作图法设计对心盘形凸轮轮廓曲线讲稿

作图法设计对心盘形凸轮轮廓曲线讲稿
作图法设计对心盘形凸轮轮廓曲线讲稿

作图法设计对心盘形凸轮轮廓曲线讲稿

一、教学目标:

掌握作图法设计对心盘形凸轮轮廓曲线的原理

二、课程知识点讲解

问题引入:

一对心尖顶直动从动件盘形凸轮,其基圆半径为r b,凸轮以等角速度3逆时针方向回转,从动件的运动规律如下,试设计此凸轮的轮廓曲线。0-90度匀速上升,90-180度静止,180到360度匀速下降, 回到原点。

乱从动件位移曲藝

当凸轮机构从动件的运动规律及凸轮基圆半径确定后,就可以用作图法绘制出凸轮轮廓曲线,该方法适用于低速或对运动规律要求不严的一般机械传动机构。

作图法利用了反转法的基本原理,什么是反转法呢?就是假想给

整个凸轮机构加上一个与凸轮转速3相同,方向相反的转速“ -3” 这样凸轮就变成静止不动,而从动件则以“ -3”绕基圆中心转动的同时又按着给定的从动件运动规律进行运动

(反转法动画慢)。从动画中看到凸轮变成静止不动,而从动件则以“ -3”绕基圆中心转动的同时又按着给定的从动件运动规律进行运动。

三、知识点总结作图法设计对心盘形凸轮的条件是已知运动规律曲线和

基圆半径,且是低速运动规律不严格的场合。

四、作业布置:

1、作图法的前提条件是什么?

2、什么是反转法?

拓展思考:偏置从动件可以用反转法吗?不同从动件的

端部形式不同设计方法有何区别?

解析法设计凸轮

解析法设计凸轮Ⅱ的实际轮廓曲线代码: Private Sub Command1_Click() Form2.Show '焦点出现form2 End Sub Private Sub Command1_Click() Dim l1, l2, l3 As Single Form2.Picture2.Scale (-0.1, 400)-(7, -400) l1 = -Abs(Form2.Picture1.ScaleHeight / Form2.Picture1.ScaleWidth) l3 = -Abs(Form2.Picture3.ScaleHeight / Form2.Picture3.ScaleWidth) '定义两个图框的高宽比Form2.Picture1.ScaleWidth = 9.5 Form2.Picture3.ScaleWidth = 150 '设定图框的长度 Form2.Picture1.ScaleHeight = l1 * Form2.Picture1.ScaleWidth Form2.Picture3.ScaleHeight = l3 * Form2.Picture3.ScaleWidth Form2.Picture1.ScaleLeft = -0.1 Form2.Picture3.ScaleLeft = -70 Form2.Picture1.ScaleTop = 7 Form2.Picture3.ScaleTop = 63 '规定高度的起点 Dim dt1, dt2, dt3, dt4, dt5, s1, v1, s2, v2, k1, s0 As Single Dim n, m As Integer Dim h, e As Integer Dim dt6, dt7, dt8, dt9, dt10, dt11, x1, y1, x2, y2, r As Single Dim x3, y3, x4, y4, rg '定义各种量 h = Form2.Text3 e = Form2.Text2 k1 = Form2.Text4 s0 = Form2.Text1 rg = Form2.Text5 '试各种变量与文本框相等,用于输入数据 Const pi = 3.1415926 n = 1000 '把每一步定义为360°/1000 dt11 = 0 dt1 = pi / 3 dt2 = pi / 3 dt3 = pi / 2 / n dt4 = 0 dt6 = pi / 18 Form2.Picture3.Line (-70, 0)-(70, 0) Form2.Picture3.Line (0, 70)-(0, -70) Form2.Picture1.Line (0, 0)-(7, 0) Form2.Picture1.Line (0, 6.5)-(0, 0) Form2.Picture2.Line (0, 0)-(7, 0) Form2.Picture2.Line (0, 390)-(0, -390) '画出各个两个图框的坐标轴 s1 = h * ((dt4 / dt1) - Sin(2 * pi * dt4 / dt1) / (2 * pi)) v1 = h * k1 * (1 - Cos(2 * pi * dt4 / dt1)) / dt1 '计算第一个点的速度和推程,选择正弦加速度规

机械原理-凸轮设计(偏置直动滚子从动件盘形凸轮机构的设计)

中国地质大学 课程论文 题目偏置直动滚子从动件盘形凸轮机构的设计 指导老师__ _____________ 姓名 班级 学号 专业机械设计制造及其自动化 院系机电学院 日期 2015 年 5 月 30 日 解析法分析机构运动 ——MATLAB辅助分析摘要: 在各种机械,特别是自动化和自动控制装置中,广泛采用着各种形式的凸轮机构,例如盘形凸 轮机构在印刷机中的应用,等经凸轮机构在机械加工中的应用,利用分度凸轮机构实现转位, 圆柱凸轮机构在机械加工中的应用。 凸轮机构的最大优点是只要适当地设计出凸轮的轮廓曲线,就可以使推杆得到各种预期的运 动规律,而且响应快速,机构简单紧凑。正因如此,凸轮机构不可能被数控,电控等装置完全 代替。但是凸轮机构的缺点是凸轮轮廓线与推杆之间为点,线接触,易磨损,凸轮制造较困难。 在这些前提之下,设计者要理性的分析实际情况,设计出合理的凸轮机构,保证工作的质量与 效率。 本次设计的是偏置直动滚子从动件盘形凸轮机构,推杆是滚子推杆,这种推杆由于滚子与凸轮 廓之间为滚动摩擦,所以磨损较小,可用来传递较大动力,因而被大量使用,通过设计从根本 上了解这种凸轮机构的设计原理,增加对凸轮机构的认识。通过用MATLAB软件进行偏置直动 滚子从动件盘形凸轮轮廓设计,得出理论廓线和工作廓线,进一步加深对凸轮的理解。 一、课程设计(论文)的要求与数据 设计题目:偏置直动滚子从动件盘形凸轮机构的设计 试设计偏置直动滚子推杆盘形凸轮机构的理论轮廓曲线和工作廓线。已知凸轮轴置于推杆轴 线右侧,偏距e=20mm,基圆半径r0=50mm,滚子半径r r=10mm。凸轮以等角速度沿顺时针方

