matlab实验四 系统的零极点分析

matlab实验四 系统的零极点分析
matlab实验四 系统的零极点分析

实验四连续时间系统复频域分析和离散时间系统z域分析

一.实验目的:

1.掌握连续信号拉氏变换和拉氏反变换的基本实现方法。

2.熟悉laplace函数求拉普拉斯变换,ilaplace函数求拉氏反变换

的使用。

3.掌握用ztrans函数,iztrans函数求离散时间信号z变换和逆z

变换的基本实现方法。

4.掌握用freqs函数,freqz函数由连续时间系统和离散时间系统

系统函数求频率响应。

5.掌握zplane零极点绘图函数的使用并了解使用零极点图判断系

统稳定性的原理。

二、实验原理:

1.拉氏变换和逆变换

原函数()()

?象函数

f t F s

记作:[()]()

=→拉氏变换

L f t F s

1[()]()

-=→拉氏反变换

L F s f t

涉及函数:laplace,ilapace.

例如:

syms t;laplace(cos(2*t))

结果为:ans =s/(s^2+4)

syms s;ilaplace(1./(s+1))

结果为:ans = exp(-t)

2. 系统传递函数H(s)或H(z)。

12121212...()()()...m m m n n n

b s b s b B s H s A s a s a s a ----+++==+++ 112112...()()()...m m m n n n

b z b z b B z H z A z a z a z a --+--++++==+++ 其中,B 为分子多项式系数,A 为分母多项式系数。

涉及函数:freqz,freqs.

3. 系统零极点分布与稳定性的判定。

对于连续时间系统,系统极点位于s 域左半平面,系统稳定。 对于离散时间系统,系统极点位于z 域单位圆内部,系统稳定。 涉及函数:zplane.

三、 实验内容

1. 验证性实验

a) 系统零极点的求解和作图

已知2321()232

s H s s s s -=+++,使用zplane 函数作出系统零极点图并判断系统稳定性。

解:(1)系统零极点图

>> b=[1,0,-1];

>> a=[1,2,3,2];

>> zplane(b,a);

>> legend('零点','极点');

(2)判断系统稳定性

由系统零极点图可知该系统的极点位于左半平面,所以该系统稳定。

b)已知离散系统的H(z),求零极点图,并求解单位样值响应h(n)

和系统幅频响应。

解:b=[1,2,1]; a=[1,-0.5,-0.005,0.3];

subplot(311); zplane(b,a);

xlabel('零极点图');

num=[0,1,2,1];

den=[1,-0.5,-0.005,0.3];

h=impz(num,den);

subplot(312);

stem(h);

xlabel('单位样值响应');

[H,w]=freqz(num,den);

subplot(313);

plot(w/pi,abs(H));

xlabel('系统幅频响应');

2. 设计性实验

a) 已知系统传递函数22()43

s H s s s +=++,用拉普拉斯变换法求解: ? 使用ilaplace 函数求系统单位冲激响应h(t)。

? 使用ilaplace 函数求系统阶跃响应(11()()g t L H s s -??=?????

) ? 求系统对输入为cos(20)()s U t u t =的零状态响应。

? (选做)已知系统函数()2

z H z z =-,绘制系统零极点图,判断系统稳定性,并求系统单位样值响应h(n).

提示:使用zplane 函数和iztrans 函数。

解:syms s t; Hs=(s+2)/(s^2+4*s+3);

Us=laplace(cos(20*t));

Vos=Hs*Us;

ht=ilaplace(Hs)

gt=ilaplace(Hs*1/s)

vt=ilaplace(Vos)

输出结果(分别为系统单位冲激响应、系统阶跃响应、零状态响应)ht =

exp(-2*t)*cosh(t)

gt =

2/3-1/6*exp(-3*t)-1/2*exp(-t)

vt =

-1/802*exp(-t)+806/164009*cos(20*t)+8100/164009*sin(20*t) -3/818*exp(-3*t)

选做:

b=[1];a=[1,-2];subplot(1,1,1);zplane(b,a);

legend('零点','极点');title('零极点图');

由上图可知该系统的极点位于单位圆外,所以该系统不稳定。

syms z n;Hz=z/(z-2);h=iztrans(Hz)

输出结果为:h = 2^n

四、实验总结

通过本次实验我学会了运用matlab求拉普拉斯变换及拉氏逆变换、求离散时间信号z变换和逆z变换、由连续时间系统和离散时间系统系统函数求频率响应、绘制零极点图并使用零极点图判断系统稳定性,感受到了使用matlab分析这些内容的简便,进一步掌握了matlab在信号与系统中的运用。

