【典型题】高中必修二数学下期末一模试卷(含答案)(1)

合集下载

【压轴题】高中必修二数学下期末第一次模拟试卷(及答案)

【压轴题】高中必修二数学下期末第一次模拟试卷(及答案)

【压轴题】高中必修二数学下期末第一次模拟试卷(及答案)一、选择题1.已知集合{}{}2|320,,|05,A x x x x R B x x x N =-+=∈=<<∈,则满足条件A CB ⊆⊆的集合C 的个数为( )A .1B .2C .3D .42.已知ABC V 为等边三角形,2AB =,设P ,Q 满足AP AB λ=uu u r uu u r ,()()1AQ AC λλ=-∈R u u u r u u u r ,若32BQ CP ⋅=-uu u r uu r ,则λ=( )A .12B .12± C .12± D .32± 3.已知()()()sin cos ,02f x x x πωϕωϕωϕ=+++>,<,()f x 是奇函数,直线y =与函数()f x 的图象的两个相邻交点的横坐标之差的绝对值为2π,则( ) A .()f x 在3,88ππ⎛⎫⎪⎝⎭上单调递减 B .()f x 在0,4π⎛⎫⎪⎝⎭上单调递减 C .()f x 在0,4π⎛⎫⎪⎝⎭上单调递增 D .()f x 在3,88ππ⎛⎫⎪⎝⎭上单调递增 4.已知ABC ∆是边长为4的等边三角形,P 为平面ABC 内一点,则•()PA PB PC +u u u v u u u v u u u v的最小值是() A .6-B .3-C .4-D .2-5.已知定义在R 上的偶函数f (x )满足f (x -4)=f (x ),且在区间[0,2]上f (x )=x ,若关于x 的方程f (x )=log a |x |有六个不同的根,则a 的范围为( )A .B .C .(2,D .(2,4)6.在ABC V 中,已知,2,60a x b B ===o,如果ABC V 有两组解,则x 的取值范围是( )A .2⎛ ⎝⎭B .2⎡⎢⎣⎦ C .2⎡⎢⎣⎭ D .⎛ ⎝⎦7.已知01a b <<<,则下列不等式不成立...的是 A .11()()22ab>B .ln ln a b >C .11a b> D .11ln ln a b> 8.某三棱锥的三视图如图所示,则该三棱锥的体积为( )A .20B .10C .30D .609.(2018年天津卷文)设变量x ,y 满足约束条件5,24,1,0,x y x y x y y +≤⎧⎪-≤⎪⎨-+≤⎪⎪≥⎩ 则目标函数35z x y =+的最大值为 A .6B .19C .21D .4510.与直线40x y --=和圆22220x y x y ++-=都相切的半径最小的圆的方程是 A .()()22112x y +++= B .()()22114x y -++= C .()()22112x y -++=D .()()22114x y +++=11.若函数()(),1231,1xa x f x a x x ⎧>⎪=⎨-+≤⎪⎩是R 上的减函数,则实数a 的取值范围是( )A .2,13⎛⎫⎪⎝⎭B .3,14⎡⎫⎪⎢⎣⎭C .23,34⎛⎤⎥⎝⎦D .2,3⎛⎫+∞⎪⎝⎭12.设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则5a = A .12-B .10-C .10D .12二、填空题13.不等式2231()12x x -->的解集是______.14.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为____.15.对于函数()f x ,()g x ,设(){}0m x f x ∈=,(){}0n x g x ∈=,若存在m ,n 使得1m n -<,则称()f x 与()g x 互为“近邻函数”.已知函数()()13log 2exf x x -=+-与()1422x x g x a +=⋅-+互为“近邻函数”,则实数a 的取值范围是______.(e 是自然对数的底数)16.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b =___.17.已知数列{}n a 为正项的递增等比数列,1582a a +=,2481a a ⋅=,记数列2n a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,则使不等式12019113n T ->成立的最大正整数n 的值是_______. 18.函数()12x f x =-的定义域是__________.19.已知四棱锥P ­ABCD 的底面ABCD 是矩形,PA ⊥底面ABCD ,点E 、F 分别是棱PC 、PD 的中点,则①棱AB 与PD 所在直线垂直; ②平面PBC 与平面ABCD 垂直; ③△PCD 的面积大于△PAB 的面积; ④直线AE 与直线BF 是异面直线.以上结论正确的是________.(写出所有正确结论的序号)20.已知f (x )是定义在R 上的偶函数,且在区间(−∞,0)上单调递增.若实数a 满足f(2|a-1|)>f (2-),则a 的取值范围是______.三、解答题21.如图,在矩形ABCD 中,点E 在边AB 上,且2AE EB =u u u v u u u v,M 是线段CE 上一动点. (1)若M 是线段CE 的中点,AM mAB nAD =+u u u u v u u u v u u u v,求m n +的值;(2)若9,43AB CA CE =⋅=u u u v u u u v,求()2MA MB MC +⋅u u u v u u u v u u u u v 的最小值.22.如图所示,一座小岛A 距离海岸线上最近的点P 的距离是2km ,从点P 沿海岸正东12km 处有一城镇B .一年青人从小岛A 出发,先驾驶小船到海岸线上的某点C 处,再沿海岸线步行到城镇B .若PAC θ∠=,假设该年青人驾驶小船的平均速度为2/km h ,步行速度为4/km h .(1)试将该年青人从小岛A 到城镇B 的时间t 表示成角θ的函数; (2)该年青人欲使从小岛A 到城镇B 的时间t 最小,请你告诉他角θ的值.23.已知函数2()4f x x ax =-++,()|1||1|g x x x =++-. (1)当1a =时,求不等式()()f x g x ≥的解集;(2)若不等式()()f x g x ≥的解集包含[–1,1],求a 的取值范围.24.已知ABC ∆的三个顶点坐标分别为()4,2A --,()4,2B ,()13C ,. (1)求边AB 上的高所在直线的一般式方程; (2)求边AB 上的中线所在直线的一般式方程.25.某家庭记录了未使用节水龙头50天的日用水量数据(单位:3m )和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表日用水量 [)0,0.1 [)0.1,0.2 [)0.2,0.3 [)0.3,0.4 [)0.4,0.5 [)0.5,0.6 [)0.6,0.7频数132 49 26 5使用了节水龙头50天的日用水量频数分布表 日用水量 [)0,0.1[)0.1,0.2 [)0.2,0.3 [)0.3,0.4 [)0.4,0.5 [)0.5,0.6频数151310 16 5(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于30.35m 的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)26.ABC ∆中,D 是BC 上的点,AD 平分∠BAC,ABD ∆面积是ADC ∆面积的2倍. (1)求sin sin BC;(2)若AD =1,DC =2,求BD 和AC 的长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】 【详解】求解一元二次方程,得{}()(){}2|320,|120,A x x x x x x x x =-+=∈=--=∈R R {}1,2=,易知{}{}|05,1,2,3,4B x x x =<<∈=N .因为A C B ⊆⊆,所以根据子集的定义, 集合C 必须含有元素1,2,且可能含有元素3,4, 原题即求集合{}3,4的子集个数,即有224=个,故选D. 【点评】本题考查子集的概念,不等式,解一元二次方程.本题在求集合个数时,也可采用列举法.列出集合C 的所有可能情况,再数个数即可.来年要注意集合的交集运算,考查频度极高.2.A解析:A 【解析】 【分析】运用向量的加法和减法运算表示向量BQ BA AQ =+u u u r u u u r u u u r ,CP CA AP =+u u u r u u u r u u u r,再根据向量的数量积运算,建立关于λ的方程,可得选项. 【详解】∵BQ BA AQ =+u u u r u u u r u u u r ,CP CA AP =+u u u r u u u r u u u r ,∴()()BQ CP BA AQ CA AP AB AC AB AP AC AQ AQ AP ⋅=+⋅+=⋅-⋅-⋅+⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r()()2211AB AC AB AC AB AC λλλλ=⋅---+-⋅u u u r u u u r u u u r u u u r u u u r u u u r()()232441212222λλλλλλ=---+-=-+-=-,∴12λ=.故选:A. 3.A解析:A 【解析】 【分析】首先整理函数的解析式为()4f x x πωϕ⎛⎫=++ ⎪⎝⎭,由函数为奇函数可得4πϕ=-,由最小正周期公式可得4ω=,结合三角函数的性质考查函数在给定区间的单调性即可. 【详解】由函数的解析式可得:()4f x x πωϕ⎛⎫=++ ⎪⎝⎭,函数为奇函数,则当0x =时:()4k k Z πϕπ+=∈.令0k =可得4πϕ=-.因为直线y =与函数()f x 的图像的两个相邻交点的横坐标之差的绝对值为2π结合最小正周期公式可得:22ππω=,解得:4ω=.故函数的解析式为:()4f x x =. 当3,88x ππ⎛⎫∈⎪⎝⎭时,34,22x ππ⎛⎫∈ ⎪⎝⎭,函数在所给区间内单调递减; 当0,4x π⎛⎫∈ ⎪⎝⎭时,()40,x π∈,函数在所给区间内不具有单调性; 据此可知,只有选项A 的说法正确. 故选A . 【点睛】本题主要考查辅助角公式的应用,考查了三角函数的周期性、单调性,三角函数解析式的求解等知识,意在考查学生的转化能力和计算求解能力.4.A解析:A 【解析】 【分析】建立平面直角坐标系,表示出点的坐标,利用向量坐标运算和平面向量的数量积的运算,求得最小值,即可求解. 【详解】由题意,以BC 中点为坐标原点,建立如图所示的坐标系,则(0,(2,0),(2,0)A B C -,设(,)P x y ,则(,23),(2,),(2,)PA x y PB x y PC x y =--=---=--u u u r u u u r u u u r,所以22()(2)(23)(2)2432PA PB PC x x y y x y y •+=-⋅-+-⋅-=-+u u u r u u u r u u u r222[(3)3]x y =+--,所以当0,3x y ==时,()PA PB PC •+u u u r u u u r u u u r取得最小值为2(3)6⨯-=-,故选A.【点睛】本题主要考查了平面向量数量积的应用问题,根据条件建立坐标系,利用坐标法是解答的关键,着重考查了推理与运算能力,属于基础题.5.A解析:A 【解析】由()4f x f x -=()得:4T =,当010]x ∈(,时,函数的图象如图:()()()26102f f f ===,再由关于x 的方程()log a f x x =有六个不同的根,则关于x 的方程()log a f x x =有三个不同的根,可得log 62 log 102a a<⎧⎨>⎩,解得610a ∈(,),故选A.点睛:本题主要考查了函数的周期性,奇偶性,函数的零点等基本性质,函数的图象特征,体现了数形结合的数学思想,属于中档题;首先求出()f x 的周期是4,画出函数的图象,将方程根的个数转化为函数图象交点的个数,得到关于a 的不等式,解得即可.6.A解析:A 【解析】 【分析】已知,,a b B ,若ABC V 有两组解,则sin a B b a <<,可解得x 的取值范围.【详解】由已知可得sin a B b a <<,则sin602x x ︒<<,解得432x <<.故选A. 【点睛】本题考查已知两边及其中一边的对角,用正弦定理解三角形时解的个数的判断. 若ABC V 中,已知,,a b B 且B 为锐角,若0sin b a B <<,则无解;若sin b a B =或b a ≥,则有一解;若sin a B b a <<,则有两解. 7.B 解析:B 【解析】 【分析】根据指数函数、对数函数的单调性,以及不等式的性质,对选项逐一分析,由此得出不等式不成立的选项. 【详解】依题意01a b <<<,由于12xy ⎛⎫= ⎪⎝⎭为定义域上的减函数,故11()()22a b >,故A 选项不等式成立.由于ln y x =为定义域上的增函数,故ln ln 0a b <<,则11ln ln a b>,所以B 选项不等式不成立,D 选项不等式成立.由于01a b <<<,故11a b>,所以C 选项不等式成立.综上所述,本小题选B. 【点睛】本小题主要考查指数函数和对数函数的单调性,考查不等式的性质,属于基础题.8.B解析:B 【解析】 【分析】根据三视图还原几何体,根据棱锥体积公式可求得结果. 【详解】由三视图可得几何体直观图如下图所示:可知三棱锥高:4h =;底面面积:1155322S =⨯⨯=∴三棱锥体积:1115410332V Sh ==⨯⨯= 本题正确选项:B 【点睛】本题考查棱锥体积的求解,关键是能够通过三视图还原几何体,从而准确求解出三棱锥的高和底面面积.9.C解析:C 【解析】分析:首先画出可行域,然后结合目标目标函数的几何意义确定函数取得最大值的点,最后求解最大值即可.详解:绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A 处取得最大值,联立直线方程:51x y x y +=⎧⎨-+=⎩,可得点A 的坐标为:()2,3A ,据此可知目标函数的最大值为:max 35325321z x y =+=⨯+⨯=.本题选择C 选项.点睛:求线性目标函数z =ax +by (ab ≠0)的最值,当b >0时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当b <0时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大.10.C解析:C 【解析】圆22220x y x y ++-=的圆心坐标为()1,1-2,过圆心()1,1-与直线40x y --=垂直的直线方程为0x y +=,所求圆的圆心在此直线上,又圆心()1,1-到直线40x y --=322=2,设所求圆的圆心为(),a b ,且圆心在直线40x y --==0a b +=,解得1,1a b ==-(3,3a b ==-不符合题意,舍去 ),故所求圆的方程为()()22112x y -++=.故选C .【名师点睛】本题主要考查直线与圆的位置关系,考查了数形结合的思想,考查了计算能力,属于中档题.11.C解析:C 【解析】 【分析】由题意结合分段函数的解析式分类讨论即可求得实数a 的取值范围. 【详解】当1x >时,x a 为减函数,则01a <<,当1x ≤时,一次函数()231a x -+为减函数,则230a -<,解得:23a >, 且在1x =处,有:()12311a a -⨯+≥,解得:34a ≤, 综上可得,实数a 的取值范围是23,34⎛⎤ ⎥⎝⎦. 本题选择C 选项. 【点睛】对于分段函数的单调性,有两种基本的判断方法:一保证各段上同增(减)时,要注意上、下段间端点值间的大小关系;二是画出这个分段函数的图象,结合函数图象、性质进行直观的判断.12.B解析:B 【解析】分析:首先设出等差数列{}n a 的公差为d ,利用等差数列的求和公式,得到公差d 所满足的等量关系式,从而求得结果3d =-,之后应用等差数列的通项公式求得51421210a a d =+=-=-,从而求得正确结果.详解:设该等差数列的公差为d , 根据题中的条件可得32433(32)224222d d d ⨯⨯⨯+⋅=⨯++⨯+⋅, 整理解得3d =-,所以51421210a a d =+=-=-,故选B.点睛:该题考查的是有关等差数列的求和公式和通项公式的应用,在解题的过程中,需要利用题中的条件,结合等差数列的求和公式,得到公差d 的值,之后利用等差数列的通项公式得到5a 与1a d 和的关系,从而求得结果.二、填空题13.【解析】【分析】先利用指数函数的单调性得再解一元二次不等式即可【详解】故答案为【点睛】本题考查了指数不等式和一元二次不等式的解法属中档题解析:()1,3-【解析】【分析】先利用指数函数的单调性得2230x x --<,再解一元二次不等式即可.【详解】22321 ()1230132x x x x x -->⇔--<⇔-<<. 故答案为()1,3-【点睛】本题考查了指数不等式和一元二次不等式的解法,属中档题.14.【解析】设正方体边长为则外接球直径为【考点】球【名师点睛】求多面体的外接球的面积和体积问题常用方法有(1)三条棱两两互相垂直时可恢复为长方体利用长方体的体对角线为外接球的直径求出球的半径;(2)直棱 解析:92π 【解析】设正方体边长为a ,则226183a a =⇒= ,外接球直径为34427923,πππ3382R V R ====⨯=. 【考点】 球【名师点睛】求多面体的外接球的面积和体积问题常用方法有(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;(3)如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心,本题就是第三种方法. 15.【解析】【分析】先求出的根利用等价转换的思想得到在有解并且使用分离参数方法可得结果【详解】由令所以又已知函数与互为近邻函数据题意可知:在有解则在有解即在有解令又令所以当时当时所以所以则故答案为:【点 解析:10,2⎛⎤ ⎥⎝⎦.【解析】【分析】先求出()0f x =的根,利用等价转换的思想,得到()0g x =在1m n -<有解,并且使用分离参数方法,可得结果【详解】由()()13log 2e x f x x -=+-,令()0f x =所以1x =,又已知函数()()13log 2ex f x x -=+- 与()1422x x g x a +=⋅-+互为“近邻函数”据题意可知:()0g x =在11x -<有解,则()0g x =在02x <<有解 即1224x x a +-=在02x <<有解, 令()1224x xh x +-=, 又令2x t =,()1,4t ∈,11,14t ⎛⎫∈ ⎪⎝⎭所以2222111222t y t t -⎛⎫==--+ ⎪⎝⎭ 当112t =时max 12y = 当11t =时0y = 所以10,2y ⎛⎤∈ ⎥⎝⎦所以()10,2h x ⎛⎤∈ ⎥⎝⎦,则10,2a ⎛⎤∈ ⎥⎝⎦故答案为:10,2⎛⎤ ⎥⎝⎦【点睛】本题考查对新定义的理解,以及分离参数方法的应用,属中档题.16.【解析】试题分析:因为且为三角形的内角所以又因为所以【考点】正弦定理两角和差的三角函数公式【名师点睛】在解有关三角形的题目时要有意识地考虑用哪个定理更合适或是两个定理都要用要抓住能够利用某个定理的信 解析:2113【解析】试题分析:因为45cos ,cos 513A C ==,且,A C 为三角形的内角,所以312sin ,sin 513A C ==,63sin sin[()]sin()sin cos cos sin 65B AC A C A C A C π=-+=+=+=,又因为sin sin a b A B =,所以sin 21sin 13a Bb A ==. 【考点】 正弦定理,两角和、差的三角函数公式【名师点睛】在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.17.6【解析】【分析】设等比数列{an}的公比q 由于是正项的递增等比数列可得q >1由a1+a5=82a2•a4=81=a1a5∴a1a5是一元二次方程x2﹣82x+81=0的两个实数根解得a1a5利用通解析:6【解析】【分析】设等比数列{a n }的公比q ,由于是正项的递增等比数列,可得q >1.由a 1+a 5=82,a 2•a 4=81=a 1a 5,∴a 1,a 5,是一元二次方程x 2﹣82x+81=0的两个实数根,解得a 1,a 5,利用通项公式可得q ,a n .利用等比数列的求和公式可得数列{2na }的前n 项和为T n .代入不等式2019|13T n ﹣1|>1,化简即可得出. 【详解】 数列{}n a 为正项的递增等比数列,1582a a +=,a 2•a 4=81=a 1a 5,即15158281a a a a +=⎧⎨⋅=⎩解得15181a a =⎧⎨=⎩,则公比3q =,∴13n n a -=, 则2122221333n n T -=++++L 11132311313n n -⎛⎫=⨯=- ⎪⎝⎭-, ∴12019113n T ->,即1201913n ⨯>,得32019n <,此时正整数n 的最大值为6. 故答案为6.【点睛】本题考查了等比数列的通项公式与求和公式、一元二次方程的解法、不等式的解法,考查了推理能力与计算能力,属于中档题.18.【解析】由得所以所以原函数定义域为故答案为解析:(],0-∞【解析】由120x -≥,得21x ≤,所以0x ≤,所以原函数定义域为(],0-∞,故答案为(],0-∞. 19.①③【解析】由条件可得AB ⊥平面PAD ∴AB ⊥PD 故①正确;若平面PBC ⊥平面ABCD 由PB ⊥BC 得PB ⊥平面ABCD 从而PA ∥PB 这是不可能的故②错;S △PCD =CD·PDS △PAB =AB·PA 由 解析:①③【解析】由条件可得AB ⊥平面PAD ,∴AB ⊥PD ,故①正确;若平面PBC ⊥平面ABCD ,由PB ⊥BC ,得PB ⊥平面ABCD ,从而PA ∥PB ,这是不可能的,故②错;S △PCD =12CD ·PD ,S △PAB =12AB ·PA , 由AB =CD ,PD >PA 知③正确;由E 、F 分别是棱PC 、PD 的中点,可得EF ∥CD ,又AB ∥CD ,∴EF ∥AB ,故AE 与BF 共面,④错.20.【解析】【分析】【详解】由题意在上单调递减又是偶函数则不等式可化为则解得 解析:13(,)22【解析】【分析】【详解】由题意()f x 在(0,)+∞上单调递减,又()f x 是偶函数,则不等式1(2)(a f f ->可化为1(2)a f f ->,则12a -<112a -<,解得1322a <<. 三、解答题21.(1)43;(2)754-【解析】【分析】【详解】(1)因为M 是线段CE 的中点, 所以()11112222AM AC AE AD AB AE =+=++u u u u v u u u v u u u v u u u v u u u v u u u v 112151223262AB AB AD AB AD =+⋅+=+u u u v u u u v u u u v u u u v u u u v , 故514623m n +=+=. (2)1,3CA AB AD CE CB BE AD AB =--=+=--u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 22114()333CA CE AB AD AD AB AB AB AD AD ⎛⎫⋅=--⋅--=+⋅+ ⎪⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 2213AB AD =+u u u u r u u u r 22221194333AB AD AD +=⨯+=u u u r u u u r u u u r ||4, 4AD AD BC =⇒==u u u r 故5CE =u u u v ; 设ME t =u u u v ,则()505MC t t =-≤≤u u u u v ,()()222MA MB MC ME EA ME EM MC +⋅=+++⋅u u u v u u u v u u u u v u u u v u u u v u u u v u u u u v u u u u v()()33535ME MC t t t t =⋅=--=-u u u v u u u u v 为二次函数开口向上,故最小值在对称轴处取得,即52t =时,()7524MA MB MC +⋅=-u u u v u u u v u u u u v . 所以()2MA MB MC +⋅u u u v u u u v u u u u v 的最小值为754-. 22.(1)1tan 3cos 2t θθ=+-;(2)6π 【解析】【分析】 (1)根据直角三角形的边角关系求出AC 和BC 的值,再求t 关于θ的函数解析式;(2)根据t 的解析式,结合三角函数的性质求出t 的最小值以及对应θ的值.【详解】(Ⅰ)由题意知,AP PB ⊥,2AP =,02πθ<<,所以2tan PC θ=,2cos AC θ=,122tan BC θ=-, 所以t 关于θ的函数为2122tan 1tan 3242cos 4cos 2AC BC t θθθθ-=+=+=+-; (Ⅱ)由(Ⅰ)知,1tan 2sin 33cos 2cos t θθθθ-=+-=+,令2sin 0cos y θθ-=>,则2sin 2cos y θθ=+…解得y 1sin ,cos 2θθ= 即6πθ=时,所花时间t 最小.【点睛】本题考查了解三角形的应用问题,也考查了三角函数图象与性质的问题,意在考查学生对这些知识的理解掌握水平.23.(1){|1x x -≤≤;(2)[1,1]-. 【解析】【详解】试题分析:(1)分1x <-,11x -≤≤,1x >三种情况解不等式()()f x g x ≥;(2)()()f x g x ≥的解集包含[1,1]-,等价于当[1,1]x ∈-时()2f x ≥,所以(1)2f -≥且(1)2f ≥,从而可得11a -≤≤.试题解析:(1)当1a =时,不等式()()f x g x ≥等价于21140x x x x -+++--≤.① 当1x <-时,①式化为2340x x --≤,无解;当11x -≤≤时,①式化为220x x --≤,从而11x -≤≤;当1x >时,①式化为240x x +-≤,从而112x -<≤.所以()()f x g x ≥的解集为{|1x x -≤≤. (2)当[]1,1x ∈-时,()2g x =.所以()()f x g x ≥的解集包含[]1,1-,等价于当[]1,1x ∈-时()2f x ≥.又()f x 在[]1,1-的最小值必为()1f -与()1f 之一,所以()12f -≥且()12f ≥,得11a -≤≤.所以a 的取值范围为[]1,1-.点睛:形如||||x a x b c -+-≥(或c ≤)型的不等式主要有两种解法:(1)分段讨论法:利用绝对值号内式子对应方程的根,将数轴分为(,]a -∞,(,]a b ,(,)b +∞ (此处设a b <)三个部分,将每部分去掉绝对值号并分别列出对应的不等式求解,然后取各个不等式解集的并集.(2)图像法:作出函数1||||y x a x b =-+-和2y c =的图像,结合图像求解. 24.(1)250x y +-=;(2)30x y -=.【解析】试题分析:(1)根据垂直关系得到12AB k =,过点()13C ,,得到直线方程为:250x y +-=;(2)由中点坐标公式得到()00D ,又因为过点()13C ,故得到中线方程. 解析:(1)∵()4,2A --,()4,2B ,∴12AB k =, ∴边AB 上的高所在直线的一般式方程为,即250x y +-= (2)AB 的中点为D ,∵()4,2A --,()4,2B ∴()00D ,∴边AB 的中线CD 的斜率为3k =,∴边AB 上的中线CD 的一般式方程为30x y -=25.(1)直方图见解析;(2)0.48;(3)347.45m .【解析】【分析】(1)根据题中所给的使用了节水龙头50天的日用水量频数分布表,算出落在相应区间上的频率,借助于直方图中长方形的面积表示的就是落在相应区间上的频率,从而确定出对应矩形的高,从而得到直方图;(2)结合直方图,算出日用水量小于0.35的矩形的面积总和,即为所求的频率;(3)根据组中值乘以相应的频率作和求得50天日用水量的平均值,作差乘以365天得到一年能节约用水多少3m ,从而求得结果.【详解】(1)频率分布直方图如下图所示:(2)根据以上数据,该家庭使用节水龙头后50天日用水量小于30.35m 的频率为 0.20.110.1 2.60.120.050.48⨯+⨯+⨯+⨯=;因此该家庭使用节水龙头后日用水量小于30.35m 的概率的估计值为0.48;(3)该家庭未使用节水龙头50天日用水量的平均数为 ()110.0510.1530.2520.3540.4590.55260.6550.4850x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=. 该家庭使用了节水龙头后50天日用水量的平均数为()210.0510.1550.25130.35100.45160.5550.3550x =⨯+⨯+⨯+⨯+⨯+⨯=. 估计使用节水龙头后,一年可节省水()()30.480.3536547.45m-⨯=. 【点睛】 该题考查的是有关统计的问题,涉及到的知识点有频率分布直方图的绘制、利用频率分布直方图计算变量落在相应区间上的概率、利用频率分布直方图求平均数,在解题的过程中,需要认真审题,细心运算,仔细求解,就可以得出正确结果.26.(1)12;(2)1 【解析】试题分析:(1)借助题设条件运用三角形的面积公式求解;(2)借助题设余弦定理立方程组求解.试题解析:(1),1sin 2ACD S AC AD CAD ∆=⋅⋅∠, ∵2ABD ACD S S ∆∆=,BAD CAD ∠=∠,∴2AB AC =.由正弦定理可知sin 1sin 2B AC C AB ∠==∠.(2)∵::2:1ABD ACD BD DC S S ∆∆==,2DC =,∴BD =.设AC x =,则2AB x =,在△ABD 与△ACD 中,由余弦定理可知,2222cos 2AD BD AB ADB AD BD +-∠==⋅22223cos 2x AD CD AC ADC AD CD -+-∠==⋅ ∵ADB ADC π∠+∠=,∴cos cos ADB ADC ∠=-∠,223x -=1x =, 即1AC =.考点:三角形的面积公式正弦定理余弦定理等有关知识的综合运用.。

