八数码宽度优先搜索

八数码宽度优先搜索
八数码宽度优先搜索

/*程序利用C++程序设计语言,在VC6.0下采用宽度优先的搜索方式,

成功的解决了八数码问题。程序中把OPEN表和CLOSED表用队列的方式存储,

大大地提高了效率,开始的时候要输入目标状态和起始状态,由于在宽度优先搜索的情况下,搜索过程中所走过的状态是不确定且很庞大的,所以程序

最后输出宽度优先情况下最少步数的搜索过程以及程序运行所需要的时间*/

#include "iostream"

#include "stdio.h"

#include "stdlib.h"

#include "time.h"

#include "string.h"

#include

#include

using namespace std;

constint N = 3;//3*3图

enum Direction{None,Up,Down,Left,Right};//方向

staticint n=0;

staticint c=0;

struct Map//图

{

int cell[N][N];//数码数组

Direction BelockDirec;//所屏蔽方向

struct Map * Parent;//父节点

};

//打印图

voidPrintMap(struct Map *map)

{

cout<<"*************************************************"<

for(int i=0;i

{

for(int j=0;j

{

cout<cell[i][j]<<" ";

}

cout<

}

cout<<"*************************************************"<

}

//移动图

struct Map * MoveMap(struct Map * map,DirectionDirect,boolCreateNewMap)

{

struct Map * NewMap;

//获取空闲格位置inti,j;

for(i = 0; i < N; i++)

{ boolHasGetBlankCell = false; for(j = 0; j < N; j++)

{

if(map->cell[i][j] == 0)

{ HasGetBlankCell = true; break;

}

}

if(HasGetBlankCell) break;

}

//移动数字

intt_i = i,t_j = j; boolAbleMove = true; switch(Direct)

{

case Down:

t_i++;

if(t_i>= N)

AbleMove=false;

break;

case Up:

t_i--;

if(t_i< 0)

AbleMove=false;

break;

case Left:

t_j--;

if(t_j< 0)

AbleMove=false;

break;

case Right:

t_j++;

if(t_j>= N)

AbleMove=false;

break;

};

if(!AbleMove)//不可以移动则返回原节点

{

return map;

}

if(CreateNewMap)

{

NewMap = new Map();

for(int x = 0; x < N; x++)

for(int y = 0; y < N; y++)

NewMap->cell[x][y] = map->cell[x][y];

}

else

NewMap = map;

NewMap->cell[i][j] = NewMap->cell[t_i][t_j];

NewMap->cell[t_i][t_j] = 0;

returnNewMap;

}

boolIsSuccess(struct Map * map,struct Map * Target)

{

boolIsSuc = true;

for(int i = 0; i < N; i++)

{

for(int j = 0; j < N; j++)

{

if(map->cell[i][j] != Target->cell[i][j])

{

IsSuc = false;

break;

}

}

if(!IsSuc)

break;

}

returnIsSuc;

}

struct Map * BNF_Search(struct Map * begin,struct Map * Target) {

struct Map * p1, *p2, *p=NULL;

boolIsSucc = false;

queue Queue;

if(IsSuccess(begin,Target))

return begin;

Queue.push(begin);

do

{

p1 = Queue.front();

Queue.pop();

for (int i = 1; i <= 4; i++)

{

Direction Direct=(Direction)i;

if(Direct == p1->BelockDirec)//跳过屏蔽方向continue;

p2 = MoveMap(p1,Direct,true);

if(p2 != p1) //数码是否可以移动

{

p2->Parent = p1;

switch(Direct)//设置屏蔽方向,防止往回推

{

case Up:

p2->BelockDirec = Down;

break;

case Down:

p2->BelockDirec = Up;

break;

case Left:

p2->BelockDirec = Right;

break;

case Right:

p2->BelockDirec = Left;

break;

}

if (IsSuccess(p2,Target))

{

p = p2;

return p;

}

Queue.push(p2);

n++;

}

}

}

while(!Queue.empty() || p == NULL);

return p;

}

intJou(struct Map *map) //将八数码转换成一个数列,并计算其逆序数{

int a=0;

char b[9];

for(int i=0;i

{

for(int j=0;j

b[i*3+j]=map->cell[i][j];

}

for(int k=0;k<9;k++)

{

for(int h=0;h

{

if((b[h]

a++;

}

}

return a%2;

}

int main()

{

int a1,a2;

inti,j,m,n;

int target[9];

int flag;

Map Target;

Map *begin,*T;

begin=new Map;

cout<<"请输入八数码的目标状态(用0代替空格):"<

//输入目标状态

for (i=0;i<9;i++) //此for循环用来把输入的数存入到target数组中{

flag=0;

cin>>target[i];

for(j=0;j

if(target[i]==target[j])

flag=1;

if (target[i]<0||target[i]>8||flag==1) //判断输入是否正确

{

i--;

cout<<"输入错误,请关闭重新运行!\n";

}

}

int k=0;

for (m=0;m<3;m++) //把数组target中的数传给图Target {

for (n=0;n<3;n++)

{

Target.cell[m][n]=target[k];

k++;

}

}

//输入起始状态

cout<<"请输入八数码的起始状态(用0代替空格):"<

for (i=0;i<9;i++)

{

flag=0;

cin>>target[i];

for(j=0;j

if(target[i]==target[j]) //判断输入的数是否正确

flag=1;

if (target[i]<0||target[i]>8||flag==1)

{

i--;

cout<<"输入错误,请关闭重新运行!\n";

}

}

k=0;

for (m=0;m<3;m++)

