思路点拨】已知两个向量的模和夹角,把|a +b |和|a ―b |用向量的模和夹角的来表示,所以先求出()2a b +和()2a b -,然后再开方即可。 【答案】4, 【解析】 因为a 2=|a |2=16,b 2=|b |2=16, 2||||cos 44cos 83a b a b πθ?=?=??=-, 所以222||()216164a b a b a b a b +=+=++?=+=。 同事可求22 2||()21616a b a b a b a b -=-=+-?=+=。 【总结升华】关系式a 2=|a |2,可使向量的长度与向量的数量积互相转化。因此欲求|a +b |,可求(a +b )·(a +b ),并将此式展开。由已知|a |=|b |=4,得a ·a =b ·b =16,a ·b 也可求得为―8,将上面各式的值代入,即可求得被求式的值。 举一反三: 【变式1】已知||2,||5,3a b a b ==?=-,求||,||a b a b -+。 【解析】 222()2425635a b a ab b -=-+=++=,||35a b ∴-= 同理,||23a b += 【变式2】已知a b 与的夹角为0120,3a =,13a b += ,则b 等

于( ) A 5 B. 4 C. 3 D. 1 【解析】222 2cos12013 ∴+?+=,解 a a b b 2 a b a a b b +=+?+,22 得4 b=,故选B. 【总结升华】涉及向量模的问题一般利用22 =?=,注意两边 a a a a 平方是常用的方法.

向量解题技巧

向量解题技巧

一、怎么样求解向量的有关概念问题 掌握并理解向量的基本概念 1.判断下列各命题是否正确 (1)若c a c b b a 则,,; (2)两向量b a 、相等的充要条件是b a 且共线、b a ; (3) b a 是向量 b a 的必要不充分条件; (1)若D C B A 、、、是不共线的四点,则C D B A 是四边形ABCD 为平行四边形的充要条件; (2) D C B A 的充要条件是A 与C 重合, D B 与重合。 二、向量运算及数乘运算的求解方法 两个不共线的向量,加法的三角形法则和平行四边形法则是一致的。两个有相同起点的向量的差是连结两向量的终点,方向指向被减向量的向量,若起点不同,要平移到同一起点;重要结论:a 与b 不共线,则 b a b a 与是以a 与b 为邻边的平行四边形两条对角线 所表示的向量。在求解向量的坐标运算问题时,注意向量坐标等终点坐标减起点坐标,即若),(),,(2 2 1 1 y x B y x A , 则 A O B O B A ) ,(),(),(12121122y y x x y x y x 。 例1 若向量_______2),1,0(),2,3(的坐标是则a b b a 例2 若向量____)2,1(),1,1(),1,1( c c b a 则 b a D b a C b a B b a A 2 123.2123.2321.2321. 例3 在平面直角坐标系中,O 为坐标原点,已

知两点),3,1(),1,3( B A 若点 满足C B O A O C O ,其中R ,且 1 ,则点 C 的轨迹为( ) 52. 02.0)2()1.( 01123.22 y x D y x C y x B y x A 例4 O 是平面上一定点,C B A 、、是平面上不共线的三个点,动点P 满足 ) (C A C A B A B A A O P O ,),0[ ,则P 的轨迹一定过ABC 的() . A 外心 . B 内心 . C 重心 . D 垂心 例5 设G 是ABC 内的一点,试证明: (1)若G 是为ABC 重心,则0 C B B G A G ; (2)若0 C B B G A G ,则G 是为ABC 重心。 三、三点共线问题的证法 证明A,B,C 三点共线,由共线定理(共线 与C A B A ),只需证明存在实数 ,使C A B A ,,其中必须有公共点。 共线的坐标表示的充要条件,若 ) ,(),,(2211y x b y x a , 则 ) (0//12211221y x y x y x y x b a b a 例1 已知A 、B 两点,P 为一动点,且B tA A O P O ,其中t 为一变量。 证明:1.P 必在直线AB 上;2.t 取何值时,P 为A 点、