最新高中必修二数学下期末一模试卷(含答案)

最新高中必修二数学下期末一模试卷(含答案)

最新高中必修二数学下期末一模试卷(含答案)一、选择题1.已知集合{}220A x x x =-->,则A =R ðA .{}12x x -<<B .{}12x x -≤≤ C .}{}{|12x x x x <-⋃D .}{}{|1|2x x x x ≤-⋃≥2.某空间几何体的三视图如图所示,则该几何体的体积为( )A .73 B .8π3- C .83D .7π3- 3.C ∆AB 是边长为2的等边三角形,已知向量a r ,b r 满足2a AB =u u u r r ,C 2a b A =+u u u r r r ,则下列结论正确的是( )A .1b =rB .a b ⊥r rC .1a b ⋅=r rD .()4C a b +⊥B u u u r rr4.若,αβ均为锐角,5sin 5α=,()3sin 5αβ+=,则cos β=A 25B .2525C 25或2525D .525-5.若||1OA =u u u v ,||3OB u u u v0OA OB ⋅=u u u v u u u v,点C 在AB 上,且30AOC ︒∠=,设OC mOA nOBu u u v u u u v u u u v =+(,)m n R ∈,则mn的值为( ) A .13B .3C .33D 36.已知两个正数a ,b 满足321a b +=,则32a b+的最小值是( ) A .23 B .24C .25D .267.已知1sin 34πα⎛⎫-= ⎪⎝⎭,则cos 23πα⎛⎫+= ⎪⎝⎭( )A .58-B .58C .78-D .788.函数2ln ||y x x =+的图象大致为( )A .B .C .D .9.定义在R 上的奇函数()f x 满足()()2f x f x +=-,且当[]0,1x ∈时,()2cos x f x x =-,则下列结论正确的是( )A .()20202019201832f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭B .()20202019201832f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭C .()20192020201823f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭D .()20192020201823f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭10.已知()f x 是定义在R 上的奇函数,当0x >时,()32f x x =-,则不等式()0f x >的解集为( )A .33,0,22⎛⎫⎛⎫-∞- ⎪ ⎪⎝⎭⎝⎭UB .33,,22⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭C .33,22⎛⎫- ⎪⎝⎭D .33,0,22⎛⎫⎛⎫-⋃+∞ ⎪ ⎪⎝⎭⎝⎭11.已知0.6log 0.5a =,ln0.5b =,0.50.6c =,则( ) A .a c b >>B .a b c >>C .c a b >>D .c b a >>12.在正三棱柱111ABC A B C -中,侧棱长为2,底面三角形的边长为1,则1BC 与侧面1ACC A 所成角的大小为( )A .30oB .45oC .60oD .90o二、填空题13.设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =__________. 14.如图,在正方体1111ABCD A B C D -中,E 、F 分别是1DD 、DC 上靠近点D 的三等分点,则异面直线EF 与11A C 所成角的大小是______.15.已知数列{}n a 满足1121,2n n a a a n +==+,则na n的最小值为_______. 16.在四面体ABCD 中,=2,60,90AB AD BAD BCD =∠=︒∠=︒,二面角A BD C--的大小为150︒,则四面体ABCD 外接球的半径为__________. 17.关于函数()sin sin f x x x =+有如下四个结论: ①()f x 是偶函数;②()f x 在区间,2ππ⎛⎫⎪⎝⎭上单调递增;③()f x 最大值为2;④()f x 在[],ππ-上有四个零点,其中正确命题的序号是_______.18.设0x >,0y >,24x y +=,则(1)(21)x y xy++的最小值为__________.19.若两个向量a v 与b v 的夹角为θ,则称向量“a b ⨯v v”为向量的“外积”,其长度为sin a b a b θ⨯=v v v v .若已知1a =v ,5b =v ,4a b ⋅=-v v ,则a b ⨯=v v .20.已知()()2,3,4,3A B -,点P 在直线AB 上,且32AP PB =u u u v u u u v,则点P 的坐标为________三、解答题21.a b c 分别为ABC ∆内角A 、B 、C 的对边,已知tan 3sin a B b A =.(1)求cos B ;(2)若3a =,17b =ABC ∆的面积.22.设ABC ∆的内角A 、B 、C 所对的边分别为a 、b 、c ,且4cos ,25B b ==.(1)当π6A =时,求a 的值; (2)当ABC ∆的面积为3时,求a+c 的值.23.已知圆22:8120C x y y +-+=,直线:20l ax y a ++=. (1)当a 为何值时,直线与圆C 相切.(2)当直线与圆C 相交于A 、B 两点,且22AB =时,求直线的方程. 24.在ABC V 中,5,3,sin 2sin BC AC C A ===. (Ⅰ)求AB 的值; (Ⅱ)求sin 24A π⎛⎫-⎪⎝⎭的值. 25.记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-. (1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值.26.某校高一()1班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图.(1)求分数在[)50,60的频数及全班人数;(2)求分数在[)80,90之间的频数,并计算频率分布直方图中[)80,90间矩形的高; (3)若要从分数在[)80,100之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在[)90,100之间的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B解析:B 【解析】分析:首先利用一元二次不等式的解法,求出220x x -->的解集,从而求得集合A ,之后根据集合补集中元素的特征,求得结果. 详解:解不等式220x x -->得12x x -或, 所以{}|12A x x x =<->或,所以可以求得{}|12R C A x x =-≤≤,故选B.点睛:该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.2.B解析:B 【解析】 【分析】由三视图可知,该几何体是由一个四棱锥挖掉半个圆锥所得,故利用棱锥的体积减去半个圆锥的体积,就可求得几何体的体积. 【详解】由三视图可知,该几何体是由一个四棱锥挖掉半个圆锥所得,故其体积为21118222123233ππ-⋅⋅⋅-⋅⋅⋅⋅=.故选B. 【点睛】本小题主要考查由三视图判断几何体的结构,考查不规则几何体体积的求解方法,属于基础题.3.D解析:D 【解析】试题分析:2,2AB a AC a b ==+u u u r u u u r r Q rr ,AC AB b ∴=+u u u r u u u r r ,b AC AB BC ∴=-=u u u r u u u r u u u r r .由题意知12,cos1201212b a b a b ⎛⎫=⋅=⋅=⨯⨯-=- ⎪⎝⎭or r r r r .()()2422a b BC AB BC BC AB BC BC∴+⋅=+⋅=⋅+u u ur u u u r u u u r u u u r u u u r u u u r u u u r r r 212cos1202222402AB BC ⎛⎫=⋅+=⨯⨯⨯-+= ⎪⎝⎭o u u u r u u u r .()4a b BC ∴+⊥u u u r r r .故D 正确.考点:1向量的加减法;2向量的数量积;3向量垂直.4.B解析:B 【解析】 【分析】利用角的等量代换,β=α+β-α,只要求出α的余弦,α+β的余弦,利用复合角余弦公式展开求之. 【详解】∵α为锐角,sin 2α= s,∴α>45°且5cos α= , ∵()3sin 5αβ+=,且1325< ,2παβπ∴+<<,∴45cosαβ+=-() , 则cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα4355=-+= 故选B. 【点睛】本题考查两角和与差的正弦、余弦函数公式,以及同角三角函数间的基本关系,熟练掌握公式是解本题的关键.5.B解析:B 【解析】 【分析】利用向量的数量积运算即可算出. 【详解】解:30AOC ︒∠=Qcos ,OC OA ∴<>=u u u r u u u r2OC OA OC OA⋅∴=u u u r u u u r u u u r u u u r()mOA nOB OA mOA nOBOA+⋅∴=+u u u r u u u ru u u r u u u r u u u r u u u r2= 1OA =Q,OB =,0OA OB ⋅=u u u r u u ur=229m n ∴=又C Q 在AB 上0m ∴>,0n > 3m n∴= 故选:B 【点睛】本题主要考查了向量的基本运算的应用,向量的基本定理的应用及向量共线定理等知识的综合应用.6.C解析:C 【解析】 【分析】根据题意,分析可得()323232a b a b a b ⎛⎫+=++ ⎪⎝⎭,对其变形可得326613a b a b ba ⎛⎫+=++ ⎪⎝⎭,由基本不等式分析可得答案. 【详解】根据题意,正数a ,b 满足321a b +=,则()32326632131325a b a b a b a b b a ⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪⎝⎭⎝⎭, 当且仅当15a b ==时等号成立. 即32a b+的最小值是25. 本题选择C 选项. 【点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.7.C解析:C 【解析】 由题意可得:1sin sin cos 32664ππππααα⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 则217cos 2cos 22cos 121366168πππααα⎛⎫⎛⎫⎛⎫+=+=+-=⨯-=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.本题选择C 选项.8.A解析:A 【解析】【分析】先确定函数定义域,再确定函数奇偶性,最后根据值域确定大致图像。

【压轴题】高中必修二数学下期末第一次模拟试题(附答案)

【压轴题】高中必修二数学下期末第一次模拟试题(附答案)