凸轮轮廓线绘制程序

凸轮轮廓线绘制程序 j=0:1:360; s=rand(1,361); v=rand(1,361); a=rand(1,361); jj=31; w=1; j1=80; j2=20; j3=80; j4=180; j5=360; t=pi/180; for i=1:361 if j(i)<=j1 %升程,余弦加速度运动规律,转过的角度是j1。 s(i)=jj*[1-cos(pi*j(i)/j1)]/2; v(i)=36*(pi*jj*w*sin(pi*j(i)/j1)/(2*j1)); a(i)=36*pi^2*jj*t*w^2*cos(pi*j(i)/j1)/(2*(j1*t)^2); elseif j(i)<=j1+j2 %远休。 s(i)=31; v(i)=0; a(i)=0; elseif j(i)<=j1+j2+j3 %回程,余弦加速度运动规律,转过的角度是j3。 s(i)=jj-jj*[1-cos(pi*(j(i)-90)/j3)]/2; v(i)=-36*(pi*jj*w*sin(pi*(j(i)-90)/j3)/(2*j3)); a(i)=-36*pi^2*jj*t*w^2*cos(pi*(j(i)-90)/j3)/(2*(j3*t)^2); else %推程,余弦加速度运动规律,转过的角度是45。 s(i)=0; v(i)=0; a(i)=0; end end %绘制凸轮理论廓线、实际廓线 r0=39; rr=9; l=36; loa=70;

jj0=23; X=rand(1,361); Y=rand(1,361); Xa=rand(1,361); Ya=rand(1,361); Xaa=rand(1,361); Yaa=rand(1,361); dr=rand(1,361); A=rand(1,361); B=rand(1,361); for i=1:361 %if j(i)<=j1 X(i)=-l*sin((j(i)+s(i)+jj0)*t)+loa *sin(j(i)*t); Y(i)=-l*cos((j(i)+s(i)+jj0)*t)+loa*cos(j(i)*t); dx=loa*cos(j(i)*t)-l*(1+v(i)/10)*cos((j(i)+s(i)+jj0)*t); dy=-loa*sin(j(i)*t)+l*(1+v(i)/10)*sin((j(i)+s(i)+jj0)*t); st=dx/sqrt(dy^2+dx^2); ct=-dy/sqrt(dy^2+dx^2); Xa(i)=X(i)+rr*ct; Ya(i)=Y(i)+rr*st; Xaa(i)=X(i)-rr*ct; Yaa(i)=Y(i)-rr*st; %X(i)=l*sin((j(i)-s(i)-jj0)*t)-loa*sin(j(i)*t); %Y(i)=-l*cos((j(i)-s(i)+jj0)*t)+loa*cos(j(i)*t); %dx=-loa*cos(j(i)*t)-l*(-1+v(i)/10)*cos((-j(i)+s(i)+jj0)*t); %dy=-loa*sin(j(i)*t)+l*(-1+v(i)/10)*sin((-j(i)+s(i)+jj0)*t); %st=dx/sqrt(dy^2+dx^2); %ct=-dy/sqrt(dy^2+dx^2); %Xa(i)=X(i)+rr*ct; %Ya(i)=Y(i)+rr*st; %Xaa(i)=X(i)-rr*ct; %Yaa(i)=Y(i)-rr*st; % else %X(i)=l*sin((j(i)-s(i)-jj0)*t)-loa*sin(j(i)*t); %Y(i)=-l*cos((j(i)-s(i)+jj0)*t)+loa*cos(j(i)*t); %dx=-loa*cos(j(i)*t)-l*(-1-v(i)/10)*cos((-j(i)-s(i)-jj0)*t); %dy=-loa*sin(j(i)*t)+l*(-1-v(i)/10)*sin((-j(i)-s(i)-jj0)*t); %st=dx/sqrt(dy^2+dx^2); %ct=-dy/sqrt(dy^2+dx^2); %Xa(i)=X(i)+rr*ct; %Ya(i)=Y(i)+rr*st; %Xaa(i)=X(i)-rr*ct;

matlab解析法画凸轮轮廓线

m a t l a b解析法画凸轮 轮廓线 -CAL-FENGHAI.-(YICAI)-Company One1

班级:姓名:学号: 基于matlab的凸轮轮廓设计 一、设计凸轮机构的意义 在工业生产中,经常要求机器的某些部件按照规定的准确路线运动,仅应用连杆机构已难以满足这个要求,所以需要利用工作表面具有一定形状的凸轮。凸轮在所有基本运动链中,具有易于设计和能准确预测所产生的运动的优点。如果设计其他机构来产生给定的运功、速度、和加速度,其设计工作是很复杂的,但是设计凸轮机构则比较容易,而且运动准确、有效。所以在许多机器中,如纺织机、包装机、自动机床、自动化专用机床、数控机床、印刷机、内燃机、建筑机械、矿山机械、计算机的辅助装备及农业机具等,都可以找到凸轮机构。 在进行研究时,先设计一个简单的凸轮,在给定的旋转角度内有一定的总升距。设计凸轮轮廓的基本方法是把凸轮固定,使从动件以其与凸轮的相关位置绕凸轮回转而形成凸轮轮廓。因此设计凸轮时,必须画出足够多的点,使凸轮轮廓平滑可靠。 Matlab软件提供了强大的矩阵处理和绘图功能,具有核心函数工具箱。其编程代码接近数学推导公式,简洁直观,操作简易,人机交互性能好。因此,基于matlab软件进行凸轮机构的设计可以解决设计工作量大的问题。运用解析法进行设计,matlab可以精确的计算出轮廓上每一点的坐标,然后更为精确的绘制出凸轮轮廓曲线。 二、设计凸轮机构的已知条件 凸轮做逆时针方向转动,从动件偏置在凸轮轴心右边。从动件在推程做等加/减速运动,在回程做余弦加速运动。基圆半径rb=50mm,滚子半径 rt=10mm,推杆偏距e=10mm,推程升程h=50mm,推程运动角ft=100o,远休止角fs=60o,回程运动角fh=90o。 三、分析计算 1、建立坐标系 以凸轮轴心为坐标原点建立平面直角坐标系XOY,取杆件上升方向为Y轴正方向。 2、推杆运动规律计算 凸轮运动一周可分为5个阶段:推程加速阶段、推程减速阶段、远休止阶段、回程阶段、进休止阶段。 根据已知条件,推程阶段为等加/减速,故推程阶段的运动方程为:

凸轮廓线解析法

凸轮解析法设计 预备知识:坐标旋转 cos sin 'sin cos 'x x y y αααα-??????= ? ????????? 问题1:对心尖顶盘状凸轮 00''x r s y ????= ? ?+???? 问题2:偏置尖顶盘状凸轮 ''e x y s ????=? ????? 问题3:摆动尖顶盘状凸轮 32020cos()'sin()'l l x l y ????-+????= ? ?+???? 问题4:平底直动盘状凸轮 12120',/'oP x oP v r s y ω????== ? ?+???? 问题5:滚子直动盘状凸轮 包络线方程(,,)0 0f x y f θθ =????=??? 1)222()()0T x X y Y r -+--=(理论廓线任一点(x ,y )为圆心的滚子上必有一点属于工作廓线,即(X ,Y )) 2)() ()0dx dy x X y Y d d ??-+-= T X x r =± ,T Y y r =

练习1:4-10 练习2: (10分)图示凸轮机构中凸轮是一偏心圆盘,该圆盘几何中心为A,半径 e=,图示位置从动杆垂直AO,主动件凸轮转向R=,偏心距40mm 100mm 如图所示。在图中标出从动件位移最大的位置,并计算出最大位移? h=及推程角? Φ=(注意:图形应画在答题纸上,不要直接画在题签上。) 练习3: 4、(10分)一偏置直动尖项从动件盘形凸轮机构如图所示。已知凸轮为一偏心圆盘,圆盘半径30mm R=,几何中心为A,回转中心为O,从动件偏距 OA=。凸轮以等角速度ω逆时针方向转动。当凸轮在图==,10mm OD e 10mm 示位置,即AD CD ⊥时,试求: (1)凸轮的基圆半径 r;(2)图示位置的凸轮机构压力角α; (3)图示位置的凸轮转角?;(4)图示位置的从动件的位移s; (5)该凸轮机构中的从动件偏置方向是否合理,为什么?

凸轮曲线设计

凸轮曲线设计 当根据使用要求确定了凸轮机构的类型、基本参数以及从动件运动规律后,即可进行凸轮轮廓曲线的设计。设计方法有几何法和解析法,两者所依据的设计原理基本相同。几何法简便、直观,但作图误差较大,难以获得凸轮轮廓曲线上各点的精确坐标,所以按几何法所得轮廓数据加工的凸轮只能应用于低速或不重要的场合。对于高速凸轮或精确度要求较高的凸轮,必须建立凸轮理论轮廓曲线、实际轮廓曲线以及加工刀具中心轨迹的坐标方程,并精确地计算出凸轮轮廓曲线或刀具运动轨迹上各点的坐标值,以适合在数控机床上加工。 圆柱凸轮的廓线虽属空间曲线,但由于圆柱面可展成平面,所以也可以借用平面盘形凸轮轮廓曲线的设计方法设计圆柱凸轮的展开轮廓。本节分别介绍用几何法和解析法设计凸轮轮廓曲线的原理和步骤。 1 几何法 反转法设计原理: 以尖底偏置直动从动件盘形凸轮机构为例: 凸轮机构工作时,凸轮和从动件都在运动。为了在图纸上画出凸轮轮廓曲线,应当使凸轮与图纸平面相对静止,为此,可采用如下的反转法:使整个机构以角速度(-w)绕O转动,其结果是从动件与凸轮的相对运动并不改变,但凸轮固定不动,机架和从动件一方面以角速度(-w)绕O转动,同时从动件又以原有运动规律相对机架往复运动。根据这种关系,不难求出一系列从动件尖底的位置。由于尖底始终与凸轮轮廓接触,所以反转后尖底的运动轨迹就是凸轮轮廓曲线。 1). 直动从动件盘形凸轮机构 尖底偏置直动从动件盘形凸轮机构: 已知从动件位移线图,凸轮以等角速w顺时针回转,其基圆半径为r0,从动件导路偏距为e,要求绘出此凸轮的轮廓曲线。 运用反转法绘制尖底直动从动件盘形凸轮机构凸轮轮廓曲线的方法和步骤如下: 1) 以r0为半径作基圆,以e为半径作偏距圆,点K为从动件导路线与偏距圆的切点,导路线与基圆的交点B0(C0)便是从动件尖底的初始位置。 2) 将位移线图s-f的推程运动角和回程运动角分别作若干等分(图中各为四等分)。 3) 自OC0开始,沿w的相反方向取推程运动角(1800)、远休止角(300)、回程运动角(1900)、近休止角(600),在基圆上得C4、C5、C9诸点。将推程运动角和回程运动角分成与从动件位移线图对应的等分,得C1、C2、C3

凸轮轮廓线的绘制(MATLAB)

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程名称:精密机械学基础 设计题目:直动从动件盘形凸轮的设计 院系:航天学院控制科学与工程系 班级: 0904102班 设计者:陈学坤 学号: 1090410229 设计时间: 2011年10月

