功率放大器原理功率放大器原理图

功率放大器原理功率放大器原理图
功率放大器原理功率放大器原理图

袁蒁膃蚇腿肀肃功率放大器原理功率放大器原理

芃蚆葿艿袂薇蒆要说功率放大器的原理,我们还是先来看看功率放大器的组成:射频功率放大器(RF PA)是各种无线发射机的重要组成部分。在发射机的前级电路中,调制振荡电路所产生的射频信号功率很小,需要经过一系列的放大一缓冲级、中间放大级、末级功率放大级,获得足够的射频功率以后,才能馈送到天线上辐射出去。为了获得足够大的射频输出功率,必须采用射频功率放大器。

射频功率放大器是发送设备的重要组成部分。射频功率放大器的主要技术指标是输出功率与效率。除此之外,输出中的谐波分量还应该尽可能地小,以避免对其他频道产生干扰。

螆肇葿蚄蚆芈羁功率放大器原理

衿蚈膂袆袆膁螁高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出。在“低频电子线路” 课程中已知,放大器可以按照电流导通角的不同,将其分为甲、乙、丙三类工作状态。甲类放大器电流的流通角为360o,适用于小信号低功率放大。乙类放大器电流的流通角约等于180o;丙类放大器电流的流通角则小于180o。乙类和丙类都适用于大功率工作。丙类工作状态的输出功率和效率是三种工作状态中最高者。

高频功率放大器大多工作于丙类。但丙类放大器的电流波形失真太大,因而不能用于低频功率放大,只能用于采用调谐回路作为负载的谐振功率放大。由于调谐回路具有滤波能力,回路电流与电压仍然极近于正弦波形,失真很小。除了以上几种按电流流通角来分类的工作状态外,又有使电子器件工作于开关状态的丁类放大和戊类放大。丁类放大器的效率比丙类放大器的还高,理论上可达100%,但它的最高工作频率受到开关转换瞬间所产生的器件功耗(集电极耗散功率或阳极耗散功率)的限制。如果在电路上加以改进,使电子器件在通断转换瞬间的功耗尽量减小,则工作频率可以提高。这就是戊类放大器。

我们已经知道,在低频放大电路中为了获得足够大的低频输出功率,必须采用低频功率放大器,而且低频功率放大器也是一种将直流电源提供的能量转换为交流输出的能量转换器。高频功率放大器和低频功率放大器的共同特点都是输出功率大和效率高,但二者的工作频率和相对频带宽度却相差很大,决定了他们之间有着本质的区别。低频功率放大器的工作频率低,但相对频带宽度却很宽。例如,自20至20000 Hz,高低频率之比达1000倍。因此它们都是采用无调谐负载,如电阻、变压器等。高频功率放大器的工作频率高(由几百kHz一直到几百、几千甚至几万MHz),但相对频带很窄。例如,调幅广播电台(535-1605 kHz的频段范围)的频带宽度为10 kHz,如中心频率取为1000 kHz,则相对频宽只相当于中心频率的百分之一。中心频率越高,则相对频宽越小。因此,高频功率放大器一般都采用选频网络作为负载回路。由于这后一特点,使得这两种放大器所选用的工作状态不同:低频功率放大器可工作于甲类、甲乙类或乙类(限于推挽电路)状态;高频功率放大器则一般都工作于丙类(某些特殊情况可工作于乙类)。

近年来,宽频带发射机的各中间级还广泛采用一种新型的宽带高频功率放大器,它不采用选频网络作为负载回路,而是以频率

响应很宽的传输线作负载。这样,它可以在很宽的范围内变换工作频率,而不必重新调谐。综上所述可见,高频功率放大器与低频功率放大器的共同之点是要求输出功率大,效率高;它们的不同之点则是二者的工作频率与相对频宽不同,因而负载网络和工作状态也不同。

高频功率放大器的主要技术指标有:输出功率、效率、功率增益、带宽和谐波抑制度(或信号失真度)等。这几项指标要求是互相矛盾的,在设计放大器时应根据具体要求,突出一些指标,兼顾其他一些指标。例如实际中有些电路,防止干扰是主要矛盾,对谐波抑制度要求较高,而对带宽要求可适当降低等。功率放大器的效率是一个突出的问题,其效率的高低与放大器的工作状态有直接的关系。放大器的工作状态可分为甲类、乙类和丙类等。

为了提高放大器的工作效率,它通常工作在乙类、丙类,即晶体管工作延伸到非线性区域。但这些工作状态下的放大器的输出电流与输出电压间存在很严重的非线性失真。低频功率放大器因其信号的频率覆盖系数大,不能采用谐振回路作负载,因此一般工作在甲类状态;采用推挽电路时可以工作在乙类。高频功率放大器因其信号的频率覆盖系数小,可以采用谐振回路作负载,故通常工作在丙类,通过谐振回路的选频功能,可以滤除放大器集电极电流中的谐波成分,选出基波分量从而基本消除了非线性失真。所以,高频功率放大器具有比低频功率放大器更高的效率。高频功率放大器因工作于大信号的非线性状态,不能用线性等效电路分析,工程上普遍采用解析近似分析方法——折线法来分析其工作原理和工作状态。这种分析方法的物理概念清楚,分析工作状态方便,但计算准确度较低。

以上讨论的各类高频功率放大器中,窄带高频功率放大器:用于提供足够强的以载频为中心的窄带信号功率,或放大窄带已调信号或实现倍频的功能,通常工作于乙类、丙类状态。宽带高频功率放大器:用于对某些载波信号频率变化范围大得短波,超短波电台的中间各级放大级,以免对不同fc的繁琐调谐。通常工作于甲类状态。