常用的一些矢量运算公式

常用的一些矢量运算公式 1.三重标量积 如a ,b 和c 是三个矢量,组合 ()a b c ??叫做他们的三重标量积。三重标量积等于这三 个矢量为棱边所作的平行六面体体积。在直角坐标系中,设坐标轴向的三个单位矢量标记为 (),,i j k ,令三个矢量的分量记为()()1 2 3 1 2 3 ,,,,,a a a a b b b b 及()1 2 3 ,,c c c c 则有 ()() 123 123 1 2 3123 123 123 c c c i jk a b c a a a c i c j c k a a a b b b b b b ??=?++= 因此,三重标量积必有如下关系式: ()()()a b c b c a c a b ??=??=??即有循环法则成立,这就是说不改变三重标量积中三个矢量顺序的组合,其结果相等。 2.三重矢量积 如a ,b 和c 是三个矢量,组合 ( ) a b c ??叫做他们的三重标量积,因有 ()()()a b c a c b c b a ??=-??=?? 故有中心法则成立,这就是说只有改变中间矢量时,三重标量积符号才改变。三重标量积有一个重要的性质(证略):() ()()a b c a b c a c b ??=-?+? (1-209) 将矢量作重新排列又有:()()() a b c b a c b a c ?=??+? (1-210) 3.算子( a ? ) ? 是哈密顿算子,它是一个矢量算子。( a ? )则是一个标量算子,将它作用于标量φ ,即 ()a φ?是φ在a 方向的变化速率的a 倍。如以无穷小的位置矢量 d r 代替以上矢量a ,则 ()dr φ ?是φ在位移方向 d r 的变化率的 d r 倍,即 d φ 。 () ()d dr dr φφφ=?=? 若将 () dr ?作用于矢量v ,则 ()dr v ?就是v 再位移方向 d r 变化率的 d r 倍,既为速度矢量 的全微分() dv d r v =? 应 用 三 重 矢 量 积 公 式 ( 1-209 ) ()()() 00()()()() a b a b a b b a a b b a a b ???=???+???=??-??-??+??

高中数学经典解题技巧和方法:平面向量

高中数学经典解题技巧:平面向量【编者按】平面向量是高中数学考试的必考内容,而且是这几年考试解答题的必选,无论是期中、期末还是会考、高考,都是高中数学的必考内容之一。因此,马博士教育网数学频道编辑部特意针对这部分的内容和题型总结归纳了具体的解题技巧和方法,希望能够帮助到高中的同学们,让同学们有更多、更好、更快的方法解决数学问题。好了,下面就请同学们跟我们一起来探讨下平面向量的经典解题技巧。 首先,解答平面向量这方面的问题时,先要搞清楚以下几个方面的基本概念性问题,同学们应该先把基本概念和定理完全的吃透了、弄懂了才能更好的解决问题:1.平面向量的实际背景及基本概念 (1)了解向量的实际背景。 (2)理解平面向量的概念,理解两个向量相等的含义。 (3)理解向量的几何意义。 2.向量的线性运算 (1)掌握向量加法、减法的运算,并理解其几何意义。 (2)掌握向量数乘的运算及其几何意义,理解两个向量共线的含义。 (3)了解向量线性运算的性质及其几何意义。 3.平面向量的基本定理及坐标表示 (1)了解平面向量的基本定理及其意义。 (2)掌握平面向量的正交分解及其坐标表示。 (3)会用坐标表示平面向量的加法、减法与数乘运算。 (4)理解用坐标表示的平面向量共线的条件。 4.平面向量的数量积 (1)理解平面向量数量积的含义及其物理意义。 (2)了解平面向量的数量积与向量投影的关系。 (3)掌握数量积的坐标表达式,会进行平面向量数量积的运算。 (4)能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直 关系。 5. 向量的应用 (1)会用向量方法解决某些简单的平面几何问题。 (2)会用向量方法解决简单的力学问题与其他一些实际问题。 好了,搞清楚平面向量的上述内容之后,下面我们就看下针对这方面内容的具体的