【压轴题】高中必修二数学下期末第一次模拟试题(附答案)一、选择题1.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知5a =,2c =,2cos 3A =,则b= A .2 B .3 C .2D .32.若,则( )A .B .C .D .3.已知ABC V 为等边三角形,2AB =,设P ,Q 满足AP AB λ=uu u r uu u r ,()()1AQ AC λλ=-∈R u u u r u u u r ,若32BQ CP ⋅=-uu u r uu r ,则λ=( )A .12B .122± C .1102± D .322± 4.已知D ,E 是ABCV 边BC 的三等分点,点P 在线段DE 上,若AP xAB yAC =+u u u r u u u r u u u r,则xy 的取值范围是( ) A .14,99⎡⎤⎢⎥⎣⎦B .11,94⎡⎤⎢⎥⎣⎦C .21,92⎡⎤⎢⎥⎣⎦D .21,94⎡⎤⎢⎥⎣⎦5.要得到函数23sin 23y x x =+2sin 2y x =的图象( ) A .向左平移3π个单位 B .向右平移3π个单位 C .向左平移6π个单位 D .向右平移6π个单位 6.已知ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,且2cos 2b C a c ⋅=+,若3b =,则ABC ∆的外接圆面积为( )A .48π B .12πC .12πD .3π7.某三棱锥的三视图如图所示,则该三棱锥的体积为( )A .20B .10C .30D .608.函数223()2xx xf x e +=的大致图像是( )A .B .C .D .9.设函数,则()sin 2cos 244f x x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,则( ) A .()y f x =在0,2π⎛⎫ ⎪⎝⎭单调递增,其图象关于直线4x π=对称 B .()y f x =在0,2π⎛⎫⎪⎝⎭单调递增,其图象关于直线2x π=对称 C .()y f x =在0,2π⎛⎫⎪⎝⎭单调递减,其图象关于直线4x π=对称 D .()y f x =在0,2π⎛⎫⎪⎝⎭单调递减,其图象关于直线2x π=对称10.在空间四边形ABCD 的边AB ,BC ,CD ,DA 上分别取E ,F ,G ,H 四点,如EF 与HG 交于点M ,那么 ( ) A .M 一定在直线AC 上 B .M 一定在直线BD 上C .M 可能在直线AC 上,也可能在直线BD 上 D .M 既不在直线AC 上,也不在直线BD 上11.下列四个正方体图形中,A ,B 为正方体的两个顶点,M ,N ,P 分别为其所在棱的中点,能得出//AB 平面MNP 的图形的序号是( )A .①③B .②③C .①④D .②④12.设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则5a = A .12-B .10-C .10D .12二、填空题13.在直角ABC ∆中,三条边恰好为三个连续的自然数,以三个顶点为圆心的扇形的半径为1,若在ABC ∆中随机地选取m 个点,其中有n 个点正好在扇形里面,则用随机模拟的方法得到的圆周率π的近似值为__________.(答案用m ,n 表示)14.已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA AC =,SB BC =,三棱锥S ABC -的体积为9,则球O 的表面积为______.15.一个空间几何体的三视图及部分数据如图所示,则这个几何体的体积是___________16.已知抛物线()220y px p =>的准线与圆()22316x y -+=相切,则p 的值为__________.17.关于函数()sin sin f x x x =+有如下四个结论: ①()f x 是偶函数;②()f x 在区间,2ππ⎛⎫⎪⎝⎭上单调递增;③()f x 最大值为2;④()f x 在[],ππ-上有四个零点,其中正确命题的序号是_______.18.在200m 高的山顶上,测得山下一塔顶与塔底的俯角分别是30°,60°,则塔高 为19.过点1(,1)2M 的直线l 与圆C :(x ﹣1)2+y 2=4交于A 、B 两点,C 为圆心,当∠ACB 最小时,直线l 的方程为_____.20.设0x >,0y >,24x y +=,则(1)(21)x y xy++的最小值为__________.三、解答题21.某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:记x 表示1台机器在三年使用期内需更换的易损零件数,y 表示1台机器在购买易损零件上所需的费用(单位:元),n 表示购机的同时购买的易损零件数. (Ⅰ)若n =19,求y 与x 的函数解析式;(Ⅱ)若要求“需更换的易损零件数不大于n ”的频率不小于0.5,求n 的最小值; (Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?22.如图,在平面直角坐标系xOy 中,已知以M 点为圆心的圆22:1412600M x y x y +--+=及其上一点(4,2)A .(1)设圆N 与y 轴相切,与圆M 外切,且圆心在直线6y =上,求圆N 的标准方程; (2)设平行于OA 的直线l 与圆M 相交于B ,C 两点且BC OA =,求直线l 的方程. 23.已知A 、B 、C 为ABC ∆的三内角,且其对边分别为a 、b 、c ,若1cos cos sin sin 2B C B C -=.(1)求角A 的大小;(2)若23,4a b c =+=,求ABC ∆的面积.24.如图所示,一座小岛A 距离海岸线上最近的点P 的距离是2km ,从点P 沿海岸正东12km 处有一城镇B .一年青人从小岛A 出发,先驾驶小船到海岸线上的某点C 处,再沿海岸线步行到城镇B .若PAC θ∠=,假设该年青人驾驶小船的平均速度为2/km h ,步行速度为4/km h .(1)试将该年青人从小岛A 到城镇B 的时间t 表示成角θ的函数; (2)该年青人欲使从小岛A 到城镇B 的时间t 最小,请你告诉他角θ的值.25.如图,在正方体1111ABCD A B C D -中,S 是11B D 的中点,E ,F ,G 分别是BC ,DC ,SC 的中点.求证:(1)直线//EG 平面11BDD B ; (2)平面//EFG 平面11BDD B .26.已知平面向量a r ,b r满足1a b ==r r .(1)1a b -=r r ,求a r 与b r的夹角;(2)若对一切实数x ,不等式a xb a b +≥+r r r r 恒成立,求a r 与b r的夹角θ.【参考答案】***试卷处理标记,请不要删除一、选择题1.D 解析:D 【解析】 【分析】 【详解】 由余弦定理得,解得(舍去),故选D.【考点】 余弦定理 【名师点睛】本题属于基础题,考查内容单一,根据余弦定理整理出关于b 的一元二次方程,再通过解方程求b.运算失误是基础题失分的主要原因,请考生切记!2.D解析:D 【解析】试题分析:,且,故选D.【考点】三角恒等变换【名师点睛】对于三角函数的给值求值问题,关键是把待求角用已知角表示: (1)已知角为两个时,待求角一般表示为已知角的和或差.(2)已知角为一个时,待求角一般与已知角成“倍的关系”或“互余、互补”关系.3.A解析:A 【解析】 【分析】运用向量的加法和减法运算表示向量BQ BA AQ =+u u u r u u u r u u u r ,CP CA AP =+u u u r u u u r u u u r,再根据向量的数量积运算,建立关于λ的方程,可得选项. 【详解】∵BQ BA AQ =+u u u r u u u r u u u r ,CP CA AP =+u u u r u u u r u u u r,∴()()BQ CP BA AQ CA AP AB AC AB AP AC AQ AQ AP ⋅=+⋅+=⋅-⋅-⋅+⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r()()2211AB AC AB AC AB AC λλλλ=⋅---+-⋅u u u r u u u r u u u r u u u r u u u r u u u r()()232441212222λλλλλλ=---+-=-+-=-,∴12λ=.故选:A.4.D解析:D 【解析】 【分析】利用已知条件推出x +y =1,然后利用x ,y 的范围,利用基本不等式求解xy 的最值. 【详解】解:D ,E 是ABC V 边BC 的三等分点,点P 在线段DE 上,若AP xAB yAC =+u u u r u u u r u u u r,可得x y 1+=,x ,12y ,33⎡⎤∈⎢⎥⎣⎦,则2x y 1xy ()24+≤=,当且仅当1x y 2==时取等号,并且()2xy x 1x x x =-=-,函数的开口向下, 对称轴为:1x 2=,当1x 3=或2x 3=时,取最小值,xy 的最小值为:29.则xy 的取值范围是:21,.94⎡⎤⎢⎥⎣⎦故选D . 【点睛】本题考查函数的最值的求法,基本不等式的应用,考查转化思想以及计算能力.5.C解析:C 【解析】 【分析】化简函数2sin 2y x x =+-. 【详解】依题意2ππsin 22sin 22sin 236y x x x x ⎡⎤⎛⎫⎛⎫=+=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故只需将函数2sin 2y x =的图象向左平移6π个单位.所以选C. 【点睛】本小题主要考查三角函数降次公式和辅助角公式,考查三角函数图象变换的知识,属于基础题.6.D解析:D 【解析】 【分析】先化简得23Bπ=,再利用正弦定理求出外接圆的半径,即得ABC∆的外接圆面积.【详解】由题得222222a b cb a cab+-⋅=+,所以22222a b c a ac+-=+,所以222a b c ac-+=-,所以12cos,cosB2ac B ac=-∴=-,所以23Bπ=.由正弦定理得=2,33R R∴=,所以ABC∆的外接圆面积为23=3ππ⋅.故选D【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.7.B解析:B【解析】【分析】根据三视图还原几何体,根据棱锥体积公式可求得结果.【详解】由三视图可得几何体直观图如下图所示:可知三棱锥高:4h=;底面面积:1155322S=⨯⨯=∴三棱锥体积:1115410332V Sh==⨯⨯=本题正确选项:B【点睛】本题考查棱锥体积的求解,关键是能够通过三视图还原几何体,从而准确求解出三棱锥的高和底面面积.8.B解析:B 【解析】由()f x 的解析式知仅有两个零点32x =-与0x =,而A 中有三个零点,所以排除A ,又()2232xx x f x e-++'=,由()0f x '=知函数有两个极值点,排除C ,D ,故选B . 9.D解析:D 【解析】()sin(2)cos(2)2sin(2)2cos 2442f x x x x x πππ=+++=+=,由02,x π<<得02x π<<,再由2,x k k Z ππ=+∈,所以,22k x k Z ππ=+∈. 所以y=f(x)在()y f x =在(0,)2π单调递减,其图象关于直线2x π=对称,故选D.10.A解析:A 【解析】如图,因为EF∩HG=M,所以M∈EF,M∈HG,又EF ⊂平面ABC ,HG ⊂平面ADC , 故M∈平面ABC ,M∈平面ADC , 所以M∈平面ABC∩平面ADC=AC. 选A. 点睛:证明点在线上常用方法先找出两个平面,然后确定点是这两个平面的公共点,再确定直线是这两个平面的交线.11.C解析:C 【解析】 【分析】用面面平行的性质判断①的正确性.利用线面相交来判断②③的正确性,利用线线平行来判断④的正确性. 【详解】对于①,连接AC 如图所示,由于//,//MN AC NP BC ,根据面面平行的性质定理可知平面//MNP 平面ACB ,所以//AB 平面MNP .对于②,连接BC 交MP 于D ,由于N 是AC 的中点,D 不是BC 的中点,所以在平面ABC 内AB 与DN 相交,所以直线AB 与平面MNP 相交.对于③,连接CD ,则//AB CD ,而CD 与PN 相交,即CD 与平面PMN 相交,所以AB 与平面MNP 相交.对于④,连接CD ,则////AB CD NP ,由线面平行的判定定理可知//AB 平面MNP .综上所述,能得出//AB 平面MNP 的图形的序号是①④. 故选:C 【点睛】本小题主要考查线面平行的判定,考查空间想象能力和逻辑推理能力,属于基础题. 12.B解析:B【解析】分析:首先设出等差数列{}n a 的公差为d ,利用等差数列的求和公式,得到公差d 所满足的等量关系式,从而求得结果3d =-,之后应用等差数列的通项公式求得51421210a a d =+=-=-,从而求得正确结果.详解:设该等差数列的公差为d , 根据题中的条件可得32433(32)224222d d d ⨯⨯⨯+⋅=⨯++⨯+⋅, 整理解得3d =-,所以51421210a a d =+=-=-,故选B.点睛:该题考查的是有关等差数列的求和公式和通项公式的应用,在解题的过程中,需要利用题中的条件,结合等差数列的求和公式,得到公差d 的值,之后利用等差数列的通项公式得到5a 与1a d 和的关系,从而求得结果.二、填空题13.【解析】【分析】【详解】由题意得的三边分别为则由可得所以三角数三边分别为因为所以三个半径为的扇形面积之和为由几何体概型概率计算公式可知故答案为【方法点睛】本题題主要考查面积型的几何概型属于中档题解决 解析:12n m【解析】【分析】【详解】由题意得ABC ∆的三边分别为,1,2x x x ++ 则由()()22221x x x +=++ 可得3n = ,所以,三角数三边分别为3,4,5,因为A B C π∠+∠+∠= ,所以三个半径为1 的扇形面积之和为211=22ππ⨯⨯ ,由几何体概型概率计算公式可知1122,1342n n m m ππ=∴=⨯⨯,故答案为12n m. 【方法点睛】本题題主要考查“面积型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本裏件对应的区域测度把握不准导致错误 ;(3)利用几何概型的概率公式时 , 忽视验证事件是否等可能性导致错误. 14.36π【解析】三棱锥S−ABC 的所有顶点都在球O 的球面上SC 是球O 的直径若平面SCA ⊥平面SCBSA=ACSB=BC 三棱锥S−ABC 的体积为9可知三角形SBC 与三角形SAC 都是等腰直角三角形设球的半解析:36π【解析】三棱锥S−ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径,若平面SCA ⊥平面SCB ,SA=AC ,SB=BC ,三棱锥S−ABC 的体积为9,可知三角形SBC 与三角形SAC 都是等腰直角三角形,设球的半径为r , 可得112932r r r ⨯⨯⨯⨯= ,解得r=3.球O 的表面积为:2436r ππ= .点睛:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径. 15.【解析】【分析】先还原几何体再根据柱体体积公式求解【详解】空间几何体为一个棱柱如图底面为边长为的直角三角形高为的棱柱所以体积为【点睛】本题考查三视图以及柱体体积公式考查基本分析求解能力属基础题 解析:32【解析】【分析】先还原几何体,再根据柱体体积公式求解【详解】空间几何体为一个棱柱,如图,底面为边长为1,3的直角三角形,高为3的棱柱,所以体积为1313322⨯⨯⨯=【点睛】本题考查三视图以及柱体体积公式,考查基本分析求解能力,属基础题16.2【解析】抛物线的准线为与圆相切则解析:2【解析】 抛物线的准线为2p x =-,与圆相切,则342p +=,2p =. 17.①③【解析】【分析】利用奇偶性的定义判定函数的奇偶性可判断出命题①的正误;在时去绝对值化简函数的解析式可判断函数在区间上的单调性可判断命题②的正误;由以及可判断出命题③的正误;化简函数在区间上的解析解析:①③【解析】【分析】利用奇偶性的定义判定函数()y f x =的奇偶性,可判断出命题①的正误;在,2x ππ⎛⎫∈ ⎪⎝⎭时,去绝对值,化简函数()y f x =的解析式,可判断函数()y f x =在区间,2ππ⎛⎫⎪⎝⎭上的单调性,可判断命题②的正误;由22f π⎛⎫= ⎪⎝⎭以及()2f x ≤可判断出命题③的正误;化简函数()y f x =在区间[],ππ-上的解析式,求出该函数的零点,即可判断命题④的正误.【详解】对于命题①,函数()sin sin f x x x =+的定义域为R ,关于原点对称,且()()()sin sin sin sin sin sin f x x x x x x x f x -=-+-=+-=+=,该函数为偶函数,命题①正确; 对于命题②,当2x ππ<<时,sin 0x >,则()sin sin 2sin f x x x x =+=,则函数()y f x =在,2ππ⎛⎫⎪⎝⎭上单调递减,命题②错误; 对于命题③,sin 1x ∴≤,sin 1x ≤,()2f x ∴≤,又22f π⎛⎫= ⎪⎝⎭Q ,所以,函数()y f x =的最大值为2,命题③正确;对于命题④,当0πx <<时,sin 0x >,()sin sin 2sin 0f x x x x =+=>,由于该函数为偶函数,当0x π-<<时,()0f x >,又()()()00f f f ππ=-==Q ,所以,该函数在区间[],ππ-上有且只有三个零点. 因此,正确命题的序号为①③.故答案为:①③.【点睛】本题考查与三角函数相关命题真假的判断,涉及三角函数的奇偶性、单调性、最值以及零点的判断,解题的关键就是将三角函数的解析式化简,考查推理能力,属于中等题. 18.【解析】【分析】【详解】试题分析:根据题意设塔高为x 则可知a 表示的为塔与山之间的距离可以解得塔高为考点:解三角形的运用点评:主要是考查了解三角形中的余弦定理和正弦定理的运用属于中档题 解析:【解析】【分析】【详解】试题分析:根据题意,设塔高为x ,则可知00tan 60=,t 2an 30=00200a ax -,a 表示的为塔与山之间的距离,可以解得塔高为. 考点:解三角形的运用点评:主要是考查了解三角形中的余弦定理和正弦定理的运用,属于中档题. 19.2x ﹣4y+3=0【解析】【分析】要∠ACB 最小则分析可得圆心C 到直线l 的距离最大此时直线l 与直线垂直即可算出的斜率求得直线l 的方程【详解】由题得当∠ACB 最小时直线l 与直线垂直此时又故又直线l 过点解析:2x ﹣4y +3=0【解析】【分析】要∠ACB 最小则分析可得圆心C 到直线l 的距离最大,此时直线l 与直线CM 垂直,即可算出CM 的斜率求得直线l 的方程.【详解】由题得,当∠ACB 最小时,直线l 与直线CM 垂直,此时102112CM k -==-- ,又1CM l k k ⋅=-,故12l k =,又直线l 过点1(,1)2M ,所以11:1()22l y x -=-,即2430x y -+= . 故答案为:2430x y -+=【点睛】本题主要考查直线与圆的位置关系,过定点的直线与圆相交于两点求最值的问题一般为圆心到定点与直线垂直时取得最值.同时也考查了线线垂直时斜率之积为-1,以及用点斜式写出直线方程的方法.20.【解析】【分析】把分子展开化为再利用基本不等式求最值【详解】由得得等号当且仅当即时成立故所求的最小值为【点睛】使用基本不等式求最值时一定要验证等号是否能够成立 解析:92. 【解析】 【分析】 把分子展开化为(1)(21)2212552x y xy x y xy xy xy xy xy++++++===+,再利用基本不等式求最值.【详解】由24x y +=,得2422x y xy +=≥,得2xy ≤ (1)(21)221255592222x y xy x y xy xy xy xy xy ++++++===+≥+=, 等号当且仅当2x y =,即2,1x y ==时成立.故所求的最小值为92. 【点睛】使用基本不等式求最值时一定要验证等号是否能够成立.三、解答题21.(1)()3800,19,y 5005700,19,x x N x x ≤⎧=∈⎨->⎩;(2)19;(3) 购买1台机器的同时应购买19个易损零件.【解析】试题分析:(Ⅰ)分x ≤19及x >19,分别求解析式;(Ⅱ)通过频率大小进行比较;(Ⅲ)分别求出n=19,n=20时所需费用的平均数来确定.试题解析:(Ⅰ)当时,3800y =;当时,3800500(19)5005700y x x =+-=-,所以与的函数解析式为3800,19,{()5005700,19,x y x N x x ≤=∈->. (Ⅱ)由柱状图知,需更换的零件数不大于18的频率为0.46,不大于19的频率为0.7,故的最小值为19.(Ⅲ)若每台机器在购机同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3 800,20台的费用为4 300,10台的费用为4 800,因此这100台机器在购买易损零件上所需费用的平均数为1(380070430020480010)4000100⨯⨯+⨯+⨯=. 若每台机器在购机同时都购买20个易损零件,则这100台机器中有90台在购买易损零件上的费用为4 000,10台的费用为4 500,因此这100台机器在购买易损零件上所需费用的平均数为1(400090450010)4050100⨯⨯+⨯=. 比较两个平均数可知,购买1台机器的同时应购买19个易损零件.【考点】函数解析式、概率与统计【名师点睛】本题把统计与函数结合在一起进行考查,有综合性但难度不大,求解的关键是读懂题意,所以提醒考生要重视数学中的阅读理解问题.22.(1)22(1)(6)1x y -+-=(2)2150x y -+=或250x y --=.【解析】【分析】(1)根据由圆心在直线y =6上,可设()0,6N x ,再由圆N 与y 轴相切,与圆M 外切得到圆N 的半径为0x 和0075-=+x x 得解.(2)由直线l 平行于OA ,求得直线l 的斜率,设出直线l 的方程,求得圆心M 到直线l 的距离,再根据垂径定理确定等量关系,求直线方程.【详解】(1)圆M 的标准方程为22(7)(6)25-+-=x y ,所以圆心M (7,6),半径为5,.由圆N 圆心在直线y =6上,可设()0,6N x因为圆N 与y 轴相切,与圆M 外切所以007<<x ,圆N 的半径为0x从而0075-=+x x解得01x =.所以圆N 的标准方程为22(1)(6)1x y -+-=.(2)因为直线l 平行于OA ,所以直线l 的斜率为201402-=-. 设直线l 的方程为12y x m =+,即220x y m -+= 则圆心M 到直线l 的距离==d因为===BC OA而2222⎛⎫=+ ⎪⎝⎭BC MC d 所以2(25)2555-=+m 解得152m =或52m =-. 故直线l 的方程为2150x y -+=或250x y --=. 【点睛】本题主要考查了直线方程,圆的方程,直线与直线,直线与圆,圆与圆的位置关系,还考查了运算求解的能力和数形结合的思想,属于中档题.23.(1)23A π=;(2)3. 【解析】【分析】(1)已知等式左边利用两角差的余弦函数公式化简,求出()cos B C +的值,确定出B C +的度数,即可求出A 的度数;(2)利用余弦定理列出关系式,再利用完全平方公式变形,将a 与b c +的值代入求出bc 的值,再由sin A 的值,利用三角形面积公式即可求出三角形ABC 的面积.【详解】(1)∵cos B cos C -sin B sin C =, ∴cos(B +C )=.∵A +B +C =π,∴cos(π-A )=.∴cos A =-.又∵0<A <π,∴A =.(2)由余弦定理,得a 2=b 2+c 2-2bc ·cos A .则(2)2=(b +c )2-2bc -2bc ·cos .∴12=16-2bc -2bc ·(-).∴bc =4. ∴S △ABC =bc ·sin A =×4×=.【点睛】本题主要考查余弦定理、特殊角的三角函数以及三角形面积公式的应用,属于中档题.对余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)222cos 2b c a A bc+-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60o o o 等特殊角的三角函数值,以便在解题中直接应用.24.(1)1tan 3cos 2t θθ=+-;(2)6π 【解析】【分析】(1)根据直角三角形的边角关系求出AC 和BC 的值,再求t 关于θ的函数解析式;(2)根据t 的解析式,结合三角函数的性质求出t 的最小值以及对应θ的值.【详解】(Ⅰ)由题意知,AP PB ⊥,2AP =,02πθ<<, 所以2tan PC θ=,2cos AC θ=,122tan BC θ=-, 所以t 关于θ的函数为2122tan 1tan 3242cos 4cos 2AC BC t θθθθ-=+=+=+-; (Ⅱ)由(Ⅰ)知,1tan 2sin 33cos 2cos t θθθθ-=+-=+, 令2sin 0cos y θθ-=>,则22sin 2cos 14y y θθ=++…; 解得3y …,当且仅当13sin ,cos 2θθ==时,等号成立; 即6πθ=时,所花时间t 最小.【点睛】本题考查了解三角形的应用问题,也考查了三角函数图象与性质的问题,意在考查学生对这些知识的理解掌握水平.25.(1)证明见解析(2)证明见解析【解析】【分析】(1)结合几何体,因为,E G 分别是,BC SC 的中点,所以//EG SB .,再利用线面平行的判定定理证明.(2)由,F G 分别是,DC SC 的中点,得//FG SD .由线面平行的判定定理//FG 平面11BDD B .,再由(1)知,再利用面面平行的判定定理证明.【详解】证明:(1)如图,连接SB ,,E G Q 分别是,BC SC 的中点,//EG SB ∴.又SB ⊂Q 平面11,BDD B EG ⊄平面11BDD B ,所以直线//EG 平面11BDD B .(2)连接,,SD F G Q 分别是,DC SC 的中点,//FG SD ∴.又∵SD ⊂平面11,BDD B FG ⊄平面11,BDD B//FG ∴平面11BDD B .又EG ⊂平面,EFG FG ⊂平面,EFG EG FG G ⋂=,∴平面//EFG 平面11BDD B .【点睛】本题主要考查了线面平行,面面平行的判断定定理,还考查了转化化归的能力,属于中档题.26.(1)3π(2)θπ= 【解析】【分析】(1)根据向量数量积的定义及性质即可求解(2)利用平方化简不等式可得22cos 12cos 0x x θθ+⋅--≥恒成立,利用判别式求解即可.【详解】 (1)∵1a b ==r r,21211a b a b ∴-=-⋅+=r r r u r , 即12a b ⋅=r r , ∴1cos 2a b θ=r r , ∴3πθ=.(2)不等式a xb a b +≥+r r r r 两边平方可得:22cos 12cos 0x x θθ+⋅--≥恒成立,∴0∆≤,即()24cos412cos 0θθ++≤, 故()2cos 10θ+≤,只能cos 1θ=-,而0θπ≤≤,所以θπ=.【点睛】本题主要考查了向量的数量积定义,性质,不等式恒成立,属于中档题.。

【典型题】高中必修二数学下期末一模试卷附答案(1)

【典型题】高中必修二数学下期末一模试卷附答案(1)