信号与系统matlab实验及答案

产生离散衰减正弦序列()π0.8sin 4n x n n ?? = ??? , 010n ≤≤,并画出其波形图。 n=0:10; x=sin(pi/4*n).*0.8.^n; stem(n,x);xlabel( 'n' );ylabel( 'x(n)' ); 用MATLAB 生成信号()0sinc at t -, a 和0t 都是实数,410t -<<,画波形图。观察并分析a 和0t 的变化对波形的影响。 t=linspace(-4,7); a=1;

t0=2; y=sinc(a*t-t0); plot(t,y); t=linspace(-4,7); a=2; t0=2; y=sinc(a*t-t0); plot(t,y);

t=linspace(-4,7); a=1; t0=2; y=sinc(a*t-t0); plot(t,y);

三组对比可得a 越大最大值越小,t0越大图像对称轴越往右移 某频率为f 的正弦波可表示为()()cos 2πa x t ft =,对其进行等间隔抽样,得到的离散样值序列可表示为()()a t nT x n x t ==,其中T 称为抽样间隔,代表相邻样值间的时间间隔,1 s f T = 表示抽样频率,即单位时间内抽取样值的个数。抽样频率取40 Hz s f =,信号频率f 分别取5Hz, 10Hz, 20Hz 和30Hz 。请在同一张图中同时画出连续信号()a x t t 和序列()x n nT 的波形图,并观察和对比分析样值序列的变化。可能用到的函数为plot, stem, hold on 。 fs = 40; t = 0 : 1/fs : 1 ; % ?μ?ê·?±e?a5Hz,10Hz,20Hz,30Hz f1=5; xa = cos(2*pi*f1*t) ; subplot(1, 2, 1) ;

数值分析MATLAB上机实验

数值分析实习报告 姓名:gestepoA 学号:201******* 班级:***班

序言 随着计算机技术的迅速发展,数值分析在工程技术领域中的应用越来越广泛,并且成为数学与计算机之间的桥梁。要解决工程问题,往往需要处理很多数学模型,不仅要研究各种数学问题的数值解法,同时也要分析所用的数值解法在理论上的合理性,如解法所产生的误差能否满足精度要求:解法是否稳定、是否收敛及熟练的速度等。而且还能减少大量的人工计算。 由于工程实际中所遇到的数学模型求解过程迭代次数很多,计算量很大,所以需要借助如MATLAB,C++,VB,JAVA的辅助软件来解决,得到一个满足误差限的解。本文所计算题目,均采用MATLAB进行编程,MATLAB被称为第四代计算机语言,利用其丰富的函数资源,使编程人员从繁琐的程序代码中解放出来MATLAB最突出的特点就是简洁,它用更直观的、符合人们思维习惯的代码。它具有以下优点: 1友好的工作平台和编程环境。MATLAB界面精致,人机交互性强,操作简单。 2简单易用的程序语言。MATLAB是一个高级的矩阵/阵列语言,包含控制语言、函数、数据结构,具有输入、输出和面向对象编程特点。用户可以在命令窗口中将输入语句与执行命令同步,也可以先编好一个较大的复杂的应用程序(M 文件)后再一起运行。 3强大的科学计算机数据处理能力。包含大量计算算法的集合,拥有600多个工程中要用到的数学运算函数。 4出色的图像处理功能,可以方便地输出二维图像,便于我们绘制函数图像。

目录 1 第一题 (4) 1.1 实验目的 (4) 1.2 实验原理和方法 (4) 1.3 实验结果 (5) 1.3.1 最佳平方逼近法 (5) 1.3.2 拉格朗日插值法 (7) 1.3.3 对比 (8) 2 第二题 (9) 2.1实验目的 (9) 2.2 实验原理和方法 (10) 2.3 实验结果 (10) 2.3.1 第一问 (10) 2.3.2 第二问 (11) 2.3.3 第三问 (11) 3 第三题 (12) 3.1实验目的 (12) 3.2 实验原理和方法 (12) 3.3 实验结果 (12) 4 MATLAB程序 (14)