直动从动件盘形凸轮机构的计算机辅助设计 说明: 凸轮轮阔曲线的设计,一般可分为图解法和解析法,尽管应用图解法比较简便,能简单地绘制出各种平面凸轮的轮廓曲线,但由于作图误差比较大,故对一些精度要求高的凸轮已不能满足设计要求。此次应用MATLAB 软件结合轮廓线方程用计算机辅助设计。首先,精确地计算出轮廓线上各点的坐标,然后运用MATLAB 绘制 比较精确的凸轮轮廓曲线以及其S-α曲线、v-t 曲线、a-t 曲线。 。 1 凸轮轮廓方程 *()()*() ()*()*() X OE EF E Cos J So S Sin J Y BD FD So S Cos J E Sin J =+=++=-=+- (X,Y):凸轮轮廓线上的任意一点的坐标。 E :从动件的偏心距,OC 。 R :凸轮的基园半径,OA 。 J :凸轮的转角。 S :S=f(J)为从动件的方程。 So :22O S R E =-。 H 为从动件的最大位移(mm )。 J1、J2、J3、J4为从动件的四个转角的区域。 S1、S2、S3、S4为与J1、J2、J3、J4对应的从动件的运动规律。 2 实例 R=40,E=10,H=50,J1=J2=J3=J4=900。 3 MATLAB 程序设计 用角度值计算,对于给定的J1、J2、J3、J4,把相应的公式代入其中,求出位移S 和轮廓线上的各点的坐标X 、Y ,最终求出描述凸轮的数组: J=[J1,J2,J3,J4]; S=[S1,S2,S3,S4]; X=[X1,X2,X3,X4]; Y=[Y1,Y2,Y3,Y4]; 用函数plot (X,,Y )画出凸轮的轮廓曲线; 用plot (J,S )函数位移S 的曲线; 对于速度曲线V-t 和加速度曲线a-t ,

盘形凸轮轮廓设计计算说明书

《机械设计基础》 设计实践设计计算说明书 题目:盘形凸轮轮廓设计 学院:航天学院 班号:0818201班 学号:1081820101 姓名:宋春林 日期:2010年9月26日

《机械设计基础》设计实践任务书 题目:盘形凸轮轮廓设计设计原始数据及要求: 凸轮角速度ω方向:顺时针基圆半径:40mm 偏距:8mm 滚子半径:10mm 推杆运动规律:

目录 设计过程 (1) 1取比例尺并作基圆 (1) 2作反转运动,量取?0、?s、?0′、?s′,,等分?0、?0′ (1) 3计算推杆的预期位移 (1) 4确定理论轮廓线上的点 (1) 5绘制理论轮廓线 (2) 6绘制实际轮廓线 (3) 参考文献: (4)

设计过程 1取比例尺并作基圆 取比例尺为1:1,在图纸上选一个合适的位置作为凸轮回转中心,并以之为圆心,40mm 为半径绘出凸轮基圆。 2作反转运动,量取?0、?s、?0′、?s′,,等分?0、?0′ 在基圆上由起始点位置1出发,沿着?ω1回转方向依次量取?0=150°、?s=30°、?0′=120°、?s′=60°,并将推程运动角?0五等分,回程运动角?0′六等分。作出各等分线。 1 3计算推杆的预期位移 =30φ/150°(φ=0°~150°) ①等速推程时s=hφ ?0 计算结果见下表: ②等速回程时s=h?hφ ?0′ 计算结果见下表 以凸轮回转中心为圆心,8mm长为半径作偏距圆,找到各等分线与偏距圆的交点。过

这些交点分别作偏距圆的切线,这些切线与基圆相交后按照以上两表延长出相应的距离。其端点就是理论轮廓线上的点。 5绘制理论轮廓线 将上面的确定的理论轮廓线上的各点用一条光滑曲线连起来,就可以得到理论轮廓线。

盘形凸轮的四种设计方法

盘形凸轮的四种设计方法 深圳市百特兴科技有限公司 周杰平 摘要:详细介绍运用SolidWorks 绘制盘形凸轮的不同方法,包括插件法、解析法、折弯法及仿真法。 关键词:盘形凸轮,插件法,解析法,折弯法,仿真法,余弦加速度, SolidWorks,EXCEL。 凸轮/连杆机构以其快速、稳定的特点,在很多的场合尤其是传统的制程设备中得以运用。但其缺点也很明显:适应性较差,结构相对比较复杂,开发周期长,凸轮加工精确要求比较高等,非标设备大多由伺服马达/步进马达、丝杆/同步带、气缸/油缸等替代。近年来,由于对设备产能要求越来也高,传统的凸轮/连杆机构又受到用户青睐。以动力电池制造设备中塑封制程为例。进口设备核心机构采用凸轮/连杆机构,产能在140件/分钟以上,国产设备采用伺服/丝杆驱动,产能则在50件/分钟左右。更为重要的是前者用于制程的有效时间更长,确保了品质的可靠性。凸轮的设计将成为机构设计工程是不可缺少的技能。 本文以盘形凸轮为研究对象,分别介绍几种不同的设计方法。 一、基本参数 1.1、凸轮基本参数 项目 代号 参数值 基圆直径 D 150 凸轮厚度 W 15 辊子直径 d 25 升程 h 50 表1 1.2、从动杆运动规律 动作 运动角度数 (Φ) 起始角度位置 终止角度位置 结束半径 运动规律 推程 120 0 120 125 余弦加速度 远休止角 30 120 150 125 回程 90 150 240 75 余弦加速度 近休止角 120 240 360 75 表2 注:余弦加速度(简谐运动)方程: S=h*[1-cos(πφ/Φ)]/2

图1 二、SolidWorks 插件法 2.1、如图2,打开SolidWorks,新建零件,关闭草图。菜单栏Toolbox -> 凸轮 如菜单栏无Toolbox,先加入插件。 图2 图3 2.2、设置。如图3 凸轮类型为圆形,推杆类型为平移,如果是偏心的,可作相应的选择;开始半径为基圆半径,开始角度根据<表2>填写;旋转方向为顺时针 2.3、运动如图4

凸轮轮廓课程设计

广东工业大学华立学院 课程设计(论文) 课程名称机械原理课程设计 题目名称对心直动平底从动件盘形凸轮机构的设计 学生学部(系)机电工程学部 专业班级 10机械2班 学号 (40) 学生姓名 ~开 指导教师 2012年06月30日 广东工业大学华立学院 课程设计(论文)任务书