{

for (n=0;n<3;n++)

{

begin->cell[m][n]=target[k];

k++;

}

}

begin->Parent = NULL;

begin->BelockDirec = None;

cout<<"目标图:"<

PrintMap(&Target);

cout<<"起始图:"<

PrintMap(begin);

a1=Jou(&Target);

a2=Jou(begin);

if(a1!=a2)

{

cout<<"无解"<

exit(0); //无解的话就退出,重新运行

}

else

{

double start=clock();

cout<<"有解"<

//图搜索

T=BNF_Search(begin,&Target);

//打印

if(T != NULL)

{

//把路径倒序

Map *p=T;

stack Stack1;

while(p->Parent != NULL)

{

Stack1.push(p);

p = p->Parent;

}

cout<<"宽度优先最少步数的搜索过程为:"<

while(!Stack1.empty())

{

PrintMap(Stack1.top());

c++;

Stack1.pop();

}

cout<<"\n完成!"<

cout<<"找到目标状态所需要的最少步数为:"<

double end=clock();

cout<<"程序运行的时间为:"<

}

}

return 0;

}

用A算法解决八数码问题演示教学

用A算法解决八数码 问题

用A*算法解决八数码问题 一、 题目:八数码问题也称为九宫问题。在3×3的棋盘,有八个棋子,每个 棋子上标有1至8的某一数字,不同棋子上标的数字不相同。棋盘上还有一个空格,与空格相邻的棋子可以移到空格中。要解决的问题是:任意给出一个初始状态和一个目标状态,找出一种从初始转变成目标状态的移动棋子步数最少的移动步骤。 二、 问题的搜索形式描述 状态:状态描述了8个棋子和空位在棋盘的9个方格上的分布。 初始状态:任何状态都可以被指定为初始状态。 操作符:用来产生4个行动(上下左右移动)。 目标测试:用来检测状态是否能匹配上图的目标布局。 路径费用函数:每一步的费用为1,因此整个路径的费用是路径中的步数。 现在任意给定一个初始状态,要求找到一种搜索策略,用尽可能少的步数得到上图的目标状态算法介绍 三、 解决方案介绍 1.A*算法的一般介绍 A*(A-Star)算法是一种静态路网中求解最短路最有效的方法。对 于几何路网来说,可以取两节点间欧几理德距离(直线距离)做为估价 值,即 ()()()()()()**f g n sqrt dx nx dx nx dy ny dy ny =+--+--; 这样估价函数f 在g 值一定的情况下,会或多或少的受估价值h 的制 约,节点距目标点近,h 值小,f 值相对就小,能保证最短路的搜索向终点的方向进行。明显优于盲目搜索策略。

A star算法在静态路网中的应用 2.算法伪代码 创建两个表,OPEN表保存所有已生成而未考察的节点,CLOSED表中记录已访问过的节点。算起点的估价值,将起点放入OPEN表。 while(OPEN!=NULL) { 从OPEN表中取估价值f最小的节点n; if(n节点==目标节点) {break;} for(当前节点n 的每个子节点X) { 算X的估价值; if(X in OPEN) { if( X的估价值小于OPEN表的估价值 ) {把n设置为X的父亲; 更新OPEN表中的估价值; //取最小路径的估价值} } if(X inCLOSE) { if( X的估价值小于CLOSE表的估价值 )

八数码问题求解--实验报告讲解

实验报告 一、实验问题 八数码问题求解 二、实验软件 VC6.0 编程语言或其它编程语言 三、实验目的 1. 熟悉人工智能系统中的问题求解过程; 2. 熟悉状态空间的盲目搜索和启发式搜索算法的应用; 3. 熟悉对八数码问题的建模、求解及编程语言的应用。 四、实验数据及步骤 (一、)实验内容 八数码问题:在3×3的方格棋盘上,摆放着1到8这八个数码,有1个方格是空的,其初始状态如图1所示,要求对空格执行空格左移、空格右移、空格上移和空格下移这四个操作使得棋盘从初始状态到目标状态。 2 8 3 1 2 3 1 4 8 4 7 6 5 7 6 5 (a) 初始状态(b) 目标状态 图1 八数码问题示意图 (二、)基本数据结构分析和实现 1.结点状态 我采用了struct Node数据类型 typedef struct _Node{

int digit[ROW][COL]; int dist; // distance between one state and the destination一 个表和目的表的距离 int dep; // the depth of node深度 // So the comment function = dist + dep.估价函数值 int index; // point to the location of parent父节点的位置 } Node; 2.发生器函数 定义的发生器函数由以下的四种操作组成: (1)将当前状态的空格上移 Node node_up; Assign(node_up, index);//向上扩展的节点 int dist_up = MAXDISTANCE; (2)将当前状态的空格下移 Node node_down; Assign(node_down, index);//向下扩展的节点 int dist_down = MAXDISTANCE; (3)将当前状态的空格左移 Node node_left; Assign(node_left, index);//向左扩展的节点 int dist_left = MAXDISTANCE; (4)将当前状态的空格右移 Node node_right; Assign(node_right, index);//向右扩展的节点 int dist_right = MAXDISTANCE; 通过定义结点状态和发生器函数,就解决了8数码问题的隐式图的生成问题。接下来就是搜索了。 3.图的搜索策略 经过分析,8数码问题中可采用的搜速策略共有:1.广度优先搜索、2.深度优先搜索、2.有界深度优先搜索、4.最好优先搜索、5.局部择优搜索,一共五种。其中,广度优先搜索法是可采纳的,有界深度优先搜索法是不完备的,最好优先和局部择优搜索法是启发式搜索法。 实验时,采用了广度(宽度)优先搜索来实现。 (三、)广度(宽度)优先搜索原理 1. 状态空间盲目搜索——宽度优先搜索 其基本思想是,从初始节点开始,向下逐层对节点进形依次扩展,并考察它是否为目标节点,再对下层节点进行扩展(或搜索)之前,必须完成对当层的所有节点的扩展。再搜索过程中,未扩展节点表OPEN中的节点排序准则是:先进入的节点排在前面,后进入的节点排在后面。其搜索过程如图(1)所示。