《MATLAB与数值分析》第一次上机实验报告

电子科技大学电子工程学院标准实验报告(实验)课程名称MATLAB与数值分析 学生姓名:李培睿 学号:2013020904026 指导教师:程建

一、实验名称 《MATLAB与数值分析》第一次上机实验 二、实验目的 1. 熟练掌握矩阵的生成、加、减、乘、除、转置、行列式、逆、范数等运算 操作。(用.m文件和Matlab函数编写一个对给定矩阵进行运算操作的程序) 2. 熟练掌握算术符号操作和基本运算操作,包括矩阵合并、向量合并、符号 转换、展开符号表达式、符号因式分解、符号表达式的化简、代数方程的符号解析解、特征多项式、函数的反函数、函数计算器、微积分、常微分方程的符号解、符号函数的画图等。(用.m文件编写进行符号因式分解和函数求反的程序) 3. 掌握Matlab函数的编写规范。 4、掌握Matlab常用的绘图处理操作,包括:基本平面图、图形注释命令、 三维曲线和面的填充、三维等高线等。(用.m文件编写在一个图形窗口上绘制正弦和余弦函数的图形,并给出充分的图形注释) 5. 熟练操作MATLAB软件平台,能利用M文件完成MATLAB的程序设计。 三、实验内容 1. 编程实现以下数列的图像,用户能输入不同的初始值以及系数。并以x, y为坐标显示图像 x(n+1) = a*x(n)-b*(y(n)-x(n)^2); y(n+1) = b*x(n)+a*(y(n)-x(n)^2) 2. 编程实现奥运5环图,允许用户输入环的直径。 3. 实现对输入任意长度向量元素的冒泡排序的升序排列。不允许使用sort 函数。 四、实验数据及结果分析 题目一: ①在Editor窗口编写函数代码如下:

系统函数的零极点分布决定时域特性

摘要 本文详细分析了系统函数零极点的分布与冲击响应时域特性之间的关系。首先论述了如何通过MATLAB软件绘制出系统函数的零极点分布图。然后根据系统函数极点的不同分布情况,通过MATLAB软件绘制出冲击响应的时域函数,通过对图像的观察和比较,得出了极点的类型决定时间函数的时间连续形式,极点在S平面的位置决定时间函数的波形特点。最后,在极点相同,但零点不同的情况下,通过比较时域函数的波形,得出零点分布与时域函数的对应关系,即零点分布的情况只影响到时域函数的幅度和相位。 关键词:系统函数的零极点;时域特性;MATLAB软件

目录 1课程设计目的 (1) 2实验原理 (1) 3实现过程 (1) 3.1MATLAB简介 (1) 3.2系统函数极点分布情况 (2) 3.2.1极点为单实根 (2) 3.2.2极点为共轭复根 (2) 3.2.3极点为重根 (2) 3.2.4用MATLAB绘制系统函数的零极点分布图 (2) 3.3系统函数的零极点分布与冲击响应时域特性的关系 (6) 3.3.1用MATLAB绘制冲击响应的时域函数 (6) 3.3.2极点的类型决定时间函数的时间连续形式 (19) 3.3.3极点在S平面的位置决定时间函数的波形特点 (19) 3.3.4零点分布与时域函数的对应关系 (19) 4设计体会 (23) 5参考文献 (24)

1 课程设计目的 1.掌握系统函数的零极点分布与系统冲激响应时域特性之间的关系。 2.学习MATLAB 软件知识及应用。 3.利用MATLAB 编程,完成相应的信号分析和处理。 2 实验原理 拉普拉斯变换将时域函数f(t)变换为s 域函数F(s);反之,拉普拉斯逆变换将F(s)变换为相应的f(t)。由于f(t)与F(s)之间存在一定的对应关系,故可以从函数F(s)的典型形式透视出f(t)的内在性质。当F(s)为有理函数时,其分子多项式和分母多项式皆可分解为因子形式,各项因子指明了F(s)零点和极点的位置,显然,从这些零点和极点的分布情况,便可确定原函数的性质。 设连续系统的系统函数为)(s H ,冲激响应为)(t h ,则 ?+∞ -=0)()(dt e t h s H st 显然,)(s H 必然包含了)(t h 的本质特性。 对于集中参数的LTI 连续系统,其系统函数可表示为关于s 的两个多项式之比,即 其中),,2,1(M j q j =为)(s H 的M 个零点,),,2,1(N i p i =为)(s H 的N 个极点。 3 实现过程 3.1 MATLAB 简介 MALAB 译于矩阵实验室(MATrix LABoratory ),是用来提供通往 LINPACK 和EISPACK 矩阵软件包接口的。后来,它渐渐发展成了通用科技计算、图视交互系统和程序语言。 MATLAB 的基本数据单位是矩阵。它的指令表达与数学、工程中常用的习惯形式十分相似。比如,矩阵方程Ax=b ,在MATLAB 中被写成A*x=b 。而若要通过A ,b 求x ,那么只要写x =A \b 即可,完全不需要对矩阵的乘法和求逆进行编程。因此,用MATLAB 解算问题要比用C 、Fortran 等语言简捷得多。 MATLAB 发展到现在,已经成为一个系列产品:MATLAB “主包”和各种可选的toolbox “工具包”。主包中有数百个核心内部函数。迄今所有的三十几个工具包又可分为两类:功能性工具包和学科性工具包。功能性工具包主要用来扩充MATLAB 的符号计 ∏∏1 1) -()-() () ()(N i i M j j p s q s C s A s B s H ====