螈羃肆蚇莀薂羆功率放大器原理图

功率放大器原理图一

音频功率放大器电路

TDA2030集成电路功率放大器设计 一、设计题目集成电路功率放大器 二、给定条件 设计一款额定输出功率为10 ~ 20W的低失真集成电路功率放大器,要求电路简洁,制作方便、性能可靠。性能主要指标: 输出功率:10 ~ 20W(额定功率); 频率响应:20Hz ~ 100kHz(≤3dB) 谐波失真:≤1% (10W,30Hz~20kHz); 输出阻抗:≤0.16Ω; 输入灵敏度:600mV(1000Hz,额定输出时) 三、设计内容 1.根据具体电路图计算电路参数 2.选取元件、识别和测试。包括各类电阻、电容、变压器的数值、质量、电器性能的准确判断、解决大功率放大器散热的问题。 3.了解有关集成电路特点和性能资料情况 4.根据实际机壳大小设计1:1印刷板布线图 5.制作印刷线路板 6.电路板焊接、调试(调试步骤可以参考《模拟电子技术实验指 导书》有关放大器测试过程 7.实训期间必须遵守实训纪律、听从老师安排和注意用电安全。 四、功率放大电路的测试基本内容 注意:将输入电位器调到最大输入的情况。 1.测量输出电压放大倍数A u 测试条件:直流电源电压14v,输入信号1KHz 70 mv(振幅值100mv),输出负

载电阻分别为4Ω和8Ω。 2.测量允许的最大输入信号(1KHz)和最大不失真输出功率测试条件:①直流电源电压14v,负载电阻分别为4Ω和8Ω。 ②直流电源电压10v,负载电阻为8Ω。 3.测量上、下限截止频率f H 和f L 测试条件:直流电源电压14v,输入信号70mv(振幅值100mv),改变输入信号频率、负载电阻为8Ω。 五、参考资料 TDA2030简介:TDA 2030 是一块性能十分优良的功率放大集成电路,其主要特点是上升速率高、瞬态互调失真小,在目前流行的数十种功率放大集成电路中,规定瞬态互调失真指标的仅有包括TDA 2030 在内的几种。我们知道,瞬态互调失真是决定放大器品质的重要因素,该集成功放的一个重要优点。 TDA2030 集成电路的另一特点是输出功率大,而保护性能以较完善。根据掌握的资料,在各国生产的单片集成电路中,输出功率最大的不过20W,而TDA 2030的输出功率却能达18W,若使用两块电路组成BTL电路,输出功率可增至35W。另一方面,大功率集成块由于所用电源电压高、输出电流大,在使用中稍有不慎往往致使损坏。然而在TDA 2030集成电路中,设计了较为完善的保护电路,一旦输出电流过大或管壳过热,集成块能自动地减流或截止,使自己得到保护(当然这保护是有条件的,我们决不能因为有保护功能而不适当地进行使用)。 TDA2030 集成电路的第三个特点是外围电路简单,使用方便。在现有的各种功率集成电路中,它的管脚属于最少的一类,总共才5端,外型如同塑封大功率管,这就给使用带来不少方便。 TDA2030 在电源电压±14V,负载电阻为4Ω时输出14瓦功率(失真度≤0.5%);在电源电压±16V,负载电阻为4Ω时输出18瓦功率(失真度≤0.5%)。该电路由于价廉质优,使用方便,并正在越来越广泛地应用于各种款式收录机和高保真立体声设备中。该电路可供低频课程设计选用。 双电源供电BTL音频功率放大器 工作原理:用两块TDA2030 组成如图1所示的BTL功放电路,TDA 2030(1)为同相放大器,输入信号V in通过交流耦合电容C1馈入同相输入端①脚,交流闭环增益为K VC①=1+R3 / R2≈R3 / R2≈30dB。R3 同时又使电路构成直流全闭环组态,确保电路直流工作点稳定。TAD 2030(2)为反相放大器,它的输入信号是由TDA 2030(1)输出端的U01经R5、R7分压器衰减后取得的,并经电容C6 后馈给反相输入端②脚,它的交流闭环增益K VC②=R9 / R7//R5≈R9/R7≈30dB。由R9=R5,所以TDA 2030(1)与TDA 2030(2)的两个输出信号U01 和U02 应该是幅度相等相位相反的,即: U01≈U in·R3 / R2

音频功率放大器设计详解

音频功率放大器设计 一、设计任务 设计一个实用的音频功率放大器。在输入正弦波幅度≤5mV,负载电阻等于8Ω的 条件下,音频功率放大器满足如下要求: 1、最大输出不失真功率P OM≥8W。 2、功率放大器的频带宽度BW≥50Hz~15KHz。 3、在最大输出功率下非线性失真系数≤3%。 4、输入阻抗R i≥100kΩ。 5、具有音调控制功能:低音100Hz处有±12dB的调节范围,高 音10kHz处有±12dB的调节范围。 二、设计方案分析 根据设计课题的要求,该音频功率放大器可由图所示框图实现。 下面主要介绍各部 分电路的特点及要求。 图1 音频功率放大器组成框图 1、前置放大器 音频功率放大器的作用是将声音源输入的信号进行放大,然后输

出驱动扬声器。声音源 的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低

放大电路原理

放大电路原理 放大器有交流放大器和直流放大器。交流放大器又可按频率分为低频、中源和高频;接输出信号强弱分成电压放大、功率放大等。此外还有用集成运算放大器和特殊晶体管作器件的放大器。它是电子电路中最复杂多变的电路。但初学者经常遇到的也只是少数几种较为典型的放大电路。 读放大电路图时也还是按照“逐级分解、抓住关键、细致分析、全面综合”的原则和步骤进行。首先把整个放大电路按输入、输出逐级分开,然后逐级抓住关键进行分析弄通原理。放大电路有它本身的特点:一是有静态和动态两种工作状态,所以有时往往要画出它的直流通路和交流通路才能进行分析;二是电路往往加有负反馈,这种反馈有时在本级内,有时是从后级反馈到前级,所以在分析这一级时还要能“瞻前顾后”。在弄通每一级的原理之后就可以把整个电路串通起来进行全面综合。 下面我们介绍几种常见的放大电路。 低频电压放大器 低频电压放大器是指工作频率在 20 赫~ 20 千赫之间、输出要求有一定电压值而不要求很强的电流的放大器。 ( 1 )共发射极放大电路 图 1 ( a )是共发射极放大电路。 C1 是输入电容, C2 是输出电容,三极管 VT 就是起放大作用的器件, RB 是基极偏置电阻 ,RC 是集电极负载电阻。 1 、 3 端是输入, 2 、3 端是输出。 3 端是公共点,通常是接地的,也称“地”端。静态时的直流通路见图 1 ( b ),动态时交流通路见图 1 ( c )。电路的特点是电压放大倍数从十几到一百多,输出电压的相位和输入电压是相反的,性能不够稳定,可用于一般场合。