【典型题】高中必修二数学下期末一模试卷附答案(1)一、选择题1.已知集合{}{}2|320,,|05,A x x x x R B x x x N =-+=∈=<<∈,则满足条件A CB ⊆⊆的集合C 的个数为( )A .1B .2C .3D .42.某程序框图如图所示,若输出的S=57,则判断框内为 A .k >4? B .k >5? C .k >6?D .k >7?3.已知ABC 为等边三角形,2AB =,设P ,Q 满足AP AB λ=,()()1AQ AC λλ=-∈R ,若32BQ CP ⋅=-,则λ=( )A .12B 12± C 110± D .322± 4.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是( ) A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 25.已知函数()y f x =为R 上的偶函数,当0x ≥时,函数()()210216()122xx x f x x ⎧≤≤⎪⎪=⎨⎛⎫⎪> ⎪⎪⎝⎭⎩,若关于x 的方程[]()2()()0,f x af x b a b R ++=∈有且仅有6个不同的实数根,则实数a 的取值范围是( ) A .51,24⎛⎫-- ⎪⎝⎭B .11,24⎛⎫-- ⎪⎝⎭C .1111,,2448⎛⎫⎛⎫---- ⎪ ⎪⎝⎭⎝⎭D .11,28⎛⎫-- ⎪⎝⎭ 6.已知ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,且2cos 2b C a c ⋅=+,若3b =,则ABC ∆的外接圆面积为( )A .48π B .12πC .12πD .3π7.若||1OA =,||3OB =,0OA OB ⋅=,点C 在AB 上,且30AOC ︒∠=,设OC mOA nOB =+(,)m n R ∈,则mn的值为( ) A .13B .3C .3 D .38.函数()lg ||f x x x =的图象可能是( )A .B .C .D .9.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生B .200号学生C .616号学生D .815号学生10.下列四个正方体图形中,A ,B 为正方体的两个顶点,M ,N ,P 分别为其所在棱的中点,能得出//AB 平面MNP 的图形的序号是( )A .①③B .②③C .①④D .②④11.已知()f x 是定义在R 上的奇函数,当0x >时,()32f x x =-,则不等式()0f x >的解集为( )A .33,0,22⎛⎫⎛⎫-∞- ⎪⎪⎝⎭⎝⎭B .33,,22⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭C .33,22⎛⎫- ⎪⎝⎭D .33,0,22⎛⎫⎛⎫-⋃+∞ ⎪ ⎪⎝⎭⎝⎭12.与直线40x y --=和圆22220x y x y ++-=都相切的半径最小的圆的方程是 A .()()22112x y +++= B .()()22114x y -++= C .()()22112x y -++=D .()()22114x y +++=二、填空题13.已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA AC =,SB BC =,三棱锥S ABC -的体积为9,则球O 的表面积为______.14.()sin1013tan 70+=_____15.抛物线214y x =-上的动点M 到两定点(0,1)(1,3)--、的距离之和的最小值为__________.16.已知a 0>,b 0>,且111a b +=,则b3a 2b a++的最小值等于______. 17.对于函数()f x ,()g x ,设(){}0m x f x ∈=,(){}0n x g x ∈=,若存在m ,n 使得1m n -<,则称()f x 与()g x 互为“近邻函数”.已知函数()()13log 2exf x x -=+-与()1422x x g x a +=⋅-+互为“近邻函数”,则实数a 的取值范围是______.(e 是自然对数的底数)18.已知函数2,()24,x x mf x x mx m x m⎧≤=⎨-+>⎩ 其中0m >,若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________________.19.已知a ∈R ,命题p :[]1,2x ∀∈,20x a -≥,命题q :x ∃∈R ,2220x ax a ++-=,若命题p q ∧为真命题,则实数a 的取值范围是_____.20.在直三棱柱111ABC A B C -中,90ACB ∠=,12AA =,1AC BC ==,则异面直线1A B 与1AC 所成角的余弦值是_____________.三、解答题21.某校200名学生的数学期中考试成绩频率分布直方图如图所示,其中成绩分组区间是[)70,80,[)80,90,[)90,100,[)90,100,[)100,110,[)110,120.()1求图中m 的值;()2根据频率分布直方图,估计这200名学生的平均分;()3若这200名学生的数学成绩中,某些分数段的人数x 与英语成绩相应分数段的人数y 之比如表所示,求英语成绩在[)90,120的人数.分数段[)90,100[)100,110[)110,120:x y6:51:21:122.已知函数()()sin 0,03f x A x A πωω⎛⎫=+>> ⎪⎝⎭的最小正周期为π,且该函数图象上的最低点的纵坐标为3-. (1)求函数()f x 的解析式;(2)求函数()f x 的单调递增区间及对称轴方程. 23.投资商到一开发区投资72万元建起一座蔬菜加工厂,经营中,第一年支出12万元,以后每年支出增加4万元,从第一年起每年蔬菜销售收入50万元,设表示前n 年的纯利润总和(前年总收入-前年的总支出 -投资额72万元)(Ⅰ)该厂从第几年开始盈利?(Ⅱ)该厂第几年平均纯利润达到最大?并求出年平均纯利润的最大值. 24.已知平面向量()3,4a =,()9,b x =,()4,c y =,且//a b ,a c ⊥. (1)求b 和c ;(2)若2m a b =-,n a c =+,求向量m 与向量n 的夹角的大小. 25.已知数列{}n a 满足:()*22,21,n n a S n a n N ==+∈(1)设数列{}n b 满足()11nn b n a =•+,求{}n b 的前n 项和n T :(2)证明数列{}n a 是等差数列,并求其通项公式;26.在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知sin 4sin a A b B =,2225()ac a b c =--.(I )求cos A 的值; (II )求sin(2)B A -的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】 【详解】求解一元二次方程,得{}()(){}2|320,|120,A x x x x x x x x =-+=∈=--=∈R R {}1,2=,易知{}{}|05,1,2,3,4B x x x =<<∈=N .因为A C B ⊆⊆,所以根据子集的定义, 集合C 必须含有元素1,2,且可能含有元素3,4, 原题即求集合{}3,4的子集个数,即有224=个,故选D. 【点评】本题考查子集的概念,不等式,解一元二次方程.本题在求集合个数时,也可采用列举法.列出集合C 的所有可能情况,再数个数即可.来年要注意集合的交集运算,考查频度极高.2.A解析:A试题分析:由程序框图知第一次运行112,224k S =+==+=,第二次运行213,8311k S =+==+=,第三次运行314,22426k S =+==+=,第四次运行4154,52557k S =+=>=+=,输出57S =,所以判断框内为4?k >,故选C.考点:程序框图.3.A解析:A 【解析】 【分析】运用向量的加法和减法运算表示向量BQ BA AQ =+,CP CA AP =+,再根据向量的数量积运算,建立关于λ的方程,可得选项. 【详解】∵BQ BA AQ =+,CP CA AP =+,∴()()BQ CP BA AQ CA AP AB AC AB AP AC AQ AQ AP ⋅=+⋅+=⋅-⋅-⋅+⋅()()2211AB AC AB AC AB AC λλλλ=⋅---+-⋅()()232441212222λλλλλλ=---+-=-+-=-,∴12λ=.故选:A. 4.D解析:D 【解析】把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,得到函数y=cos2x 图象,再把得到的曲线向左平移π12个单位长度,得到函数y=cos2(x +π12)=cos (2x +π6)=sin (2x +2π3)的图象,即曲线C 2, 故选D .点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母x 而言. 函数sin()()y A x x R ωϕ=+∈是奇函数π()k k Z ϕ⇔=∈;函数sin()()y A x x R ωϕ=+∈是偶函数ππ+()2k k Z ϕ⇔=∈;函数cos()()y A x x R ωϕ=+∈是奇函数ππ+()2k k Z ϕ⇔=∈;函数cos()()y A x x R ωϕ=+∈是偶函数π()k k Z ϕ⇔=∈.5.B解析:B【分析】作出函数()y f x =的图像,设()f x t =,从而可化条件为方程20t at b ++=有两个根,利用数形结合可得114t =,2104t <<,根据韦达定理即可求出实数a 的取值范围. 【详解】由题意,作出函数()y f x =的图像如下,由图像可得,10()(2)4f x f ≤≤=关于x 的方程[]()2()()0,f x af x b a b R ++=∈有且仅有6个不同的实数根, 设()f x t =,20t at b ∴++=有两个根,不妨设为12,t t ;且114t =,2104t << 又12a t t -=+11,24a ⎛⎫∴∈-- ⎪⎝⎭故选:B 【点睛】本题主要考查函数与方程、由方程根的个数求参数的取值范围,考查学生运用数形结合思想解决问题的能力,属于中档题.6.D解析:D 【解析】 【分析】 先化简得23B π=,再利用正弦定理求出外接圆的半径,即得ABC ∆的外接圆面积. 【详解】由题得222222a b c b a c ab+-⋅=+,所以22222a b c a ac +-=+, 所以222a b c ac -+=-, 所以12cos ,cosB 2ac B ac =-∴=-, 所以23B π=.,R R ∴= 所以ABC ∆的外接圆面积为=3ππ. 故选D 【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.7.B解析:B 【解析】 【分析】利用向量的数量积运算即可算出. 【详解】 解:30AOC ︒∠=3cos ,2OC OA ∴<>=3OC OA OC OA⋅∴=()3mOA nOB OA mOA nOB OA+⋅∴=+222232m OA nOBOAm OA mnOA OB n OBOA+⋅=+⋅+1OA =,3OB =,0OA OB ⋅==229m n ∴=又C 在AB 上0m ∴>,0n > 3m n∴= 故选:B 【点睛】本题主要考查了向量的基本运算的应用,向量的基本定理的应用及向量共线定理等知识的综合应用.8.D解析:D 【解析】 【分析】分析函数()y f x =的定义域、奇偶性及其在()0,1上的函数值符号,可得出结论. 【详解】函数()lg f x x x =的定义域为{}0x x ≠,定义域关于原点对称,()()lg lg f x x x x x f x -=--=-=-,函数()y f x =为奇函数,排除A 、C 选项;当01x <<时,lg 0x <,此时()lg 0f x x x =<,排除B 选项. 故选:D. 【点睛】本题考查由函数的解析式选择函数图象,一般分析函数的定义域、奇偶性、单调性、零点以及函数值符号,考查推理能力,属于中等题.9.C解析:C 【解析】 【分析】等差数列的性质.渗透了数据分析素养.使用统计思想,逐个选项判断得出答案. 【详解】详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =, 所以610n a n=+()n *∈N ,若8610n =+,则15n =,不合题意;若200610n =+,则19.4n =,不合题意; 若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C . 【点睛】本题主要考查系统抽样.10.C解析:C 【解析】 【分析】用面面平行的性质判断①的正确性.利用线面相交来判断②③的正确性,利用线线平行来判断④的正确性. 【详解】对于①,连接AC 如图所示,由于//,//MN AC NP BC ,根据面面平行的性质定理可知平面//MNP 平面ACB ,所以//AB 平面MNP .对于②,连接BC 交MP 于D ,由于N 是AC 的中点,D 不是BC 的中点,所以在平面ABC 内AB 与DN 相交,所以直线AB 与平面MNP 相交.对于③,连接CD ,则//AB CD ,而CD 与PN 相交,即CD 与平面PMN 相交,所以AB 与平面MNP 相交.对于④,连接CD ,则////AB CD NP ,由线面平行的判定定理可知//AB 平面MNP .综上所述,能得出//AB 平面MNP 的图形的序号是①④. 故选:C 【点睛】本小题主要考查线面平行的判定,考查空间想象能力和逻辑推理能力,属于基础题.11.A解析:A 【解析】 【分析】根据题意,结合函数的解析式以及奇偶性分析可得()f x 的图象,据此分析可得答案. 【详解】解:因为()f x 是定义在R 上的奇函数, 所以它的图象关于原点对称,且()00f =, 已知当0x >时,()32f x x =-, 作出函数图象如图所示, 从图象知:33022f f ⎛⎫⎛⎫=-=⎪ ⎪⎝⎭⎝⎭, 则不等式()0f x >的解集为33,0,22⎛⎫⎛⎫-∞-⋃ ⎪ ⎪⎝⎭⎝⎭. 故选:A.【点睛】本题考查函数的奇偶性与单调性的综合应用,以及函数的解析式,考查数形结合思想.12.C解析:C【解析】圆22220x y x y ++-=的圆心坐标为()1,1-,过圆心()1,1-与直线40x y --=垂直的直线方程为0x y +=,所求圆的圆心在此直线上,又圆心()1,1-到直线40x y --==,设所求圆的圆心为(),a b ,且圆心在直线40x y --==0a b +=,解得1,1a b ==-(3,3a b ==-不符合题意,舍去 ),故所求圆的方程为()()22112x y -++=.故选C .【名师点睛】本题主要考查直线与圆的位置关系,考查了数形结合的思想,考查了计算能力,属于中档题.二、填空题13.36π【解析】三棱锥S −ABC 的所有顶点都在球O 的球面上SC 是球O 的直径若平面SCA⊥平面SCBSA=ACSB=BC 三棱锥S −ABC 的体积为9可知三角形SBC 与三角形SAC 都是等腰直角三角形设球的半解析:36π 【解析】三棱锥S−ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径, 若平面SCA ⊥平面SCB ,SA=AC ,SB=BC ,三棱锥S−ABC 的体积为9, 可知三角形SBC 与三角形SAC 都是等腰直角三角形,设球的半径为r , 可得112932r r r ⨯⨯⨯⨯= ,解得r=3. 球O 的表面积为:2436r ππ= .点睛:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.14.【解析】【分析】将写成切化弦后利用两角和差余弦公式可将原式化为利用二倍角公式可变为由可化简求得结果【详解】本题正确结果:【点睛】本题考查利用三角恒等变换公式进行化简求值的问题涉及到两角和差余弦公式二 解析:1【解析】 【分析】tan 60,切化弦后,利用两角和差余弦公式可将原式化为sin10cos10cos 60cos 70,利用二倍角公式可变为1sin 202cos 60cos 70⋅,由sin 20cos70=可化简求得结果. 【详解】()()cos 60cos 7060sin 70sin1013tan70sin101tan 60tan70sin1s 0co i s 60o 7n c s 0+=++⋅=()cos 7060sin10cos101sin 201sin101cos60cos70cos60cos702cos60cos702cos60-=⋅==⋅==本题正确结果:1 【点睛】本题考查利用三角恒等变换公式进行化简求值的问题,涉及到两角和差余弦公式、二倍角公式的应用.15.4【解析】【分析】【详解】由题意得交点设作与准线垂直垂足为作与准线垂直垂足为则 解析:4 【解析】 【分析】 【详解】由题意得交点(0,1)F - ,设(1,3)A - ,作AN 与准线垂直,垂足为N ,作MH 与准线垂直,垂足为H ,则314MA MF MA MH AN +=+≥=+=16.11【解析】分析:构造基本不等式模型化简整理应用基本不等式即可得出答案详解:当且仅当时取等号的最小值等于11故答案为11点睛:本题考查基本不等式的性质与应用同时考查了整体思想与转化思想的运用解析:11 【解析】分析:构造基本不等式模型1132()(32)b ba b a b a a b a++=+++,化简整理,应用基本不等式,即可得出答案. 详解:111a b+=, ∴1132()(32)53()b b b a a b a b a a b a a b++=+++=++ 0a >,0b >,∴0b a >,0ab>, ∴2b aa b+≥,当且仅当2a b ==时取等号.325611ba b a++≥+=. ∴32ba b a++的最小值等于11.故答案为11. 点睛:本题考查基本不等式的性质与应用,同时考查了整体思想与转化思想的运用.17.【解析】【分析】先求出的根利用等价转换的思想得到在有解并且使用分离参数方法可得结果【详解】由令所以又已知函数与互为近邻函数据题意可知:在有解则在有解即在有解令又令所以当时当时所以所以则故答案为:【点解析:10,2⎛⎤ ⎥⎝⎦.【解析】 【分析】先求出()0f x =的根,利用等价转换的思想,得到()0g x =在1m n -<有解,并且使用分离参数方法,可得结果 【详解】由()()13log 2exf x x -=+-,令()0f x =所以1x =,又已知函数()()13log 2e xf x x -=+-与()1422xx g x a +=⋅-+互为“近邻函数”据题意可知:()0g x =在11x -<有解,则()0g x =在02x <<有解即1224x x a +-=在02x <<有解,令()1224x xh x +-=, 又令2x t =,()1,4t ∈,11,14t ⎛⎫∈ ⎪⎝⎭所以2222111222t y t t -⎛⎫==--+ ⎪⎝⎭ 当112t =时max 12y =当11t=时0y = 所以10,2y ⎛⎤∈ ⎥⎝⎦所以()10,2h x ⎛⎤∈ ⎥⎝⎦,则10,2a ⎛⎤∈ ⎥⎝⎦故答案为:10,2⎛⎤ ⎥⎝⎦【点睛】本题考查对新定义的理解,以及分离参数方法的应用,属中档题.18.【解析】试题分析:由题意画出函数图象如下图所示要满足存在实数b 使得关于x 的方程f (x )=b 有三个不同的根则解得故m 的取值范围是【考点】分段函数函数图象【名师点睛】本题主要考查二次函数的图象与性质函数解析:()3+∞,【解析】试题分析:由题意画出函数图象如下图所示,要满足存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则24m m m -<,解得3m >,故m 的取值范围是(3,)+∞.【考点】分段函数,函数图象【名师点睛】本题主要考查二次函数的图象与性质、函数与方程、分段函数的概念.解答本题,关键在于能利用数形结合思想,通过对函数图象的分析,转化得到代数不等式.本题能较好地考查考生数形结合思想、转化与化归思想、基本运算求解能力等.19.或【解析】【分析】根据不等式恒成立化简命题为根据一元二次方程有解化简命题为或再根据且命题的性质可得结果【详解】若命题:为真;则解得:若命题:为真则解得:或若命题是真命题则或故答案为或【点睛】解答非命解析:2a ≤-或1a = 【解析】 【分析】根据不等式恒成立化简命题p 为1a ≤,根据一元二次方程有解化简命题q 为2a ≤-或1a ≥,再根据且命题的性质可得结果.【详解】若命题p :“[]1,2x ∀∈,20x a -≥”为真; 则10a -≥, 解得:1a ≤,若命题q :“x ∃∈R ,2220x ax a ++-=”为真, 则()24420a a ∆=--≥,解得:2a ≤-或1a ≥,若命题“p q ∧”是真命题,则2a ≤-,或1a =, 故答案为2a ≤-或1a = 【点睛】解答非命题、且命题与或命题真假有关的题型时,应注意:(1)原命题与其非命题真假相反;(2)或命题“一真则真”;(3)且命题“一假则假”.20.【解析】【分析】先找出线面角运用余弦定理进行求解【详解】连接交于点取中点连接则连接为异面直线与所成角在中同理可得异面直线与所成角的余弦值是故答案为【点睛】本题主要考查了异面直线所成的角考查了空间想象解析:30 【解析】 【分析】先找出线面角,运用余弦定理进行求解 【详解】连接1AB 交1A B 于点D ,取11B C 中点E ,连接DE ,则1DE AC ,连接1A E1A DE ∴∠为异面直线1A B 与1AC 所成角在111RtAC B 中,111AC =,1111122C E C B == 15A E ∴=同理可得16A D =5DE =222165530cos 652A DE +-⎝⎭⎝⎭⎝⎭∠==⨯⨯, ∴异面直线1A B 与1AC 所成角的余弦值是301030【点睛】本题主要考查了异面直线所成的角,考查了空间想象能力,运算能力和推理论证能力,属于基础题.三、解答题21.(1)0.005m =(2)平均数为93(3)140人 【解析】 【分析】(1)根据面积之和为1列等式解得.(2)频率分布直方图中每一个小矩形的面积乘以底边中点的横坐标之和即为平均数, (3)先计算出各分数段上的成绩,再根据比值计算出相应分数段上的英语成绩人数相加即可. 【详解】解:()1由()1020.020.030.041m ⨯+++=, 解得0.005m =.()2频率分布直方图中每一个小矩形的面积乘以底边中点的横坐标之和即为平均数,即估计平均数为0.05750.4850.3950.21050.0511593⨯+⨯+⨯+⨯+⨯=.()3由频率分布直方图可求出这200名学生的数学成绩在[)90,100,[)100,110,[)110,120的分别有60人,40人,10人,按照表中给的比例,则英语成绩在[)90,100,[)100,110,[)110,120的分别有50人,80人,10人,所以英语成绩在[)90,120的有140人. 【点睛】本题考查了频率分布直方图,属中档题. 22.(1)()3sin 23f x x π⎛⎫=+ ⎪⎝⎭;(2)增区间是()5,1212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z ,对称轴为()122k x k ππ=+∈Z 【解析】 【分析】(1)由周期求得ω,再由函数图象上的最低点的纵坐标为﹣3求得A ,则函数解析式可求;(2)直接利用复合函数的单调性求函数f (x )的单调递增区间,再由2x 32k πππ+=+求解x 可得函数f (x )的对称轴方程.【详解】(1)因为()f x 的最小正周期为π 因为,0>ω,2T ππω==,∴22πωπ==.又函数()f x 图象上的最低点纵坐标为3-,且0A > ∴3A = ∴()3sin 23f x x π⎛⎫=+ ⎪⎝⎭. (2)由222,232k x k k πππππ-≤+≤+∈Z ,可得5,1212k x k k ππππ-≤≤+∈Z 可得()f x 单调递增区间()5,1212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z . 由232x k πππ+=+,得()122k x k ππ=+∈Z . 所以函数()f x 的对称轴方程为()122k x k ππ=+∈Z . 【点睛】本题考查函数解析式的求法,考查y =A sin (ωx +φ)型函数的性质,是基础题. 23.(I )从第三年开始盈利;(II )第6年,投资商年平均纯利润达到最大,年平均纯利润最大值16万元 【解析】 【分析】 【详解】 (Ⅰ)依题意前年总收入- 前年的总支出- 投资额72万元,可得由得,解得由于,所以从第3年开始盈利.(Ⅱ)年平均利润当且仅当,即时等号成立即第6年, 投资商平均年平均纯利润最大,最大值为16万元 24.(1)()9,12b =,()4,3c =-;(2)34π. 【解析】 【分析】(1)利用共线向量的坐标表示和垂直向量的坐标表示并结合条件//a b ,a c ⊥,列方程求出x 、y 的值,可得出向量b 和c 的坐标;(2)求出m 、n 的坐标,利用向量数量积的坐标运算计算出向量m 与向量n 夹角的余弦值,由夹角的取值范围可求出这两个向量夹角的值. 【详解】 (1)()3,4a =,()9,b x =,()4,c y =,且//a b ,a c ⊥,3493440x y =⨯⎧∴⎨⨯+=⎩, 解得123x y =⎧⎨=-⎩,因此,()9,12b =,()4,3c =-;(2)()()()223,49,123,4m a b =-=⨯-=--,()()()3,44,37,1n a c =+=+-=,则374125m n ⋅=-⨯-⨯=-,()(35m ∴=-+-=,271n =+=设m 与n 的夹角为θ,cos ,255m n m n m n⋅∴===-⨯⋅,0θπ≤≤,则34πθ=. 因此,向量m 与向量n 的夹角为34π. 【点睛】本题考查平面向量的坐标运算,涉及共线向量、向量垂直以及利用坐标计算向量的夹角,解题的关键就是将问题转化为向量的坐标运算,考查计算能力,属于中等题. 25.(1)()1122n n T n +=-⋅+(2)证明见解析,n a n =【解析】 【分析】(1)令n =1,即可求出11a =,计算出2nn b n =•,利用错位相减求出n T 。

新高中必修二数学下期末一模试题附答案

新高中必修二数学下期末一模试题附答案

新高中必修二数学下期末一模试题附答案一、选择题1.已知集合{}{}2|320,,|05,A x x x x R B x x x N =-+=∈=<<∈,则满足条件A CB ⊆⊆的集合C 的个数为( )A .1B .2C .3D .42.已知数列{}n a 的前n 项和22n S n n =+,那么它的通项公式是( )A .21n a n =-B .21n a n =+C .41n a n =-D .41n a n =+3.设样本数据1210,,,x x x L 的均值和方差分别为1和4,若(i i y x a a =+为非零常数,1,2,,10)i =L ,则1210,,,y y y L 的均值和方差分别为( )A .1,4a +B .1,4a a ++C .1,4D .1,4a +4.要得到函数223cos sin 23y x x =+-的图象,只需将函数2sin 2y x =的图象( ) A .向左平移3π个单位 B .向右平移3π个单位 C .向左平移6π个单位 D .向右平移6π个单位 5.已知ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,且2cos 2b C a c ⋅=+,若3b =,则ABC ∆的外接圆面积为( )A .48π B .12πC .12πD .3π6.设函数f (x )=cos (x +3π),则下列结论错误的是 A .f(x)的一个周期为−2π B .y=f(x)的图像关于直线x=83π对称 C .f(x+π)的一个零点为x=6π D .f(x)在(2π,π)单调递减 7.设正项等差数列的前n 项和为,若,则的最小值为 A .1B .C .D .8.已知()201911,02log ,0x x f x x x ⎧+≤⎪=⎨⎪>⎩,若存在三个不同实数a ,b ,c 使得()()()f a f b f c ==,则abc 的取值范围是( ) A .(0,1)B .[-2,0)C .(]2,0-D .(0,1)9.已知1sin 34πα⎛⎫-= ⎪⎝⎭,则cos 23πα⎛⎫+= ⎪⎝⎭( )A .58-B .58C .78-D .7810.设函数,则()sin 2cos 244f x x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,则( ) A .()y f x =在0,2π⎛⎫⎪⎝⎭单调递增,其图象关于直线4x π=对称 B .()y f x =在0,2π⎛⎫⎪⎝⎭单调递增,其图象关于直线2x π=对称 C .()y f x =在0,2π⎛⎫⎪⎝⎭单调递减,其图象关于直线4x π=对称D .()y f x =在0,2π⎛⎫⎪⎝⎭单调递减,其图象关于直线2x π=对称 11.定义在R 上的奇函数()f x 满足()()2f x f x +=-,且当[]0,1x ∈时,()2cos x f x x =-,则下列结论正确的是( )A .()20202019201832f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭B .()20202019201832f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭C .()20192020201823f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭D .()20192020201823f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭12.将直线2x -y +λ=0沿x 轴向左平移1个单位,所得直线与圆x 2+y 2+2x -4y =0相切,则实数λ的值为( ) A .-3或7 B .-2或8 C .0或10D .1或11二、填空题13.在ABC △ 中,若223a b bc -= ,sin 23sin C B = ,则A 等于__________. 14.已知函数32()21f x x x ax =+-+在区间上恰有一个极值点,则实数a 的取值范围是____________15.已知数列{}n a 满足1121,2n n a a a n +==+,则na n的最小值为_______. 16.已知点G 是ABC ∆的重心,内角A 、B 、C 所对的边长分别为a 、b 、c ,且0578a b c GA GB GC ++=u u ur u u u r u u u r r ,则角B 的大小是__________. 17.直线l 与圆22240(3)x y x y a a ++-+=<相交于两点A ,B ,弦AB 的中点为(0,1),则直线l 的方程为__________.18.在圆x 2+y 2+2x +4y -3=0上且到直线x +y +1=02的点共有________个.19.设0x >,0y >,24x y +=,则(1)(21)x y xy++的最小值为__________.20.如图,在正方体1111ABCD A B C D -中,点E 是棱1CC 上的一个动点,平面1BED 交棱1AA 于点F .下列命题正确的为_______________.①存在点E ,使得11A C //平面1BED F ; ②对于任意的点E ,平面11AC D ⊥平面1BED F ; ③存在点E ,使得1B D ⊥平面1BED F ;④对于任意的点E ,四棱锥11B BED F -的体积均不变.三、解答题21.某校200名学生的数学期中考试成绩频率分布直方图如图所示,其中成绩分组区间是[)70,80,[)80,90,[)90,100,[)90,100,[)100,110,[)110,120.()1求图中m 的值;()2根据频率分布直方图,估计这200名学生的平均分;()3若这200名学生的数学成绩中,某些分数段的人数x 与英语成绩相应分数段的人数y 之比如表所示,求英语成绩在[)90,120的人数.分数段[)90,100[)100,110[)110,120:x y6:51:21:122.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底部ABCD 为菱形,E 为CD 的中点.(1)求证:BD ⊥平面PAC ;(2)若∠ABC =60°,求证:平面PAB ⊥平面PAE ; 23.随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表: 年份20102011201220132014时间代号t12345储蓄存款y (千亿元)567810(Ⅰ)求y 关于t 的回归方程^^^t yb a =+(Ⅱ)用所求回归方程预测该地区2015年(6t =)的人民币储蓄存款.附:回归方程^^^t y b a =+中1122211()(),{().n niii ii i nni ii i x x y y x y nxyb x x xnx a y bx ====---==--=-∑∑∑∑24.某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x ,y.奖励规则如下:①若3xy ≤,则奖励玩具一个; ②若8xy ≥,则奖励水杯一个; ③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动. (Ⅰ)求小亮获得玩具的概率;(Ⅱ)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由. 25.已知函数f(x)=log 4(4x +1)+kx(k ∈R)是偶函数. (1)求k 的值;(2)设g(x)=log 44•23xa a ⎡⎤⎢⎥⎣⎦-,若函数f(x)与g(x)的图象有且只有一个公共点,求实数a 的取值范围.26.某学校微信公众号收到非常多的精彩留言,学校从众多留言者中抽取了100人参加“学校满意度调查”,其留言者年龄集中在[]25,85之间,根据统计结果,做出频率分布直方图如下:(1)求这100位留言者年龄的平均数和中位数;(2)学校从参加调查的年龄在[)35,45和[)65,75的留言者中,按照分层抽样的方法,抽出了6人参加“精彩留言”经验交流会,赠与年龄在[)35,45的留言者每人一部价值1000元的手机,年龄在[)65,75的留言者每人一套价值700元的书,现要从这6人中选出3人作为代表发言,求这3位发言者所得纪念品价值超过2300元的概率.【参考答案】***试卷处理标记,请不要删除1.D 解析:D 【解析】 【分析】 【详解】求解一元二次方程,得{}()(){}2|320,|120,A x x x x x x x x =-+=∈=--=∈R R {}1,2=,易知{}{}|05,1,2,3,4B x x x =<<∈=N .因为A C B ⊆⊆,所以根据子集的定义, 集合C 必须含有元素1,2,且可能含有元素3,4, 原题即求集合{}3,4的子集个数,即有224=个,故选D. 【点评】本题考查子集的概念,不等式,解一元二次方程.本题在求集合个数时,也可采用列举法.列出集合C 的所有可能情况,再数个数即可.来年要注意集合的交集运算,考查频度极高.2.C解析:C 【解析】分类讨论:当1n =时,11213a S ==+=,当2n ≥时,221(2)2(1)141n n n a S S n n n n n -⎡⎤=-=+--+-=-⎣⎦, 且当1n =时:1414113n a -=⨯-== 据此可得,数列的通项公式为:41n a n =-. 本题选择C 选项.3.A解析:A 【解析】试题分析:因为样本数据1210,,,x x x L 的平均数是1,所以1210,,...y y y 的平均数是121012101210 (1101010)y y y x a x a x a x x x a a ++++++++++++==+=+;根据i i y x a =+(a 为非零常数,1,2,,10i =L ),以及数据1210,,,x x x L 的方差为4可知数据1210,,,y y y L 的方差为2144⨯=,综上故选A. 考点:样本数据的方差和平均数.4.C解析:C 【解析】化简函数2sin 2y x x =+-. 【详解】依题意2ππsin 22sin 22sin 236y x x x x ⎡⎤⎛⎫⎛⎫=+=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故只需将函数2sin 2y x =的图象向左平移6π个单位.所以选C. 【点睛】本小题主要考查三角函数降次公式和辅助角公式,考查三角函数图象变换的知识,属于基础题.5.D解析:D 【解析】 【分析】 先化简得23B π=,再利用正弦定理求出外接圆的半径,即得ABC ∆的外接圆面积. 【详解】由题得222222a b c b a c ab+-⋅=+,所以22222a b c a ac +-=+, 所以222a b c ac -+=-, 所以12cos ,cosB 2ac B ac =-∴=-, 所以23B π=.,R R ∴= 所以ABC ∆的外接圆面积为=3ππ. 故选D 【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.6.D解析:D 【解析】f (x )的最小正周期为2π,易知A 正确;f8π3⎛⎫⎪⎝⎭=cos8ππ33⎛⎫+⎪⎝⎭=cos3π=-1,为f(x)的最小值,故B正确;∵f(x+π)=cosππ3x⎛⎫++⎪⎝⎭=-cosπ3x⎛⎫+⎪⎝⎭,∴fππ6⎛⎫+⎪⎝⎭=-cosππ63⎛⎫+⎪⎝⎭=-cos2π=0,故C正确;由于f2π3⎛⎫⎪⎝⎭=cos2ππ33⎛⎫+⎪⎝⎭=cosπ=-1,为f(x)的最小值,故f(x)在,2ππ⎛⎫⎪⎝⎭上不单调,故D错误.故选D.7.D解析:D【解析】【分析】先利用等差数列的求和公式得出,再利用等差数列的基本性质得出,再将代数式和相乘,展开后利用基本不等式可求出的最小值.【详解】由等差数列的前项和公式可得,所以,,由等差数列的基本性质可得,,所以,,当且仅当,即当时,等号成立,因此,的最小值为,故选:D.【点睛】本题考查的等差数列求和公式以及等差数列下标性质的应用,考查利用基本不等式求最值,解题时要充分利用定值条件,并对所求代数式进行配凑,考查计算能力,属于中等题。