信号与系统MATLAB实验报告

《信号与系统》MATLAB实验报告 院系:专业: 年级:班号: 姓名:学号: 实验时间: 实验地点:

实验一 连续时间信号的表示及可视化 实验题目: )()(t t f δ=;)()(t t f ε=;at e t f =)((分别取00<>a a 及); )()(t R t f =;)()(t Sa t f ω=;)2()(ft Sin t f π=(分别画出不同周期个数 的波形)。 解题分析: 以上各类连续函数,先运用t = t1: p:t2的命令定义时间范围向量,然后调用对应的函数,建立f 与t 的关系,最后调用plot ()函数绘制图像,并用axis ()函数限制其坐标范围。 实验程序: (1) )()(t t f δ= t=-1:0.01:3 %设定时间变量t 的范围及步长 f=dirac(t) %调用冲激函数dirac () plot(t,f) %用plot 函数绘制连续函数 axis([-1,3,-0.5,1.5]) %用axis 函数规定横纵坐标的范围 (2) )()(t t f ε= t=-1:0.01:3 %设定时间变量t 的范围及步长 f=heaviside(t) %调用阶跃函数heaviside () plot(t,f) %用plot 函数绘制连续函数 title('f(t)=heaviside(t)') %用title 函数设置图形的名称 axis([-1,3,-0.5,1.5]) %用axis 函数规定横纵坐标的范围 (3) at e t f =)( a=1时: t=-5:0.01:5 %设定时间变量t 的范围及步长 f=exp(t) %调用指数函数exp ()

数值分析的matlab实现

第2章牛顿插值法实现 参考文献:[1]岑宝俊. 牛顿插值法在凸轮曲线修正设计中的应用[J]. 机械工程师,2009,10:54-55. 求牛顿插值多项式和差商的MA TLAB 主程序: function[A,C,L,wcgs,Cw]=newpoly(X,Y) n=length(X);A=zeros(n,n);A(:,1) =Y'; s=0.0;p=1.0;q=1.0;c1=1.0; for j=2:n for i=j:n A(i,j)=(A(i,j-1)-A(i-1,j-1))/(X(i)-X(i-j+1)); end b=poly(X(j-1));q1=conv(q,b);c1=c1*j;q=q1; end C=A(n,n);b=poly(X(n));q1=conv(q1,b); for k=(n-1):-1:1 C=conv(C,poly(X(k)));d=length(C);C(d)=C(d)+A(k,k); end L(k,:)=poly2sym(C);Q=poly2sym(q1); syms M wcgs=M*Q/c1;Cw=q1/c1; (1)保存名为newpoly.m 的M 文件 (2)输入MA TLAB 程序 >> X=[242,243,249,250]; >> Y=[13.681,13.526,13.098,13.095]; >> [A,C,L,wcgs,Cw]=newpoly(X,Y) 输出3阶牛顿插值多项式L 及其系数向量C 差商的矩阵A ,插值余项wcgs 及其 ) ()()1(ξ+n n f x R 的系数向量Cw 。 A = 13.6810 0 0 0 13.5260 -0.1550 0 0 13.0980 -0.0713 0.0120 0 13.0950 -0.0030 0.0098 -0.0003 C = 1.0e+003 *

绘制离散系统零极点图.