( 2 )分压式偏置共发射极放大电路 图 2 比图 1 多用 3 个元件。基极电压是由 RB1 和 RB2 分压取得的,所以称为分压偏置。发射极中增加电阻 RE 和电容 CE , CE 称交流旁路电容,对交流是短路的; RE 则有直流负反馈作用。所谓反馈是指把输出的变化通过某种方式送到输入端,作为输入的一部分。如果送回部分和原来的输入部分是相减的,就是负反馈。图中基极真正的输入电压是RB2 上电压和 RE 上电压的差值,所以是负反馈。由于采取了上面两个措施,使电路工作稳定性能提高,是应用最广的放大电路。 ( 3 )射极输出器 图 3 ( a )是一个射极输出器。它的输出电压是从射极输出的。图 3 ( b )是它的交流通路图,可以看到它是共集电极放大电路。

功率放大器原理功率放大器原理图

袁蒁膃蚇腿肀肃功率放大器原理功率放大器原理 图 芃蚆葿艿袂薇蒆要说功率放大器的原理,我们还是先来看看功率放大器的组成:射频功率放大器(RF PA)是各种无线发射机的重要组成部分。在发射机的前级电路中,调制振荡电路所产生的射频信号功率很小,需要经过一系列的放大一缓冲级、中间放大级、末级功率放大级,获得足够的射频功率以后,才能馈送到天线上辐射出去。为了获得足够大的射频输出功率,必须采用射频功率放大器。 射频功率放大器是发送设备的重要组成部分。射频功率放大器的主要技术指标是输出功率与效率。除此之外,输出中的谐波分量还应该尽可能地小,以避免对其他频道产生干扰。 螆肇葿蚄蚆芈羁功率放大器原理 衿蚈膂袆袆膁螁高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出。在“低频电子线路” 课程中已知,放大器可以按照电流导通角的不同,将其分为甲、乙、丙三类工作状态。甲类放大器电流的流通角为360o,适用于小信号低功率放大。乙类放大器电流的流通角约等于180o;丙类放大器电流的流通角则小于180o。乙类和丙类都适用于大功率工作。丙类工作状态的输出功率和效率是三种工作状态中最高者。 高频功率放大器大多工作于丙类。但丙类放大器的电流波形失真太大,因而不能用于低频功率放大,只能用于采用调谐回路作为负载的谐振功率放大。由于调谐回路具有滤波能力,回路电流与电压仍然极近于正弦波形,失真很小。除了以上几种按电流流通角来分类的工作状态外,又有使电子器件工作于开关状态的丁类放大和戊类放大。丁类放大器的效率比丙类放大器的还高,理论上可达100%,但它的最高工作频率受到开关转换瞬间所产生的器件功耗(集电极耗散功率或阳极耗散功率)的限制。如果在电路上加以改进,使电子器件在通断转换瞬间的功耗尽量减小,则工作频率可以提高。这就是戊类放大器。 我们已经知道,在低频放大电路中为了获得足够大的低频输出功率,必须采用低频功率放大器,而且低频功率放大器也是一种将直流电源提供的能量转换为交流输出的能量转换器。高频功率放大器和低频功率放大器的共同特点都是输出功率大和效率高,但二者的工作频率和相对频带宽度却相差很大,决定了他们之间有着本质的区别。低频功率放大器的工作频率低,但相对频带宽度却很宽。例如,自20至20000 Hz,高低频率之比达1000倍。因此它们都是采用无调谐负载,如电阻、变压器等。高频功率放大器的工作频率高(由几百kHz一直到几百、几千甚至几万MHz),但相对频带很窄。例如,调幅广播电台(535-1605 kHz的频段范围)的频带宽度为10 kHz,如中心频率取为1000 kHz,则相对频宽只相当于中心频率的百分之一。中心频率越高,则相对频宽越小。因此,高频功率放大器一般都采用选频网络作为负载回路。由于这后一特点,使得这两种放大器所选用的工作状态不同:低频功率放大器可工作于甲类、甲乙类或乙类(限于推挽电路)状态;高频功率放大器则一般都工作于丙类(某些特殊情况可工作于乙类)。 近年来,宽频带发射机的各中间级还广泛采用一种新型的宽带高频功率放大器,它不采用选频网络作为负载回路,而是以频率