向量公式大全20131

向量公式大全 『ps.加粗字母表示向量』1.向量加法 AB+BC=AC a+b=(x+x',y+y') a+0=0+a=a 运算律: 交换律:a+b=b+a 结合律:(a+b)+c=a+(b+c) 2.向量减法 AB-AC=CB 即“共同起点,指向被减” 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 a=(x,y) b=(x',y') 则a-b=(x-x',y-y'). 3.数乘向量

实数λ和向量a的乘积是一个向量,记作λa,且∣λa ∣=∣λ∣?∣a∣ 当λ>0时,λa与a同方向 当λ<0时,λa与a反方向 当λ=0时,λa=0,方向任意 当a=0时,对于任意实数λ,都有λa=0 『ps.按定义知,如果λa=0,那么λ=0或a=0』 实数λ 向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍 数乘运算律: 结合律:(λa)?b=λ(a?b)=(a?λb) 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λb. 数乘向量的消去律:①如果实数λ≠0且λa=λb,那

么a=b②如果a≠0且λa=μa,那么λ=μ 4.向量的数量积 定义:已知两个非零向量a,b作OA=a,OB=b,则∠AOB称作a和b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 两个向量的数量积(内积、点积)是一个数量,记作a?b若a、b不共线,则a?b=|a|?|b|?c os〈a,b〉若a、b共线,则a?b=+-∣a∣∣b∣ 向量的数量积的坐标表示:a?b=x?x'+y?y' 向量数量积运算律 a?b=b?a(交换律) (λa)?b=λ(a?b)(关于数乘法的结合律) (a+b)?c=a?c+b?c(分配律) 向量的数量积的性质 a?a=|a|2 a⊥b〈=〉a?b=0 |a?b|≤|a|?|b|

第43招 平面向量模的求法

【知识要点】 一、向量的定义:既有大小又有方向的量叫做向量.一般用a r 或AB u u u r 表示. 二、模的定义:向量AB u u u r 的长度叫向量的模,记作AB u u u r . 三、求向量的模一般有两种方法 方法一:利用2||a a =r r 求解;方法二:利用22a x y =+r 求解. 【方法讲评】 方法一 利用2 ||a a =r r 求解 使用背景 一般没有坐标背景. 解题步骤 直接代入公式2 ||a a =r r 化简即可. 【例1】设向量a r ,b r 满足||1,||3,a a b =-=r r r ()0a a b ?-=r r r ,求|2|a b +r r 【点评】公式2222 2||()22||||cos a b a b a a b b a a b b α+=+=++=++r r r r r r r r r r r r g 公式,在利用该公式求解时,要先求出其它基本量,再代入公式. 【反馈检测1】已知向量,a b r r 满足||2,||1,|| 2.a b a b ==-=r r r r (1)求a b ?r r 的值;(2)求||a b +r r 的值.

方法二 利用22a x y =+r 求解 使用背景 一般有坐标背景. 解题步骤 先求a r 的坐标,再代入公式22a x y =+r 即可. 【例2】已知向量(sin ,1),(1,cos ),22 a b θθθ==-<

高二数学最新教案-简单线性规划问题的向量解法 精品

●教学目标 (一)教学知识点 1.线性规划问题,线性规划的意义. 2.线性约束条件、线性目标函数、可行解、可行域、最优解等基本概念. 3.线性规划问题的图解方法. (二)能力训练要求 1.了解简单的线性规划问题. 2.了解线性规划的意义. 3.会用图解法解决简单的线性规划问题. (三)德育渗透目标 让学生树立数形结合思想. ●教学重点 用图解法解决简单的线性规划问题. ●教学难点 准确求得线性规划问题的最优解. ●教学方法 讲练结合法 教师可结合一些典型例题进行讲解,学生再通过练习来掌握用图解法解决一些较简单的线性规划问题. ●教具准备 多媒体课件(或幻灯片) 内容:课本P60图7—23 记作§7.4.2 A 过程:先分别作出x=1,x-4y+3=0,3x+5y-25=0三条直线,再找出不等式组所表示的平面区域(即三直线所围成的封闭区域).再作直线l0:2x+y=0. 然后,作一组与直线的平行的直线: l:2x+y=t,t∈R (或平行移动直线l0),从而观察t值的变化. ●教学过程 Ⅰ.课题导入 上节课,咱们一起探讨了二元一次不等式表示平面区域,下面,我们再来探讨一下如何应用其解决一些问题. Ⅱ.讲授新课 首先,请同学们来看这样一个问题.