C语言实现8数码问题

1、实验目的 (1)熟悉人工智能系统中的问题求解过程; (2)熟悉状态空间中的盲目搜索策略; (3)掌握盲目搜索算法,重点是宽度优先搜索和深度优先搜索算法。 2、实验要求 用VC语言编程,采用宽度优先搜索和深度优先搜索方法,求解8数码问题 3、实验内容 (1)采用宽度优先算法,运行程序,要求输入初始状态 假设给定如下初始状态S0 2 8 3 1 6 4 7 0 5 和目标状态Sg 2 1 6 4 0 8 7 5 3 验证程序的输出结果,写出心得体会。 (2)对代码进行修改(选作),实现深度优先搜索求解该问题 提示:每次选扩展节点时,从数组的最后一个生成的节点开始找,找一个没有被扩展的节点。这样也需要对节点添加一个是否被扩展过的标志。 4 源代码及实验结果截图 #include #include #include

//八数码状态对应的节点结构体 struct Node{ int s[3][3];//保存八数码状态,0代表空格 int f,g;//启发函数中的f和g值 struct Node * next; struct Node *previous;//保存其父节点 }; int open_N=0; //记录Open列表中节点数目 //八数码初始状态 int inital_s[3][3]={ 2,8,3,1,6,4,7,0,5 }; //八数码目标状态 int final_s[3][3]={ 2,1,6,4,0,8,7,5,3 }; //------------------------------------------------------------------------ //添加节点函数入口,方法:通过插入排序向指定表添加 //------------------------------------------------------------------------ void Add_Node( struct Node *head, struct Node *p) { struct Node *q;

广度优先搜索训练题

广度优先搜索训练题 一、奇怪的电梯 源程序名LIFT.PAS 可执行文件名 LIFT.EXE 输入文件名 LIFT.IN 输出文件名 LIFT.OUT 呵呵,有一天我做了一个梦,梦见了一种很奇怪的电梯。大楼的每一层楼都可以停电梯,而且第i层楼(1<=i<=N)上有一个数字Ki(0<=Ki<=N)。电梯只有四个按钮:开,关,上,下。上下的层数等于当前楼层上的那个数字。当然,如果不能满足要求,相应的按钮就会失灵。例如:3 3 1 2 5代表了Ki(K1=3,K2=3,……),从一楼开始。在一楼,按“上”可以到4楼,按“下”是不起作用的,因为没有-2楼。那么,从A楼到B楼至少要按几次按钮呢? 输入 输入文件共有二行,第一行为三个用空格隔开的正整数,表示N,A,B(1≤N≤200, 1≤A,B≤N),第二行为N个用空格隔开的正整数,表示Ki。 输出 输出文件仅一行,即最少按键次数,若无法到达,则输出-1。 样例 LIFT.IN 5 1 5 3 3 1 2 5 LIFT.OUT 3 二、字串变换 [问题描述]: 已知有两个字串 A$, B$ 及一组字串变换的规则(至多6个规则): A1$ -> B1$ A2$ -> B2$ 规则的含义为:在 A$中的子串 A1$ 可以变换为 B1$、A2$ 可以变换为B2$ …。例如:A$='abcd' B$='xyz' 变换规则为: ‘abc’->‘xu’‘ud’->‘y’‘y’->‘yz’ 则此时,A$ 可以经过一系列的变换变为 B$,其变换的过程为:‘abcd’->‘xud’->‘xy’->‘xyz’ 共进行了三次变换,使得 A$ 变换为B$。 [输入]: 键盘输人文件名。文件格式如下: A$ B$ A1$ B1$ \

用盲目搜索技术解决八数码问题

. 用盲目搜索技术解决八数码问题 题目 在3×3的棋盘,有八个棋子,每个棋子上标有1至8的某一数字,不同棋子上 标的数字不相同。棋盘上还有一个空格,与空格相邻的棋子可以移到空格中。要解决的问题是:任意给出一个初始状态和一个目标状态,找出一种从初始转变成目标状态的移动棋子步数最少的移动步骤。 算法流程 使用宽度优先搜索 从初始节点开始,向下逐层对节点进形依次扩展,并考察它是否为目标节点,再对下层节点进行扩展(或搜索)之前,必须完成对当层的所有节点的扩展。再搜 索过程中,未扩展节点表OPEN中的节点排序准则是:先进入的节点排在前面, 后进入的节点排在后面。 宽度优先算法如下: 把初始结点S0放入OPEN表中 若OPEN表为空,则搜索失败,问题无解 取OPEN表中最前面的结点N放在CLOSE表中,并冠以顺序编号n 若目标结点,则搜索成功,问题有解N?Sg若N无子结点,则转2 扩展结点N,将其所有子结点配上指向N的放回指针,依次放入OPEN表的尾部,转2 源程序 #include 文档Word . #include #include

using namespace std; const int ROW = 3;//行数 const int COL = 3;//列数 const int MAXDISTANCE = 10000;//最多可以有的表的数目const int MAXNUM = 10000; typedef struct _Node{ int digit[ROW][COL]; int dist;//distance between one state and the destination 一个表和目的表的距离 int dep; // the depth of node深度 // So the comment function = dist + dep.估价函数值 int index; // point to the location of parent父节点的位置} Node; Node src, dest;// 父节表目的表 vector node_v; // store the nodes存储节点 文档Word . bool isEmptyOfOPEN() //open表是否为空