一个简单功放设计制作与电路图分析

一个简单功放设计制作与电路图分析|电路图 - dickmoore的日志 - 网易博客 默认分类 2009-11-09 19:01 阅读32 评论0 字号:大中小 一个简单功放设计制作与电路图分析|电路图 电子资料 2009-11-06 11:15 功放电路图 一个简单功放设计制作与电路图分析 我的电脑音响坏了快一年了,每次看电影都用耳机,每次用的耳朵都痛,很不爽.因此就想亲手做一个小功放用用,前几天又去了趟电子市场发现有LM386,很便宜,所以干脆用386做了一个单声道的功放先用着,有时间把另外一个声道也加上.在这里把功放设计到调试基本完成的过程写写,纪念这个过程. 1.设计 我们是听听就算的门外汉,对20~20K的音域也不是完全敏感.所以幅频特性不用考虑太多,但是自己要用得爽声音一定要大,因此LM386一般的输出功率肯定是不够拉(好像极限功率也就1W左右,具体还是看芯片资料吧),所以就浪费些多加个LM386做成BTL电路,提高一倍再说.设计出来的电路就是这个样子,原理很简单,就不说了 2.调试 a. 两个104的电容本来是用来隔直的,不过好像电脑主板和声卡上出来的音频都不带直流成份,而且用104时输入电平 比较高的时候声音有失真,(估计是低频过滤在输入电平高的时候人听起来比较明显).于是去掉两个104的电容. b. 在这个时候上电(我用的是12V),接上我的MP3一听,嗯!还不错,可是就是杂声比较厉害,调了调R1的大小,当R1被 调到最大的时候杂声没有了,最小的时候也没有了(这不是废话么,最小的时候输入都没有了 .把连接到功放的音频线拔了也没杂音了,原因可能有两个音频线上有电容在输入电阻R1比较小的时候,和LM386自激产生杂音,一放大就不得了了.于是决定R1就直接调到50K,音量就让MP3调去吧. c. 好像一切都没有问题了,拿到电脑上吧,刚接上去,嗯声音停大,不错!!刚以为要完事,电脑里一首歌就放完了,本来该是安静的却听见喇叭里噼噼啪啪,这个噪声奇了怪了,开始还是以为是R1的问题,索性就把R1去掉(反正LM386也不希罕从前级得到能量),噪音仍然存在,怀疑是主板上的高频噪声,于是在输入端并上一个102的电容---不起作用.这个电容也不敢并大了,大了要影响高频特性.又怀疑是功率大了C1吃不消,于是又在电源上并了一个100uF的电容,还是不行....... d. 就在这个时候用手一抓我的功放输入端的焊点,好了!没杂音了,仔细一想,原来是这样:我从电脑接出来的线是一个声

音频小信号功率放大

摘要 本次电路设计课题是音频小信号放大电路,它属于模拟电路课程设计,所以实验中就需要用到大量的模拟电路知识。对于音频小信号放大电路它是由两级放大电路组成,第一部分是运用到了两级负反馈放大电路,旨在放大电压,第二部分OCL功率放大电路采用复合三极管,目的放大电路电流。两部分放大电路的设计根本目的就是为了将小信号放大为一个大信号而不失真。失真这是设计音频放大电路中的一个难点,电路的巧妙设计可以有效的避免失真,电容的运用是解决失真的关键。

目录 1 选题背景 (2) 1.1 指导思想 (2) 1.2 方案论证 (2) 1.3 基本设计任务 (2) 1.4 发挥设计任务 (2) 1.5电路特点 (3) 2 电路设计 (3) 2.1 总体方框图..................................... 错误!未定义书签。 2.2 工作原理 (3) 3 各主要电路及部件工作原理 (3) 3.1 第一级—输入信号放大电路 (4) 3.2 NE5532简要说明................................. 错误!未定义书签。 3.3 第二级—功率放大电路........................... 错误!未定义书签。 3.4 直流信号过滤电路 (6) 4 原理总图 (7) 5 元器件清单 (7) 6 调试过程及测试数据(或者仿真结果) (7) 6.1 仿真检查 (8) 6.1.1第一级仿真检查 (8) 6.1.2第二级仿真检查 (9) 6.2 通前电检查 (10) 6.3 通电检查 (10) 6.3.1第一级电路检查 (10) 6.3.2第二级电路检查 (10) 6.3.3完整电路检查 (10) 6.4 结果分析 (10) 7 小结 (10) 8 设计体会及今后的改进意见 (11) 8.1 体会 (11) 8.2 本方案特点及存在的问题 (11) 8.3 改进意见 (11) 参考文献 (12)

运算放大器的工作原理

运算放大器的工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

运算放大器的工作原理 放大器的作用: 1、能把输入讯号的电压或功率放大的装置,由电子管或晶体管、电源变压器和其他电器元件组成。用在通讯、广播、雷达、电视、自动控制等各种装置中。原理:高频功率放大器用于发射机的末级,作用是将高频已调波信号进行功率放大,以满足发送功率的要求,然后经过天线将其辐射到空间,保证在一定区域内的接收机可以接收到满意的信号电平,并且不干扰相邻信道的通信。高频功率放大器是通信系统中发送装置的重要组件。按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出在“低频电子线路”课程中已知,放大器可以按照电流导通角的不同, 运算放大器原理 运算放大器(Operational Amplifier,简称OP、OPA、OPAMP)是一种直流耦合﹐差模(差动模式)输入、通常为单端输出(Differential-in, single-ended output)的高增益(gain)电压放大器,因为刚开始主要用于加法,乘法等运算电路中,因而得名。一个理想的运算放大器必须具备下列特性:无限大的输入阻抗、等于零的输出阻抗、无限大的开回路增益、无限大的共模排斥比的部分、无限大的频宽。最基本的运算放大器如图1-1。一个运算放大器模组一般包括 一个正输入端(OP_P)、一个负输入端(OP_N)和一个输出端(OP_O)。 图1-1 通常使用运算放大器时,会将其输出端与其反相输入端(inverting input node)连接,形成一负反馈(negative feedback)组态。原因是运算放大器的电压增益非常大,范围从数百至数万倍不等,使用负反馈方可保证电路的稳定运作。但是这并不代表运算放大器不能连接成正回

