基于一种新的阈值函数的小波域信号去噪

基于一种新的阈值函数的小波域信号去噪
基于一种新的阈值函数的小波域信号去噪

收稿日期:2003 04 25

基金项目:国家部委预研基金资助项目(51487020203DZ0103)

作者简介:张维强(1977 ),男,西安电子科技大学博士研究生.基于一种新的阈值函数的小波域信号去噪

张维强,宋国乡

(西安电子科技大学理学院,陕西西安 710071)

摘要:在D.L.Donoho 和I.M.Johnstone 提出的小波阈值去噪方法的基础上,构造了一个新的阈值函数.

与传统的软硬阈值函数相比,新阈值函数表达式简单易于计算,克服了硬阈值函数不连续的缺点,同软

阈值函数一样具有连续性,而且是高阶可导的,便于进行各种数学处理,还克服了软阈值函数中估计小

波系数与分解小波系数之间存在着恒定偏差的缺陷,同时它具有软硬阈值函数不可比拟的灵活性.仿真

结果表明,采用了新的阈值函数的去噪结果有效抑制了在信号奇异点附近产生的Pseudo Gi bbs 现象,无

论是在视觉效果上,还是在信噪比增益和最小均方误差意义上均优于传统的软硬阈值方法.

关键词:小波变换;小波阈值去噪;阈值函数;均方误差;信噪比

中图分类号:TN911 文献标识码:A 文章编号:1001 2400(2004)02 0296 04

Signal de noising in wavelet domain based on a new kind

of threshold ing fu nction

Z HANG Wei qiang,SONG Guo xiang

(School of Science,Xidian Univ.,Xi an 710071,China)

Abstract: A novel thresholdin g function is presented based on the wavelet shrinkage put forward by D.L.Donoho

and I.M.Johnstone.This new thresholding function has many advan tages over DJ s soft and hard thresholding

function.It is simple in expression and as continuous as the soft thresholding function,and has a high order derivative

which makes convenient some ki nds of mathematical di sposals.It also overcomes the shortcoming that there is an

invariable dispersion between the es timated wavelet coefficients and the decomposed wavelet coefficients of the soft

thresholding method.At the same ti me,the new thresholding function is more elastic than the soft and hard

thresholding function.All these advan tages make it possible to construct an adapti ve denoising algorithm.Simulation

results indicate that the de noising method adop ting the new thresholding function suppresses the Pseudo Gibbs

phenomena near the singularities of the signal effecti vely,and the nu merical results also show the new method gives

better MSE performance and SNR gains than DJ s hard and soft thresholding methods.

Key Words: wavelet transform;wavelet shrinkage;thresholding function;MSE;SNR

去除噪声一直是信号处理中的重要内容.去噪算法一般是利用噪声的一些先验知识对带噪信号在最小均方误差(MSE)意义上进行估计.1994年,D.L.Donoho 和I.M.Johnstone 在小波变换的基础上提出了小波阈值去噪的概念[1~3]

,并证明了此方法可在Besov 空间中得到其他任何线性形式不可能达到的最佳估计.文献

[4~9]都对此方法做了进一步的研究和应用.但是由于此方法中所采用的硬阈值函数的不连续性和软阈值函数中估计小波系数与带噪信号的小波系数之间存在着恒定的偏差的缺陷,限制了它的进一步应用.为了克服这一缺点,该文提出了一种新的阈值函数,与原来的阈值函数相比,新阈值函数表达式简单易于计算,不但同软阈值函数一样是连续的,而且是高阶可导的,便于进行各种数学处理,同时它具有软硬阈值函数不可比拟的灵活性,这些优点为信号的自适应去噪提供了可能.最后用仿真实验验证了新阈值函数在阈值去噪中的有效性和优越性.

2004年4月

第31卷 第2期 西安电子科技大学学报(自然科学版)JOURNAL OF XIDIAN UNIVERSITY Apr.2004

Vol.31 No.2

1 小波阈值去噪

设一维观测信号为f (t)=s(t )+n(t) ,(1)其中s (t)为原始信号,n(t)为方差为 2的高斯白噪声,服从N(0, 2).

对f (t)进行离散采样,得到N 点离散信号f (n ),n =0,1,2, ,N -1,其小波变换为

Wf (j ,k)=2

-j /2!N-1

n=0f (n) (2-j -k) , j ,k ?Z ,(2)Wf (j ,k)即为小波系数.在实际应用中,式(2)的计算是繁琐的,而且小波函数 (t)一般无显式表达,从而有小波变换的递归实现方法[5,6]为

Sf (j +1,k)=Sf (j ,k)*h(j ,k ) ,

(3)Wf (j +1,k )=Sf (j ,k )*g (j ,k ) ,(4)

其中h 和g 分别是尺度函数 (t )和小波函数 (t)对应的低通和高通滤波器,Sf (0,k )为原始信号,Sf (j ,k)为尺度系数,W f (j ,k )为小波系数.相应的重构公式[5,6]为

Sf (j -1,k )=Sf (j ,k )* h (j ,k )+W f (j ,k )* g (j ,k) ,

(5)其中 h 和 g 分别对应于重构低通和高通滤波器.

为方便起见记w j ,k =Wf (j ,k).因为小波变换是线性变换,所以对f (k)=s (k )+n(k )作离散小波变换后,得到的小波系数w j ,k 仍由两部分组成,一部分是信号s (k)对应的小波系数Ws (j ,k ),记为u j,k ,另一部分是噪声n(k)对应的小波系数Wn(j ,k ),记为v j,k .

Donoho 和Johnstone [1~3]提出的小波阈值去噪方法的基本思想是,当w j ,k 小于某个临界阈值时,认为这时的w j ,k 主要是由噪声引起的,予以舍弃;当w j,k 大于这个临界阈值时,认为这时的小波系数主要是由信号引起的,那么就把这一部分的w j,k 直接保留下来(硬阈值方法)或者按某一个固定量向零收缩(软阈值方法),然后用新的小波系数进行小波重构得到去噪后的信号.此方法可通过以下3个步骤实现:

1)对带噪信号f (k )作小波变换,得到一组小波系数w j ,k ;

2)通过对w j ,k 用软或硬阈值函数进行阈值处理,得出估计小波系数w ^j,k ,使得w ^j,k -u j ,k 尽量小;3)利用w ^j,k 进行小波重构,得到估计信号 f (k),即为去噪后的信号.