启发式搜索算法解决八数码问题(C语言)

1、程序源代码 #include #include struct node{ int a[3][3];//用二维数组存放8数码 int hx;//函数h(x)的值,表示与目标状态的差距 struct node *parent;//指向父结点的指针 struct node *next;//指向链表中下一个结点的指针 }; //------------------hx函数-------------------// int hx(int s[3][3]) {//函数说明:计算s与目标状态的差距值 int i,j; int hx=0; int sg[3][3]={1,2,3,8,0,4,7,6,5}; for(i=0;i<3;i++) for(j=0;j<3;j++) if(s[i][j]!=sg[i][j]) hx++; return hx; } //-------------hx函数end----------------------// //-------------extend扩展函数----------------// struct node *extend(node *ex) { //函数说明:扩展ex指向的结点,并将扩展所得结点组成一条//单链表,head指向该链表首结点,并且作为返回值 int i,j,m,n; //循环变量 int t; //临时替换变量 int flag=0; int x[3][3];//临时存放二维数组 struct node *p,*q,*head; head=(node *)malloc(sizeof(node));//head p=head; q=head; head->next=NULL;//初始化 for(i=0;i<3;i++)//找到二维数组中0的位置 { for(j=0;j<3;j++)

八数码难题 Matlab

一、实验目的 1、熟悉和掌握启发式搜索的定义、估价函数和算法过程。 2、利用A*算法求解N数码难题,理解求解流程和搜索顺序。 二、实验内容 以八数码为例实现A或A*算法。 1、分析算法中的OPEN表CLOSE表的生成过程。 1)建立一个队列,计算初始结点的估价函数f,并将初始结点入队,设置队列头和尾指针。 2)取出队列头(队列头指针所指)的结点,如果该结点是目标结点,则输出路径,程序结束。否则对结点进行扩展。 3)检查扩展出的新结点是否与队列中的结点重复,若与不能再扩展的结点重复(位于队列头指针之前),则将它抛弃;若新结点与待扩展的结点重复(位于队列头指针之后),则比较两个结点的估价函数中g的大小,保留较小g值的结点。跳至第五步。 4)如果扩展出的新结点与队列中的结点不重复,则按照它的估价函数f大小将它插入队列中的头结点后待扩展结点的适当位置,使它们按从小到大的顺序排列,最后更新队列尾指针。 5)如果队列头的结点还可以扩展,直接返回第二步。否则将队列头指针指向下一结点,再返回第二步。 2、分析估价函数对搜索算法的影响。

3、分析启发式搜索算法的特点。 广度优先搜索和双向广度优先搜索都属于盲目搜索,这在状态空间不大的情况下是很合适的算法,可是当状态空间十分庞大时,它们的效率实在太低,往往都是在搜索了大量无关的状态结点后才碰到解答,甚至更本不能碰到解答。 搜索是一种试探性的查寻过程,为了减少搜索的盲目性引,增加试探的准确性,就要采用启发式搜索了。所谓启发式搜索就是在搜索中要对每一个搜索的位置进行评估,从中选择最好、可能容易到达目标的位置,再从这个位置向前进行搜索,这样就可以在搜索中省略大量无关的结点,提高了效率。 启发式函数选取为:f*(n)=g*(n)+ h*(n) 其中: g*(n)是搜索树中节点n的深度 h*(n)用来计算对应于节点n的数据中错放的棋子个数。 三、实验结果

八数码宽度优先搜索

/*程序利用C++程序设计语言,在VC6.0下采用宽度优先的搜索方式, 成功的解决了八数码问题。程序中把OPEN表和CLOSED表用队列的方式存储, 大大地提高了效率,开始的时候要输入目标状态和起始状态,由于在宽度优先搜索的情况下,搜索过程中所走过的状态是不确定且很庞大的,所以程序 最后输出宽度优先情况下最少步数的搜索过程以及程序运行所需要的时间*/ #include "iostream" #include "stdio.h" #include "stdlib.h" #include "time.h" #include "string.h" #include #include using namespace std; constint N = 3;//3*3图 enum Direction{None,Up,Down,Left,Right};//方向 staticint n=0; staticint c=0; struct Map//图 { int cell[N][N];//数码数组 Direction BelockDirec;//所屏蔽方向 struct Map * Parent;//父节点 }; //打印图 voidPrintMap(struct Map *map) { cout<<"*************************************************"<cell[i][j]<<" "; } cout<

采用A算法解决八数码问题

人工智能实验一报告题目:采用A*算法解决八数码问题 姓名: XXX 学号: 10S003028 专业:计算机科学与技术 提交日期: 2011-05-04

目录 1问题描述........................................................................................................................... - 2 - 1.1待解决问题的解释............................................................................................... - 2 - 1.2问题的搜索形式描述............................................................................................ - 2 - 1.3解决方案介绍(原理)........................................................................................ - 3 - 2算法介绍........................................................................................................................... - 4 - 2.1A*搜索算法一般介绍............................................................................................ - 4 - 2.2 算法伪代码........................................................................................................... - 4 - 3算法实现........................................................................................................................... - 5 - 3.1 实验环境与问题规模........................................................................................... - 5 - 3.2 数据结构............................................................................................................... - 5 - 3.3 实验结果............................................................................................................... - 6 - 3.4系统中间及最终输出结果.................................................................................... - 6 - 4参考文献........................................................................................................................... - 7 - 5附录—源代码及其注释................................................................................................... - 7 -