功率放大器的设计

课程设计任务书 学生姓名:专业班级:电子1003班 指导教师:葛华工作单位:信息工程学院 题目: 功率放大器的设计 初始条件: 计算机、Proteus软件、Cadence软件 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、课程设计工作量:2周 2、技术要求: (1)学习Proteus软件和Cadence软件。 (2)设计一个功率放大器电路。 (3)利用Cadence软件对该电路设计原理图并进行PCB制版,用Proteus软件对该电路进行仿真。 3、查阅至少5篇参考文献。按《武汉理工大学课程设计工作规范》要求撰写设计报告书。全文用A4纸打印,图纸应符合绘图规范。 时间安排: 2013.11.11做课设具体实施安排和课设报告格式要求说明。 2013.11.11-11.16学习Proteus软件和Cadence软件,查阅相关资料,复习所设计内容的基本理论知识。 2013.11.17-11.21对功率放大器进行设计仿真工作,完成课设报告的撰写。 2013.11.22 提交课程设计报告,进行答辩。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要........................................................................ I Abstract ................................................................... II 1 功放的工作原理及分类 (1) 1.1功放的工作原理 (1) 1.2功放的分类 (1) 2 软件介绍 (2) 2.1 Proteus (2) 2.1.1 Proteus简介 (2) 2.1.2工作界面 (2) 2.1.3 对象的放置和编辑 (3) 2.1.4 连线 (4) 2.2Cadence软件 (4) 2.2.1 Cadence简介 (4) 2.2.2 Cadence软件的特点 (4) 2.2.3电路PCB的设计步骤 (4) 3 设计方案 (6) 3.1 运算放大电路的设计 (6) 3.2 功率放大电路的设计 (7) 3.3 音频功率放大电路 (9) 3.4方案总结及仿真 (10) 4 Candence软件操作 (11) 4.1 Cadence画电路原理图 (11) 4.2 布线及PCB图 (11) 4.2.1布线注意事项 (11) 4.2.2 PCB制作 (12) 5.心得体会 (14) 6.参考文献 (15)

D 类放大高效率音频功率放大器电路图原理

D类放大高效率音频功率放大器电路图原理为提高功放效率,以适应现代社会高效、节能和小型化的发展趋势,以D类功率放大器为核心,以单片机89C51和可编程逻辑器件(FPGA)进行控制及时数据的处理,实现了对音频信号的高效率放大。系统最大不失真输出功率大于1W,可实现电压放大倍数1~20连续可调,并增加了短路保护断电功能,输出噪声低。系统可对功率进行计算显示,具有4位数字显示,精度优于5%。 传统的音频功率放大器主要有A类(甲类)、B类(乙类)和AB(甲乙类)。A类功率放大器在整个输入信号周期内都有电流连续流过功率放大器件,它的优点是输出信号的失真比较小,缺点是输出信号的动态范围小、效率低,理想情况下其最高效率为50%.B类功率放大器在整个输入信号周期内功率器件的导通时间为50%,它的优点是在理想情况下效率可达78.5%,但缺点是会产生交越失真,增加噪声。AB类(甲乙类)功率放大器是以上两种放大器的结合,每个功率器件的导通时间在50%~100%之间,兼有甲类失真小和乙类效率高的特点,其工作效率介于二者之间。传统音频功率放大器效率偏低,体积偏大的缺点与音频功率放大高效、节能和小型化的发展趋势的矛盾,催生了D类(丁类)音频功率放大器出现和发展。本系统即采用D类功率放大实现,并用单电源供电,符合现代社会对电源小巧、便携要求的实际需要。 1系统方案论证与选择 1.1整体方案 方案①:数字方案。输入信号经前置放大调理后,即由A/D采入单片机进行处理,三角波产生及与音频信号的比较均由软件部分完成,然后由单片机输出两路完全反向的PWM 波给入后级功率放大部分,进行放大。此种方案硬件电路简单,但会引入较大数字噪声。 方案②:硬件电路方案。三角波产生及比较、PWM产生仍由硬件电路实现,此方案噪声较小、且幅值能做到更大,效果较好,故采用此方案。 1.2三角波产生电路设计 方案①:利用NE555产生三角波。该电路的特点是采用恒流源对电容线性冲、放电产生三角波,波形线性度较好、频率控制简单,信号幅度可通过后加衰减电位器控制。 方案②:对方波积分产生三角波。积分器与比较器级联,通过对比较器产生的方波积分得到三角波,频率与幅值控制只需调整某些电阻值,控制简单。但考虑积分电路存在积分漂移。 此处采用选择方案①。

LM3886功率放大器原理图及PCB

LM3886原理图: LM3886 _PCB: LM3886 3D效果图:

元器件清单: 说明封装序号0.1U R AD0.2 C14 0.1U R AD0.2 C13 0.1U R AD0.2 C12 0.1U R AD0.2 C11 0.47U RAD0.2 C4 0.47U RAD0.2 C2 0.47U RAD0.2 C3 0.47U RAD0.2 C1 0.7UH AXIAL0.6 L2 0.7UH AXIAL0.6 L1 10 AXIAL0.6 R12 10 AXIAL0.6 R11 100U RB.2/.4 C18 100U RB.2/.4 C17 10A BRIDGE-H1 DBR1 10K AXIAL0.4 R8 10K AXIAL0.4 R7 1K AXIAL0.4 R4 1K AXIAL0.4 R2 1K AXIAL0.4 R3 1K AXIAL0.4 R1 2.7 AXIAL0.5 R10 2.7 AXIAL0.5 R9 20K AXIAL0.4 R16

20K AXIAL0.4 R15 20K AXIAL0.4 R13 20K AXIAL0.4 R14 220P RAD0.2 C16 220P RAD0.2 C15 22K AXIAL0.4 R6 22K AXIAL0.4 R5 22U RAD0.2 C20 22U RAD0.2 C19 4.7U R AD0.2 C10 4.7U R AD0.2 C9 470U RB.2/.4 C8 470U RB.2/.4 C6 470U RB.2/.4 C7 470U RB.2/.4 C5 50P RAD0.2 C22 50P RAD0.2 C21 6800U RB.3/.6 C26 6800U RB.3/.6 C25 6800U RB.3/.6 C24 6800U RB.3/.6 C23 LM3886 ZIP-11V U2 LM3886 ZIP-11V U1 Output PORT2 J1 POWER FLY3 J3 SIG_INPUT PHONE J2