一、课程设计(论文)的内容 通过利用AutoCAD软件、AutoCAD二次开发技术绘制对心直动平底从动件盘形凸轮轮廓,用图解法进行对心直动平底从动件盘形凸轮机构的设计,计算出平底推杆平底尺寸长度,最后检验压力角是否满足许用压力角的要求。 1)二、课程设计(论文)的要求与数据 1.用图解法设计盘形凸轮机构,并用CAD画出凸轮轮廓。 2.用图解法设计盘形凸轮机构,并求出平底推杆平底尺寸长度。 3.根据从动件的运动规律计算出位移并绘画该曲线在图纸上; 4.检验压力角是否满足许用压力角的要求; 5.编写课程设计说明书 三、课程设计(论文)应完成的工作 1.绘制对心直动平底从动件盘形凸轮轮廓机构的设计简图。 2.绘制出从动件的位移曲线图。 3.检验压力角是否满足许用压力角的要求并且计算出平底推杆平底尺寸长度。 4.完成课程设计说明书。 四、课程设计(论文)进程安排 五、应收集的资料及主要参考文献 [1] ]孙恒.机械原理(第七版)[M] .北京:高等教育出版社,2006 [2]孙恒.机械原理(第六版)[M] .北京:高等教育出版社,2001

[3]曹金涛.凸轮机构设计[M].北京:机械工业出版社,1985. [4]管荣法.凸轮与凸轮机构基础.[M] 北京:国防工业出版社,1985 发出任务书日期: 2012 年 6 月 16日指导教师签名: 计划完成日期: 2012 年 6 月 30 日教学单位责任人签章: 目录 (一).设计题目:对心直动平底从动件盘形凸轮轮廓机构的设计 (4) (二)凸轮轮廓曲线的设计的基本原理: (5) (三)运动规律分析: (5) (四)用作图法设计对心直动平底从动件盘形凸轮机构: (6) (五)计算平底推杆平底尺寸长度 (10) (六)压力角分析 (11) 参考文献 (14)

cad制作凸轮轮廓曲线

具体作图步骤如下: 1.使用工具栏Circle(圆)命令,绘制直径为200的凸轮基圆。 2.使用工具栏Line(直线)命令,捕捉圆心作凸轮基圆铅垂方向的直线B1B7。注意保持提示直线角度及其前的距离数值(定B1点时应为OB1的长度值,定B7点时应为OB7的长度值)。 3.重复使用Line命令,利用每隔30°呈现的角度提示,保证所绘制直线沿圆周分布每30°一条;利用提示中角度之前的距离数值分别确定样条拟合数据点:OB1、OB2、OB3……、OB11;B0和B12是凸轮轮廓的起讫,也是基圆上的同一点,提示中显示的“交点”即为B0/B12点。 4.使用工具栏中Spline(样条曲线绘制)命令。系统提示输入初始点:用鼠标捕捉B0点;系统要求输入第二点:用鼠标捕捉B1点;如此,系统不停要求输入数据点,用鼠标依次捕捉B2、B3、…、B11、B12(B0)。在完成最后一个数据点的输入时,单击鼠标右键确定即可。 5.使用工具栏中Circle命令,绘制凸轮内小圆,与基圆同心,半径为40。该圆表示凸轮与轴配合的轮廓线。 6.使用工具栏橡皮擦命令,擦除基圆轮廓线和直线段。 7.使用工具栏中ARC(弧线绘制)命令。圆整凸轮轮廓曲线。系统提示弧线起点或中心,即:Specify start point of are or [Center]:c(表示给出圆心)。 Specify center point of are:用鼠标捕捉圆心。 Specify start point of are:鼠标捕捉样条曲线(凸轮轮廓曲线)的起点B0点。 Specify end point of are:鼠标捕捉样条曲线的终点B12点。 8.在下拉菜单中选择Modify→Properties(修改→对象特性)命令。选择所绘制的全部图线,改线宽(Line weight)为0.70mm,打开命令下方开关LWT(打开显示线宽)。 9.凸轮平面绘制完毕。其绘图速度快、图形效果好

凸轮轮廓曲线

姓名:雷小舟班级:机制04班学号:1103010411 利用VB绘制凸轮轮廓曲线及计算相关直角坐标和压力角VB程序语言如下: Private Sub Command1_Click() '参数初始化 Dim r0%, r1%, h%, e% Dim a1%, a01%, a2%, a02% r0 = Val(InputBox("请输入基圆半径")) r1 = Val(InputBox("请输入滚子半径")) h = Val(InputBox("请输入升程")) e = Val(InputBox("请输入偏距")) a1 = V al(InputBox("请输入推程运动角")) a01 = Val(InputBox("请输入远休止角")) a2 = V al(InputBox("请输入回程运动角")) a02 = Val(InputBox("请输入近休止角")) Text1.Text = r0 Text2.Text = r1 Text3.Text = h Text4.Text = e Text5.Text = a1 Text6.Text = a01 Text7.Text = a2 Text8.Text = a02 Picture1.Scale (-75, 55)-(75, -55) '建立坐标系 Picture1.Line (0, 50)-(0, -50) Picture1.Line (-55, 0)-(55, 0) '初始化参数 Dim i!, j!, k!, m!, n!, l! Dim a!, b!, c!, d!, f! Const pi = 3.141592653 Dim s#(360), s1#(360) Dim ds#(360), ds1#(360) Dim dx#(360), dy#(360) a = a1 b = a1 + a01 c = a1 + a01 + a2 / 2 d = a1 + a01 + a2 f = 360 j = 0 For i = 0 To a '推程段 s(j) = h * (1 - Cos(pi * i / a1)) / 2