设z =2x +y ,式中变量x 、y 满足下列条件?? ???≥≤+-≤-1255334x y x y x 求z 的最大值和最小值. 分析:从变量x 、y 所满足的条件来看,变量x 、y 所满足的每个不等式都表示一个平面区域,不等式组则表示这些平面区域的公共区域. (打出投影片§7.4.2 A) [师](结合投影片或借助多媒体课件) 从图上可看出,点(0,0)不在以上公共区域内,当x =0,y =0时,z =2x +y =0. 点(0,0)在直线l 0:2x +y =0上. 作一组与直线l 0平行的直线(或平行移动直线l 0)l :2x +y =t ,t ∈R . 可知,当t 在l 0的右上方时,直线l 上的点(x ,y )满足2x +y >0, 即t >0. 而且,直线l 往右平移时,t 随之增大. (引导学生一起观察此规律) 在经过不等式组所表示的公共区域内的点且平行于l 的直线中,以经过点A (5,2)的直线l 2所对应的t 最大,以经过点B (1,1)的直线l 1所对应的t 最小. 所以:z m ax =2×5+2=12, z m in =2×1+3=3. 诸如上述问题中,不等式组是一组对变量x 、y 的约束条件,由于这组约束条件都是关于x 、y 的一次不等式,所以又可称其为线性约束条件.z =2x +y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,我们把它称为目标函数.由于z =2x +y 又是关于x 、y 的一次解析式,所以又可叫做线性目标函数. 另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示. 一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.例如:我们刚才研究的就是求线性目标函数z =2x +y 在线性约束条件下的最大值和最小值的问题,即为线性规划问题. 那么,满足线性约束条件的解(x ,y )叫做可行解,由所有可行解组成的集合叫做可行域.在上述问题中,可行域就是阴影部分表示的三角形区域.其中可行解(5,2)和(1,1)分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解. Ⅲ.课堂练习 [师]请同学们结合课本P 64练习1来掌握图解法解决简单的线性规划问题. (1)求z =2x +y 的最大值,使式中的x 、y 满足约束条件?? ???-≥≤+≤.1,1,y y x x y 解:不等式组表示的平面区域如图所示: 当x =0,y =0时,z =2x +y =0 点(0,0)在直线l 0:2x +y =0上. 作一组与直线l 0平行的直线 l :2x +y =t ,t ∈R . 可知,在经过不等式组所表示的公共区域内的点且平行于l 的直线中,以经过点A (2,-1)的直线所对应的t 最大 .