新高中必修二数学下期末一模试题及答案

新高中必修二数学下期末一模试题及答案

新高中必修二数学下期末一模试题及答案一、选择题1.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知5a =,2c =,2cos 3A =,则b= A .2B .3C .2D .32.如图,在ABC V 中,90BAC ︒∠=,AD 是边BC 上的高,PA ⊥平面ABC ,则图中直角三角形的个数是( )A .5B .6C .8D .103.已知ABC V 为等边三角形,2AB =,设P ,Q 满足AP AB λ=uu u r uu u r,()()1AQ AC λλ=-∈R u u u r u u u r ,若32BQ CP ⋅=-uu u r uu r ,则λ=( )A .12B .122± C .1102± D .3222± 4.(2015新课标全国I 理科)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有A .14斛B .22斛C .36斛D .66斛5.已知不等式220ax bx ++>的解集为{}12x x -<<,则不等式220x bx a ++<的解集为( ) A .112x x ⎧⎫-<<⎨⎬⎩⎭B .112x x x ⎧⎫<->⎨⎬⎩⎭或C .{}21x x -<<D .{}21x x x <->或6.《九章算术》中,将底面是直角三角形的直三棱柱称为“堑堵”.某“堑堵”的三视图如图所示,则它的表面积为( )A .2B .422+C .442+D .642+7.若,αβ均为锐角,25sin 5α=,()3sin 5αβ+=,则cos β=A .25B .2525 C .25或2525D .2525-8.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女子善织,日益功,疾,初日织五尺,今一月织九匹三丈(1匹=40尺,一丈=10尺),问日益几何?”其意思为:“有一女子擅长织布,每天比前一天更加用功,织布的速度也越来越快,从第二天起,每天比前一天多织相同量的布,第一天织5尺,一月织了九匹三丈,问每天增加多少尺布?”若一个月按30天算,则每天增加量为A .12尺 B .815尺 C .1629尺 D .1631尺 9.已知ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,且2cos 2b C a c ⋅=+,若3b =,则ABC ∆的外接圆面积为( )A .48π B .12πC .12πD .3π10.在ABC V 中,已知,2,60a x b B ===o,如果ABC V 有两组解,则x 的取值范围是( )A .4323⎛⎫⎪ ⎪⎝⎭,B .4323⎡⎤⎢⎥⎣⎦,C .4323⎡⎫⎪⎢⎪⎣⎭,D .432,3⎛⎤⎥ ⎝⎦11.有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为 A .45B .35C .25D .1512.在正三棱柱111ABC A B C -中,侧棱长为2,底面三角形的边长为1,则1BC 与侧面1ACC A 所成角的大小为( )A .30oB .45oC .60oD .90o二、填空题13.已知函数()3sin(2)cos(2)(||)2f x x x πϕϕϕ=---<的图象关于y 轴对称,则()f x 在区[6π-,5]12π上的最大值为__. 14.已知2a b ==r r ,()()22a b a b +⋅-=-r r r r ,则a r 与b r的夹角为 . 15.如图,在正方体1111ABCD A B C D -中,E 、F 分别是1DD 、DC 上靠近点D 的三等分点,则异面直线EF 与11A C 所成角的大小是______.16.已知数列{}n a 为正项的递增等比数列,1582a a +=,2481a a ⋅=,记数列2n a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,则使不等式12019113n T ->成立的最大正整数n 的值是_______.17.若(2,1)x ∃∈--,使不等式()24210x xm m -++>成立,则实数m 的取值范围为________.18.函数sin 3cos y x x =-的图像可由函数2sin y x =的图像至少向右平移________个单位长度得到.19.若()1,x ∈+∞,则131y x x =+-的最小值是_____. 20.已知复数z x yi =+,且23z -=,则yx的最大值为__________. 三、解答题21.已知直线12:210:280,l x y l ax y a ,++=+++=且12l l //. (1)求直线12,l l 之间的距离;(2)已知圆C 与直线2l 相切于点A ,且点A 的横坐标为2-,若圆心C 在直线1l 上,求圆C 的标准方程.22.设ABC ∆的内角A 、B 、C 所对的边分别为a 、b 、c ,且4cos ,25B b ==. (1)当π6A =时,求a 的值; (2)当ABC ∆的面积为3时,求a+c 的值.23.已知平面向量()3,4a =v ,()9,b x =v ,()4,c y =v,且//a b v v ,a c ⊥v v .(1)求b v 和c v ;(2)若2m a b =-v v v ,n a c =+v v v ,求向量m u v 与向量n v 的夹角的大小.24.已知数列{}n a 满足:()*22,21,n n a S n a n N ==+∈(1)设数列{}n b 满足()11nn b n a =•+,求{}n b 的前n 项和n T :(2)证明数列{}n a 是等差数列,并求其通项公式;25.ABC ∆是边长为3的等边三角形,2BE BA λ=u u u r u u u r ,1(1)2BF BC λλ=<<u u ur u u u r ,过点F 作DF BC ⊥交AC 边于点D ,交BA 的延长线于点E .(1)当23λ=时,设,BA a BC b ==u u u r r u u u r r ,用向量,a b r r 表示EF u u u r ;(2)当λ为何值时,AE FC ⋅u u u r u u u r取得最大值,并求出最大值.26.已知数列{}n a 的前n 项和n S ,且23n s n n =+;(1)求它的通项n a .(2)若12n n n b a -=,求数列{}n b 的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】 【详解】 由余弦定理得,解得(舍去),故选D.【考点】 余弦定理 【名师点睛】本题属于基础题,考查内容单一,根据余弦定理整理出关于b 的一元二次方程,再通过解方程求b.运算失误是基础题失分的主要原因,请考生切记!2.C解析:C 【解析】 【分析】根据线面垂直得出一些相交直线垂直,以及找出题中一些已知的相交直线垂直,由这些条件找出图中的直角三角形. 【详解】①PA ⊥Q 平面ABC ,,,,PA AB PA AD PA AC PAB ∴⊥⊥⊥∴∆,,PAD PAC ∆∆都是直角三角形;②90,BAC ABC ︒∠=∴Q V 是直角三角形; ③,,AD BC ABD ACD ⊥∴∆∆Q 是直角三角形;④由,PA BC AD BC ⊥⊥得BC ⊥平面PAD ,可知:,,BC PD PBD PCD ⊥∴∆∆也是直综上可知:直角三角形的个数是8个,故选C .【点睛】本题考查直角三角形个数的确定,考查相交直线垂直,解题时可以充分利用直线与平面垂直的性质得到,考查推理能力,属于中等题.3.A解析:A 【解析】 【分析】运用向量的加法和减法运算表示向量BQ BA AQ =+u u u r u u u r u u u r ,CP CA AP =+u u u r u u u r u u u r,再根据向量的数量积运算,建立关于λ的方程,可得选项. 【详解】∵BQ BA AQ =+u u u r u u u r u u u r ,CP CA AP =+u u u r u u u r u u u r,∴()()BQ CP BA AQ CA AP AB AC AB AP AC AQ AQ AP ⋅=+⋅+=⋅-⋅-⋅+⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r()()2211AB AC AB AC AB AC λλλλ=⋅---+-⋅u u u r u u u r u u u r u u u r u u u r u u u r()()232441212222λλλλλλ=---+-=-+-=-,∴12λ=.故选:A. 4.B解析:B 【解析】试题分析:设圆锥底面半径为r ,则12384r ⨯⨯=,所以163r =,所以米堆的体积为211163()5433⨯⨯⨯⨯=3209,故堆放的米约为3209÷1.62≈22,故选B. 考点:圆锥的性质与圆锥的体积公式5.A解析:A 【解析】根据一元二次不等式的解集与一元二次方程根的关系,结合韦达定理可构造方程求得,a b ;利用一元二次不等式的解法可求得结果.【详解】220ax bx ++>Q 的解集为{}12x x -<<1∴-和2是方程220ax bx ++=的两根,且0a <1212122ba a⎧-=-+=⎪⎪∴⎨⎪=-⨯=-⎪⎩,解得:11a b =-⎧⎨=⎩ 222210x bx a x x ∴++=+-< 解得:112x -<<,即不等式220x bx a ++<的解集为112x x ⎧⎫-<<⎨⎬⎩⎭故选:A 【点睛】本题考查一元二次不等式的解法、一元二次不等式的解集与一元二次方程根的关系等知识的应用;关键是能够通过一元二次不等式的解集确定一元二次方程的根,进而利用韦达定理构造方程求得变量.6.D解析:D 【解析】 【分析】根据题意和三视图知几何体是一个放倒的直三棱柱,由三视图求出几何元素的长度,由面积公式求出几何体的表面积. 【详解】根据题意和三视图知几何体是一个放倒的直三棱柱,底面是一个直角三角形,两条直角边,斜边是2,且侧棱与底面垂直,侧棱长是2,∴几何体的表面积12222262S =⨯+⨯⨯=+ 故选D . 【点睛】本题考查三视图求几何体的表面积,由三视图正确复原几何体是解题的关键,考查空间想象能力.7.B解析:B 【解析】 【分析】利用角的等量代换,β=α+β-α,只要求出α的余弦,α+β的余弦,利用复合角余弦公式展开求之.∵α为锐角,252sin α=>s ,∴α>45°且5cos α= , ∵()3sin 5αβ+=,且132252<< ,2παβπ∴+<<,∴45cosαβ+=-() , 则cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα453252555=-⨯+⨯=.故选B. 【点睛】本题考查两角和与差的正弦、余弦函数公式,以及同角三角函数间的基本关系,熟练掌握公式是解本题的关键.8.C解析:C 【解析】试题分析:将此问题转化为等差数列的问题,首项为,,求公差,,解得:尺,故选C.考点:等差数列9.D解析:D 【解析】 【分析】 先化简得23B π=,再利用正弦定理求出外接圆的半径,即得ABC ∆的外接圆面积. 【详解】由题得222222a b c b a c ab+-⋅=+,所以22222a b c a ac +-=+, 所以222a b c ac -+=-, 所以12cos ,cosB 2ac B ac =-∴=-, 所以23B π=.,R R∴=所以ABC∆的外接圆面积为=3ππ.故选D【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.10.A解析:A【解析】【分析】已知,,a b B,若ABCV有两组解,则sina Bb a<<,可解得x的取值范围.【详解】由已知可得sina Bb a<<,则sin602x x︒<<,解得23x<<.故选A.【点睛】本题考查已知两边及其中一边的对角,用正弦定理解三角形时解的个数的判断.若ABCV中,已知,,a b B且B为锐角,若0sinb a B<<,则无解;若sinb a B=或b a≥,则有一解;若sina Bb a<<,则有两解.11.C解析:C【解析】选取两支彩笔的方法有25C种,含有红色彩笔的选法为14C种,由古典概型公式,满足题意的概率值为142542105CpC===.本题选择C选项.考点:古典概型名师点睛:对于古典概型问题主要把握基本事件的种数和符合要求的事件种数,基本事件的种数要注意区别是排列问题还是组合问题,看抽取时是有、无顺序,本题从这5支彩笔中任取2支不同颜色的彩笔,是组合问题,当然简单问题建议采取列举法更直观一些. 12.A解析:A【解析】【分析】由题意,取AC的中点O,连结1,BO C O,求得1BC O∠是1BC与侧面11ACC A所成的角,在1BC O∆中,即可求解.【详解】由题意,取AC 的中点O ,连结1,BO C O ,因为正三棱柱111ABC A B C -中,侧棱长为2,底面三角形的边长为1, 所以1,BOAC BO AA ⊥⊥,因为1AC AA A ⋂=,所以BO ⊥平面11ACC A , 所以1BC O ∠是1BC 与侧面11ACC A 所成的角, 因为222113131(),(2)()222BO C O =-==+=, 所以11332tan 332BO BC O OC ∠===, 所以0130BC O ∠=,1BC 与侧面11ACC A 所成的角030.【点睛】本题主要考查了直线与平面所成的角的求解,其中解答中空间几何体的线面位置关系,得到1BC O ∠是1BC 与侧面11ACC A 所成的角是解答的关键,着重考查了推理与运算能力,以及转化与化归思想,属于中档试题.二、填空题13.【解析】【分析】利用辅助角公式化简可得再根据图象关于轴对称可求得再结合余弦函数的图像求出最值即可【详解】因为函数的图象关于轴对称所以即又则即又因为所以则当即时取得最大值故答案为:【点睛】判定三角函数 3【解析】 【分析】利用辅助角公式化简可得()2sin(2)6f x x πϕ=--,再根据图象关于y 轴对称可求得()2cos2f x x =-,再结合余弦函数的图像求出最值即可.【详解】因为函数()()()3sin 2cos 2f x x x ϕϕ=---2sin(2)6x πϕ=--的图象关于y 轴对称,所以πππ62k ϕ--=+,即()2ππ,3k k Z ϕ=--∈. 又2πϕ<,则π3ϕ=,即()2sin(2)2cos22f x x x π=-=-. 又因为π5π612x -≤≤,所以π5π236x -≤≤,则当5π26x =,即5π12x =时,()f x 取得最大值5π2cos 36-=. 故答案为:3.【点睛】判定三角函数的奇偶性时,往往与诱导公式进行结合,如:若()sin y x ωϕ=+为奇函数,则π,Z k k ϕ=∈;若()sin y x ωϕ=+为偶函数,则ππ+,Z 2k k ϕ=∈; 若()cos y x ωϕ=+为偶函数,则π,Z k k ϕ=∈; 若()cos y x ωϕ=+为奇函数,则ππ+,Z 2k k ϕ=∈. 14.【解析】【分析】【详解】根据已知条件去括号得:解析:60︒【解析】【分析】【详解】 根据已知条件(2)()2a b a b +⋅-=-r r r r ,去括号得:222422cos 242a a b b θ+⋅-=+⨯⨯-⨯=-r r r r ,1cos ,602θθ︒⇒== 15.【解析】【分析】连接可得出证明出四边形为平行四边形可得可得出异面直线与所成角为或其补角分析的形状即可得出的大小即可得出答案【详解】连接在正方体中所以四边形为平行四边形所以异面直线与所成的角为易知为等 解析:60o【解析】【分析】连接1CD ,可得出1//EF CD ,证明出四边形11A BCD 为平行四边形,可得11//A B CD ,可得出异面直线EF 与11A C 所成角为11BA C ∠或其补角,分析11A BC ∆的形状,即可得出11BA C ∠的大小,即可得出答案.【详解】连接1CD 、1A B 、1BC ,113DEDF DD DC ==Q ,1//EF CD ∴, 在正方体1111ABCD A B C D -中,11//A D AD ,//AD BC ,11//A D BC ∴,所以,四边形11A BCD 为平行四边形,11//A B CD ∴,所以,异面直线EF 与11A C 所成的角为11BA C ∠.易知11A BC ∆为等边三角形,1160BA C ∴∠=o .故答案为:60o .【点睛】本题考查异面直线所成角的计算,一般利用平移直线法,选择合适的三角形求解,考查计算能力,属于中等题.16.6【解析】【分析】设等比数列{an}的公比q 由于是正项的递增等比数列可得q >1由a1+a5=82a2•a4=81=a1a5∴a1a5是一元二次方程x2﹣82x+81=0的两个实数根解得a1a5利用通解析:6【解析】【分析】设等比数列{a n }的公比q ,由于是正项的递增等比数列,可得q >1.由a 1+a 5=82,a 2•a 4=81=a 1a 5,∴a 1,a 5,是一元二次方程x 2﹣82x+81=0的两个实数根,解得a 1,a 5,利用通项公式可得q ,a n .利用等比数列的求和公式可得数列{2na }的前n 项和为T n .代入不等式2019|13T n ﹣1|>1,化简即可得出. 【详解】 数列{}n a 为正项的递增等比数列,1582a a +=,a 2•a 4=81=a 1a 5,即15158281a a a a +=⎧⎨⋅=⎩解得15181a a =⎧⎨=⎩,则公比3q =,∴13n n a -=,则2122221333n n T -=++++L 11132311313n n -⎛⎫=⨯=- ⎪⎝⎭-, ∴12019113n T ->,即1201913n ⨯>,得32019n <,此时正整数n 的最大值为6. 故答案为6.【点睛】本题考查了等比数列的通项公式与求和公式、一元二次方程的解法、不等式的解法,考查了推理能力与计算能力,属于中档题.17.【解析】【分析】令将问题转化为二次函数在区间上恒成立问题即可求得参数范围【详解】令由可得则问题等价于存在分离参数可得若满足题意则只需令令则容易知则只需整理得解得故答案为:【点睛】本题考查由存在性问题 解析:()4,5-【解析】【分析】令2x t =,将问题转化为二次函数在区间上恒成立问题,即可求得参数范围.【详解】令2x t =,由(2,1)x ∃∈--可得11,42t ⎛⎫∈⎪⎝⎭,()24210x x m m -++> 则问题等价于存在11,42t ⎛⎫∈⎪⎝⎭,()2210m m t t -++>, 分离参数可得221t m m t +->- 若满足题意,则只需221mint m m t +⎛⎫->- ⎪⎝⎭, 令()22111t h x t t t +⎛⎫=-=-- ⎪⎝⎭,令1m t =,()2,4m ∈ 则()2,2,4y m m m =--∈,容易知41620min y =--=-, 则只需220m m ->-,整理得2200m m --<,解得m ∈()4,5-.故答案为:()4,5-.【点睛】本题考查由存在性问题求参数值,属中档题.18.【解析】试题分析:因为所以函数的的图像可由函数的图像至少向右平移个单位长度得到【考点】三角函数图像的平移变换两角差的正弦公式【误区警示】在进行三角函数图像变换时提倡先平移后伸缩但先伸缩后平移也经常出解析:3π 【解析】 试题分析:因为sin 3cos 2sin()3y x x x π=-=-,所以函数sin 3cos y x x =-的的图像可由函数2sin y x =的图像至少向右平移3π个单位长度得到. 【考点】三角函数图像的平移变换、两角差的正弦公式【误区警示】在进行三角函数图像变换时,提倡“先平移,后伸缩”,但“先伸缩,后平移”也经常出现在题目中,所以也必须熟练掌握,无论是哪种变形,切记每一个变换总是对字母x 而言,即图像变换要看“变量”变化多少,而不是“角”变化多少.19.【解析】【分析】由已知可知然后利用基本不等式即可求解【详解】解:(当且仅当取等号)故答案为【点睛】本题主要考查了利用基本不等式求最值解题的关键是配凑积为定值属于基础试题解析:323+【解析】【分析】由已知可知()11y 3x 3x 13x 1x 1=+=-++--,然后利用基本不等式即可求解. 【详解】解:x 1>Q ,()11y 3x 3x 13x 1x 1∴=+=-++-- ()123x 13233x 1≥-⋅+=+-,(当且仅当313x =+取等号) 故答案为233+.【点睛】本题主要考查了利用基本不等式求最值,解题的关键是配凑积为定值,属于基础试题.20.【解析】【分析】根据复数z 的几何意义以及的几何意义由图象得出最大值【详解】复数且复数z 的几何意义是复平面内以点为圆心为半径的圆的几何意义是圆上的点与坐标原点连线的斜率由图可知:即的最大值为故答案为: 解析:【解析】【分析】根据复数z 的几何意义以及y x的几何意义,由图象得出最大值. 【详解】复数z x yi =+且23z -=z 的几何意义是复平面内以点(2,0)3为半径的圆22(2)3x y -+=.y x的几何意义是圆上的点与坐标原点连线的斜率 由图可知:max 33y x ⎛⎫== ⎪⎝⎭ 即y x 3 3【点睛】本题主要考查了复数的几何意义的应用,属于中档题.三、解答题21.(152)22x (y 1)5++=.【解析】【分析】 ()1先由两直线平行解得a 4=,再由平行直线间的距离公式可求得;()2代x 2=-得()A 2,2--,可得AC 的方程,与1l 联立得()C 0,1-,再求得圆的半径,从而可得圆的标准方程.【详解】解:()121l //l Q ,a 28a 211+∴=≠,解得a 4=, 1l ∴:2x y 10++=,2l :2x y 60++=,故直线1l 与2l 的距离2261d 5512-===+ ()2当x 2=-代入2x y 60++=,得y 2=-,所以切点A 的坐标为()2,2--,从而直线AC 的方程为()1y 2x 22+=+,得x 2y 20--=, 联立2x y 10++=得()C 0,1-.由()1知C e所以所求圆的标准方程为:22x (y 1)5++=.【点睛】本题考查了直线与圆的位置关系,考查了两条平行线的距离公式,属中档题.22.(1)53a =(2)a c +=【解析】试题分析:(1)利用同角三角函数的基本关系式,求出sin B ,利用正弦定理求出a 即可.(2)通过三角形的面积求出ac 的值,然后利用余弦定理即可求出a +c 的值.试题解析:解:(1)43cos ,sin 55B B =∴=Q . 由正弦定理得10,sin sin 3sin 6a b a A B π==可得. 53a ∴=. (2)ABC ∆Q 的面积13sin ,sin 25S ac B B ==, 33,1010ac ac ∴==. 由余弦定理2222cos b a c ac B =+-, 得4=22228165a c ac a c +-=+- ,即2220a c +=. ∴()()22220,40a c ac a c +-=+=,∴a c +=点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化. 第三步:求结果.23.(1)()9,12b =v ,()4,3c =-v ;(2)34π. 【解析】【分析】(1)利用共线向量的坐标表示和垂直向量的坐标表示并结合条件//a b r r ,a c ⊥r r ,列方程求出x 、y 的值,可得出向量b r 和c r的坐标; (2)求出m u r 、n r 的坐标,利用向量数量积的坐标运算计算出向量m u r 与向量n r夹角的余弦值,由夹角的取值范围可求出这两个向量夹角的值.【详解】 (1)()3,4a =r Q ,()9,b x =r ,()4,c y =r ,且//a b r r ,a c ⊥r r ,3493440x y =⨯⎧∴⎨⨯+=⎩, 解得123x y =⎧⎨=-⎩,因此,()9,12b =r ,()4,3c =-r ; (2)()()()223,49,123,4m a b =-=⨯-=--u r r r Q ,()()()3,44,37,1n a c =+=+-=r r r ,则374125m n ⋅=-⨯-⨯=-u r r ,5m ∴==u r,n ==r设m u r 与n r 的夹角为θ,cos ,2m n m n m n⋅∴===-⋅u r r u r r ,0θπ≤≤Q ,则34πθ=. 因此,向量m u r 与向量n r 的夹角为34π. 【点睛】 本题考查平面向量的坐标运算,涉及共线向量、向量垂直以及利用坐标计算向量的夹角,解题的关键就是将问题转化为向量的坐标运算,考查计算能力,属于中等题.24.(1)()1122n n T n +=-⋅+(2)证明见解析,n a n =【解析】【分析】(1)令n =1,即可求出11a =,计算出2n n b n =•,利用错位相减求出n T 。