Donoho 使用的硬阈值函数为

w ^j ,k =w j ,

k ,w j ,k #! ,0 ,w j ,k

w j,k #! ,0 ,w j,k

其中sgn(?)为符号函数,阈值!取为 (2log N )1/2.图1是这两种方法的示意图.Donoho 和Johnstone 在文[2]证明了由此方法得到的估计信号 f (k )在最小均方误差

297第2期 张维强等:基于一种新的阈值函数的小波域信号去噪

N

-1E f -f 2=N -1!N-1k=0( f (k )-f (k ))2 (8)

意义上是有效的.2 一种新的阈值函数

软硬阈值方法虽然在实际中得到了广泛的应用,也取得了较好的效果,但它们本身存在着缺点.在硬阈值方法中,w ^j ,k 在!和-!处是不连续的,而在软阈值方法中,w ^j,k 虽然整体连续性较好,但w ^j ,k 与w j,k 之间总存在着恒定的偏差,这将影响重构的精度.但是若把这种偏差减小到零也未必是最好的,目的是使w ^j,k -u j ,k 尽量小,并且软阈值函数的导数不连续,而在实际应用中经常要对一阶导数甚至是高阶导数进行运算处理,所以它具有一定的局限性.为了克服软硬阈值方法的缺点,这里构造了一种新的阈值函数

w ^j ,k =sgn (w j ,k )w j ,k -!exp w j ,k -!N

,w j ,k

#! ,0 ,w j ,k

其中N 为任意正常数.

新的阈值函数不但同软阈值函数一样具有连续性,而且当w j ,k >!时是高阶可导的,便于进行各种数学处理.考察函数

f (x )=sgn (x )x -!exp x -!N .(10)当x >0时,f (x )x =x -

!exp x -!N =1-!x exp x -!N

%1(x %+&);当x <0时,同样有f (x )x

%1(x %-&).同时,f (x )-x =sgn (x )

!exp x -!N

%0(x %&),所以函数式(10)是以直线y =x 为渐近线的,也就是说,新阈值函数以w ^j,k =w j ,k 为渐近线,随着w j ,k 的增大w ^j ,k 逐渐接近w j ,k ,克服了软阈值函数

中w ^j ,k 与w j ,k 之间具有恒定偏差的缺点.观察式(9)发现,当阈值!很小时,新阈值函数的作用与硬阈值函数相当,但它更灵活;当w j ,k 非常接近阈值!时,式(9)表明w ^j,k

近似等于w j,k ,而不是直接让w ^j ,k 为0.另外,从式(9)易得

lim N %&sgn (w j,k )w j ,k -!exp w j ,k -!N

=sgn (w j ,k )(w j ,k -!) ,(11)

图2 新阈值函数示意图

lim N %0sgn (w j ,k )w j ,k -!exp w j ,k -!N =w j ,k ,(12)式(11)和(12)说明,当N %&时,式(9)为软阈值函数;当N %0

时,式(9)为硬阈值函数.可见,新阈值函数是介于软硬阈值函数之

间的一个灵活选择,可以通过N 的取值的变化,得到实用有效的阈

值函数.图2是新阈值函数的示意图,其中N =6,!=3.

3 仿真实验为了说明新阈值函数在阈值去噪算法中的有效性,对一段含

有噪声的Heavysine 信号分别用传统的软硬阈值方法和文中构造的新阈值函数进行了去噪实验.其中输入信号的信噪比(SNR)为298 西安电子科技大学学报(自然科学版)

第31卷

图3 原始Heavysine 信号12!2827dB,采用的小波基是db4小波,分解层数为5层,新阈值函

数中的N 取为8.Donoho 和Johnstone 给出的通用阈值

!= (2log N)1/2在各个尺度上是固定不变的,这对在不同尺度上

进行噪声抑制显然是不够合理的,仿真实验中取

!= (2log N )1/2/log (j +1)[5],其中j 为分解尺度.在实际应用中,

噪声方差 总是不可知的,去噪处理时可以取 =median (w j ,k )/

0!6745[2].图3~7分别为这3种方法的实验结果,从图中可看出,

采用新阈值函数的去噪结果在视觉效果上优于软硬阈值方法,有

效抑制了去噪算法在信号奇异点附近的Pseudo Gibbs 现象.表1给

出了这3种方法SNR 和MSE 的比较,从数据上可以看出采用文中构造的阈值函数,其去噪结果无论是在

SNR 增益还是在MSE 意义上均优于传统的软硬阈值方法

.图4 含噪Heavysine 信号图5

硬阈值去噪结果

图6 软阈值去噪结果图7 采样新阈值函数的去噪结果

表1 3种方法的SNR 和MSE 比较

软阈值方法

硬阈值方法新阈值方法SNR/dB

23.974923.428724.3439MSE

0!07070!08020!0649

注:带噪信号SNR 为12!2827dB.4 结 论

讨论了Donoho 和Johnstone 提出的阈值去噪的基本思想和实现步骤,然后针对软硬阈值方法的缺点构造了一种新的阈值函数,最后通过仿真实验对这3种方法的去噪结果进行了比较,结果表明采用新阈值函数的去噪结果与传统的方法相比,得到了较为理想的结果.

小波阈值去噪中阈值的选取和阈值函数的构造是影响信号去噪结果的重点和难点,文中虽然得到了一些结果,但所做的工作还是非常有限的,选取更为理想的阈值和构造效果更佳的阈值函数正是作者进一步所要研究的内容.

(下转第303页)

299第2期 张维强等:基于一种新的阈值函数的小波域信号去噪

M ?F 1(G),由题设可知?(G :M )=[G :M]=G ,故G 为素数阶循环群,因而G 可解.因此G 不是非交换单群.设G 为极小阶反例,N 为G 的极小正规子群.对任意M/N ?F 1(G/N ),由M /N 非幂零,知M 非幂零.由题设,?(G/N :M/N)=?(G:M )=[G /N :M /N],由极小阶反例,得G/N 可解.可进一步假设N 为G 中的惟一极小正规子群.若N ?#1(G ),由#1(G)可解得N 可解,G 可解,这与极小阶反例相矛盾.若N 不含于#1(G),则存在G 的非幂零极大子群M ,使得G =MN ,M G =1.故?(G :M)=[G:M]=N .对任意L

=1|k ?G ?,故K 特征于G.因为K ?L ,而N 是G 中惟一极小正规子群,所以N ?L ,这与L G =1矛盾.若U +1,根据引理5,知U ?G ,这时U ?L ,又与L G =1矛盾.因此,L 为非幂零G 的极大子群.根据题设条件,?(G:L )=[G :L ]=N ,根据引理3,G 中存在非平凡的可解的正规子群,又N 惟一极小正规性,可知N 可解,从而G 可解.这与G 为极小阶反例相矛盾!极小阶反例不存在,故G 可解.

致谢 衷心感谢李世余教授、赵耀庆教授的热心指导和帮助,文中定理1的证明是赵耀庆教授提供的.参考文献:

[1]Deskins W E.On Maxi mal Subgroups[A].Proc Symp Pure M ath Amer Math Soc:Vol 1[C].New York:Providence R I,1959.100

104.

[2]Beidlman J C,Spencer A E.The Normal Index of Max i mal Subgroups in Finite Groups[J].Illinois J M ath,1972,169(1):95 101.