图的广度优先搜索的应用

图的广度优先搜索的应用 ◆内容提要 广度优先搜索是分层次搜索,广泛应用于求解问题的最短路径、最少步骤、最优方法等方面。本讲座就最短路径问题、分酒问题、八数码问题三个典型的范例,从问题分析、算法、数据结构等多方面进行了讨论,从而形成图的广度优先搜索解决问题的模式,通过本讲座的学习,能明白什么样的问题可以采用或转化为图的广度优先搜索来解决。在讨论过程中,还同时对同一问题进行了深层次的探讨,进一步寻求解决问题的最优方案。 ◆知识讲解和实例分析 和深度优先搜索一样,图的广度优先搜索也有广泛的用途。由于广度优先搜索是分层次搜索的,即先将所有与上一层顶点相邻接的顶点搜索完之后,再继续往下搜索与该层的所有邻接而又没有访问过的顶点。故此,当某一层的结点出现目标结点时,这时所进行的步骤是最少的。所以,图的广度优先搜索广泛应用于求解问题的最短路径、最少步骤、最优方法等方面。 本次讲座就几个典型的范例来说明图的广度优先搜索的应用。 先给出图的广度优先搜索法的算法描述: F:=0;r:=1;L[r]:=初始值; H:=1;w:=1;bb:=true; While bb do begin H:=h+1;g[h]:=r+1; For I:=1 to w do Begin F:=f+1; For t:=1 to 操作数do Begin ⑴m:=L[f]; {出队列}; ⑵判断t操作对m结点的相邻结点进行操作;能则设标记bj:=0,并生成新结点;不能,则设标记bj:=1; if bj:=0 then {表示有新结点生成} begin for k:=1 to g[h]-1 do if L[k]=新结点then {判断新扩展的结点是否以前出现过} begin bj:=1;k:=g[h]-1

启发式搜索 八数码问题

启发式搜索 1. 介绍 八数码问题也称为九宫问题。在3×3的棋盘,摆有八个棋子,每个棋子上标有1至8的某一数字,不同棋子上标的数字不相同。棋盘上还有一个空格(以数字0来表示),与空格相邻的棋子可以移到空格中。 要求解决的问题是:给出一个初始状态和一个目标状态,找出一种从初始转变成目标状态的移动棋子步数最少的移动步骤。 所谓问题的一个状态就是棋子在棋盘上的一种摆法。解八数码问题实际上就是找出从初始状态到达目标状态所经过的一系列中间过渡状态。 2. 使用启发式搜索算法求解8数码问题。 1) A ,A 星算法采用估价函数 ()()()()w n f n d n p n ??=+??? , 其中:()d n 是搜索树中结点n 的深度;()w n 为结点n 的数据库中错放的棋子个数;()p n 为结点n 的数据库中每个棋子与其目标位置之间的距离总和。 2) 宽度搜索采用f(i)为i 的深度,深度搜索采用f(i)为i 的深度的倒数。 3. 算法流程 ① 把起始节点S 放到OPEN 表中,并计算节点S 的)(S f ; ② 如果OPEN 是空表,则失败退出,无解; ③ 从OPEN 表中选择一个f 值最小的节点i 。如果有几个节点值相同,当其中有一个 为目标节点时,则选择此目标节点;否则就选择其中任一个节点作为节点i ; ④ 把节点i 从 OPEN 表中移出,并把它放入 CLOSED 的已扩展节点表中; ⑤ 如果i 是个目标节点,则成功退出,求得一个解; ⑥ 扩展节点i ,生成其全部后继节点。对于i 的每一个后继节点j : 计算)(j f ;如果j 既不在OPEN 表中,又不在CLOCED 表中,则用估价函数f 把 它添入OPEN 表中。从j 加一指向其父节点i 的指针,以便一旦找到目标节点时记住一个解答路径;如果j 已在OPEN 表或CLOSED 表中,则比较刚刚对j 计算过的f 和前面计算过的该节点在表中的f 值。如果新的f 较小,则 (I)以此新值取代旧值。 (II)从j 指向i ,而不是指向他的父节点。 (III)如果节点j 在CLOSED 表中,则把它移回OPEN 表中。 ⑦ 转向②,即GOTO ②。

广度优先搜索和深度优先搜索

有两种常用的方法可用来搜索图:即深度优先搜索和广度优先搜索。它们最终都会到达所有 连通的顶点。深度优先搜索通过栈来实现,而广度优先搜索通过队列来实现。 深度优先搜索: 深度优先搜索就是在搜索树的每一层始终先只扩展一个子节点,不断地向纵深前进直到不能再前进(到达叶子节点或受到深度限制)时,才从当前节点返回到上一级节点,沿另一方向又继续前进。这种方法的搜索树是从树根开始一枝一枝逐渐形成的。 下面图中的数字显示了深度优先搜索顶点被访问的顺序。 "* ■ J 严-* 4 t C '4 --------------------------------- --- _ 为了实现深度优先搜索,首先选择一个起始顶点并需要遵守三个规则: (1) 如果可能,访问一个邻接的未访问顶点,标记它,并把它放入栈中。 (2) 当不能执行规则1时,如果栈不空,就从栈中弹出一个顶点。 (3) 如果不能执行规则1和规则2,就完成了整个搜索过程。 广度优先搜索: 在深度优先搜索算法中,是深度越大的结点越先得到扩展。如果在搜索中把算法改为按结点的层次进行搜索,本层的结点没有搜索处理完时,不能对下层结点进行处理,即深度越小的结点越先得到扩展,也就是说先产生的结点先得以扩展处理,这种搜索算法称为广度优先搜索法。 在深度优先搜索中,算法表现得好像要尽快地远离起始点似的。相反,在广度优先搜索中, 算法好像要尽可能地靠近起始点。它首先访问起始顶点的所有邻接点,然后再访问较远的区 域。它是用队列来实现的。 下面图中的数字显示了广度优先搜索顶点被访问的顺序。 实现广度优先搜索,也要遵守三个规则: ⑴ 访问下一个未来访问的邻接点,这个顶点必须是当前顶点的邻接点,标记它,并把它插入到队列中。(2)如果因为已经没有未访问顶点而不能执行规则1