【典型题】高中必修二数学下期末第一次模拟试卷(带答案)(1)

【典型题】高中必修二数学下期末第一次模拟试卷(带答案)(1)

【典型题】高中必修二数学下期末第一次模拟试卷(带答案)(1)一、选择题1.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知5a =,2c =,2cos 3A =,则b= A .2B .3C .2D .32.已知向量()cos ,sin a θθ=,()1,2b =,若a 与b 的夹角为6π,则a b +=( ) A .2B .7C .2D .13.已知集合{}220A x x x =-->,则A =RA .{}12x x -<<B .{}12x x -≤≤C .}{}{|12x x x x <-⋃D .}{}{|1|2x x x x ≤-⋃≥4.某空间几何体的三视图如图所示,则该几何体的体积为( )A .73B .8π3- C .83D .7π3- 5.已知ABC ∆是边长为4的等边三角形,P 为平面ABC 内一点,则•()PA PB PC +的最小值是() A .6-B .3-C .4-D .2-6.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π7.已知集合 ,则A .B .C .D .8.函数223()2xx xf x e +=的大致图像是( )A .B .C .D .9.已知函数21(1)()2(1)ax x f x x x x x ⎧++>⎪=⎨⎪-+≤⎩在R 上单调递增,则实数a 的取值范围是 A .[]0,1B .(]0,1C .[]1,1-D .(]1,1-10.记max{,,}x y z 表示,,x y z 中的最大者,设函数{}2()max 42,,3f x x x x x =-+---,若()1f m <,则实数m 的取值范围是( )A .(1,1)(3,4)-B .(1,3)C .(1,4)-D .(,1)(4,)-∞-+∞11.与直线40x y --=和圆22220x y x y ++-=都相切的半径最小的圆的方程是 A .()()22112x y +++= B .()()22114x y -++= C .()()22112x y -++=D .()()22114x y +++=12.若函数()(),1231,1x a x f x a x x ⎧>⎪=⎨-+≤⎪⎩是R 上的减函数,则实数a 的取值范围是( )A .2,13⎛⎫⎪⎝⎭B .3,14⎡⎫⎪⎢⎣⎭C .23,34⎛⎤⎥⎝⎦D .2,3⎛⎫+∞⎪⎝⎭二、填空题13.在ABC ∆中,若3B π=,3AC =2AB BC +的最大值为__________.14.已知函数()sin 03y x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为π,若将该函数的图像向左平移()0m m >个单位后,所得图像关于原点对称,则m 的最小值为________.15.△ABC的内角A,B,C的对边分别为a,b,c,若cos A =4 5,cos C=513,a=1,则b=___.16.若x,y满足约束条件10,{30,30,x yx yx-+≥+-≥-≤则z=x−2y的最小值为__________.17.如图,在矩形中,为边的中点,1AB=,2BC=,分别以A、D为圆心,1为半径作圆弧EB、EC(在线段AD上).由两圆弧EB、EC及边所围成的平面图形绕直线旋转一周,则所形成的几何体的体积为 .18.已知函数42,0()log,0x xf xx x⎧≤=⎨>⎩,若1[()]2f f a=-,则a的值是________. 19.若()1,x∈+∞,则131y xx=+-的最小值是_____.20.函数()sinf x xω=(0>ω)的图像与其对称轴在y轴右侧的交点从左到右依次记为1A,2A,3A,⋅⋅⋅,nA,⋅⋅⋅,在点列{}nA中存在三个不同的点kA、lA、pA,使得△k l pA A A是等腰直角三角形,将满足上述条件的ω值从小到大组成的数记为nω,则6ω=________.三、解答题21.某高校在2012年的自主招生考试成绩中随机抽取100名中学生的笔试成绩,按成绩分组,得到的频率分布表如表所示.组号分组频数频率第1组[)160,16550.050第2组[)165,170①0.350第3组[)170,17530②第4组[)175,180200.200第5组[)180,185100.100(1)请先求出频率分布表中,①②位置的相应数据,再完成频率分布直方图; (2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试; (3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A 考官进行面试,求:第4组至少有一名学生被考官A 面试的概率. 22.已知不等式的解集为或.(1)求;(2)解关于的不等式23.将函数()4sin cos 6g x x x π⎛⎫=+⎪⎝⎭的图象向左平移02πϕϕ⎛⎫<≤ ⎪⎝⎭个单位长度后得到()f x 的图象.(1)若()f x 为偶函数,求()fϕ的值;(2)若()f x 在7,6ππ⎛⎫ ⎪⎝⎭上是单调函数,求ϕ的取值范围.24.已知A 、B 、C 为ABC ∆的三内角,且其对边分别为a 、b 、c ,若1cos cos sin sin 2B C B C -=.(1)求角A 的大小;(2)若23,4a b c =+=,求ABC ∆的面积.25.如图,在四棱锥P ABCD -中,P A ⊥平面ABCD ,CD ⊥AD ,BC ∥AD ,12BC CD AD ==.(Ⅰ)求证:CD ⊥PD ; (Ⅱ)求证:BD ⊥平面P AB ;(Ⅲ)在棱PD 上是否存在点M ,使CM ∥平面P AB ,若存在,确定点M 的位置,若不存在,请说明理由.26.记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-. (1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】 【详解】 由余弦定理得,解得(舍去),故选D.【考点】 余弦定理 【名师点睛】本题属于基础题,考查内容单一,根据余弦定理整理出关于b 的一元二次方程,再通过解方程求b.运算失误是基础题失分的主要原因,请考生切记!2.B解析:B 【解析】【分析】先计算a 与b 的模,再根据向量数量积的性质22()a b a b +=+即可计算求值. 【详解】因为()cos ,sin a θθ=,()1,2b =, 所以||1a =,||3b =.又222222()2||2||||cos||6a b a b a a b b a a b b +=+=+⋅+=+π+1372=++=, 所以7a b +=,故选B. 【点睛】本题主要考查了向量的坐标运算,向量的数量积,向量的模的计算,属于中档题.3.B解析:B 【解析】分析:首先利用一元二次不等式的解法,求出220x x -->的解集,从而求得集合A ,之后根据集合补集中元素的特征,求得结果. 详解:解不等式220x x -->得12x x -或, 所以{}|12A x x x =<->或,所以可以求得{}|12R C A x x =-≤≤,故选B.点睛:该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.4.B解析:B 【解析】 【分析】由三视图可知,该几何体是由一个四棱锥挖掉半个圆锥所得,故利用棱锥的体积减去半个圆锥的体积,就可求得几何体的体积. 【详解】由三视图可知,该几何体是由一个四棱锥挖掉半个圆锥所得,故其体积为21118222123233ππ-⋅⋅⋅-⋅⋅⋅⋅=.故选B. 【点睛】本小题主要考查由三视图判断几何体的结构,考查不规则几何体体积的求解方法,属于基础题.5.A解析:A 【解析】 【分析】建立平面直角坐标系,表示出点的坐标,利用向量坐标运算和平面向量的数量积的运算,求得最小值,即可求解. 【详解】由题意,以BC 中点为坐标原点,建立如图所示的坐标系, 则(0,23),(2,0),(2,0)A B C -,设(,)P x y ,则(,23),(2,),(2,)PA x y PB x y PC x y =--=---=--, 所以22()(2)(23)(2)2432PA PB PC x x y y x y y •+=-⋅-+-⋅-=-+222[(3)3]x y =+--,所以当0,3x y ==时,()PA PB PC •+取得最小值为2(3)6⨯-=-, 故选A.【点睛】本题主要考查了平面向量数量积的应用问题,根据条件建立坐标系,利用坐标法是解答的关键,着重考查了推理与运算能力,属于基础题.6.C解析:C 【解析】试题分析:由三视图分析可知,该几何体的表面积为圆锥的表面积与圆柱的侧面积之和.,,所以几何体的表面积为.考点:三视图与表面积.7.D解析:D 【解析】 试题分析:由得,所以,因为,所以,故选D.【考点】 一元二次不等式的解法,集合的运算【名师点睛】对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理.8.B解析:B 【解析】由()f x 的解析式知仅有两个零点32x =-与0x =,而A 中有三个零点,所以排除A ,又()2232xx x f x e-++'=,由()0f x '=知函数有两个极值点,排除C ,D ,故选B . 9.C解析:C 【解析】x ⩽1时,f (x )=−(x −1)2+1⩽1,x >1时,()()21,10a af x x f x x x=++'=-在(1,+∞)恒成立, 故a ⩽x 2在(1,+∞)恒成立, 故a ⩽1,而1+a +1⩾1,即a ⩾−1, 综上,a ∈[−1,1], 本题选择C 选项.点睛:利用单调性求参数的一般方法:一是求出函数的单调区间,然后使所给区间是这个单调区间的子区间,建立关于参数的不等式组即可求得参数范围;二是直接利用函数单调性的定义:作差、变形,由f (x 1)-f (x 2)的符号确定参数的范围,另外也可分离参数转化为不等式恒成立问题.10.A解析:A 【解析】 【分析】画出函数的图象,利用不等式,结合函数的图象求解即可. 【详解】函数()f x 的图象如图,直线1y =与曲线交点(1,1)A -,()1,1B ,()3,1C ,()4,1D , 故()1f m <时,实数m 的取值范围是11m -<<或34m <<.故选A. 【点睛】本题考查函数与方程的综合运用,属于常考题型.11.C解析:C 【解析】圆22220x y x y ++-=的圆心坐标为()1,1-,过圆心()1,1-与直线40x y --=垂直的直线方程为0x y +=,所求圆的圆心在此直线上,又圆心()1,1-到直线40x y --==,设所求圆的圆心为(),a b ,且圆心在直线40x y --==0a b +=,解得1,1a b ==-(3,3a b ==-不符合题意,舍去 ),故所求圆的方程为()()22112x y -++=.故选C .【名师点睛】本题主要考查直线与圆的位置关系,考查了数形结合的思想,考查了计算能力,属于中档题.12.C解析:C 【解析】 【分析】由题意结合分段函数的解析式分类讨论即可求得实数a 的取值范围. 【详解】当1x >时,x a 为减函数,则01a <<,当1x ≤时,一次函数()231a x -+为减函数,则230a -<,解得:23a >, 且在1x =处,有:()12311a a -⨯+≥,解得:34a ≤, 综上可得,实数a 的取值范围是23,34⎛⎤ ⎥⎝⎦. 本题选择C 选项. 【点睛】对于分段函数的单调性,有两种基本的判断方法:一保证各段上同增(减)时,要注意上、下段间端点值间的大小关系;二是画出这个分段函数的图象,结合函数图象、性质进行直观的判断.二、填空题13.【解析】【分析】【详解】设最大值为考点:解三角形与三角函数化简点评:借助于正弦定理三角形内角和将边长用一内角表示转化为三角函数求最值只需将三角函数化简为的形式解析:【解析】 【分析】 【详解】设22sin sin 3AB BC A θθπθ====⎛⎫- ⎪⎝⎭22sin,3AB πθ⎛⎫∴=- ⎪⎝⎭2sin BC θ=()222sin 4sin 3AB BC πθθθϕ⎛⎫∴+=-+=+ ⎪⎝⎭,最大值为考点:解三角形与三角函数化简点评:借助于正弦定理,三角形内角和将边长用一内角表示,转化为三角函数求最值,只需将三角函数化简为()sin cos a b θθθϕ+=+的形式14.【解析】【分析】先利用周期公式求出再利用平移法则得到新的函数表达式依据函数为奇函数求出的表达式即可求出的最小值【详解】由得所以向左平移个单位后得到因为其图像关于原点对称所以函数为奇函数有则故的最小值 解析:3π【解析】 【分析】先利用周期公式求出ω,再利用平移法则得到新的函数表达式,依据函数为奇函数,求出m 的表达式,即可求出m 的最小值.【详解】 由2T ππω==得2ω=,所以sin 23y x π⎛⎫=+ ⎪⎝⎭,向左平移()0m m >个单位后,得到sin[2()]sin(22)33y x m x m ππ=++=++,因为其图像关于原点对称,所以函数为奇函数,有2,3m k k Z ππ+=∈,则62k m ππ=-+,故m 的最小值为3π.【点睛】本题主要考查三角函数的性质以及图像变换,以及sin()y A x ωϕ=+ 型的函数奇偶性判断条件.一般地sin()y A x ωϕ=+为奇函数,则k ϕπ=;为偶函数,则2k πϕπ=+;cos()y A x ωϕ=+为奇函数,则2k πϕπ=+;为偶函数,则k ϕπ=.15.【解析】试题分析:因为且为三角形的内角所以又因为所以【考点】正弦定理两角和差的三角函数公式【名师点睛】在解有关三角形的题目时要有意识地考虑用哪个定理更合适或是两个定理都要用要抓住能够利用某个定理的信 解析:2113【解析】 试题分析:因为45cos ,cos 513A C ==,且,A C 为三角形的内角,所以312sin ,sin 513A C ==,63sin sin[()]sin()sin cos cos sin 65B AC A C A C A C π=-+=+=+=,又因为sin sin a b A B =,所以sin 21sin 13a Bb A ==. 【考点】 正弦定理,两角和、差的三角函数公式【名师点睛】在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.16.【解析】【分析】【详解】试题分析:由得记为点;由得记为点;由得记为点分别将ABC 的坐标代入得所以的最小值为【考点】简单的线性规划【名师点睛】利用线性规划求最值一般用图解法求解其步骤是:(1)在平面直 解析:5-【解析】【分析】【详解】试题分析:由10{30x y x y -+=+-=得12x y =⎧⎨=⎩,记为点()1,2A ;由10{30x y x -+=-=得34x y =⎧⎨=⎩,记为点()3,4Β;由30{30x x y -=+-=得30x y =⎧⎨=⎩,记为点()3,0C .分别将A ,B ,C 的坐标代入2z x y =-,得1223Αz =-⨯=-,3245Βz =-⨯=-,3203C z =-⨯=,所以2z x y =-的最小值为5-.【考点】简单的线性规划【名师点睛】利用线性规划求最值,一般用图解法求解,其步骤是:(1)在平面直角坐标系内作出可行域;(2)考虑目标函数的几何意义,将目标函数进行变形;(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解;(4)求最值:将最优解代入目标函数即可求出最大值或最小值.17.【解析】由题意可得所得到的几何体是由一个圆柱挖去两个半球而成;其中圆柱的底面半径为1母线长为2;体积为;两个半球的半径都为1则两个半球的体积为;则所求几何体的体积为考点:旋转体的组合体解析:【解析】由题意,可得所得到的几何体是由一个圆柱挖去两个半球而成;其中,圆柱的底面半径为1,母线长为2;体积为;两个半球的半径都为1,则两个半球的体积为;则所求几何体的体积为.考点:旋转体的组合体.18.-1或2【解析】【分析】根据函数值的正负由可得求出再对分类讨论代入解析式即可求解【详解】当时当当所以或故答案为:或【点睛】本题考查求复合函数值认真审题理解分段函数的解析式考查分类讨论思想属于中档题解析:-1或2【解析】【分析】 根据函数值的正负,由1[()]02f f a =-<,可得()0f a >,求出()f a ,再对a 分类讨论,代入解析式,即可求解.【详解】当0x ≤时,()0,f x >1[()]02f f a =-<, 411[()]log (()),()22f f a f a f a ∴==-∴=, 当410,()log ,22a f a a a >==∴=, 当10,()2,12a a f a a ≤==∴=-, 所以1a =-或2a =.故答案为:1-或2.【点睛】本题考查求复合函数值,认真审题理解分段函数的解析式,考查分类讨论思想,属于中档题. 19.【解析】【分析】由已知可知然后利用基本不等式即可求解【详解】解:(当且仅当取等号)故答案为【点睛】本题主要考查了利用基本不等式求最值解题的关键是配凑积为定值属于基础试题解析:3+【解析】【分析】 由已知可知()11y 3x 3x 13x 1x 1=+=-++--,然后利用基本不等式即可求解. 【详解】解:x 1>,()11y 3x 3x 13x 1x 1∴=+=-++--33≥=,(当且仅当13x =+取等号)故答案为3.【点睛】本题主要考查了利用基本不等式求最值,解题的关键是配凑积为定值,属于基础试题.20.【解析】【分析】由可求得的横坐标进而得到的坐标;由正弦函数周期特点可知只需分析以为顶点的三角形为等腰直角三角形即可由垂直关系可得平面向量数量积为零进而求得的通项公式代入即可得到结果【详解】由得:……解析:112π 【解析】【分析】 由2x k πωπ=+可求得n A 的横坐标,进而得到n A 的坐标;由正弦函数周期特点可知只需分析以1A ,2n A ,41n A -为顶点的三角形为等腰直角三角形即可,由垂直关系可得平面向量数量积为零,进而求得n ω的通项公式,代入6n =即可得到结果.【详解】由2x k πωπ=+,k Z ∈得:()212k x πω+=,k Z ∈ 1,12A πω⎛⎫∴ ⎪⎝⎭,23,12A πω⎛⎫- ⎪⎝⎭,35,12A πω⎛⎫ ⎪⎝⎭,47,12A πω⎛⎫- ⎪⎝⎭,…… 若123A A A ∆为等腰直角三角形,则212232,2,240A A A A πππωωω⎛⎫⎛⎫⋅=-⋅=-= ⎪ ⎪⎝⎭⎝⎭ 解得:2πω=,即12πω=同理若147A A A ∆为等腰直角三角形,则14470A A A A ⋅= 232πω∴= 同理若1611A A A ∆为等腰直角三角形,则166110A A A A ⋅= 352πω∴= 以此类推,可得:()212n n πω-=6112πω∴= 故答案为:112π 【点睛】 本题考查正弦型函数图象与性质的综合应用问题,关键是能够根据正弦函数周期性的特点确定所分析成等腰直角三角形的三个顶点的位置,进而由垂直关系得到平面向量数量积为零,构造方程求得结果.三、解答题21.(1)①35人,②0.300,直方图见解析;(2)3人、2人、1人;(3)35. 【解析】【分析】(1)由频率分布直方图能求出第2组的频数,第3组的频率,从而完成频率分布直方图.(2)根据第3,4,5组的频数计算频率,利用各层的比例,能求出第3,4,5组分别抽取进入第二轮面试的人数.(3)设第3组的3位同学为123,,A A A ,第4组的2位同学为12,B B ,第5组的1位同学为1C ,利用列举法能出所有基本事件及满足条件的基本事件的个数,利用古典概型求得概率.【详解】(1)①由题可知,第2组的频数为0.3510035⨯=人,②第3组的频率为300.300100=, 频率分布直方图如图所示,(2)因为第3,4,5组共有60名学生,所以利用分层抽样在60名学生中抽取6名学生进入第二轮面试,每组抽取的人数分别为: 第3组:306360⨯=人, 第4组:人, 第5组:106160⨯=人, 所以第3,4,5组分别抽取3人、2人、1人进入第二轮面试.(3)设第3组的3位同学为123,,A A A ,第4组的2位同学为12,B B ,第5组的1位同学为1C ,则从这六位同学中抽取两位同学有15种选法,分别为:12,A A (),13,A A (),11,A B (),12,A B (),11,A C (),23,A A (),21,A B (),22,A B (),21,A C (),31,A B (),32,A B (),31,A C (),12,B B (),11,B C (),21,B C (),其中第4组的2位同学12,B B 中至少有一位同学入选的有9种,分别为:11122122A B A B A B A B (,),(,),(,),(,),31321211A B A B B B B C (,),(,),(,),(,),21B C (,),∴第4组至少有一名学生被A 考官面试的概率为93155=. 【点睛】 本题考查频率分直方图、分层抽样的应用,考查概率的求法,考查数据处理能力、运算求解能力,是基础题.22.(1)a =1,b =2;(2)①当c >2时,解集为{x |2<x <c };②当c <2时,解集为{x |c <x <2};③当c =2时,解集为∅.【解析】【分析】(1)根据不等式ax 2﹣3x +6>4的解集,利用根与系数的关系,求得a 、b 的值;(2)把不等式ax 2﹣(ac +b )x +bc <0化为x 2﹣(2+c )x +2c <0,讨论c 的取值,求出对应不等式的解集.【详解】(1)因为不等式ax 2﹣3x +6>4的解集为{x |x <1,或x >b },所以1和b 是方程ax 2﹣3x +2=0的两个实数根,且b >1;由根与系数的关系,得,解得a =1,b =2; (2)所求不等式ax 2﹣(ac +b )x +bc <0化为x 2﹣(2+c )x +2c <0,即(x ﹣2)(x ﹣c )<0;①当c >2时,不等式(x ﹣2)(x ﹣c )<0的解集为{x |2<x <c };②当c <2时,不等式(x ﹣2)(x ﹣c )<0的解集为{x |c <x <2};③当c =2时,不等式(x ﹣2)(x ﹣c )<0的解集为∅.【点睛】本题考查了不等式的解法与应用问题,也考查了不等式与方程的关系,考查了分类讨论思想,是中档题.23.(1)0;(2),62ππ⎡⎤⎢⎥⎣⎦. 【解析】【分析】(1)首先化简()g x 解析式,然后求得左移ϕ个单位后函数()f x 的解析式,根据()f x 的奇偶性求得ϕ的值,进而求得()f ϕ的值.(2)根据(1)中求得的()2sin 2216f x x ϕπ⎛⎫=++- ⎪⎝⎭,求得226x πϕ++的取值范围,根据ϕ的取值范围,求得22πϕ+的取值范围,根据()f x 在7,6ππ⎛⎫ ⎪⎝⎭上是单调函数,以及正弦型函数的单调性列不等式,解不等式求得ϕ的取值范围.【详解】(1)()()314sin cos sin 3sin 21cos 222g x x x x x x ⎛⎫=-=-- ⎪ ⎪⎝⎭2sin 216x π⎛⎫=+- ⎪⎝⎭, ()2sin 2216f x x πϕ⎛⎫∴=++- ⎪⎝⎭, 又()f x 为偶函数,则262k ϕππ+=+π(k Z ∈),02πϕ<≤,6πϕ∴=. ()06f f πϕ⎛⎫∴== ⎪⎝⎭. (2)7,6x ππ⎛⎫∈ ⎪⎝⎭,2222,22662x πππϕπϕπϕ⎛⎫∴++∈++++ ⎪⎝⎭, 02πϕ<≤,72,666πππϕ⎛⎤∴+∈ ⎥⎝⎦,32,222πππϕ⎛⎤+∈ ⎥⎝⎦, ()f x 在7,6ππ⎛⎫ ⎪⎝⎭上是单调函数.262ππϕ∴+≥且02πϕ<≤. ,62ππϕ⎡⎤∴∈⎢⎥⎣⎦. 【点睛】本小题主要考查三角恒等变换,考查根据三角函数的奇偶性求参数,考查三角函数图像变换,考查三角函数单调区间有关问题的求解,考查运算求解能力,属于中档题.24.(1)23A π=;(2)3. 【解析】【分析】(1)已知等式左边利用两角差的余弦函数公式化简,求出()cos B C +的值,确定出B C +的度数,即可求出A 的度数;(2)利用余弦定理列出关系式,再利用完全平方公式变形,将a 与b c +的值代入求出bc 的值,再由sin A 的值,利用三角形面积公式即可求出三角形ABC 的面积.【详解】(1)∵cos B cos C -sin B sin C =, ∴cos(B +C )=.∵A +B +C =π,∴cos(π-A )=.∴cos A =-.又∵0<A <π,∴A =.(2)由余弦定理,得a 2=b 2+c 2-2bc ·cos A .则(2)2=(b +c )2-2bc -2bc ·cos .∴12=16-2bc -2bc ·(-).∴bc =4. ∴S △ABC =bc ·sin A =×4×=.【点睛】本题主要考查余弦定理、特殊角的三角函数以及三角形面积公式的应用,属于中档题.对余弦定理一定要熟记两种形式:(1)2222cos a b c bc A =+-;(2)222cos 2b c a A bc+-=,同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住30,45,60o o o 等特殊角的三角函数值,以便在解题中直接应用.25.(Ⅰ)详见解析;(Ⅱ)详见解析;(Ⅲ)在棱PD 上存在点M ,使CM ∥平面P AB ,且M 是PD 的中点.【解析】【分析】(Ⅰ)由题意可得CD ⊥平面P AD ,从而易得CD ⊥PD ;(Ⅱ)要证BD ⊥平面P AB ,关键是证明BD AB ⊥;(Ⅲ)在棱PD 上存在点M ,使CM ∥平面P AB ,且M 是PD 的中点.【详解】(Ⅰ)证明:因为P A ⊥平面ABCD ,CD ⊂平面ABCD ,所以CD ⊥P A .因为CD ⊥AD ,PA AD A ⋂=,所以CD ⊥平面P AD .因为PD ⊂平面P AD ,所以CD ⊥PD .(II )因为P A ⊥平面ABCD ,BD ⊂平面ABCD ,所以BD ⊥P A .在直角梯形ABCD 中,12BC CD AD ==, 由题意可得2AB BD BC ==, 所以222AD AB BD =+, 所以BD AB ⊥.因为PA AB A =,所以BD ⊥平面P AB .(Ⅲ)解:在棱PD 上存在点M ,使CM ∥平面P AB ,且M 是PD 的中点.证明:取P A 的中点N ,连接MN ,BN ,因为M是PD的中点,所以12MN AD.因为12BC AD,所以MN BC.所以MNBC是平行四边形,所以CM∥BN.因为CM⊄平面P AB, BN⊂平面P AB.所以//CM平面P AB.【点睛】本题考查平面与平面垂直的判定定理,以及直线与平面平行的判定定理的应用,考查空间想象能力,属于中档题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.26.(1)a n=2n–9,(2)S n=n2–8n,最小值为–16.【解析】分析:(1)根据等差数列前n项和公式,求出公差,再代入等差数列通项公式得结果,(2)根据等差数列前n项和公式得n S的二次函数关系式,根据二次函数对称轴以及自变量为正整数求函数最值.详解:(1)设{a n}的公差为d,由题意得3a1+3d=–15.由a1=–7得d=2.所以{a n}的通项公式为a n=2n–9.(2)由(1)得S n=n2–8n=(n–4)2–16.所以当n=4时,S n取得最小值,最小值为–16.点睛:数列是特殊的函数,研究数列最值问题,可利用函数性质,但要注意其定义域为正整数集这一限制条件.。