[3]Wang Yanming.C normal of Groups and Its Properties[J].Journal of Algebra,1996,180(3):954 965.

[4]郭秀云!非幂零极大子群指数为素数幂的有限群[J]!数学年刊,1994,15(A6):721 725.

[5]徐明耀!有限群导引(上册)[M ]!北京:科学出版社,1999.

[6]Baer R.Class of Fi nite Groups and Their Properties[J].Illinois J Math,1957,1(1):115 187.

[7]Zhao Yaoqing.On the Deskins Completions and Theta Completions for Max i mal Subgroups[J].Communication in Algebra,2000,28

(1):375 385.

[8]Rose J S.On Finite Insoluble Groups wi th Nilponent M aximal Subgroup s[J].J Algebra,1977,48(1):182 196.

[9]王品超,杨兆兴!有限群的极大子群正规指数[J]!工程数学学报,1994,11(1):42 48.(编辑:齐淑娟)

(上接第299页)

参考文献:

[1]Donoho D L,Johnstone I M.Ideal Spatial Adaptation Via Wavelet Shrinkage[J].Biometrika,1994,81(12):425 455.

[2]Donoho D L.De noising by Soft thresholding[J].IEEE Trans on IT,1995,41(3):613 627.

[3]Donoho D L,Johnstone I M.Adap ting to Unknown Smoothness Via Wavelet Shrinkage[J].Journal of American Stat Assoc,1995,12

(90):1200 1224.

[4]Ching P C,So H C,Wu S Q.On Wavelet Denoising and Its Application to Time Delay Esti mation[J].IEEE Trans on SP,1999,47

(10):2879 2882.

[5]桂延宁,焦李成,张福顺!航空制导炸弹惯性参数遥测中的小波去噪[J]!西安电子科技大学学报,2003,30(1):117 119.

[6]赵瑞珍!小波理论及其在图像、信号处理中的算法研究[D]!西安:西安电子科技大学,2001.

[7]曲天书!基于S URE 无偏估计的自适应小波阈值去噪[J]!电子学报,2002,30(2):266 268.

[8]李冲泥,胡光锐!一种改进的子波域语音增强算法[J]!电子学报,1999,20(4):88 91.

[9]潘 泉!基于阈值决策的子波域去噪方法[J]!电子学报,1998,26(1):115 117.

(编辑:齐淑娟) 303第2期 魏先彪等:有限群可解性的正规指数刻画

小波阈值去噪

基于小波阈值的图像去噪方法研究 摘要:本文根据已有的阈值处理函数的优缺点,提出了一种新的阈值处理函数,用于图像的小 波阈值去噪.实验表明,该方法比传统的硬阈值函数与软阈值函数具有更好的去噪效果 关键字:小波阈值去噪,阈值函数 0 引言 图像在获取或传输过程中会因各种噪声的干扰使质量下降,这将对后续图像的处理产生 不利影响.所以必须对图像进行去噪处理,而去噪所要达到的目的就是在较好去除噪声的基 础上,良好的保持图像的边缘等重要细节.近年来,小波理论得到了迅速的发展和广泛的应用. 由于其具有低熵性,多分辨性,去相关性和选基灵活性等优点,在图像去噪领域得到广泛的应 用.本文提出一种新阈值函数,并将其应用于小波阈值去噪,该函数是现有软、硬阈值函数的 推广,通过调整参数,可以克服硬阈值函数不连续和软阈值函数有偏差的缺点。 1 小波阈值处理 小波阈值收缩法是Donoho 和Johnstone 提出的,其主要理论依据是,小波变换具有很强的 去数据相关性,它能够使信号的能量在小波域集中在一些大的小波系数中;而噪声的能量却 分布于整个小波域内.因此,经小波分解后,信号的小波系数幅值要大于噪声的系数幅值.可 以认为,幅值比较大的小波系数一般以信号为主,而幅值比较小的系数在很大程度上是噪声. 于是,采用阈值的办法可以把信号系数保留,而使大部分噪声系数减小至零.小波阈值收缩法 去噪的具体处理过程为:将含噪信号在各尺度上进行小波分解,设定一个阈值,幅值低于该阈 值的小波系数置为0,高于该阈值的小波系数或者完全保留,或者做相应的“收缩 (shrinkage)”处理.最后将处理后获得的小波系数用逆小波变换进行重构,得到去噪后的图 像. 2 阈值函数的选取 阈值去噪中,阈值函数体现了对超过和低于阈值的小波系数不同处理策略,是阈值去噪中 关键的一步。 设w 表示小波系数,T 为给定阈值,sign(*)为符号函数,常见的阈值函数有: 硬阈值函数: ? ??<≥=T w T w w w new ,0, (1) 软阈值函数: ? ??<≥-=T w T w T w w w new ,0),)(sgn( (2) 分析(1)(2)式可以得出:硬阈值函数在阈值点是不连续的,软阈值函数,原系数和分解得 到的小波系数总存在着恒定的偏差,这将影响重构的精度.同时这两种函数不能表达出分解 后系数的能量分布。因此,寻找一种新阈值函数,使它既能实现阈值函数的功能,又具有高阶 导数,同时可以体现出分解后系数的能量分布,将是我们的目标。我们提出一种新的阈值函 数为:

小波分析在信号去噪中的应用(最新整理)

小波分析在信号去噪中的应用 摘要:利用小波方法去噪,是小波分析应用于实际的重要方面。小波去噪的关键是如何选择阈值和如何利用阈值来处理小波系数,通过对几种去噪方法不同阀值的选取比对分析和基于MATLAB 信号去噪的仿真试验,比较各种阀值选取队去噪效果的影响。 关键词:小波去噪;阀值;MATLAB 工具 1、 小波去噪模型的建立 如果一个信号被噪声污染后为,那么基本的噪声模型就可以表示为()f n ()s n ()()() s n f n e n σ=+式中:为噪声;为噪声强度。最简单的情况下为高斯白噪声,且=1。()e n σ()e n σ小波变换就是要抑制以恢复,从而达到去除噪声的目的。从统计学的()e n ()f n 观点看,这个模型是一个随时间推移的回归模型,也可以看作是在正交基上对函数无参估计。小波去噪通常通过以下3个步骤予以实现: ()f n a)小波分解; b)设定各层细节的阈值,对得到的小波系数进行阈值处理; c)小波逆变换重构信号。 小波去噪的结果取决于以下2点: a)去噪后的信号应该和原信号有同等的光滑性; b)信号经处理后与原信号的均方根误差越小,信噪比越大,效果越好。 如何选择阈值和如何利用阈值来量化小波系数,将直接影响到小波去噪结果。 2、小波系数的阈值处理 2.1由原始信号确定阈值 小波变换中,对各层系数降噪所需的阈值一般是根据原信号的信噪比来决定的。在模型里用这个量来表示,可以使用MATLAB 中的wnoisest 函数计算得到σσ值,得到信号的噪声强度后,根据下式来确定各层的阈值。 thr =式中n 为信号的长度。 2.2基于样本估计的阈值选取 1)无偏似然估计(rigrsure):是一种基于Stein 无偏似然估计原理的自适应阈值选择。对于给定的阈值T ,得到它的似然估计,再将似然T 最小化,就得到了所选的阈值,这是一种软件阈值估计。 2)阈值原则(sqtwlolg):固定阈值T 的计算公式为。 3)启发式阈值原则(heursure):是无偏似然估计和固定阈值估计原则的折