代价树如下图所示分别给出宽度优先及深度优先搜索策略-Read

第3章作业题参考答案 2.综述图搜索的方式和策略。 答:用计算机来实现图的搜索,有两种最基本的方式:树式搜索和线式搜索。 树式搜索就是在搜索过程中记录所经过的所有节点和边。 线式搜索就是在搜索过程中只记录那些当前认为是处在所找路径上的节点和边。线式搜索的基本方式又可分为不回溯和可回溯的的两种。 图搜索的策略可分为:盲目搜索和启发式搜索。 盲目搜索就是无向导的搜索。树式盲目搜索就是穷举式搜索。 而线式盲目搜索,对于不回溯的就是随机碰撞式搜索,对于回溯的则也是穷举式搜索。 启发式搜索则是利用“启发性信息”引导的搜索。启发式搜索又可分为许多不同的策略,如全局择优、局部择优、最佳图搜索等。 5.(供参考)解:引入一个三元组(q0,q1,q2)来描述总状态,开状态 为0,关状态为1,全部可能的状态为: Q0=(0,0,0) ; Q1=(0,0,1); Q2=(0,1,0) Q3=(0,1,1) ; Q4=(1,0,0); Q5=(1,0,1) Q6=(1,1,0) ; Q7=(1,1,1)。

翻动琴键的操作抽象为改变上述状态的算子,即F ={a, b, c} a:把第一个琴键q0翻转一次 b:把第二个琴键q1翻转一次 c:把第三个琴键q2翻转一次 问题的状态空间为<{Q5},{Q0 Q7}, {a, b, c}> 问题的状态空间图如下页所示:从状态空间图,我们可以找到Q5到Q7为3的两条路径,而找不到Q5到Q0为3的路径,因此,初始状态“关、开、关”连按三次琴键后只会出现“关、关、关”的状态。 6.解:用四元组(f 、w 、s 、g)表示状态, f 代表农夫,w 代表狼,s 代表羊,g 代表菜,其中每个元素都可为0或1,用0表示在左 (0,0, (1,0,(0,0,(0,1,(1,1,(1,0,(0,1, (1,1, a c a b a c a b c b b c

八数码问题报告

八数码问题分析 班级:计算机1041 学号:01 姓名:李守先 2013年9月26日

摘要 八数码问题(Eight-puzzle Problem )是人工智能中一个很典型的智力问题。 本文以状态空间搜索的观点讨论了八数码问题,给出了八数码问题的Java 算法与实现的思想, 分析了A*算法的可采纳性等及系统的特点。 关键词 九宫重排, 状态空间, 启发式搜索, A*算法 1 引言 九宫重排问题(即八数码问题)是人工智能当中有名的难题之一。问题是在3×3方格盘上,放有八个数码,剩下一个位置为空,每一空格其上下左右的数码可移至空格。问题给定初始位置和目标位置,要求通过一系列的数码移动,将初始状态转化为目标状态。状态转换的规则:空格周围的数移向空格,我们可以看作是空格移动,它最多可以有4个方向的移动,即上、下、左、右。九宫重排问题的求解方法,就是从给定的初始状态出发,不断地空格上下左右的数码移至空格,将一个状态转化成其它状态,直到产生目标状态。 图1 许多学者对该问题进行了有益的探索[1,2,4,6]。给定初始状态,9个数在3×3中的放法共有9!=362880种,其状态空间是相当大的。因此, 有必要考虑与问题相关的启发性信息来指导搜索,以提高搜索的效率。当然,还有个很重要的问题:每个初始状态都存在解路径吗?文献给出了九宫重排问题是否有解的判别方法:九宫重排问题存在无解的情况,当遍历完所有可扩展的状态也没有搜索到目标状态就判断为无解。可以根据状态的逆序数来先验的判断是否有解,当初始状态的逆序数和目标状态的逆序数的奇偶性相同时,问题有解;否则问题无解。状态的逆序数是定义把三行数展开排成一行,并且丢弃数字 0 不计入其中,ηi 是第 i 个数之前比该数小的数字的个数,则 η=Σηi 是该状态的逆序数,图2说明了逆序数计算的过程 。 本文介绍用JAVA 编写九宫重排问题游戏。游戏规则是,可随机产生或由用户设置初始状态,由初始状态出发,不断地在空格上下左右的数码移至空格,若能排出目标状态,则成功。为了避免对无解节点进行无用搜索,首先对初始节点进行逆序数分析,对有解的节点进行搜索,从而节省了资源,也提高了效率。本文内容安排: 第2部分介绍几个相关的概念和A*算法以及可采纳性 ;