凸轮设计-习题

第03章 凸轮机构及其设计 一、填空题 1.凸轮机构中的压力角是 和 所夹的锐角。 2.凸轮机构中,使凸轮与从动件保持接触的方法有 和 两种。 3.在回程过程中,对凸轮机构的压力角加以限制的原因是 。 4.在推程过程中,对凸轮机构的压力角加以限制的原因是 。 5.在直动滚子从动件盘形凸轮机构中,凸轮的理论廓线与实际廓线间的关系是 。 6.凸轮机构中,从动件根据其端部结构型式,一般有 、 、 等三种型式。 7.设计滚子从动件盘形凸轮机构时,滚子中心的轨迹称为凸轮的 廓线;与滚子相包络的凸轮廓线称为 廓线。 8.盘形凸轮的基圆半径是 上距凸轮转动中心的最小向径。 9.根据图示的?? -22d d s 运动线图,可判断从动件的推程运动是_____________,从动件的回程运动是______________。 题9图 10.从动件作等速运动的凸轮机构中,其位移线图是 线,速度线图是 线。 11.当初步设计直动尖顶从动件盘形凸轮机构中发现有自锁现象时,可采用 、 、 等办法来解决。 12.在设计滚子从动件盘形凸轮轮廓曲线中,若出现 时,会发生从动件运动失真现象。此时,可采用 方法避免从动件的运动失真。 13.用图解法设计滚子从动件盘形凸轮轮廓时,在由理论轮廓曲线求实际轮廓曲线的过程中,若实际轮廓曲线出现尖点或交叉现象,则与 的选择有关。 14.在设计滚子从动件盘形凸轮机构时,选择滚子半径的条件是 。 15.平底从动件盘形凸轮机构中,凸轮基圆半径应由 来决定。 16.凸轮的基圆半径越小,则凸轮机构的压力角越 ,而凸轮机构的尺寸越 。

17.凸轮基圆半径的选择,需考虑到、,以及凸轮的实际廓线是否出现变尖和失真等因素。 18.在许用压力角相同的条件下,从动件可以得到比从动件更小的凸轮基圆半径。或者说,当基圆半径相同时,从动件正确偏置可以凸轮机构的推程压力角。 19.直动尖顶从动件盘形凸轮机构的压力角是指 ;直动滚子从动件盘形凸轮机构的压力角是指 ;而直动平底从动件盘形凸轮机构的压力角等于。 20.凸轮机构从动件的基本运动规律有, ,,。其中运动规律在行程始末位置有刚性冲击。 二、判断题 21.偏置直动尖顶从动件盘形凸轮机构中,其推程运动角等于凸轮对应推程廓线所对中心角;其回程运动角等于凸轮对应回程廓线所对中心角。( ) 22.在直动从动件盘形凸轮机构中进行合理的偏置,是为了同时减小推程压力角和回程压力角。( ) 24.当凸轮机构的压力角的最大值超过许用值时,就必然出现自琐现象。() 25.凸轮机构中,滚子从动件使用最多,因为它是三种从动件中的最基本形式。()26.直动平底从动件盘形凸轮机构工作中,其压力角始终不变。() 27.滚子从动件盘形凸轮机构中,基圆半径和压力角应在凸轮的实际廓线上来度量。()28.滚子从动件盘形凸轮的实际轮廓曲线是理论轮廓曲线的等距曲线。因此,只要将理论廓线上各点的向径减去滚子半径,便可得到实际轮廓曲线上相应点的向径。()29.从动件按等加速等减速运动规律运动时,推程的始点、中点及终点存在柔性冲击。因此,这种运动规律只适用于中速重载的凸轮机构中。() 30.从动件按等加速等减速运动规律运动是指从动件在推程中按等加速运动,而在回程中则按等减速运动,且它们的绝对值相等。() 31.从动件按等速运动规律运动时,推程起始点存在刚性冲击,因此常用于低速的凸轮机构中。() 32.在对心直动尖顶从动件盘形凸轮机构中,当从动件按等速运动规律运动时,对应的凸轮廓线是一条阿米德螺旋线。() 33.凸轮的理论廓线与实际廓线大小不同,但其形状总是相似的。() 34.设计对心直动平底从动件盘形凸轮机构时,若要求平底与导路中心线垂直,则平底左右两侧的宽度必须分别大于导路中心线到左右两侧最远切点的距离,以保证在所有位置平底都能与凸轮廓线相切。( ) 三、选择题 35.理论廓线相同而实际廓线不同的两个对心直动滚子从动件盘形凸轮机构,其从动件的运动规律。(A)相同;(B)不相同。 36.对于转速较高的凸轮机构,为了减小冲击和振动,从动件运动规律最好采用运动规律。(A)等速;(B)等加速等减速;(C)正弦加速度。 37.凸轮机构中从动件作等加速等减速运动时将产生冲击。它适用于场合。 (A)刚性;(B)柔性;(C)无刚性也无柔性;(D)低速;(E)中速;(F)高速。

凸轮设计步骤

用几何法和解析法设计凸轮轮廓曲线的原理和步骤2015-11-9 16:28:40 作者:风雨考验人气:1252次评论(0) 所属标签:产品外观设计 根据使用要求确定了凸轮机构的类型、基本参数以及从动件运动规律后,即可进行凸轮轮廓曲线的设计。设计方法有几何法和解析法,两者所依据的设计原理基本相同。几何法简便、直观,但作图误差较大,难以获得凸轮轮廓曲线上各点的精确坐标,所以按几何法所得轮廓数据加工的凸轮只能应用于低速或不重要的场合。对于高速凸轮或精确度要求较高的凸轮,必须建立凸轮理论轮廓曲线、实际轮廓曲线以及加工刀具中心轨迹的坐标方程,并精确地计算出凸轮轮廓曲线或刀具运动轨迹上各点的坐标值,以适合在数控机床上加工。 圆柱凸轮的廓线虽属空间曲线,但由于圆柱面可展成平面,所以也可以借用平面盘形凸轮轮廓曲线的设计方法设计圆柱凸轮的展开轮廓。下面时间财富网的小编分别介绍用几何法和解析法设计凸轮轮廓曲线的原理和步骤。 1 几何法 反转法设计原理: 以尖底偏置直动从动件盘形凸轮机构为例: 凸轮机构工作时,凸轮和从动件都在运动。为了在图纸上画出凸轮轮廓曲线,应当使凸轮与图纸平面相对静止,为此,可采用如下的反转法:使整个机构以角速度(-w)绕O转动,其结果是从动件与凸轮的相对运动并不改变,但凸轮固定不动,机架和从动件一方面以角速度(-w)绕O转动,同时从动件又以原有运动规律相对机架往复运动。根据这种关系,不难求出一系列从动件尖底的位置。由于尖底始终与凸轮轮廓接触,所以反转后尖底的运动轨迹就是凸轮轮廓曲线。