最新小波去噪matlab程序.优选

[转帖]小波去噪matlab程序 ****************************************** clear clc %在噪声环境下语音信号的增强 %语音信号为读入的声音文件 %噪声为正态随机噪声 sound=wavread('c12345.wav'); count1=length(sound); noise=0.05*randn(1,count1); for i=1:count1 signal(i)=sound(i); end for i=1:count1 y(i)=signal(i)+noise(i); end %在小波基'db3'下进行一维离散小波变换[coefs1,coefs2]=dwt(y,'db3'); %[低频高频] count2=length(coefs1); count3=length(coefs2); energy1=sum((abs(coefs1)).^2); energy2=sum((abs(coefs2)).^2);

energy3=energy1+energy2; for i=1:count2 recoefs1(i)=coefs1(i)/energy3; end for i=1:count3 recoefs2(i)=coefs2(i)/energy3; end %低频系数进行语音信号清浊音的判别 zhen=160; count4=fix(count2/zhen); for i=1:count4 n=160*(i-1)+1:160+160*(i-1); s=sound(n); w=hamming(160); sw=s.*w; a=aryule(sw,10); sw=filter(a,1,sw); sw=sw/sum(sw); r=xcorr(sw,'biased'); corr=max(r); %为清音(unvoice)时,输出为1;为浊音(voice)时,输出为0 if corr>=0.8

matlab小波去噪详解

小波去噪 [xd,cxd,lxd]=wden(x,tptr,sorh,scal,n,'wname') 式中: 输入参数x 为需要去噪的信号; 1.tptr :阈值选择标准. 1)无偏似然估计(rigrsure)原则。它是一种基于史坦无偏似然估计(二次方程)原理的自适应阈值选择。对于一个给定的阈值t,得到它的似然估计,再将似然t 最小化,就得到了所选的阈值,它是一种软件阈值估计器。 2)固定阈值(sqtwolog)原则。固定阈值thr2 的计算公式为:thr 2log(n) 2 = (6)式中,n 为信号x(k)的长度。 3)启发式阈值(heursure)原则。它是rigrsure原则和sqtwolog 原则的折中。如果信噪比很小,按rigrsure 原则处理的信号噪声较大,这时采用sqtwolog原则。 4)极值阈值(minimaxi)原则。它采用极大极小原理选择阈值,产生一个最小均方误差的极值,而不是没有误差。 2.sorh :阈值函数选择方式,即软阈值(s) 或硬阈值(h). 3.scal :阈值处理随噪声水平的变化,scal=one 表示不随噪声水平变化,scal=sln 表示根据第一层小波分解的噪声水平估计进行调整,scal=mln 表示根据每一层小波分解的噪声水平估计进行调整. 4.n 和wname 表示利用名为wname 的小波对信号进行n 层分解。输出去噪后的数据xd 及xd 的附加小波分解结构[cxd,lxd]. 常见的几种小波:haar,db,sym,coif,bior haar db db1 db2 db3 db4 db5 db6 db7 db8 db9 db10 sym sym2 sym3 sym4 sym5 sym6 sym7 sym8 coif coif1 coif2 coif3 coif4 coif5 coif6 coif7 coif8 coif9 coif10 bior bior1.1 bior1.3 bior1.5 bior2.2 bior2.4 bior2.6 bior2.8 bior3.5 bior3.7 bior3.9 bior4.4

小波阈值去噪及MATLAB仿真

哈尔滨工业大学华德应用技术学院毕业设计(论文) 摘要 小波分析理论是一种新兴的信号处理理论,它在时间上和频率上都有很好的局部性,这使得小波分析非常适合于时—频分析,借助时—频局部分析特性,小波分析理论已经成为信号去噪中的一种重要的工具。利用小波方法去噪,是小波分析应用于实际的重要方面。小波去噪的关键是如何选择阈值和如何利用阈值来处理小波系数,通过对小波阈值化去噪的原理介绍,运用MATLAB 中的小波工具箱,对一个含噪信号进行阈值去噪,实例验证理论的实际效果,证实了理论的可靠性。本文设计了几种小波去噪方法,其中的阈值去噪的方法是一种实现简单、效果较好的小波去噪方法。 关键词:小波变换;去噪;阈值 -I-

哈尔滨工业大学华德应用技术学院毕业设计(论文) Abstract Wavelet analysis theory is a new theory of signal process and it has good localization in both frequency and time do-mains.It makes the wavelet analysis suitable for time-frequency analysis.Wavelet analysis has played a particularly impor-tant role in denoising,due to the fact that it has the property of time- frequency analysis. Using wavelet methods in de-noising, is an important aspect in the application of wavelet analysis. The key of wavelet de-noising is how to choose a threshold and how to use thresholds to deal with wavelet coefficients. It confirms the reliability of the theory through the wavelet threshold de-noising principle, the use of the wavelet toolbox in MATLAB, carrying on threshold de-noising for a signal with noise and actual results of the example confirmation theory.In this paper,the method of Wavelet Analysis is analyzed.and the method of threshold denoising is a good method of easy realization and effective to reduce the noise. Keywords:Wavelet analysis;denoising;threshold -II-

小波去噪matlab程序

小波去噪matlab程序 ****************************************** clear clc %在噪声环境下语音信号的增强 %语音信号为读入的声音文件 %噪声为正态随机噪声 sound=wavread('c12345.wav'); count1=length(sound); noise=0.05*randn(1,count1); for i=1:count1 signal(i)=sound(i); end for i=1:count1 y(i)=signal(i)+noise(i); end %在小波基'db3'下进行一维离散小波变换 [coefs1,coefs2]=dwt(y,'db3');%[低频高频] count2=length(coefs1); count3=length(coefs2); energy1=sum((abs(coefs1)).^2); energy2=sum((abs(coefs2)).^2); energy3=energy1+energy2; for i=1:count2 recoefs1(i)=coefs1(i)/energy3; end for i=1:count3 recoefs2(i)=coefs2(i)/energy3; end %低频系数进行语音信号清浊音的判别 zhen=160; count4=fix(count2/zhen); for i=1:count4 n=160*(i-1)+1:160+160*(i-1); s=sound(n); w=hamming(160); sw=s.*w; a=aryule(sw,10); sw=filter(a,1,sw);