向量解题技巧

一、怎么样求解向量的有关概念问题 掌握并理解向量的基本概念 1.判断下列各命题是否正确 (1)若c a c b b a ===则,,; (2)两向量b a 、相等的充要条件是b a =且共线、b a ; (3)b a =是向量b a =的必要不充分条件; (1)若D C B A 、、、是不共线的四点,则C D B A =是四边形ABCD 为平行四边形的充要条件; (2)D C B A =的充要条件是A 与C 重合,D B 与重合。 二、向量运算及数乘运算的求解方法 两个不共线的向量,加法的三角形法则和平行四边形法则是一致的。两个有相同起点的向量的差 是连结两向量的终点,方向指向被减向量的向量,若起点不同,要平移到同一起点;重要结论:a 与b 不共线,则b a b a -+与是以a 与b 为邻边的平行四边形两条对角线所表示的向量。在求解向量的坐 标运算问题时,注意向量坐标等终点坐标减起点坐标,即若),(),,(2211y x B y x A ,则 =-=A O B O B A ),(),(),(12121122y y x x y x y x --=-。 例1 若向量_______2),1,0(),2,3(的坐标是则a b b a --== 例2 若向量____)2,1(),1,1(),1,1(=-=-==c c b a 则 b a D b a C b a B b a A 2 123.2123.2321.2321.+---+- 例3 在平面直角坐标系中,O 为坐标原点,已知两点),3,1(),1,3(-B A 若点 满足C B O A O C O βα+=,其中R ∈βα,且1=+βα,则点C 的轨迹为( ) 52. 02.0)2()1.( 01123.22=-+=-=-+-=-+y x D y x C y x B y x A 例4 O 是平面上一定点,C B A 、、是平面上不共线的三个点,动点P 满足 )(C A C A B A B A A O P O ++=λ,),0[+∞∈λ,则P 的轨迹一定过ABC ?的() .A 外心 .B 内心 .C 重心 .D 垂心 例5 设G 是ABC ?内的一点,试证明: (1)若G 是为ABC ?重心,则0 =++C B B G A G ;

向量长度计算公式及中点公式讲解学习

精品文档 课 题:6.3平面向量的坐标运算--向量长度的计算公式和线段中点的坐标公式 教学目的:(1)理解平面向量长度的计算公式; (2)掌握线段中点的坐标公式; 教学重点:线段中点的坐标公式 教学难点:公式的理解及应用. 授课类型:新授课 课时安排:1课时 教学过程: 一、复习引入: 平面向量的坐标运算:若),(11y x a =?,),(22y x b =ρ ,则 b a ?ρ+),(2121y y x x ++=,b a ρρ-),(2121y y x x --=,),(y x a λλλ=ρ 若),(11y x A ,),(22y x B ,则2121(,)AB x x y y =--u u u r . 二、讲解新课: 1.平面向量长度的计算公式的推导: 如图,已知12(,)a xe ye x y =+=r r v ,则 11xe x e x =?=r r , 1212ye y e y =?=r r , 由勾股定理得,22 22a x y x y = +=+v , 上式即为根据向量a v 的坐标,求向量a 的长度的计算公式,简称向量长度的计算公式. 如果已知11(,)A x y ,),(22y x B ,则有向量22112121(,)(,)(,)AB OB OA x y x y x x y y =-=-=--u u u r u u u r u u u r 所以,222121()()AB x x y y =-+-u u u r . 上式即为根据向量AB u u u r 的坐标,求向量AB u u u r 的长度的计算公式,也称为向量长度的计算 公式,又称为两点间的距离公式. 2.线段中点的坐标公式的推导: 方法一:设线段AB 的两个端点),(11y x A ,),(22y x B ,线段AB 的中点(,)C x y ,则