音频功率放大器实验报告

一、实验目的 1)了解音频功率放大器的电路组成,多级放大器级联的特点与性能; 2)学会通过综合运用所学知识,设计符合要求的电路,分析并解决设计过程中遇到的问题,掌握设计的基本过程与分析方法; 3)学会使用Multisim、Pspice等软件对电路进行仿真测试,学会Altium Designer使用进行PCB制版,最后焊接做成实物,学会对实际功放的测试调试方法,达到理想的效果。 4)培养设计开发过程中分析处理问题的能力、团队合作的能力。 二、实验要求 1)设计要求 设计并制作一个音频功率放大电路(电路形式不限),负载为扬声器,阻抗8Ω。要求直流稳压电源供电,多级电压、功率放大,所设计的电路满足以下基本指标: (1)频带宽度50Hz~20kHz,输出波形基本不失真; (2)电路输出功率大于8W; (3)输入阻抗:≥10kΩ; (4)放大倍数:≥40dB; (5)具有音调控制功能:低音100Hz处有±12dB的调节范围,高音10kHz 处有±12dB的调节范围; (6)所设计的电路具有一定的抗干扰能力; (7)具有合适频响宽度、保真度要好、动态特性好。 发挥部分: (1)增加电路输出短路保护功能; (2)尽量提高放大器效率; (3)尽量降低放大器电源电压; (4)采用交流220V,50Hz电源供电。 2)实物要求 正确理解有关要求,完成系统设计,具体要求如下: (1)画出电路原理图; (2)确定元器件及元件参数; (3)进行电路模拟仿真; (4)SCH文件生成与打印输出;

(5)PCB文件生成与打印输出; (6)PCB版图制作与焊接; (7)电路调试及参数测量。 三、实验内容与原理 音频功率放大器是一种应用广泛、实用性强的电子音响设备,它主要应用于对弱音频信号的放大以及音频信号的传输增强和处理。按其构成可分为前置放大级、音调控制级和功率放大级三部分,如图1所示。 v 图1 音频功率放大器的组成框图 1)前置放大级 音频功率放大器的作用是将声音源输入的信号进行放大,然后输出驱动扬声器。声音源的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD 唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低噪声的晶体管,另外还要设置合适的静态工作点。由于场效应管的噪声系数一般比晶体管小,而且它几乎与静态工作点无关,在要求高输入阻抗的前置放大器的情况下,

功率放大器的基本工作原理_共7页

一.功率放大器的基本工作原理 A 类扩音机的输出级中两个(或两组)晶体管永远处于导电状态,也就是说不管有无 讯号输入 它们都保持传导电流,并使这个电流等于交流电的峰值,这时交流在最大讯号情 况下流入负载。当无讯号时,两个晶体管各流通等量的电流,因此在输出中心点上没有不 平衡的电流或电压,故无电流输入扬声器,当讯号趋向正极,线路上方的输出晶体管容许 流入较多的电流,下方的输出晶体管则相对减少电流,由于电流开始不平衡,于是流入扬 声器发声。 A 类放大方式具有最佳的线性,每个输出晶体管均放大讯号全波,完全不存在交越失 真 ( Switching Distortion ),即使不采用负反馈,它的环路失真仍十分低,因此被认为是声 音最理想的放大线路设计。但凡事总是有利亦有弊, A 类放大的缺点是效率低,因为无讯 号时仍有较大电流流入,扩音机产生高热量和浪费功率,这种功率正如输出级的热量一样 完全消散,但却没输到负载,当讯号电平增加时有些功率可进入负载,但许多仍转变为热 量。 A 类放大器是一种最浪费能量的设计,只要一开机它的耗电量最高,播放音乐时,效 率约为百分之50,即一半功率变为热量浪费。如果不计较上述的缺点, A 类扩音机是重播 音乐的理想选择,它能提供非常平滑的音质,音色圆润温暖,高音透明开扬,这些优点足 以补偿它的缺点。为了有效处理散热问题, A 类扩音机必须采用大型沉热器,有些大功率 设计还需要风扇散热。因为它的效率低,供电器一定要能提供充足的电流,一部 25瓦的 A 类扩音机供电器的能力至少够 100瓦AB 类扩音机用。所以 A 类机的体积和重量都比 AB 类大,这令制造成本增加,售价当然较贵,一般而言 A 类扩音标机的售价约为同等功 率A B 类机的两倍或以上。 B 类放大的工作方式是当无讯号输入时,输出晶体管不导电,所以不消耗功率,当有 讯号时每 对输出管各放大一半波形,彼此一开一关轮流工作完成一个全波放大,在两个输 出晶体管转换工作时便发生交越失真,因此形成非线性。纯 B 类扩音机较少,因为在讯号 非常低时失真十分严重,因交越失真令声音变得粗糙。 B 类扩音机的效率平均约为百分之 75,产生的热量较 A 类机低,允许用较小的散热器,这类放大工作当其输出为最大功率的 40.5%,扩音机内消耗的功率最高,这时为百分之 50,输出功率较低和较高时则效率增加, 因此供电器可以比 A 类机小。 AB 类工作达成性能的妥协,大多数 B 类扩音机都不是用纯 B 类工作,通常有两个偏 压,在无讯号时也有少量电流通过输出晶体管,这类扩音机在讯号小时用 A 类工作,获得 最佳线性,当讯号提高到某一个电平时自动转为 B 类工作获得较高的效率。普通机十瓦的 AB 类大约在5瓦以内用 A 类工作,由于聆听音乐时所需要的功率只有几瓦,因此 AB 类 B 类,这种设计可以 AB 类扩音机将偏 A 类 机,但产生的热 可变偏流式扩音机:可变偏流扩音机据知是美国 Threshold 公司最先发展,八十年代 日本厂家却普遍采用并创造出多种不同的名称,这种设计是利用一个线路探测输入讯号电 压,根据电 压的高低自动改变偏流,讯号电压愈低偏流愈高,等于 A 类工作,讯号电压愈 高偏流愈低达成 B 类工作,这种偏流的变化是连续性,可将交越失真减至最少。理论上这 种设计颇为理想,但这类扩音机常因偏流探测线路与伺服控制线路本身工作不准确而导致 额外的失真,能真正达到接近 A 类音质的产品不多。 C 类放大不适合 HI-FI 用,C 类(丙类)放大器较少听闻,因为它是一种失真非常高 的放大 器,只适合在通讯用途上使用。 A 类输出晶体管百分之百时间都在工作, B 类输出 晶HP 曰 扩音机在大部分时间是用 A 类工作,只在出现音乐瞬态强音时才转为 获得优良的音质和提高效率减少热量,是一种颇为合逻辑的设计。有些 流调得甚高,令其在更宽润的功率范围内以 A 类工作,使声音接近纯 量亦相对增加。