信号阈值去噪实例

信号阈值去噪实例 例1:信号阈值去噪一 程序daimaru代码如下: load leleccum; indx=1:1024; x=leleccum(indx); %产生噪声信号 init=2055615866; randn('seed',init); nx=x+18*randn(size(x)); %获取消噪的阈值 [thr,sorh,keepapp]=ddencmp('den','wv',nx); %对信号进行消噪 xd=wdencmp('gbl',nx,'db4',2,thr,sorh,keepapp); subplot(221); plot(x); title('原始信号'); subplot(222); plot(nx); title('含噪信号'); subplot(223); plot(xd); title('消噪后的信号'); 例2:信号阈值去噪二 在本例中,首先使用函数wnoiset获取噪声方差,然后使用函数wbmpen获取小波去噪阈值,最后使用函数wdencmp实现信号消噪。

程序代码如下: load leleccum; indx=1:1024; x=leleccum(indx); %产生含噪信号 init=2055615866; randn('seed',init); nx=x+18*randn(size(x)); %使用小波函数'db6'对信号进行3层分解 [c,l]=wavedec(nx,3,'db6'); %估计尺度1的噪声标准差 sigma=wnoiset(c,l,1); alpha=2; %获取消噪过程中的阈值 thr=wbmpen(c,l,sigma,alpha); keepapp=1; %对信号进行消噪 xd=wdencmp('gbl',c,l,'db6',3,thr,'s',keepapp); subplot(221); plot(x); title('原始信号'); subplot(222); plot(nx); title('含噪信号'); subplot(223); plot(xd); title('消噪后的信号'); 例3:信号阈值去噪三 在本例中,对小波分解系数使用函数wthcoef进行阈值处理,然后利用阈值处理后的小波系数进行重构达到去噪目的。

基于MATLAB的小波消噪仿真实现 (1)

收稿日期:2007-12-10 作者简介:史振江(1979-),男,汉,河北唐山人,学士,讲师,研究方向智能检测与控制技术。 基金项目:河北省教育厅自然科学项目(Z2006442) 基于MATLAB 的小波消噪仿真实现 史振江1) 安建龙 2) 赵玉菊1) (石家庄铁路职业技术学院1) 河北石家庄 050041 衡水学院2) 河北衡水 053000)  摘要:小波阈值消噪方法是利用小波变换技术对含噪信号进行分解和重构,通过对小波分解后的小波系数限定阈值来消除噪声的方法。分析小波消噪的算法和实现步骤,并基于MATLAB 软件平台编写仿真程序。进行光纤光栅反射信号的小波消噪仿真实验,消噪效果良好。  关键词:小波消噪 阈值 分解 重构 光纤光栅  中图分类号:TP272 文献标识码:A 文章编号:1673-1816(2008)01-0063-04 1 引言  微弱信号检测[1]是关于如何提取和测量强噪声背景下微弱信号的方法,有效的去除信号中的噪声是实现微弱信号检测的关键。小波变换[2]是一种信号的时间、频率分析方法,具有多分辨分析的特点,是时间窗和频率窗都可以改变的时频局部化分析方法,已经广泛应用于信号消噪、信号处理、图像处理、语音识别与合成等领域。小波消噪[3~5]的方法可以分为三类:模极大值法、相关法以及阈值方法。其中,小波阈值消噪方法是利用小波变换技术对含噪信号进行分解和重构,通过对小波分解后的各层系数限定阈值来消除噪声的方法,因其实现简单、计算量小,取得了广泛应用。 MATLAB 即矩阵实验室,是一种建立在向量、数组和矩阵基础上,面向科学与工程计算的高级语言,它集科学计算、自动控制、信号处理、神经网络、图像处理于一体,具有极高的编程效率[6]。其中的小波处理工具箱可以方便实现小波消噪算法,对含噪信号进行消噪处理和研究。 本文详细分析了小波消噪算法,利用MATLAB 软件编写了程序,并对光纤光栅反射谱信号进行了小波消噪仿真实验。 2 小波变换与Mallat 算法  小波变换是指,把某一被称为基本小波的函数()t ψ平移位移b 后, 在不同尺度a 下作伸缩变换,得到连续小波序列,()a b t ψ,再与待分析信号()f t 作内积: 1/2(,)()()f R t b W a b a f t dt a ψ??=∫ (1) 在实际应用中,经常将,()a b t ψ作离散化处理,令2j a =,2j b k =g ,Z k j ∈,则得到相应的离散

小波阈值降噪

一种基于小波阈值降噪方法的图像降噪效果研究 电子信息学院 赵华 2015201355 一、引言 数字图像处理(Digital Image Processing ,DIP)是指用计算机辅助技术对图像信号进行处理的过程。数字图像处理最早出现于20世纪50年代,随着过去几十年来计算机、网络技术和通信的快速发展,为信号处理这个学科领域的发展奠定了基础,使得DIP 技术成为信息技术中最重要的学科分支之一。在现实生活中,DIP 应用十分广泛,医疗、艺术、军事、航天等图像处理影响着人类生活和工作的各个方面。 然而,在图像的采集、获取、编码和传输的过程中,都存在不同程度被各种噪声所?干扰?的现象。如果图像被干扰得比较严重,噪声会变成可见的颗粒形状,导致图像质量的严重下降。根据研究表明,当一张图像信噪比(SNR)低于14.2dB 时,图像分割的误检率就高于0.5%,而参数估计的误差高于0.6%。通过一些卓有成效的噪声处理技术后,尽可能地去除图像噪声,我们在从图像中获取信息时就更容易,有利于进一步的对图像进行如特征提取、信号检测和图像压缩等处理。小波变换处理应用于图像去噪外,在其他图像处理领域都有着十分广泛的应用。本文以小波变换作为分析工具处理图像噪声,研究数字图像的滤波去噪问题,以提高图像质量。 二、基本原理 1.小波基本原理 在数学上,小波定义为对给定函数局部化的新领域,小波可由一个定义在有限区域的函数ψ(x )来构造,ψ(x )称为母小波(mother wavelet ),或者叫做基本小波。一组小波基函数, {ψa,b (x )},可以通过缩放和平移基本小波来生成: ?? ? ??-ψ=ψa b x a x b a 1)(, 其中,a 为进行缩放的缩放参数,反映特定基函数的宽度,b 为进行平移的平移参数,指定沿x 轴平移的位置。当a=2j 和b=ia 的情况下,一维小波基函数序列定义为: ()() 1222,-ψ=ψ--x x j j j i 其中,i 为平移参数,j 为缩放因子,函数f (x )以小波ψ(x )为基的连续小波变换定义为函数f (x )和ψa,b (x )的内积: ( )()dx a b x a x f f x W b a b a ?? ? ??-ψ=ψ=?∞ ∞-1,,,