1). 直动从动件盘形凸轮机构 尖底偏置直动从动件盘形凸轮机构: 已知从动件位移线图,凸轮以等角速w顺时针回转,其基圆半径为r0,从动件导路偏距为e,要求绘出此凸轮的轮廓曲线。 运用反转法绘制尖底直动从动件盘形凸轮机构凸轮轮廓曲线的方法和步骤如下: 1) 以r0为半径作基圆,以e为半径作偏距圆,点K为从动件导路线与偏距圆的切点,导路线与基圆的交点B0(C0)便是从动件尖底的初始位置。 2) 将位移线图s-f的推程运动角和回程运动角分别作若干等分(图中各为四等分)。 3) 自OC 开始,沿w的相反方向取推程运动角(1800)、远休止角(300)、回程运 动角(1900)、近休止角(600),在基圆上得C 4、C 5 、C 9 诸点。将推程运动角和回程 运动角分成与从动件位移线图对应的等分,得C 1、C 2 、C 3 和C 6 、C 7 、C 8 诸点。 4) 过C1、C2、C3、...作偏距圆的一系列切线,它们便是反转后从动件导路的一系列位置。 5) 沿以上各切线自基圆开始量取从动件相应的位移量,即取线段C1B1=11' 、C2B2=22'、...,得反转后尖底的一系列位置B1、B2、...。 6) 将B0、B1、B2、...连成光滑曲线(B4和B5之间以及B9和B0之间均为以O 为圆心的圆弧),便得到所求的凸轮轮廓曲线。

matlab凸轮轮廓设计及仿真说明书

偏置盘型凸轮创新课程设计 课程名称:机械原理 设计题目:偏置盘型凸轮设计院系:机电学院 班级:09机41 设计者:彭辉 学号:09294040 指导教师:王卫辰 学校:江苏师范大学

前言 凸轮轮廓曲线的设计,一般可分为图解法和解析法.利用图解法能比较方便地绘制出各种平面凸轮的轮廓曲线.但这种方法仅适用于比较简单的结构,用它对复杂结构进行设计则比较困难,而且利用图解法进行结构设计,作图误差较大,对一些精度要求高的结构不能满足设计要求.解析法可以根据设计要求,通过推导机构中各部分之间的几何关系,建立相应的方程,精确地计算出轮廓线上各点的坐标,然后把凸轮的轮廓曲线精确地绘制出来.但是,当从动件运动规律比较复杂时,利用解析法获得凸轮的轮廓曲线的工作量比较大.而MATLAB软件提供了强大的矩阵处理和绘图功能,具有核心函数和工具箱.其编程代码接近数学推导公式,简洁直观,操作简易,人机交互性能好,且可以方便迅速地用三维图形、图像、声音、动画等表达计算结果、拓展思路口。因此,基于MATLAB软件进行凸轮机构的解析法设计,可以解决设计工作量大的问题。 本此课程设计基于MATLAB软件进行凸轮轮廓曲线的解析法设计,并对的运动规律凸轮进行仿真,其具体方法为首先精确地计算出轮廓线上各点的坐标,然后运用MATLAB绘制比较精确的凸轮轮廓曲线和推杆的位移、速度及加速度曲线以及仿真。

目录 前言 1第一章:工作意义 3 1.1本次课程设计意义3 1.2 已知条件4第二章:工作设计过程 5 2.1:设计思路 5 2.2:滚子从动件各个阶段相关方程 6 2.3:盘型凸轮理论与实际轮廓方程 7第三章:工作程序过程 7 3.1:滚子从动件各各阶段MATLAB程序编制 8 3.2:凸轮的理论实际运动仿真程序编制 12 第四章:运行结果 17 4.1:滚子运动的位移图 17 4.2:滚子运动的速度图 17 4.3:滚子运动的加速度图,局部加速度图 18 4.4:滚子运动的仿真图 19 4.5:滚子运动的理论与实际轮廓图 20第五章:设计总结 21 5.1:总结 21第六章:参考文献 22

用作图法绘制凸轮靠模的轮廓曲线

常熟理工学院学报(自然科学)Journal of Changshu Institute Technology (Natural Sciences )第26卷第10Vol.26No.102012年10月Oct.,2012 收稿日期:2012-08-28 作者简介:徐建军(1969—),男,江苏常熟人,一级实习指导教师,研究方向:机械设计与制造.用作图法绘制凸轮靠模的轮廓曲线 徐建军1,包轩庭2 (1.常熟职业教育中心校,江苏常熟215500;2.常熟理工学院机械工程学院,江苏常熟215500) 摘要:提出了一种用作图法来确定凸轮靠模轮廓曲线的方法,比较简便地解决了轮廓为样条曲线的凸轮的磨削问题. 关键词:凸轮;靠模;作图法 中图分类号:TS913文献标识码:B 文章编号:1008-2794(2012)10-0079-03 1引言 某工业缝纫机厂在生产中需要加工一款凸轮,其轮廓形状见图1,该凸轮的 轮廓曲线由样条曲线构成,该曲线是通过三坐标测量仪对凸轮实物采样若干个 点后,用计算机辅助设计软件绘制而成.其加工工艺为:粗加工采用线切割加 工,精加工为磨削加工.由于批量不大,为了降低生产成本,企业没有添置专用 的凸轮磨床,而是对普通的外圆磨床进行改造,采用靠模进行仿形磨削,因此需 要确定该凸轮靠模的轮廓曲线. 2磨削过程分析 凸轮的精加工在外圆磨床上采用仿形磨削完 成.通过靠模控制砂轮架做前后运动,从而控制砂轮 仿形磨削加工出凸轮.靠模导轮安装在砂轮架上,导 轮的中心和砂轮回转中心等高,然后通过强力弹簧将 导轮紧压在靠模上.靠模和凸轮安装在同一芯轴上, 通过电机驱动芯轴回转,从而实现仿形磨削. 由图2可知,假设采用标准形状的凸轮作为靠 模,在磨削凸轮的升程段和降程段时,由于导轮和砂 轮的直径不同,导致导轮与靠模的接触点与砂轮的实 际切削点位置不同.如图2所示,凸轮和靠模的回转 中心是O 1,导轮的回转中心是O 2,砂轮的回转中心是O 3,三点处于同一水平面内 .砂轮与凸轮的接触点是A 点,导轮与靠模 (凸轮标准廓形)的接触点是B 点. 图2凸轮磨削特点分析图图1凸轮外形图