功率放大器原理图

电路图中的放大电路 发布:2011-8-30|作者:——|来源:caihuiliu|查看:482次|用户关注: 电路图中的放大电路能够把微弱的信号放大的电路叫做放大电路或放大器。例如助听器里的关键部件就是一个放大器。放大电路的用途和组成放大器有交流放大器和直流放大器。交流放大器又可按频率分为低频、中源和高频;接输出信号强弱分成电压放大、功率放大等。此外还有用集成运算放大器和特殊晶体管作器件的放大器。它是电子电路中最复杂多变的电路。但初学者经常遇到的也只是少数几种较为典型的放大电路。读放大电路图时也还是按照“ 电路图中的放大电路 能够把微弱的信号放大的电路叫做放大电路或放大器。例如助听器里的关键部件就是一个放大器。 放大电路的用途和组成 放大器有交流放大器和直流放大器。交流放大器又可按频率分为低频、中源和高频;接输出信号强弱分成电压放大、功率放大等。此外还有用集成运算放大器和特殊晶体管作器件的放大器。它是电子电路中最复杂多变的电路。但初学者经常遇到的也只是少数几种较为典型的放大电路。 读放大电路图时也还是按照“逐级分解、抓住关键、细致分析、全面综合”的原则和步骤进行。首先把整个放大电路按输入、输出逐级分开,然后逐级抓住关键进行分析弄通原理。放大电路有它本身的特点:一是有静态和动态两种工作状态,所以有时往往要画出它的直流通路和交流通路才能进行分析;二是电路往往加有负反馈,这种反馈有时在本级内,有时是从后级反馈到前级,所以在分析这一级时还要能“瞻前顾后”。在弄通每一级的原理之后就可以把整个电路串通起来进行全面综合。 下面我们介绍几种常见的放大电路。 低频电压放大器 低频电压放大器是指工作频率在20赫~20千赫之间、输出要求有一定电压值而不要求很强的电流的放大器。 (1)共发射极放大电路

音频功率放大器课程设计--OTL音频功率放大器的设计与制作-精品

学号: 课程设计 题目OTL音频功率放大器的设计与制作 学院信息工程学院 专业通信工程 班级通信1302 姓名 指导教师 2014 年 1 月23 日

课程设计任务书 题目:OTL音频功率放大器的设计与制作 初始条件: 元件:集成功放TDA2030A、集成稳压器LM7812、电阻、电容、电位计若干。 仪器:万用表、示波器、交流毫伏表、函数信号发生器、学生电源要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、课程设计工作量:1周。 2、技术要求: ①要求设计制作一个音频功率放大器频率响应20~20KHZ,效率>60﹪,失真小。完成对音频功率放大器的设计、仿真、装配与调试,并自制直流稳压电源。 ②确定设计方案以及电路原理图并用multisim进行电路仿真。 时间安排: 序号设计内容所用时间 1 布置任务及调研1天 2 方案确定0.5天 3 制作与调试 1.5天 4 撰写设计报告书1天 5 答辩1天 合计1周 指导教师签名: 系主任(或责任教师)签名:年月日

目录 摘要 (1) Abstract (2) 音频功率放大器的设计与制作 (3) 1. 设计原理及参数 (3) 1.1音频功放电路的设计 (3) 1.1.1设计原理 (3) 1.1.2 参数计算 (5) 1.2直流稳压电源的设计 (6) 1.2.1设计原理 (6) 1.2.2参数计算 (7) 2.仿真结果及分析 (8) 2.1音频功率放大电路 (8) 2.1.1仿真原理图 (8) 2.1.2仿真效果图 (9) 2.2直流稳压电源电路 (11) 2.2.1电路原理图仿真 (11) 2.2.2仿真效果图 (11) 3.实物制作与性能测试 (12) 3.1音频功放实物制作 (12) 3.2性能测试 (13) 3.2.1功率性能测试 (13) 3.2.2频率响应测试 (14) 3.3直流稳压电源制作 (14) 3.4直流稳压电源的测试 (15) 4.收获以及体会 (15)

功率放大器,功率放大器的特点及原理

功率放大器,功率放大器的特点及原理是什么? 利用三极管的电流控制作用或场效应管的电压控制作用将电源的功率转换为按照输入信号变化的电流。因为声音是不同振幅和不同频率的波,即交流信号电流,三极管的集电极电流永远是基极电流的β倍,β是三极管的交流放大倍数,应用这一点,若将小信号注入基极,则集电极流过的电流会等于基极电流的β倍,然后将这个信号用隔直电容隔离出来,就得到了电流(或电压)是原先的β倍的大信号,这现象成为三极管的放大作用。经过不断的电流及电压放大,就完成了功率放大。 功率放大器,简称“功放”。很多情况下主机的额定输出功率不能胜任带动整个音响系统的任务,这时就要在主机和播放设备之间加装功率放大器来补充所需的功率缺口,而功率放大器在整个音响系统中起到了“组织、协调”的枢纽作用,在某种程度上主宰着整个系统能否提供良好的音质输出。 一、功率放大器的特点 向负载提供信号功率的放大器,通常称为功率放大器。功率放大器工作时,信号电压和电流的幅度都比较大,因此具有许多不同于小信号放大器的特点。 l.功率放大器的效率 功串放大的实质是通过晶体管的控制作用,把电源提供给放大器的直流功率转换成负载上的交流功率。交流输出功串和直流电源功率息息相关。一个功率放大器的直流电源提供的功率究竟能有多少转换成交流输出功率呢?我们当然希望功率放大器最好能把直流功率(PE= EcIc)百分之百转换成交流输出功率(Psc=Uscisc)实际上却是不可能的。因为晶体管自身要有一定的功率消耗,各种电路元件(电阻、变压器等)要消耗一定的功率,这就有个效率问题了。放大器的效率η指输出功率Psc与电源供给的直流动率PE之比,即通常用百分比表示: η=Psc/PE 通常用百分比表示: η=Psc/PE×100% 效率越高,表示功率放大器的性能越好。 晶休管在大信号工作条件下,工作点会上下大幅度摆动。一旦工作点跳出输入或输出特性曲线的线性区,就会出现非线性失真。所以对声频功率放大器来说,输出功率总要和非线性失真联系在一起考虑。一般声频功率放大器都有两个指标棗最大输出功率和最大不失真输