小波阈值图像去噪算法及MATLAB仿真实验

龙源期刊网 https://www.360docs.net/doc/1c9121247.html, 小波阈值图像去噪算法及MATLAB仿真实验 作者:刘钰马艳丽刘艳霞 来源:《数字技术与应用》2010年第06期 摘要:本文研究了小波阈值图像的去噪方法,并与其它图像去噪方法进行了比较。对lena图像进行MATLAB仿真实验,得到了主观效果图和客观效果的PSNR。研究发现,小波阈值图像去噪无论主观效果还是客观效果都优于其他图像去噪方法。 关键词:小波阈值去噪 Wavelet Thresholding Algorithm of Image Denoising and MATLAB Simulation Experiments Liu Yu11,2Ma Yanli11Liu Yanxia11 (1. College of Information Science and Project ,Hebei North University,Zhangjiakou075000;2. College of Electron Information Project,Tianjin University,Tianjin300072) Abstract:In this paper,research on wavelet thresholding algorithm of image denoising and compare with orther algorithms of image denoising.Then Lena on MATLAB simulation experiment images, receive the image of subjective effect and the PSNR of objective effect. Research found that waveletthresholding for image denoising effect regardless of the subjective or objective effect are superior to other algorithms of image denoising. Key words:wavelet;threshold;denoising 1 引言 近年来,小波图像去噪方法已成为去噪的一个重要分支和主要研究方向,具有“数字显微镜”之称的小波变换在时频域具有多分辨率的特性,可同时进行时频域的局部分析和灵活地对信号 局部奇异特征进行提取以及时变滤波[1]。利用小波对含噪信号进行处理时,可有效地达到滤除噪声和保留信号高频信息,得到对原信号的最佳恢复。 在图像去噪领域中,应用小波理论进行图像去噪受到许多专家学者的重视,并取得了非常好的效果。具体来说,小波去噪方法的成功主要得益于小波具有如下特点[2-6]:

一维信号小波阈值去噪

一维信号小波阈值去噪 1、小波阈值处理基本理论所谓阈值去噪简而言之就是对信号进行分解,然后对分解后的系数进行阈值处理,最后重构得到去噪信号。该算法其主要理论依据是:小波变换具有很强的去数据相关性,它能够使信号的能量在小波域集中在一些大的小波系数中;而噪声的能量却分布于整个小波域内。因此,经小波分解后,信号的小波系数幅值要大于噪声的系数幅值。可以认为,幅值比较大的小波系数一般以信号为主,而幅值比较小的系数在很大程度上是噪声。于是,采用阈值的办法可以把信号系数保留,而使大部分噪声系数减小至零。小波阈值收缩法去噪的具体处理过程为:将含噪信号在各尺度上进行小波分解,设定一个阈值,幅值低于该阈值的小波系数置为0,高于该阈值的小波系数或者完全保留,或者做相应的收缩(shrinkage)处理。最后将处理后获得的小波系数用逆小波变换进行重构,得到去噪后的信号。 2、阈值函数的选取小波分解阈值去噪中,阈值函数体现了对超过和低于阈值的小波系数不同处理策略,是阈值去噪中关键的一步。设w表示小波系数,T为给定阈值,sign(*)为符号函数,常见的阈值函数有: 硬阈值函数:(小波系数的绝对值低于阈值的置零,高于的保留不变) 软阈值函数:(小波系数的绝对值低于阈值的置零,高于的系数shrinkage处理) 式(3-8)和式(3-9)用图像表示即为: 值得注意的是: 1)硬阈值函数在阈值点是不连续的,在下图中已经用黑线标出。不连续会带来振铃,伪吉布斯效应等。 2)软阈值函数,原系数和分解得到的小波系数总存在着恒定的偏差,这将影响重构的精度 同时这两种函数不能表达出分解后系数的能量分布,半阈值函数是一种简单而经典的改进方案。见下图: 选取的阈值最好刚好大于噪声的最大水平,可以证明的是噪声的最大限度以非常高的概率

小波图像去噪及matlab分析

小波图像去噪及matlab实例 图像去噪 图像去噪是信号处理的一个经典问题,传统的去噪方法多采用平均或线性方法进行,常用的是维纳滤波,但是去噪效果不太好(维纳滤波在图像复原中的作用)。 小波去噪 随着小波理论的日益完善,其以自身良好的时频特性在图像去噪领域受到越来越多的关注,开辟了用非线性方法去噪的先河。具体来说,小波能够去噪主要得益于小波变换有如下特点: (1)低熵性。小波系数的稀疏分布,使图像变换后的熵降低。意思是对信号(即图像)进行分解后,有 更多小波基系数趋于0(噪声),而信号主要部分多集中于某些小波基,采用阈值去噪可以更好的保留原 始信号。 (2)多分辨率特性。由于采用了多分辨方法,所以可以非常好地刻画信号的非平稳性,如突变和断点等(例如0-1突变是傅里叶变化无法合理表示的),可以在不同分辨率下根据信号和噪声的分布来消除噪声。(3)去相关性。小波变换可对信号去相关,且噪声在变换后有白化趋势,所以小波域比时域更利于去噪。(4)基函数选择灵活。小波变换可灵活选择基函数,也可根据信号特点和去噪要求选择多带小波和小波 包等(小波包对高频信号再次分解,可提高时频分辨率),对不同场合,选择不同小波基函数。 根据基于小波系数处理方式的不同,常见去噪方法可分为三类: (1)基于小波变换模极大值去噪(信号与噪声模极大值在小波变换下会呈现不同变化趋势)

(2)基于相邻尺度小波系数相关性去噪(噪声在小波变换的各尺度间无明显相关性,信号则相反)(3)基于小波变换阈值去噪 小波阈值去噪是一种简单而实用的方法,应用广泛,因此重点介绍。 阈值函数选择 阈值处理函数分为软阈值和硬阈值,设w是小波系数的大小,wλ是施加阈值后小波系数大小,λ为阈值。(1)硬阈值 当小波系数的绝对值小于给定阈值时,令其为0,而大于阈值时,保持其不变,即: (2)软阈值 当小波系数的绝对值小于给定阈值时,令其为0,大于阈值时,令其都减去阈值,即: 如下图,分别是原始信号,硬阈值处理结果,软阈值处理结果。硬阈值函数在|w| = λ处是不连续的,容易造成去噪后图像在奇异点附近出现明显的伪吉布斯现象。 阈值大小的选取 阈值的选择是离散小波去噪中最关键的一部。在去噪过程中,小波阈值λ起到了决定性作用:如果阈值太小,则施加阈值后的小波系数将包含过多的噪声分量,达不到去噪的效果;反之,阈值太大,则去除了有用的成分,造成失真。小波阈值估计方法很多,这里暂不介绍。 小波去噪实现步骤 (1)二维信号的小波分解。选择一个小波和小波分解的层次N,然后计算信号s到第N层的分解。