【好题】高中必修二数学下期末一模试卷(附答案)

【好题】高中必修二数学下期末一模试卷(附答案)

【好题】高中必修二数学下期末一模试卷(附答案)一、选择题1.已知{}n a 是公差为d 的等差数列,前n 项和是n S ,若9810S S S <<,则( )A .0d >,170S >B .0d <,170S <C .0d >,180S <D .0d >,180S >2.若,则( )A .B .C .D .3.已知ABC V 为等边三角形,2AB =,设P ,Q 满足AP AB λ=uu u r uu u r,()()1AQ AC λλ=-∈R u u u r u u u r ,若32BQ CP ⋅=-uu u r uu r ,则λ=( )A .12B .122± C 110± D .322± 4.已知函数()y f x =为R 上的偶函数,当0x ≥时,函数()()210216()122xx x f x x ⎧≤≤⎪⎪=⎨⎛⎫⎪> ⎪⎪⎝⎭⎩,若关于x 的方程[]()2()()0,f x af x b a b R ++=∈有且仅有6个不同的实数根,则实数a 的取值范围是( ) A .51,24⎛⎫-- ⎪⎝⎭B .11,24⎛⎫-- ⎪⎝⎭C .1111,,2448⎛⎫⎛⎫---- ⎪ ⎪⎝⎭⎝⎭U D .11,28⎛⎫-- ⎪⎝⎭ 5.已知椭圆2222:1(0)x y E a b a b +=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( ) A .3(0,2B .3(0,]4C .32D .3[,1)46.已知1sin 34πα⎛⎫-= ⎪⎝⎭,则cos 23πα⎛⎫+= ⎪⎝⎭( ) A .58-B .58C .78-D .787.已知0,0a b >>,并且111,,2a b 成等差数列,则4a b +的最小值为( ) A .2B .4C .5D .98.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生B .200号学生C .616号学生D .815号学生9.(2018年天津卷文)设变量x ,y 满足约束条件5,24,1,0,x y x y x y y +≤⎧⎪-≤⎪⎨-+≤⎪⎪≥⎩ 则目标函数35z x y =+的最大值为 A .6B .19C .21D .4510.在空间四边形ABCD 的边AB ,BC ,CD ,DA 上分别取E ,F ,G ,H 四点,如EF 与HG 交于点M ,那么 ( ) A .M 一定在直线AC 上 B .M 一定在直线BD 上C .M 可能在直线AC 上,也可能在直线BD 上 D .M 既不在直线AC 上,也不在直线BD 上 11.若tan()24πα+=,则sin cos sin cos αααα-=+( )A .12B .2C .2-D .12-12.在ABC ∆中,根据下列条件解三角形,其中有一解的是( ) A .7a =,3b =,30B =o B .6b =,c =,45B =o C .10a =,15b =,120A =o D .6b =,c =60C =o二、填空题13.若,a b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,且,,2a b -这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q +的值等于________. 14.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为____.15.已知抛物线()220y px p =>的准线与圆()22316x y -+=相切,则p 的值为__________.16.如图,在正方体1111ABCD A B C D -中,E 、F 分别是1DD 、DC 上靠近点D 的三等分点,则异面直线EF 与11A C 所成角的大小是______.17.如图,在等腰三角形ABC 中,已知1AB AC ==,120A ∠=︒,E F 、分别是边AB AC 、上的点,且,AE AB AF AC λμ==u u u v u u u v u u u v u u u v,其中(),0,1λμ∈且41λμ+=,若线段EF BC 、的中点分别为M N 、,则MN u u u u v的最小值是_____.18.如图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽 米.19.若1tan 46πα⎛⎫-= ⎪⎝⎭,则tan α=____________. 20.函数()sin f x x ω=(0>ω)的图像与其对称轴在y 轴右侧的交点从左到右依次记为1A ,2A ,3A ,⋅⋅⋅,n A ,⋅⋅⋅,在点列{}n A 中存在三个不同的点k A 、l A 、p A ,使得△k l p A A A 是等腰直角三角形,将满足上述条件的ω值从小到大组成的数记为n ω,则6ω=________. 三、解答题21.某高校在2012年的自主招生考试成绩中随机抽取100名中学生的笔试成绩,按成绩分组,得到的频率分布表如表所示. 组号 分组频数 频率第1组[)160,16550.050第2组 [)165,170① 0.350第3组 [)170,175 30 ②第4组 [)175,180 20 0.200 第5组[)180,185100.100(1)请先求出频率分布表中,①②位置的相应数据,再完成频率分布直方图; (2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试; (3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A 考官进行面试,求:第4组至少有一名学生被考官A 面试的概率. 22.将函数()4sin cos 6g x x x π⎛⎫=+⎪⎝⎭的图象向左平移02πϕϕ⎛⎫<≤ ⎪⎝⎭个单位长度后得到()f x 的图象.(1)若()f x 为偶函数,求()fϕ的值;(2)若()f x 在7,6ππ⎛⎫ ⎪⎝⎭上是单调函数,求ϕ的取值范围.23.一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a ,b ,c .(Ⅰ)求“抽取的卡片上的数字满足a b c +=”的概率; (Ⅱ)求“抽取的卡片上的数字a ,b ,c 不完全相同”的概率.24.已知数列{}n a 是等比数列,24a =,32a +是2a 和4a 的等差中项. (1)求数列{}n a 的通项公式;(2)设22log 1n n b a =-,求数列{}n n a b 的前n 项和n T . 25.已知数列{}n a 满足()*112112n n n n na a a n Nb a a +==∈=+,,,. ()1证明数列{}n b 为等差数列;()2求数列{}n a 的通项公式.26.已知ABC ∆中,内角,,A B C 所对边分别为,,a b c ,若()20a c cosB bcosC --=. (1)求角B 的大小;(2)若2b =,求a c +的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】利用等差数列的通项公式求和公式可判断出数列{}n a 的单调性,并结合等差数列的求和公式可得出结论. 【详解】9810S S S <<Q ,90a ∴<,9100a a +>,100a ∴>,0d >. 179017S a =<∴,()1891090S a a =+>.故选:D. 【点睛】本题考查利用等差数列的前n 项和判断数列的单调性以及不等式,考查推理能力与计算能力,属于中等题.2.D解析:D 【解析】试题分析:,且,故选D.【考点】三角恒等变换【名师点睛】对于三角函数的给值求值问题,关键是把待求角用已知角表示:(1)已知角为两个时,待求角一般表示为已知角的和或差.(2)已知角为一个时,待求角一般与已知角成“倍的关系”或“互余、互补”关系.3.A解析:A 【解析】 【分析】运用向量的加法和减法运算表示向量BQ BA AQ =+u u u r u u u r u u u r ,CP CA AP =+u u u r u u u r u u u r,再根据向量的数量积运算,建立关于λ的方程,可得选项. 【详解】∵BQ BA AQ =+u u u r u u u r u u u r ,CP CA AP =+u u u r u u u r u u u r ,∴()()BQ CP BA AQ CA AP AB AC AB AP AC AQ AQ AP ⋅=+⋅+=⋅-⋅-⋅+⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r()()2211AB AC AB AC AB AC λλλλ=⋅---+-⋅u u u r u u u r u u u r u u u r u u u r u u u r()()232441212222λλλλλλ=---+-=-+-=-,∴12λ=.故选:A. 4.B解析:B 【解析】 【分析】作出函数()y f x =的图像,设()f x t =,从而可化条件为方程20t at b ++=有两个根,利用数形结合可得114t =,2104t <<,根据韦达定理即可求出实数a 的取值范围. 【详解】由题意,作出函数()y f x =的图像如下,由图像可得,10()(2)4f x f ≤≤=Q 关于x 的方程[]()2()()0,f x af x b a b R ++=∈有且仅有6个不同的实数根,设()f x t =,20t at b ∴++=有两个根,不妨设为12,t t ;且114t =,2104t << 又12a t t -=+Q11,24a ⎛⎫∴∈-- ⎪⎝⎭故选:B 【点睛】本题主要考查函数与方程、由方程根的个数求参数的取值范围,考查学生运用数形结合思想解决问题的能力,属于中档题.5.A解析:A 【解析】试题分析:设1F 是椭圆的左焦点,由于直线:340l x y -=过原点,因此,A B 两点关于原点对称,从而1AF BF 是平行四边形,所以14BF BF AF BF +=+=,即24a =,2a =,设(0,)M b ,则45b d =,所以4455b ≥,1b ≥,即12b ≤<,又22224c a b b =-=-,所以0c <≤0c a <≤.故选A . 考点:椭圆的几何性质.【名师点睛】本题考查椭圆的离心率的范围,因此要求得,a c 关系或范围,解题的关键是利用对称性得出AF BF +就是2a ,从而得2a =,于是只有由点到直线的距离得出b 的范围,就得出c 的取值范围,从而得出结论.在涉及到椭圆上的点到焦点的距离时,需要联想到椭圆的定义.6.C解析:C 【解析】 由题意可得:1sin sin cos 32664ππππααα⎡⎤⎛⎫⎛⎫⎛⎫-=-+=+=⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 则217cos 2cos 22cos 121366168πππααα⎛⎫⎛⎫⎛⎫+=+=+-=⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 本题选择C 选项.7.D解析:D 【解析】 ∵111,,2a b成等差数列,()11114144559a b a b a b a b a b b a ⎛⎫∴+=∴+=++=+++= ⎪⎝⎭,…, 当且仅当a =2b 即33,2a b ==时“=“成立, 本题选择D 选项.点睛:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.8.C解析:C 【解析】 【分析】等差数列的性质.渗透了数据分析素养.使用统计思想,逐个选项判断得出答案. 【详解】详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =, 所以610n a n=+()n *∈N ,若8610n =+,则15n =,不合题意;若200610n =+,则19.4n =,不合题意; 若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C . 【点睛】本题主要考查系统抽样.9.C解析:C 【解析】分析:首先画出可行域,然后结合目标目标函数的几何意义确定函数取得最大值的点,最后求解最大值即可.详解:绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A 处取得最大值,联立直线方程:51x y x y +=⎧⎨-+=⎩,可得点A 的坐标为:()2,3A ,据此可知目标函数的最大值为:max 35325321z x y =+=⨯+⨯=.本题选择C 选项.点睛:求线性目标函数z =ax +by (ab ≠0)的最值,当b >0时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当b <0时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大.10.A解析:A 【解析】如图,因为EF∩HG=M,所以M∈EF,M∈HG,又EF ⊂平面ABC ,HG ⊂平面ADC , 故M∈平面ABC ,M∈平面ADC , 所以M∈平面ABC∩平面ADC=AC. 选A. 点睛:证明点在线上常用方法先找出两个平面,然后确定点是这两个平面的公共点,再确定直线是这两个平面的交线.11.D解析:D 【解析】 由tan()24πα+=有tan 112,tan 1tan 3ααα+==-,所以11sin cos tan 1131sin cos tan 1213αααααα---===-+++,选D.点睛:本题主要考查两角和的正切公式以及同角三角函数的基本关系式,属于中档题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【典型题】高中必修二数学下期末一模试卷(含答案)(1)一、选择题1.如图,在ABC 中,90BAC ︒∠=,AD 是边BC 上的高,PA ⊥平面ABC ,则图中直角三角形的个数是( )A .5B .6C .8D .102.已知集合{}220A x x x =-->,则A =RA .{}12x x -<<B .{}12x x -≤≤ C .}{}{|12x x x x <-⋃D .}{}{|1|2x x x x ≤-⋃≥3.某程序框图如图所示,若输出的S=57,则判断框内为 A .k >4? B .k >5? C .k >6?D .k >7?4.(2015新课标全国I 理科)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有A .14斛B .22斛C .36斛D .66斛5.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下: 父亲身高x (cm )174176176176178儿子身高y (cm )175175176177177则y 对x 的线性回归方程为 A .y = x-1B .y = x+1C .y =88+12x D .y = 1766.已知函数()y f x =为R 上的偶函数,当0x ≥时,函数()()210216()122xx x f x x ⎧≤≤⎪⎪=⎨⎛⎫⎪> ⎪⎪⎝⎭⎩,若关于x 的方程[]()2()()0,f x af x b a b R ++=∈有且仅有6个不同的实数根,则实数a 的取值范围是( ) A .51,24⎛⎫-- ⎪⎝⎭B .11,24⎛⎫-- ⎪⎝⎭ C .1111,,2448⎛⎫⎛⎫---- ⎪ ⎪⎝⎭⎝⎭D .11,28⎛⎫-- ⎪⎝⎭ 7.阅读如图所示的程序框图,运行相应的程序,若输入N 的值为20,则输出T 的值为A .1B .2C .3D .48.已知()201911,02log ,0x x f x x x ⎧+≤⎪=⎨⎪>⎩,若存在三个不同实数a ,b ,c 使得()()()f a f b f c ==,则abc 的取值范围是( ) A .(0,1)B .[-2,0)C .(]2,0-D .(0,1)9.记max{,,}x y z 表示,,x y z 中的最大者,设函数{}2()max 42,,3f x x x x x =-+---,若()1f m <,则实数m 的取值范围是( )A .(1,1)(3,4)-B .(1,3)C .(1,4)-D .(,1)(4,)-∞-+∞10.如图,已知三棱柱111ABC A B C -的各条棱长都相等,且1CC ⊥底面ABC ,M 是侧棱1CC 的中点,则异面直线1AB 和BM 所成的角为( )A .2π B . C . D .3π 11.下列四个正方体图形中,A ,B 为正方体的两个顶点,M ,N ,P 分别为其所在棱的中点,能得出//AB 平面MNP 的图形的序号是( )A .①③B .②③C .①④D .②④12.已知()f x 是定义在R 上的奇函数,当0x >时,()32f x x =-,则不等式()0f x >的解集为( )A .33,0,22⎛⎫⎛⎫-∞- ⎪⎪⎝⎭⎝⎭B .33,,22⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭C .33,22⎛⎫- ⎪⎝⎭D .33,0,22⎛⎫⎛⎫-⋃+∞ ⎪ ⎪⎝⎭⎝⎭二、填空题13.奇函数()f x 对任意实数x 都有(2)()f x f x +=-成立,且01x 时,()21x f x =-,则()2log 11f =______.14.已知函数32()21f x x x ax =+-+在区间上恰有一个极值点,则实数a 的取值范围是____________15.直线l 将圆22240x y x y +--=平分,且与直线20x y +=垂直,则直线l 的方程为 .16.已知抛物线()220y px p =>的准线与圆()22316x y -+=相切,则p 的值为__________.17.如图,在正方体1111ABCD A B C D -中,E 、F 分别是1DD 、DC 上靠近点D 的三等分点,则异面直线EF 与11A C 所成角的大小是______.18.若函数()6,23log ,2a x x f x x x -+≤⎧=⎨+>⎩(0a >且1a ≠)的值域是[)4,+∞,则实数a 的取值范围是__________.19.函数sin3cos y x x =-的图像可由函数2sin y x =的图像至少向右平移________个单位长度得到.20.函数()sin f x x ω=(0>ω)的图像与其对称轴在y 轴右侧的交点从左到右依次记为1A ,2A ,3A ,⋅⋅⋅,n A ,⋅⋅⋅,在点列{}n A 中存在三个不同的点k A 、l A 、p A ,使得△k l p A A A 是等腰直角三角形,将满足上述条件的ω值从小到大组成的数记为n ω,则6ω=________. 三、解答题21.如图,在平面直角坐标系xOy 中,已知以M 点为圆心的圆22:1412600M x y x y +--+=及其上一点(4,2)A .(1)设圆N 与y 轴相切,与圆M 外切,且圆心在直线6y =上,求圆N 的标准方程; (2)设平行于OA 的直线l 与圆M 相交于B ,C 两点且BC OA =,求直线l 的方程. 22.将函数()4sin cos 6g x x x π⎛⎫=+⎪⎝⎭的图象向左平移02πϕϕ⎛⎫<≤ ⎪⎝⎭个单位长度后得到()f x 的图象.(1)若()f x 为偶函数,求()fϕ的值;(2)若()f x 在7,6ππ⎛⎫⎪⎝⎭上是单调函数,求ϕ的取值范围.23.如图,在四棱锥P ABCD -中,P A ⊥平面ABCD ,CD ⊥AD ,BC ∥AD ,12BC CD AD ==.(Ⅰ)求证:CD ⊥PD ; (Ⅱ)求证:BD ⊥平面P AB ;(Ⅲ)在棱PD 上是否存在点M ,使CM ∥平面P AB ,若存在,确定点M 的位置,若不存在,请说明理由.24.ABC ∆是边长为3的等边三角形,2BE BA λ=,1(1)2BF BC λλ=<<,过点F 作DF BC ⊥交AC 边于点D ,交BA 的延长线于点E .(1)当23λ=时,设,BA a BC b ==,用向量,a b 表示EF ; (2)当λ为何值时,AE FC ⋅取得最大值,并求出最大值. 25.如图1,在直角梯形ABCD 中,//,,2AD BC BAD AB BC π∠==12AD a ==,E 是AD 的中点,O 是OC 与BE 的交点,将ABE ∆沿BE 折起到图2中1A BE ∆的位置,得到四棱锥1A BCDE -.(Ⅰ)证明:CD ⊥平面1A OC ;(Ⅱ)当平面1A BE ⊥平面BCDE 时,四棱锥1A BCDE -的体积为362,求a 的值. 26.在ABC 中,5,3,sin 2sin BC AC C A ===. (Ⅰ)求AB 的值; (Ⅱ)求sin 24A π⎛⎫-⎪⎝⎭的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】根据线面垂直得出一些相交直线垂直,以及找出题中一些已知的相交直线垂直,由这些条件找出图中的直角三角形. 