音频功率放大电路课程设计报告

, 课程设计 课程名称_模拟电子技术课程设计 题目名称音频功率放大电路 $ 学生学院 专业班级 学号 学生姓名__ 指导教师 : 2010 年 6 月 20 日

— 音频功率放大电路课程设计报告 一、设计题目 题目:音频功率放大电路 二、设计任务和要求 ` 1)设计任务 设计并制作一个音频功率放大电路(电路形式不限),负载为扬声器,阻抗8Ω。 2)设计要求 频带宽50H Z ~20kH Z ,输出波形基本不失真;电路输出功率大于8W; 输入灵敏度为100mV,输入阻抗不低于47KΩ。 三、原理电路设计 功率放大电路: % 功率放大电路通常作为多级放大电路的输出级。功率放大器的常见电路形式有OTL电路和OCL电路。在很多电子设备中,要求放大电路的输出级能够带动某种负载,例如驱动仪表,使指针偏转;驱动扬声器,使之发声;或驱动自动控制系统中的执行机构等。也就是把输入的模拟信号经被放大后,去推动一个实际的负载工作,所以要求放大电路有足够大的输出功率,这样的放大电路统称为功率放大电路。而音频功率放大器的作用就是给音响放大器的负载RL(扬声器)提供一定的输出功率。当负载一定时,希望输出的功率尽可能大,输出的信号的非线形失真尽可能地小,效率尽可能的高。随着半导体工艺,技术的不断发展,输出功率几十瓦以上的集成放大器已经得到了广泛的应用。功率VMOS管的出现,也给功率放大器的发展带来了新的生机。总之,功率放大器的主要任务是向负载提供较大的信号功率,故功率放大器应具有以下几个主要特点: 1. 输出功率要足够大 工作在大信号状态下,输出电压和输出电流都很大.要求在允许的失真条件下,

PWM功率放大电路

P W M功率放大电路 Modified by JACK on the afternoon of December 26, 2020

PWM功率放大电路 ——卢浩天 LC梦创电子制作工作室一、PWM功率放大原理 PWM功放电路有单极性和双极性之分。双极性指在一个PWM周期内,电机电枢电压正、负极性改变一次;单极性指PWM功放管工作时,有一个PWM信号端和一个方向控制端,在电机正转或反转时,仅有对应的一对功放管通电,而另一对功放管截止。因此,电机电枢在正转或反转时,正、负极性是固定的,即是单极性的。 若忽略晶体管的管压降,可以认为PWM功率放大管的输出电平等于 电源电压,即| U|=C U。图1描绘了电枢的电压波形和电流波形。在图 AB 中,T为PWM脉冲周期, T为正脉冲宽度,h T为负脉冲宽度。电枢两端 P 的电流是一个脉动的连续电流,从图可看出,电枢两端的电流是一个脉动的连续电流,加快PWM的切换频率,电流的脉动就变小,结果近似于直流信号的效果,使电机均匀旋转。同时,如果改变PWM的脉冲的宽度,电枢中的平均电流也将变化,电机的转速便将随之改变,这就是PWM调速的原理。 在图中,PWM脉冲频率决定了电枢电流的连续性,从而也决定了电机运行的平稳性。如果脉冲频率切换频率选择不当,电机的低速性能有可能不理想,容易烧坏晶体管,而且由于电流不连续,电机有可能产生剧烈震荡,甚至出现啸叫现象,这些都是不允许的。因此,在设计PWM功率放

大器时,要慎重选择切换频率。为了克服静摩擦,改善运行特性,切换频率应能使电机轴产生微振,即: 式中,T K 为转矩系数,Φ=M T C K (M C 为电机电磁常数、Φ为励磁磁通),C U 为功放电源,A L 为电枢电感,S T 为电机静摩擦力矩。 另外,选择切换频率具体还应考虑以下几个方面: (1)微振的最大角位移应小于允许的位置误差。在伺服系统中,假设要求位置误差小于δ,则要求切换频率满足下式: 式中,J 为电机及负载的转动惯量。 (2)应尽量减小电机内产生的高频功耗。PWM 脉冲信号的谐波分量将引起电机内部的功耗,降低效率。为此切换频率应足够高,使电机电枢感抗大大超过电枢内阻,即要求 式中,A R 是电机电枢电阻。 (3)应当远远大于系统的固有频率,防止系统固有振荡。 实际设计时应综合考虑上述条件,在1000Hz 至数万Hz 的范围内选取PWM 切换频率。特别需要强调的是,由于伺服电机的电枢电感较小,如果频率不够高,交流分量过大,很容易烧毁功放管。不过功放管的开关频率总有一个限度,对大功率功放管来说,开关频率越高,制造工艺难度越大,成本也越高。因此,用户要根据自己的实际需要确定有关参数,使自己构建的功率放大器有较高的性能价格比。 二、标准的PWM 功率放大器 图2举出了一个实际的标准双极性PWM 功率放大器。它是一个典型的H 型功放,四个功放管分别采用NPN 型达林顿管TIP122和PNP 型达

相关文档
最新文档