基于小波去噪matlab程序示例

clear all clc %在噪声环境下语音信号的增强 %语音信号为读入的声音文件 %噪声为正态随机噪声 sound=wavread('c12345.wav'); count1=length(sound); noise=0.05*randn(1,count1); for i=1:count1 signal(i)=sound(i); end for i=1:count1 y(i)=signal(i)+noise(i); end %在小波基'db3'下进行一维离散小波变换 [coefs1,coefs2]=dwt(y,'db3'); %[低频高频] count2=length(coefs1); count3=length(coefs2); energy1=sum((abs(coefs1)).^2); energy2=sum((abs(coefs2)).^2); energy3=energy1+energy2; for i=1:count2 recoefs1(i)=coefs1(i)/energy3; end for i=1:count3 recoefs2(i)=coefs2(i)/energy3; end %低频系数进行语音信号清浊音的判别 zhen=160; count4=fix(count2/zhen); for i=1:count4 n=160*(i-1)+1:160+160*(i-1); s=sound(n); w=hamming(160); sw=s.*w; a=aryule(sw,10); sw=filter(a,1,sw); sw=sw/sum(sw); r=xcorr(sw,'biased'); corr=max(r); %为清音(unvoice)时,输出为1;为浊音(voice)时,输出为0 if corr>=0.8 output1(i)=0; elseif corr<=0.1

小波阈值去噪的基本原理_小波去噪阈值如何选取

小波阈值去噪的基本原理_小波去噪阈值如何选取 小波阈值去噪的基本原理小波阈值去噪的基本思想是先设置一个临界阈值,若小波系数小于,认为该系数主要由噪声引起,去除这部分系数;若小波系数大于,则认为此系数主要是由信号引起,保留这部分系数,然后对处理后的小波系数进行小波逆变换得到去噪后的信号。具体步骤如下: (1)对带噪信号f(t)进行小波变换,得到一组小波分解系数Wj,k; (2)通过对小波分解系数Wj,k进行阈值处理,得到估计小波系数Wj,k,使Wj,k-uj,k尽可能的小; (3)利用估计的小波系数Wj,k进行小波重构,得到估计信号f(t),即为去噪后的信号。提出了一种非常简洁的方法对小波系数Wkj,进行估计。对f(k)连续做几次小波分解后,有空间分布不均匀信号s(k)各尺度上小波系数Wkj,在某些特定位置有较大的值,这些点对应于原始信号s(k)的奇变位置和重要信息,而其他大部分位置的Wkj,较小;对于白噪声n(k),它对应的小波系数Wkj,在每个尺度上的分布都是均匀的,并随尺度的增加Wkj 把低于的小波函数Wkj,(主要由信号n(k Wkj,(主要由信号s(k)引起),则予以保留或进行收缩,从而得到估计小波系数Wkj,它可理解为基本由信号s(k)引起,然后对Wkj进行重构,就可以重构原始信号。 本文提出的小波阈值去噪方法可以分为5步描述:(1)对带噪图像g(i,j)进行s层正交冗余小波变换,得到一组小波分解系数Wg(i,j)(s,j),其中j=1,2,s,s表示小波分解的层数。 小波阈值去噪法有着很好的数学理论支持,实现简单而又非常有效,因此取得了非常大的成功,并吸引了众多学者对其作进一步的研究与改进。这些研究集中在两个方面:对阈值选取的研究以及对阈值函数的研究。 阈值的确定在去噪过程中至关重要,目前使用的阈值可以分为全局阈值和局部适应阈值两类。其中,全局阈值是对各层所有的小波系数或同一层内不同方向的小波系数都选用同一

matlab小波函数

Matlab小波函数 一、Matlab小波去噪基本原理 1、带噪声的信号一般是由含有噪声的高频信号和原始信号所在的低频 信号。利用多层小波,将高频噪声信号从混合信号中分解出来。 2、选择合适的阈值对图像的高频信号进行量化处理 3、重构小波图像:依据图像小波分解的低频信号与处理之后的高频信 号来重构图像的信息。 二、第二代小波变换 1、构造方法特点: (1)继承了第一代小波的多分辨率的特性。 (2)不依赖fourior变换,直接在时域完成小波变换。 (3)变换之后的系数可以是整数。 (4)图像恢复质量与变换是边界采用何种延拓方式无关。 2、优点:算法简单,速度快,适合并行处理。对内存需求量小,便于DSP 芯片实现、可用于本位操作运算。 3、提升原理:构造紧支集双正交小波 (1)步骤:分裂—预测—更新 (2)分解与重构 三、matlab小波函数库 1、matlab小波通用函数: (1)wavemngr函数【小波管理器(用于小波管理,添加、删除、储存、读取小波)】 wavemngr(‘add’,FN,FSN,WT,NUMS,FILE) wavemngr(‘add’,FN,FSN,WT,NUMS,FILE,B) % 添加小波函数,FN为family name,FSN为family short name WT为小波类型:WT=1表示正交小波,=2表示非正交小波,=3表示带尺度函数的小波,=4表示无尺度函数的小波,=5表示 无尺度函数的复小波。 小波族只有一个小波,则NUMS=“,否则NUMS表示小波参数的字符串 FILE表示文件名 B=[lb ub]指定小波有效支撑的上下界 wavemngr(‘del’,N) %删除小波 wavemngr(‘restore’)/ wavemngr(‘restore’,IN2) %保存原始小波 OUT1= wavemngr(‘read’) %返回小波族的名称 OUT1= wavemngr(‘read’,IN2) %返回所有小波的名称 OUT1= wavemngr(‘read_asc’) %读取wavelets.asc文件并返回小波信息 (2)scal2frq函数【尺度转换频率】 F=scal2frq(A,’wname’,DELTA) %返回由尺度A,小波函数“wname”和采样周期DELTA决定的准 频率。 (3)orthfilt函数【正交小波滤波器组】

小波变换图像去噪MATLAB实现

基于小波图像去噪的MATLAB 实现 一、 论文背景 数字图像处理(Digital Image Processing ,DIP)是指用计算机辅助技术对图像信号进行处理的过程。数字图像处理最早出现于 20世纪50年代,随着过去几十年来计算机、网络技术和通信的快速发展,为信号处理这个学科领域的发展奠定了基础,使得DIP 技术成为信息技术中最重要的学科分支之一。在现实生活中,DIP 应用十分广泛,医疗、艺术、军事、航天等图像处理影响着人类生活和工作的各个方面。 然而,在图像的采集、获取、编码和传输的过程中,都存在不同程度被各种噪声所“污染”的现象。如果图像被污染得比较严重,噪声会变成可见的颗粒形状,导致图像质量的严重下降。根据研究表明,当一图像信噪比(SNR)低于14.2dB 时,图像分割的误检率就高于0.5%,而参数估计的误差高于0.6%。通过一些卓有成效的噪声处理技术后,尽可能地去除图像噪声,我们在从图像中获取信息时就更容易,有利于进一步的对图像进行如特征提取、信号检测和图像压缩等处理。小波变换处理应用于图像去噪外,在其他图像处理领域都有着十分广泛的应用。本论文以小波变换作为分析工具处理图像噪声,研究数字图像的滤波去噪问题,以提高图像质量。 二、 课题原理 1.小波基本原理 在数学上,小波定义为对给定函数局部化的新领域,小波可由一个定义在有限区域的函数()x ψ来构造,()x ψ称为母小波,(mother wavelet )或者叫做基本小波。一组小波基函数,()}{,x b a ψ,可以通过缩放和平移基本小波 来生成:

())(1 ,a b x a x b a -ψ=ψ (1) 其中,a 为进行缩放的缩放参数,反映特定基函数的宽度,b 为进行平移的平移参数,指定沿x 轴平移的位置。当a=2j 和b=ia 的情况下,一维小波基函数序列定义为: ()() 1222,-ψ=ψ--x x j j j i (2) 其中,i 为平移参数,j 为缩放因子,函数f (x )以小波()x ψ为基的连续小波变换定义为函数f (x )和()x b a ,ψ的积: ( )dx a b x a x f f x W b a b a )(1)(,,,-ψ= ψ=?+∞∞- (3) 与时域函数对应,在频域上则有: ())(,ωωa e a x j b a ψ=ψ- (4) 可以看出,当|a|减小时,时域宽度减小,而频域宽度增大,而且()x b a ,ψ的窗口中心向|ω|增大方向移动。这说明连续小波的局部是变化的,在高频时分辨率高,在低频时分辨率低,这便是它优于经典傅里叶变换的地方。总体说来,小波变换具有更好的时频窗口特性。 2. 图像去噪综述 所谓噪声,就是指妨碍人的视觉或相关传感器对图像信息进行理解或分析的各种因素。通常噪声是不可预测的随机信号。由于噪声影响图像的输入、采集、处理以及输出的各个环节,尤其是图像输入、采集中的噪声必然影响图像处理全过程乃至最终结果,因此抑制噪声已成为图像处理中极其重要的一个步骤。 依据噪声对图像的影响,可将噪声分为加性噪声和乘性噪声两大类。由于乘性噪声可以通过变换当加性噪声来处理,因此我们一般重点研究加性噪声。设

小波阈值去噪算法的设计及其应用

北方民族大学学士学位论文论文题目:小波阈值去噪算法的设计及其应用 院(部)名称:数学与信息科学学院 学生姓名:黄慧东 专业:信息与计算科学学号:20100433指导教师姓名:黄永东 论文提交时间:2013年5月14日 论文答辩时间: 学位授予时间: 北方民族大学教务处制

小波阈值去噪算法的设计及其应用 摘要 本文主要阐述了小波阈值去噪算法的设计及其应用. 第一章对小波进行了初步的介绍,“小波分析”是分析未经过任何处理的信号所含有的不同的性质,进而用于图像处理、小波滤波、数据隐藏等.比如声音信号频率的高低,发声时间的长短、振幅、旋律等各个方面.从平稳的波形之中发现突变的尖峰.小波分析是依照各种小波基函数对分解原始信号的一种分析方法. 第二章介绍了小波滤波并列举了几种常用的小波滤波算法.时至今日,小波滤波成为了一种新的滤波思路,其功能除了去噪、降噪以外,还兼有平滑、锐化和保留信号特征的功能. 第三章则较为详细介绍了小波阈值去噪算法并进行了算法设计,最后还给出了小波阈值去噪算法的应用实例.小波阈值去噪就是将经过小波分解后的信号通过选取适当的阈值过滤掉带噪信号,再用小波逆变换进行小波重构. 关键字:小波分析,小波变换,小波滤波,小波阈值去噪.

design of wavelet threshold denoising algorithm and its application abstract this article focuses on the wavelet thresholding algorithm design and its application. the first chapter introduces the wavelet conducted preliminary, " wavelet analysis " is an analysis of various changes in the characteristics of the original signal , and further used in data compression, noise removal , feature selection. for example singing signal: the treble or bass, sound duration , undulating melody and so on. wavelet analysis is the use of a variety of " wavelet function " on "raw signal" decomposition. the second chapter introduces the wavelet filtering and lists several commonly used wavelet filtering algorithms. today, wavelet filtering has become a new filter ideas, in addition to its function noising , noise reduction , it also combines smooth, sharpen and retain the function of the signal characteristics . the third chapter is a more detailed description of the wavelet thresholding algorithm and algorithm design , and finally gives the wavelet thresholding algorithm examples . wavelet thresholding is based on the effective signal and noise have different properties at different decomposition scale , constructed using mathematical tools appropriate threshold , and the target signal wavelet coefficients thresholding keywords: wavelet analysis, wavelet transform, wavelet filtering, wavelet thresholding .

五种常用小波基含MATLAB实现

1.给出五种常用小波基的时域和频域波形图。 与标准的傅里叶变换相比,小波分析中使用到的小波函数具有不唯一性,即小波函数(t)ψ 具有多样性。小波分析在工程应用中,一个十分重要的问题就是最优小波基的选择问题,因为用不同的小波基分析同一个问题会产生不同的结果。目前我们主要是通过用小波分析方法处理信号的结果与理论结果的误差来判定小波基的好坏,由此决定小波基。常用小波基有Haar 小波、Daubechies(dbN)小波、Mexican Hat(mexh)小波、Morlet 小波、Meyer 小波等5种。 (1)Haar 小波 Haar 函数是小波分析中最早用到的一个具有紧支撑的正交小波函数,也是最简答的一个小波函数,它是支撑域在[0,1]∈t 围的单个矩形波。 Haar 函数的 定义如下:其他 1212 1 001-1(t)≤≤≤≤?????=ψt t Haar 小波在时域上是不连续的,所以作为基本小波性能不是特别好。但它也有自己的优点,如: 计算简单; (t)ψ不但与t)2(j ψz][j ∈正交,而且与自己的整数位移正交。 因此,在2j a =的多分辨率系统中Haar 小波构成一组最简单的正交归一的小波 族。 ()t ψ的傅里叶变换是: 2/24=sin ()j e a ψ-ΩΩ ΩΩ()j

Haar 小波的时域和频域波形图 -1.5 -1 -0.5 0.5 1 1.5 t haar 时域 x 10 5 1 2 3 4 5 6 75 f haar 频域 i=20; wav = 'haar'; [phi,g1,xval] = wavefun(wav,i); subplot(1,2,1); plot(xval,g1,'-r','LineWidth',1.5); xlabel('t') title('haar 时域'); g2=fft(g1); g3=abs(g2); subplot(1,2,2);plot(g3); xlabel('f') title('haar 频域')

相关文档
最新文档