【详解】①PA ⊥平面ABC ,,,,PA AB PA AD PA AC PAB ∴⊥⊥⊥∴∆,,PAD PAC ∆∆都是直角三角形;②90,BAC ABC ︒∠=∴是直角三角形; ③,,AD BC ABD ACD ⊥∴∆∆是直角三角形;④由,PA BC AD BC ⊥⊥得BC ⊥平面PAD ,可知:,,BC PD PBD PCD ⊥∴∆∆也是直角三角形.综上可知:直角三角形的个数是8个,故选C .【点睛】本题考查直角三角形个数的确定,考查相交直线垂直,解题时可以充分利用直线与平面垂直的性质得到,考查推理能力,属于中等题.2.B解析:B 【解析】分析:首先利用一元二次不等式的解法,求出220x x -->的解集,从而求得集合A ,之后根据集合补集中元素的特征,求得结果. 详解:解不等式220x x -->得12x x -或, 所以{}|12A x x x =<->或,所以可以求得{}|12R C A x x =-≤≤,故选B.点睛:该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.3.A解析:A 【解析】试题分析:由程序框图知第一次运行112,224k S =+==+=,第二次运行213,8311k S =+==+=,第三次运行314,22426k S =+==+=,第四次运行4154,52557k S =+=>=+=,输出57S =,所以判断框内为4?k >,故选C.考点:程序框图.4.B解析:B 【解析】试题分析:设圆锥底面半径为r ,则12384r ⨯⨯=,所以163r =,所以米堆的体积为211163()5433⨯⨯⨯⨯=3209,故堆放的米约为3209÷1.62≈22,故选B. 考点:圆锥的性质与圆锥的体积公式5.C解析:C 【解析】 【分析】 【详解】试题分析:由已知可得176,176x y ==∴中心点为()176,176, 代入回归方程验证可知,只有方程y =88+12x 成立,故选C 6.B解析:B 【解析】 【分析】作出函数()y f x =的图像,设()f x t =,从而可化条件为方程20t at b ++=有两个根,利用数形结合可得114t =,2104t <<,根据韦达定理即可求出实数a 的取值范围. 【详解】由题意,作出函数()y f x =的图像如下,由图像可得,10()(2)4f x f ≤≤=关于x 的方程[]()2()()0,f x af x b a b R ++=∈有且仅有6个不同的实数根, 设()f x t =,20t at b ∴++=有两个根,不妨设为12,t t ;且114t =,2104t << 又12a t t -=+11,24a ⎛⎫∴∈-- ⎪⎝⎭故选:B 【点睛】本题主要考查函数与方程、由方程根的个数求参数的取值范围,考查学生运用数形结合思想解决问题的能力,属于中档题.7.B解析:B 【解析】分析:由题意结合流程图运行程序即可求得输出的数值. 详解:结合流程图运行程序如下: 首先初始化数据:20,2,0N i T ===,20102N i ==,结果为整数,执行11T T =+=,13i i =+=,此时不满足5i ≥; 203N i =,结果不为整数,执行14i i =+=,此时不满足5i ≥;2054Ni ==,结果为整数,执行12T T =+=,15i i =+=,此时满足5i ≥; 跳出循环,输出2T =. 本题选择B 选项.点睛:识别、运行程序框图和完善程序框图的思路: (1)要明确程序框图的顺序结构、条件结构和循环结构. (2)要识别、运行程序框图,理解框图所解决的实际问题. (3)按照题目的要求完成解答并验证.8.C解析:C 【解析】 【分析】画出函数图像,根据图像得到20a -<≤,1bc =,得到答案. 【详解】()201911,02log ,0x x f x x x ⎧+≤⎪=⎨⎪>⎩,画出函数图像,如图所示:根据图像知:20a -<≤,20192019log log b c -=,故1bc =,故20abc -<≤. 故选:C .【点睛】本题考查了分段函数的零点问题,画出函数图像是解题的关键.9.A解析:A 【解析】 【分析】画出函数的图象,利用不等式,结合函数的图象求解即可. 【详解】函数()f x 的图象如图,直线1y =与曲线交点(1,1)A -,()1,1B ,()3,1C ,()4,1D , 故()1f m <时,实数m 的取值范围是11m -<<或34m <<. 故选A. 【点睛】本题考查函数与方程的综合运用,属于常考题型.10.A解析:A 【解析】 【分析】由题意设棱长为a ,补正三棱柱ABC-A 2B 2C 2,构造直角三角形A 2BM ,解直角三角形求出BM ,利用勾股定理求出A 2M ,从而求解. 【详解】设棱长为a ,补正三棱柱ABC-A 2B 2C 2(如图).平移AB 1至A 2B ,连接A 2M ,∠MBA 2即为AB 1与BM 所成的角, 在△A 2BM 中,22252()22a A B a BM a a ==+=,,222313()2a A M a =+=,222222,2A B BM A M MBA π∴+=∴∠=, . 故选A . 【点睛】本题主要考查了异面直线及其所成的角和勾股定理的应用,计算比较复杂,要仔细的做.11.C解析:C 【解析】 【分析】用面面平行的性质判断①的正确性.利用线面相交来判断②③的正确性,利用线线平行来判断④的正确性. 【详解】对于①,连接AC 如图所示,由于//,//MN AC NP BC ,根据面面平行的性质定理可知平面//MNP 平面ACB ,所以//AB 平面MNP .对于②,连接BC 交MP 于D ,由于N 是AC 的中点,D 不是BC 的中点,所以在平面ABC 内AB 与DN 相交,所以直线AB 与平面MNP 相交.对于③,连接CD ,则//AB CD ,而CD 与PN 相交,即CD 与平面PMN 相交,所以AB 与平面MNP 相交.对于④,连接CD ,则////AB CD NP ,由线面平行的判定定理可知//AB 平面MNP .综上所述,能得出//AB 平面MNP 的图形的序号是①④. 故选:C 【点睛】本小题主要考查线面平行的判定,考查空间想象能力和逻辑推理能力,属于基础题.12.A解析:A 【解析】 【分析】根据题意,结合函数的解析式以及奇偶性分析可得()f x 的图象,据此分析可得答案. 【详解】解:因为()f x 是定义在R 上的奇函数, 所以它的图象关于原点对称,且()00f =, 已知当0x >时,()32f x x =-, 作出函数图象如图所示, 从图象知:33022f f ⎛⎫⎛⎫=-=⎪ ⎪⎝⎭⎝⎭, 则不等式()0f x >的解集为33,0,22⎛⎫⎛⎫-∞-⋃ ⎪ ⎪⎝⎭⎝⎭. 故选:A.【点睛】本题考查函数的奇偶性与单调性的综合应用,以及函数的解析式,考查数形结合思想.二、填空题13.【解析】【分析】易得函数周期为4则结合函数为奇函数可得再由时即可求解【详解】则又则故答案为:【点睛】本题考查函数奇偶性与周期性的综合应用具体函数值的求法属于中档题 解析:511-【解析】 【分析】易得函数周期为4,则()()22211log 11log 114log 16f f f ⎛⎫=-= ⎪⎝⎭,结合函数为奇函数可得222111616log log log 161111f f f ⎛⎫⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,再由01x 时,()21xf x =-即可求解 【详解】()()(2)()4(2)4f x f x f x f x f x T +=-⇒+=-+=⇒=,则()()22211log 11log 114log 16f f f ⎛⎫=-= ⎪⎝⎭, 又222111616log log log 161111f f f ⎛⎫⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,[]216log 0,111∈, 则216log 112165log 211111f ⎛⎫⎛⎫-=--=- ⎪ ⎪⎝⎭⎝⎭故答案为:511- 【点睛】本题考查函数奇偶性与周期性的综合应用,具体函数值的求法,属于中档题14.【解析】【分析】【详解】由题意则解得-1<a <7经检验当a=-1时的两个根分别为所以符合题目要求时在区间无实根所以 解析:17a -≤<【解析】 【分析】 【详解】由题意,2()34f x x x a '=+-,则(1)(1)0f f ''-<,解得-1<a <7,经检验当a=-1时,2()3410f x x x '=++=的两个根分别为121,13x x ,所以符合题目要求,7a =时,2()3410f x x x '=++=,在区间无实根,所以17a -≤<.15.【解析】试题分析:设与直线垂直的直线方程:圆化为圆心坐标因为直线平分圆圆心在直线上所以解得故所求直线方程为考点:1直线与圆的位置关系;2直线的一般式方程与直线的垂直关系【思路点睛】本题是基础题考查直 解析:2y x =【解析】试题分析:设与直线20x y +=垂直的直线方程:20x y b -+=,圆22240x y x y +--=化为()()22125x y -+-=,圆心坐标()12,.因为直线平分圆,圆心在直线20x y b -+=上,所以21120b ⨯-⨯+=,解得0b =,故所求直线方程为2y x =.考点:1.直线与圆的位置关系;2.直线的一般式方程与直线的垂直关系.【思路点睛】本题是基础题,考查直线与圆的位置关系,直线与直线垂直的方程的设法,据此设出与已知直线垂直的直线方程,利用直线平分圆的方程,求出结果即可.16.2【解析】抛物线的准线为与圆相切则解析:2 【解析】抛物线的准线为2px =-,与圆相切,则342p +=,2p =. 17.【解析】【分析】连接可得出证明出四边形为平行四边形可得可得出异面直线与所成角为或其补角分析的形状即可得出的大小即可得出答案【详解】连接在正方体中所以四边形为平行四边形所以异面直线与所成的角为易知为等 解析:60【解析】 【分析】连接1CD ,可得出1//EF CD ,证明出四边形11A BCD 为平行四边形,可得11//A B CD ,可得出异面直线EF 与11A C 所成角为11BA C ∠或其补角,分析11A BC ∆的形状,即可得出11BA C ∠的大小,即可得出答案.【详解】连接1CD 、1A B 、1BC ,113DE DF DD DC ==,1//EF CD ∴, 在正方体1111ABCD A B C D -中,11//A D AD ,//AD BC ,11//A D BC ∴, 所以,四边形11A BCD 为平行四边形,11//A B CD ∴, 所以,异面直线EF 与11A C 所成的角为11BA C ∠. 易知11A BC ∆为等边三角形,1160BA C ∴∠=.故答案为:60. 【点睛】本题考查异面直线所成角的计算,一般利用平移直线法,选择合适的三角形求解,考查计算能力,属于中等题.18.【解析】试题分析:由于函数的值域是故当时满足当时由所以所以所以实数的取值范围考点:对数函数的性质及函数的值域【方法点晴】本题以分段为背景主要考查了对数的图象与性质及函数的值域问题解答时要牢记对数函数 解析:(]1,2【解析】试题分析:由于函数()()6,2{0,13log ,2a x x f x a a x x -+≤=>≠+>的值域是[)4,+∞,故当2x ≤时,满足()64f x x =-≥,当2x >时,由()3log 4a f x x =+≥,所以log 1a x ≥,所以log 2112a a ≥⇒<<,所以实数a 的取值范围12a <≤. 考点:对数函数的性质及函数的值域.【方法点晴】本题以分段为背景主要考查了对数的图象与性质及函数的值域问题,解答时要牢记对数函数的单调性及对数函数的特殊点的应用是解答的关键,属于基础题,着重考查了分类讨论的思想方法的应用,本题的解答中,当2x >时,由()4f x ≥,得log 1a x ≥,即log 21a ≥,即可求解实数a 的取值范围.19.【解析】试题分析:因为所以函数的的图像可由函数的图像至少向右平移个单位长度得到【考点】三角函数图像的平移变换两角差的正弦公式【误区警示】在进行三角函数图像变换时提倡先平移后伸缩但先伸缩后平移也经常出 解析:3π【解析】试题分析:因为sin 2sin()3y x x x π==-,所以函数sin y x x =的的图像可由函数2sin y x =的图像至少向右平移3π个单位长度得到. 【考点】三角函数图像的平移变换、两角差的正弦公式【误区警示】在进行三角函数图像变换时,提倡“先平移,后伸缩”,但“先伸缩,后平移”也经常出现在题目中,所以也必须熟练掌握,无论是哪种变形,切记每一个变换总是对字母x 而言,即图像变换要看“变量”变化多少,而不是“角”变化多少.20.【解析】【分析】由可求得的横坐标进而得到的坐标;由正弦函数周期特点可知只需分析以为顶点的三角形为等腰直角三角形即可由垂直关系可得平面向量数量积为零进而求得的通项公式代入即可得到结果【详解】由得:…… 解析:112π【解析】 【分析】 由2x k πωπ=+可求得n A 的横坐标,进而得到n A 的坐标;由正弦函数周期特点可知只需分析以1A ,2n A ,41n A -为顶点的三角形为等腰直角三角形即可,由垂直关系可得平面向量数量积为零,进而求得n ω的通项公式,代入6n =即可得到结果. 【详解】由2x k πωπ=+,k Z ∈得:()212k x πω+=,k Z ∈1,12A πω⎛⎫∴ ⎪⎝⎭,23,12A πω⎛⎫- ⎪⎝⎭,35,12A πω⎛⎫ ⎪⎝⎭,47,12A πω⎛⎫- ⎪⎝⎭,…… 若123A A A ∆为等腰直角三角形,则212232,2,240A A A A πππωωω⎛⎫⎛⎫⋅=-⋅=-= ⎪ ⎪⎝⎭⎝⎭解得:2πω=,即12πω=同理若147A A A ∆为等腰直角三角形,则14470A A A A ⋅= 232πω∴= 同理若1611A A A ∆为等腰直角三角形,则166110A A A A ⋅= 352πω∴= 以此类推,可得:()212n n πω-= 6112πω∴=故答案为:112π【点睛】本题考查正弦型函数图象与性质的综合应用问题,关键是能够根据正弦函数周期性的特点确定所分析成等腰直角三角形的三个顶点的位置,进而由垂直关系得到平面向量数量积为零,构造方程求得结果.三、解答题21.(1)22(1)(6)1x y -+-=(2)2150x y -+=或250x y --=.【解析】 【分析】(1)根据由圆心在直线y =6上,可设()0,6N x ,再由圆N 与y 轴相切,与圆M 外切得到圆N 的半径为0x 和0075-=+x x 得解.(2)由直线l 平行于OA ,求得直线l 的斜率,设出直线l 的方程,求得圆心M 到直线l 的距离,再根据垂径定理确定等量关系,求直线方程. 【详解】(1)圆M 的标准方程为22(7)(6)25-+-=x y ,所以圆心M (7,6),半径为5,. 由圆N 圆心在直线y =6上,可设()0,6N x 因为圆N 与y 轴相切,与圆M 外切 所以007<<x ,圆N 的半径为0x 从而0075-=+x x 解得01x =.所以圆N 的标准方程为22(1)(6)1x y -+-=. (2)因为直线l 平行于OA ,所以直线l 的斜率为201402-=-. 设直线l 的方程为12y x m =+,即220x y m -+= 则圆心M 到直线l 的距离==d因为===BC OA 而2222⎛⎫=+ ⎪⎝⎭BC MC d 所以2(25)2555-=+m解得152m = 或52m =-.故直线l 的方程为2150x y -+=或250x y --=.【点睛】本题主要考查了直线方程,圆的方程,直线与直线,直线与圆,圆与圆的位置关系,还考查了运算求解的能力和数形结合的思想,属于中档题. 22.(1)0;(2),62ππ⎡⎤⎢⎥⎣⎦. 【解析】 【分析】(1)首先化简()g x 解析式,然后求得左移ϕ个单位后函数()f x 的解析式,根据()f x 的奇偶性求得ϕ的值,进而求得()fϕ的值.(2)根据(1)中求得的()2sin 2216f x x ϕπ⎛⎫=++- ⎪⎝⎭,求得226x πϕ++的取值范围,根据ϕ的取值范围,求得22πϕ+的取值范围,根据()f x 在7,6ππ⎛⎫⎪⎝⎭上是单调函数,以及正弦型函数的单调性列不等式,解不等式求得ϕ的取值范围.【详解】(1)()()14sin sin 21cos 22g x x x x x x ⎫=-=--⎪⎪⎝⎭2sin 216x π⎛⎫=+- ⎪⎝⎭,()2sin 2216f x x πϕ⎛⎫∴=++- ⎪⎝⎭,又()f x 为偶函数,则262k ϕππ+=+π(k Z ∈),02πϕ<≤,6πϕ∴=.()06f f πϕ⎛⎫∴== ⎪⎝⎭.(2)7,6x ππ⎛⎫∈ ⎪⎝⎭,2222,22662x πππϕπϕπϕ⎛⎫∴++∈++++ ⎪⎝⎭, 02πϕ<≤,72,666πππϕ⎛⎤∴+∈ ⎥⎝⎦,32,222πππϕ⎛⎤+∈ ⎥⎝⎦, ()f x 在7,6ππ⎛⎫⎪⎝⎭上是单调函数.262ππϕ∴+≥且02πϕ<≤. ,62ππϕ⎡⎤∴∈⎢⎥⎣⎦.【点睛】本小题主要考查三角恒等变换,考查根据三角函数的奇偶性求参数,考查三角函数图像变换,考查三角函数单调区间有关问题的求解,考查运算求解能力,属于中档题. 23.(Ⅰ)详见解析;(Ⅱ)详见解析;(Ⅲ)在棱PD 上存在点M ,使CM ∥平面P AB ,且M 是PD 的中点. 【解析】 【分析】(Ⅰ)由题意可得CD ⊥平面P AD ,从而易得CD ⊥PD ; (Ⅱ)要证BD ⊥平面P AB ,关键是证明BD AB ⊥;(Ⅲ)在棱PD 上存在点M ,使CM ∥平面P AB ,且M 是PD 的中点. 【详解】(Ⅰ)证明:因为P A ⊥平面ABCD ,CD ⊂平面ABCD , 所以CD ⊥P A .因为CD ⊥AD ,PA AD A ⋂=, 所以CD ⊥平面P AD . 因为PD ⊂平面P AD , 所以CD ⊥PD .(II )因为P A ⊥平面ABCD ,BD ⊂平面ABCD , 所以BD ⊥P A .在直角梯形ABCD中,12BC CD AD==,由题意可得2AB BD BC==,所以222AD AB BD=+,所以BD AB⊥.因为PA AB A=,所以BD⊥平面P AB.(Ⅲ)解:在棱PD上存在点M,使CM∥平面P AB,且M是PD的中点.证明:取P A的中点N,连接MN,BN,因为M是PD的中点,所以12MN AD.因为12BC AD,所以MN BC.所以MNBC是平行四边形,所以CM∥BN.因为CM⊄平面P AB, BN⊂平面P AB.所以//CM平面P AB.【点睛】本题考查平面与平面垂直的判定定理,以及直线与平面平行的判定定理的应用,考查空间想象能力,属于中档题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.24.(1)4233a b-+;(2)916【解析】【分析】【详解】(Ⅰ)由题意可知:23BF b=,且2323BF=⨯=,4BE =,故4433BE BA a ==, 4233EF BF BE a b =-=-+ (Ⅱ)由题意,3,33BF FC λλ==-,6,63BE AE λλ==-,2279(63)(33)cos60922AE FC λλλλ⋅=--︒=-+- 当2732924λ=-=-⨯1(,1)2∈时, AE FC ⋅有最大值916.、25.(Ⅰ) 证明见解析,详见解析;(Ⅱ)6a =.【解析】【分析】 【详解】试题分析:(1)依据直线与平面垂直的判定定理推证;(2)借助题设条件运用等积法建立方程求解.试题解析:(1)在图1中,易得//,BE AOC OE CD CD AO CD OC ⊥∴⊥⊥所以,在图2中,1,CD OC CD AO CD ⊥⊥∴⊥平面1A OC(2)由已知,平面1A BE ⊥平面BCDE , 1CD A O ⊥所以1A O ⊥平面BCDE2111633BCDE AOS a a ∴⋅=== 考点:空间线面垂直的位置关系和棱锥的体积公式等有关知识的运用.26.(Ⅰ)Ⅱ)10. 【解析】【分析】(Ⅰ)直接利用正弦定理可求AB 的值;(Ⅱ)由余弦定理求得cos A ,再利用同角三角函数的关系求出sin A ,由二倍角公式求出sin 2A ,cos2A ,根据两角差的正弦公式可求sin 24A π⎛⎫- ⎪⎝⎭的值. 【详解】(Ⅰ)在中,根据正弦定理,sin sin AB BC C A =, 于是sin 225sin BC AB C BC A=== (Ⅱ)在ABC ∆中,根据余弦定理,得222cos 2AB AC BC A AB AC+-=⋅ 于是25sin 1cos 5A A =-=, 从而2243sin 22sin cos ,cos 2cos sin 55A A A A A A ===-= 2sin 2sin 2cos cos 2sin 444A A A πππ⎛⎫-=-= ⎪⎝⎭. 【点睛】本题主要考查余弦定理、正弦定理在解三角形中的应用,属于中档题.正弦定理是解三角形的有力工具,其常见用法有以下几种:(1)知道两边和一边的对角,求另一边的对角(一定要注意讨论钝角与锐角);(2)知道两角与一个角的对边,求另一个角的对边;(3)证明化简过程中边角互化;(4)求三角形外接圆半径.。

相关文档
最新文档