绘制离散系统零极点图:zplane() 滤波器 绘制离散系统零极点图:zplane() zplane(Z,P) 以单位圆为基准绘制零极点图,在图中以'o'表示零点,以'x'表示极点,如果存在重零极点,则在它们的右上方显示其数目。如果零极点是用矩阵来表示,在不同行内的零极点用不同的颜 色来表示。 zplane(B, A) 输入的是传递函数模型,则函数将首先调用root 函数以求出它们的零极点。 [H1, H2, H3]=zplane(Z,P) 函数返回图形对象的句柄。其中,H1返回的是零点线的句柄;H2返回的是极点线的句柄;H3返回的是轴和单位圆线条句柄。如果有重零极点,它还包括显示在其右上方 的文本句柄。 例:设计一个数字椭圆带阻滤波器,具体要求是:通带截止频率是 wp1=1500Hz,wp2=2500Hz,阻带截止频率是ws1=1000Hz,ws2=3000Hz,在通带内的最大衰减为0.5dB,在阻带内的最小衰减 为60dB 程序设计如下: wp1=1500; wp2=2500; ws1=1000; ws2=3000; Fs=100 00Hz; rp=0.5; rs=60; wp=[wp1,wp2]; ws=[ws1,ws2]; [n,wn]=ellipord(wp/(Fs/2), ws/(Fs/2), rp, rs); [num,den]=ellip(n, rp, rs, wn, 'stop'); [H, W]=freqz(num, den); figure; plot(W*Fs/(2*pi), abs(H)); grid; xlabel('频率/Hz'); ylabel('幅值'); figure; impz(num, den); figure; grpdelay(num, den); figure; zplane(num, den); FREQZ 是计算数字滤波器的频率响应的函数

(完整word版)信号与系统matlab实验

习题三 绘制典型信号及其频谱图 1.更改参数,调试程序,绘制单边指数信号的波形图和频谱图。观察参数a对信号波形 及其频谱的影响。 程序代码: close all; E=1;a=1; t=0:0.01:4; w=-30:0.01:30; f=E*exp(-a*t); F=1./(a+j*w); plot(t,f);xlabel('t');ylabel('f(t)'); figure; plot(w,abs(F));xlabel('\omega');ylabel('|F(\omega)|';

E=1,a=1,波形图频谱图更改参数E=2,a=1;

更改参数a,对信号波形及其频谱的影响。(保持E=2)上图为a=1图像 a=2时

a=4时 随着a的增大,f(t)曲线变得越来越陡,更快的逼近0,而对于频谱图,随着a增大,图像渐渐向两边张开,峰值减小,陡度减小,图像整体变得更加平缓。 2.矩形脉冲信号 程序代码: close all; E=1;tao=1; t=-4:0.1:4; w=-30:0.1:30;

f=E*(t>-tao/2&tao/2)+0*(t<=-tao/2&t>=tao/2); F=(2*E./w).*sin(w*tao/2); plot(t,f);xlabel('t');ylabel('f(t)'); figure; plot(w,abs(F));xlabel('\omega');ylabel('|F(\omega)|') ; figure; plot(w,20*log10(abs(F))); xlabel('\omega');ylabel('|F(\omega)| in dB'); figure; plot(w,angle(F));xlabel('\omega');ylabel('\phi(\omega )');

matlab2012实验1参考答案

MATLAB 实验一 MATLAB 数值计算 试验报告说明: 1 做试验前请先预习,并独立完成试验和试验报告。 2 报告解答方式:将MATLAB 执行命令和最后运行结果从命令窗口拷贝到每题的题目下面,请将报告解答部分的底纹设置为灰色,以便于批阅。 3 在页眉上写清报告名称,学生姓名,学号,专业以及班级。 3 报告以Word 文档书写。 文档命名方式: 学号+姓名+_(下划线)+试验几.doc 如:110400220张三_试验1.doc 4 试验报告doc 文档以附件形式发送到maya_email@https://www.360docs.net/doc/1c9995375.html, 。凡文档命名不符合规范,或者发送方式不正确,不予登记。 5 每次试验报告的最后提交期限:下次试验课之前。 一 目的和要求 1 熟练掌握MATLAB 变量的使用 2 熟练掌握矩阵的创建 3 熟练掌握MATLAB 的矩阵和数组的运算 4 使用元胞数组和结构数组 二 试验内容 1 创建矩阵(必做) 1.1使用直接输入,from:step:to ,linspace ,logspace 等方式创建矩阵。 1.2 输入矩阵12342 46836 9 12a ?? ?= ? ?? ? 1.2-1)分别使用全下标和单下标达方式取出元素“8” >>a=[1 2 3 4;2 4 6 8;3 6 9 12] >> a(2,4) %全下标方式 >> a(11) % 单下标方式 1.2-2)分别用不同的方式从矩阵a 中取出子矩阵?? ??? ?1286 4 3 2 %方法一:全下标方式 a([2,3],[1 2 4]) %方法二:单下标方式 a([2 5 11;3 6 12]) % 方法三:利用逻辑向量 l1=logical([0 1 1])