“八”数码问题的宽度优先搜索与深度优先搜索

“八”数码问题的宽度优先搜索与深度优先 搜索 我在观看视频和查看大学课本及网上搜索等资料才对“八”数码问题有了更进一步的了解和认识。 一、“八”数码问题的宽度优先搜索 步骤如下: 1、判断初始节点是否为目标节点,若初始节点是目标节点则搜索过程结束;若不是则转到第2步; 2、由初始节点向第1层扩展,得到3个节点:2、 3、4;得到一个节点即判断该节点是否为目标节点,若是则搜索过程结束;若2、3、4节点均不是目标节点则转到第3步; 3、从第1层的第1个节点向第2层扩展,得到节点5;从第1层的第2个节点向第2层扩展,得到3个节点:6、7、8;从第1层的第3个节点向第2层扩展得到节点9;得到一个节点即判断该节点是否为目标节点,若是则搜索过程结束;若6、7、8、9节点均不是目标节点则转到第4步; 4、按照上述方法对下一层的节点进行扩展,搜索目标节点;直至搜索到目标节点为止。 二、“八”数码问题的深度优先搜索 步骤如下: 1、设置深度界限,假设为5;

2、判断初始节点是否为目标节点,若初始节点是目标节点则搜索过程结束;若不是则转到第2步; 3、由初始节点向第1层扩展,得到节点2,判断节点2是否为目标节点;若是则搜索过程结束;若不是,则将节点2向第2层扩展,得到节点3; 4、判断节点3是否为目标节点,若是则搜索过程结束;若不是则将节点3向第3层扩展,得到节点4; 5、判断节点4是否为目标节点,若是则搜索过程结束;若不是则将节点4向第4层扩展,得到节点5; 6、判断节点5是否为目标节点,若是则搜索过程结束;若不是则结束此轮搜索,返回到第2层,将节点3向第3层扩展得到节点6; 7、判断节点6是否为目标节点,若是则搜索过程结束;若不是则将节点6向第4层扩展,得到节点7; 8、判断节点7是否为目标节点,若是则结束搜索过程;若不是则将节点6向第4层扩展得到节点8; 9、依次类推,知道得到目标节点为止。 三、上述两种搜索策略的比较 在宽度优先搜索过程中,扩展到第26个节点时找到了目标节点;而在深度优先搜索过程中,扩展到第18个节点时得到了目标节点。

八数码问题人工智能实验报告

基于人工智能的状态空间搜索策略研究 ——八数码问题求解 (一)实验软件 TC2.0 或VC6.0编程语言或其它编程语言 (二)实验目的 1. 熟悉人工智能系统中的问题求解过程; 2. 熟悉状态空间的盲目搜索和启发式搜索算法的应用; 3. 熟悉对八数码问题的建模、求解及编程语言的应用。 (三)需要的预备知识 1. 熟悉TC 2.0或VC6.0 编程语言或者其它编程语言; 2. 熟悉状态空间的宽度优先搜索、深度优先搜索和启发式搜索算法; 3. 熟悉计算机语言对常用数据结构如链表、队列等的描述应用; 4. 熟悉计算机常用人机接口设计。 (四)实验数据及步骤 1. 实验内容 八数码问题:在3×3的方格棋盘上,摆放着1到8这八个数码,有1个方格是空的,其初始状态如图1所示,要求对空格执行空格左移、空格右移、空格上移和空格下移这四个操作使得棋盘从初始状态到目标状态。 图1 八数码问题示意图 请任选一种盲目搜索算法(深度优先搜索或宽度优先搜索)或任选一种启发式搜索方法(A 算法或A* 算法)编程求解八数码问题(初始状态任选),并对实验结果进行分析,得出合理的结论。 2. 实验步骤 (1)分析算法基本原理和基本流程; 程序采用宽度优先搜索算法,基本流程如下:

(2)确定对问题描述的基本数据结构,如Open表和Closed表等;

(3)编写算符运算、目标比较等函数; (4)编写输入、输出接口; (5)全部模块联调; (6)撰写实验报告。 (五)实验报告要求 所撰写的实验报告必须包含以下内容: 1. 算法基本原理和流程框图; 2. 基本数据结构分析和实现; 3. 编写程序的各个子模块,按模块编写文档,含每个模块的建立时间、功能、输入输出参数意义和与其它模块联系等; 4. 程序运行结果,含使用的搜索算法及搜索路径等; 5. 实验结果分析; 6. 结论; 7. 提供全部源程序及软件的可执行程序。 附:实验报告格式 一、实验问题 二、实验目的 三、实验原理 四、程序框图 五、实验结果及分析 六、结论

八数码难题的搜索求解演示

人工智能实验报告 学院:信息科学与工程学院 班级:自动化0901班 学号: 06 姓名:孙锦岗 指导老师:刘丽珏 日期:2011年12月20日

一、实验名称、目的及内容 实验名称: 八数码难题的搜索求解演示 实验目的: 加深对图搜索策略概念的理解,掌握搜索算法。 实验内容要求: 以八数码难题为例演示广度优先或深度优先搜索、A算法(本实验使用的是广度优先搜索)的搜索过程,争取做到直观、清晰地演示算法。 八数码难题:在3 X 3方格棋盘上,分别放置了标有数字 123,4,5,6,7,8 的八张牌,初始状态SO,目标状态如图所示,可以 使用的操作有:空格上移,空格左移,空格右移,空格下移。试编一程序实现这一搜索过程。 二、实验原理及基本技术路线图 实验原理: 八数码问题中,程序产生的随机排列转换成目标共有两种可能,而且这两种不可能同时成立,也就是奇数排列和偶数排列。我们可以把一个随机排列的数组从左到右从上到下用一个数组表示,例如{8,