立体几何的向量解法

E P D A 1.若3,1,2(x a =,)9,2,1(y b -=,如果a 、b 是共线向量,则( ) A .1,1x y == B .11,22x y ==- C .13 ,62 x y ==- D .13 ,62 x y =-= 2.直三棱柱ABC —A 1B 1C 1中,若CA = a ,CB = b ,1CC = c , 则1A B = ( ) A.+-a b c B. -+a b c C. -++a b c D. -+-a b c 3.已知点(1 21)A -,,关于面xOy 的对称点为B ,而B 关于x 轴的对称点为C ,则BC = ( ) A.(042), , B.(042)--,, C.(040),, D.(202)-, , 4.已知()()()2,5,1,2,2,4,1,4,1A B C ---,则向量AB AC 与的夹角为( ) A. 030 B.045 C.060 D.090 5.若向量λ∈μλμ+λ=且向量和垂直向量R b a n b a m ,(,、则)0≠μ( ) A .n m // B .n m ⊥ C .n m n m 也不垂直于不平行于, D .以上三种情况都可能 6.如图,非零向量C b a ,,,⊥==且为垂足,设向量a λ=,则λ的值为( ) A . 2|a|b a ? B .||||b a b a ?? C .2||b b a ? D . b a b a ??| ||| 7.已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的 中线长为( ) A .2 B .3 C .4 D .5 8.如图四棱锥P-ABCD 的的底面是正方形,PD ⊥面ABCD ,PD AD =,E 为PC 的中点,则异面直线BE 与 PA 所成角的余弦值等于( ) A. 2 B. 22 C. 3 2 D. 3 3 9.如图,在平行六面体ABCD –A 1B 1C 1D 1中,M 为AC 与BD 的交点.若 a B A =11, b D A =11, c A =1,则下列 向量中与B 1相等的向量是( ) A .c b a ++- 2121 B .c b a ++2 1 21 C .c b a +-2121 D .c b a +--2 121 11.已知空间三点的坐标为)2,5,1(-A ,)1,4,2(B ,)2,3,(+q p C ,若A 、B 、C 三点共线,则=+q p . 12. 已知A 、B 、C 三点不共线,M 、A 、B 、C 四点共面,则对平面ABC 外的任一点O ,有1123 OM OA OB tOC =++ , 则t = . 13.已知(1,1,),(1,,1)t t t t =+=-a b ,则||-a b 的最小值为________. 14.已知△ABC 的顶点为)1,1,1(A ,(0,1,3)B -,(3,2,3)C ,则△ABC 的面积是 . 1、(1)3 1 ,cos ->==<,其中n 为平面的法向量α的法向量.则直线AB 与平面α的夹角为 (3) 3 1 ,cos 21->=

平面向量公式

平面向量公式 1.向量三要素:起点,方向,长度 2.向量的长度=向量的模 3.零向量:? ??方向任意长度为 .20.1 4.相等向量:?? ?长度相等 方向相同 .2.1 5.向量的表示:AB ()始点指向终点 6.向量的线性加减运算法则: ()()???? ?=-=+终点指向始点 始点指向终点, CB AC AB AC BC AB ,21 7.实数与向量的积: ()()a a λμμλ=.1 ()a a a μλμλ+=+.2 ()b a b a λλλ+=+.3 4.()y x a λλλ,=? 5.a b b a ?=? 6.()()b a b a ??=?λλ 7.()c b c a c b a ?+?=?+ 注;()()c b a c b a ≠? 8.定理:向量b 与非零向量a 共线的充要条件是有且只有一个实数 λ,使得: a b λ= 9.平面向量基本定理:如果e 1 ,e 2是同一平面内的两个不共线向量,那么对于这一平面 : e e a 2211λλ+= 10.坐标的运算: ()1?? ? ? ?+ =y x a ?y x a 22 +=

()2已知;A ()y x 11+,B () y x 22+?() ( )() ?? ???+=--=--y y x x y y x x AB AB 1212.2,.12 2 1212 ()3已知;()y x a 11,= ,()y x b 22,= () ()?? ???+?=?±±=±?和它们对应坐标的乘积的两个向量的数量积等于y y x x y y x x b a b a 21212 121.2,.1 ()4已知;()y x a 11,=//()y x b 22,=01 2 2 1 =?-?y x y x (横纵交错乘积之差为0) ()5已知;已知;()y x a 11,=⊥ ()y x b 2 2 ,= 02 1 2 1 =?+??y y x x (对应坐标乘积之和为0) 10.数量积b a ?等于a 的长度a 与b 在a 的方向上的投影θcos ?b 的乘积: θcos ??=?b a b a ()的夹角与为b a θ 变形?b a b a ?= θcos 11.线段的定比分点: 设()x x p 211, ,()y x p 222, ,P ()y x ,是不同于直线p 2 1,上 的任意两点;即有: p p p p 21λ=?? ? ???外在点内 在点p p p p p p 212 100λλ (其中p 为定比分点;λ为定比。) (1).线段的定比分点“定比”λ=p p p p 2 1 (终点 分点分点 始点→→)

相关文档
最新文档