基于MATLAB的凸轮轮廓曲线设计

基于MATLAB的凸轮轮廓曲线设计 摘要凸轮机构的运动设计主要包括从动件运动规律的确定和凸轮轮廓曲线的设计等。通常是先确定从动件的运动规律,然后根据从动件的运动规律确定凸轮的轮廓曲线。本文是在从动件运动规律确定的情况下,利用MATLAB强大的数据处理功能来确定凸轮轮廓曲线。本文以尖底直动从动件盘形凸轮为例,对其凸轮轮廓曲线进行设计。结果表明:在从动件运动规律确定的情况下,利用MATLAB软件,可以很方便的得到相应的轮廓曲线。 关键词凸轮机构;凸轮轮廓曲线;MATLAB 1 凸轮轮廓曲线参数方程的建立 1.1 盘形凸轮轮廓曲线 1)如图1所示为偏置尖底直动从动件、凸轮逆时针方向转动的情况。偏距e、基圆半径r0和从动件运动规律已给出。 假想凸轮固定不动,则机架按-w方向转动,这种运动称为“反转运动”。从动件做复合运动,以从动件上与凸轮接触的点B为动点,静止坐标系固结于凸轮上,动坐标系固结于机架上。动点B对于机架的相对运动为直线运动,机架对于凸轮的牵连运动为-w方向的转动,动点B对于凸轮的绝对运动所产生的轨迹便是凸轮的轮廓曲线。 如图1所示B0点是从动件处于最低位置时动点B的位置,设此点为凸轮轮廓曲线的起始点,当凸轮转过角度以后,从动件上升距离s,动点B从B0点上升到B1点。 然后将B1以O点为圆心转过-w角度便得到B点位置。利用平面矢量旋转矩阵便可得到B点位置坐标。 整理得到凸轮轮廓曲线上的点B的坐标与凸轮转角之间的关系。 2)对心平底直动从动件、凸轮顺时针转动的情况。类似于偏置尖底直动从动件、凸轮逆时针方向转动的情况,对心平底直动从动件盘形凸轮的基圆半径和从动件运动规律已经给出。 对于平底直动从动件盘形凸轮机构,利用“反转运动”和从动件运动规律,可以得到平底运动所得到的直线族,直线族的包络线就是凸轮的轮廓曲线。需要注意的是包络线与平的切点并不总是在平底与从动件运动导路上。 当凸轮顺时针方向转动一定角度时,凸轮的轮廓与平的接触点便是凸轮和从动件的速度顺心。由此便得到凸轮与从动件的接触点位置,然后通过平面矢量旋

matlab解析法画凸轮轮廓线

班级:姓名:学号: 基于matlab的凸轮轮廓设计 一、设计凸轮机构的意义 在工业生产中,经常要求机器的某些部件按照规定的准确路线运动,仅应用连杆机构已难以满足这个要求,所以需要利用工作表面具有一定形状的凸轮。凸轮在所有基本运动链中,具有易于设计和能准确预测所产生的运动的优点。如果设计其他机构来产生给定的运功、速度、和加速度,其设计工作是很复杂的,但是设计凸轮机构则比较容易,而且运动准确、有效。所以在许多机器中,如纺织机、包装机、自动机床、自动化专用机床、数控机床、印刷机、内燃机、建筑机械、矿山机械、计算机的辅助装备及农业机具等,都可以找到凸轮机构。 在进行研究时,先设计一个简单的凸轮,在给定的旋转角度内有一定的总升距。设计凸轮轮廓的基本方法是把凸轮固定,使从动件以其与凸轮的相关位置绕凸轮回转而形成凸轮轮廓。因此设计凸轮时,必须画出足够多的点,使凸轮轮廓平滑可靠。 Matlab软件提供了强大的矩阵处理和绘图功能,具有核心函数工具箱。其编程代码接近数学推导公式,简洁直观,操作简易,人机交互性能好。因此,基于matlab软件进行凸轮机构的设计可以解决设计工作量大的问题。运用解析法进行设计,matlab可以精确的计算出轮廓上每一点的坐标,然后更为精确的绘制出凸轮轮廓曲线。

二、设计凸轮机构的已知条件 凸轮做逆时针方向转动,从动件偏置在凸轮轴心右边。从动件在推程做等加/减速运动,在回程做余弦加速运动。基圆半径rb=50mm,滚子半径rt=10mm,推杆偏距e=10mm,推程升程h=50mm,推程运动角ft=100o,远休止角fs=60o,回程运动角fh=90o。 三、分析计算 1、建立坐标系 以凸轮轴心为坐标原点建立平面直角坐标系XOY,取杆件上升方向为Y轴正方向。 2、推杆运动规律计算 凸轮运动一周可分为5个阶段:推程加速阶段、推程减速阶段、远休止阶段、回程阶段、进休止阶段。 根据已知条件,推程阶段为等加/减速,故推程阶段的运动方程为: 推程加速阶段(0~f t/2) s f=2???f2 f t 2 v f=ds f=4???f f t 2 推程减速阶段(f t/2~f t)

相关文档
最新文档