7,1,5,2,6,3,4,0}其中0代表空格。它在奇序列位置上。 在这个数组中我们首先计算它能够重排列出来的结果,公式就是: E(F(X))=Y,其中F (X),就是一个数他前面比这个数小的数的个数,Y为奇数和偶数个有一种解法。那么上面的数组我们就可以解出它的结果。 数据结构: 本实验使用的数据结构是队列,应用队列先进先出的特点来实现对节点的保存和扩展。首先建立一个队列,将初始结点入队,并设置队列头和尾指,然后取出队列(头指针所指)的结点进行扩展,从它扩展出子结点,并将这些结点按扩展的顺序加入队列,然后判断扩展出的新结点与队列中的结点是否重复,如果重复则,否则记录其父结点,并将它加入队列,更新队列尾指针,然后判断扩展出的结点是否是目标结点,如果是则显示路径,程序结束。否则如果队列头的结点可以扩展,直接返回第二步。否则将队列头指针指向下一结点,再返回第二步,知道扩展出的结点是目标结点结束,并显示路径。 算法分析: 九宫问题的求解方法就是交换空格(0)位置,直至到达目标位置为止。如图所示:

宽度优先搜索算法

广度优先搜索 广度优先搜索 广度优先搜索类似于树的按层次遍历的过程。它和队有很多相似之处,运用了队的许多思想,其实就是对队的深入一步研究,它的基本操作和队列几乎一样。 三、队和广度优先搜索的运用 图4表示的是从城市A到城市H的交通图。从图中可以看出,从城市A到城市H要经过若干个城市。现要找出一条经过城市最少的一条路线。 图4 分析:看到这图很容易想到用邻接距阵来表示,0表示能走,1表示不能走。如图5。 图5 首先想到的是用队的思想。我们可以a记录搜索过程,a.city记录经过的城市,a.pre记录前趋元素,这样就可以倒推出最短线路。具体过程如 下: (1)将城市A入队,队首0、队尾都为1。 (2)将队首所指的城市所有可直通的城市入队(如果这个城市在队中

出现过就不入队,可用一个集合来判断),将入队城市的pre指向队首的位置。然后将队首加1,得到新的队首城市。重复以上步骤,直到城市H入队为止。当搜到城市H时,搜索结束。利用pre可倒推出最少城市线路。 以下为参考程序: const ju:array[1..8,1..8] of integer=((1,0,0,0,1,0,1,1), (0,1,1,1,1,0,1,1), (0,1,1,0,0,1,1,1), (0,1,0,1,1,1,0,1), (1,1,0,1,1,1,0,0), (0,0,1,1,1,1,1,0), (1,1,1,0,0,1,1,0), (1,1,1,1,0,0,0,1)); type r=record {记录定义} city:array[1..100] of char; pre:array[1..100] of integer; end; var h,d,i:integer; a:r; s:set of 'A'..'H'; procedure out; {输出过程} begin write(a.city[d]); repeat d:=a.pre[d]; write('--',a.city[d]); until a.pre[d]=0; writeln; halt; end; procedure doit; begin h:=0; d:=1; a.city[1]:='A'; a.pre[1]:=0; s:=['A']; repeat {步骤2} inc(h); {队首加一,出队} for i:=1 to 8 do {搜索可直通的城市} if (ju[ord(a.city[h])-64,i]=0)and (not(chr(i+64) in s))then {判断城市是否走过} begin inc(d); {队尾加一,入队}

深度宽度优先搜索 - 八数码

Y 八数码问题 具体思路: 宽度优先算法实现过程 (1)把起始节点放到OPEN表中; (2)如果OPEN是个空表,则没有解,失败退出;否则继续; (3)把第一个节点从OPEN表中移除,并把它放入CLOSED的扩展节点表中; (4)扩展节点n。如果没有后继节点,则转向(2) (5)把n的所有后继结点放到OPEN表末端,并提供从这些后继结点回到n的指针; (6)如果n的任意一个后继结点是目标节点,则找到一个解答,成功退出,否则转向(2)。

深度优先实现过程 (1)把起始节点S放入未扩展节点OPEN表中。如果此节点为一目标节点,则得到一个解;(2)如果OPEN为一空表,则失败退出; (3)把第一个节点从OPEN表移到CLOSED表; (4)如果节点n的深度等于最大深度,则转向(2); (5)扩展节点n,产生其全部后裔,并把它们放入OPEN表的前头。如果没有后裔,则转向(2); (6)如果后继结点中有任一个目标节点,则得到一个解,成功退出,否则转向(2)。 方法

一:用C语言实现 #include #include #include typedef long UINT64; typedef struct { char x; //位置x和位置y上的数字换位 char y; //其中x是0所在的位置 } EP_MOVE; #define SIZE 3 //8数码问题,理论上本程序也可解决15数码问题, #define NUM SIZE * SIZE //但move_gen需要做很多修改,输入初始和结束状态的部分和check_input也要修改 #define MAX_NODE 1000000 #define MAX_DEP 100 #define XCHG(a, b) { a=a + b; b=a - b; a=a - b; } #define TRANS(a, b) /*{ long iii; (b)=0; for(iii=0; iii < NUM; iii++) (b)=((b) << 4) + a[iii]; }*/ //将数组a转换为一个64位的整数b #define RTRANS(a, b) \ { \ long iii; \ UINT64 ttt=(a); \

相关文档
最新文档