数值分析的MATLAB程序

列主元法 function lianzhuyuan(A,b) n=input('请输入n:') %选择阶数A=zeros(n,n); %系数矩阵A b=zeros(n,1); %矩阵b X=zeros(n,1); %解X for i=1:n for j=1:n A(i,j)=(1/(i+j-1)); %生成hilbert矩阵A end b(i,1)=sum(A(i,:)); %生成矩阵b end for i=1:n-1 j=i; top=max(abs(A(i:n,j))); %列主元 k=j; while abs(A(k,j))~=top %列主元所在行 k=k+1; end for z=1:n %交换主元所在行a1=A(i,z); A(i,z)=A(k,z); A(k,z)=a1; end a2=b(i,1); b(i,1)=b(k,1); b(k,1)=a2; for s=i+1:n %消去算法开始m=A(s,j)/A(i,j); %化简为上三角矩阵 A(s,j)=0; for p=i+1:n A(s,p)=A(s,p)-m*A(i,p); end b(s,1)=b(s,1)-m*b(i,1); end end X(n,1)=b(n,1)/A(n,n); %回代开始 for i=n-1:-1:1 s=0; %初始化s for j=i+1:n s=s+A(i,j)*X(j,1);

end X(i,1)=(b(i,1)-s)/A(i,i); end X 欧拉法 clc clear % 欧拉法 p=10; %贝塔的取值 T=10; %t取值的上限 y1=1; %y1的初值 r1=1; %y2的初值 %输入步长h的值 h=input('欧拉法please input number(h=1 0.5 0.25 0.125 0.0625):h=') ; if h>1 or h<0 break end S1=0:T/h; S2=0:T/h; S3=0:T/h; S4=0:T/h; i=1; % 迭代过程 for t=0:h:T Y=(exp(-t)); R=(1/(p-1))*exp(-t)+((p-2)/(p-1))*exp(-p*t); y=y1+h*(-y1); y1=y; r=r1+h*(y1-p*r1); r1=r; S1(i)=Y; S2(i)=R; S3(i)=y; S4(i)=r; i=i+1; end t=[0:h:T]; % 红线为解析解,'x'为数值解 plot(t,S1,'r',t,S3,'x')

信号与系统MATLAB实验

2016-2017学年第一学期 信号与系统实验报告 班级: 姓名: 学号: 成绩: 指导教师:

实验一常见信号的MATLAB 表示及运算 一.实验目的 1.熟悉常见信号的意义、特性及波形 2.学会使用MATLAB 表示信号的方法并绘制信号波形 3. 掌握使用MATLAB 进行信号基本运算的指令 4. 熟悉用MATLAB 实现卷积积分的方法 二.实验原理 信号一般是随时间而变化的某些物理量。按照自变量的取值是否连续,信号分为连续时间信号和离散时间信号,一般用()f t 和()f k 来表示。若对信号进行时域分析,就需要绘制其波形,如果信号比较复杂,则手工绘制波形就变得很困难,且难以精确。MATLAB 强大的图形处理功能及符号运算功能,为实现信号的可视化及其时域分析提供了强有力的工具。 根据MATLAB 的数值计算功能和符号运算功能,在MATLAB 中,信号有两种表示方法,一种是用向量来表示,另一种则是用符号运算的方法。在采用适当的MATLAB 语句表示出信号后,就可以利用MATLAB 中的绘图命令绘制出直观的信号波形了。下面分别介绍连续时间信号和离散时间信号的MATLAB 表示及其波形绘制方法。 1.连续时间信号 所谓连续时间信号,是指其自变量的取值是连续的,并且除了若干不连续的点外,对于一切自变量的取值,信号都有确定的值与之对应。从严格意义上讲,MATLAB 并不能处理连续信号。在MATLAB 中,是用连续信号在等时间间隔点上的样值来近似表示的,当取样时间间隔足够小时,这些离散的样值就能较好地近似出连续信号。在MATLAB 中连续信号可用向量或符号运算功能来表示。 ⑴ 向量表示法 对于连续时间信号()f t ,可以用两个行向量f 和t 来表示,其中向量t 是用形如12::t t p t 的命令定义的时间范围向量,其中,1t 为信号起始时间,2t 为终止时间,p 为时间间隔。向量f 为连续信号()f t 在向量t 所定义的时间点上的样值。 说明:plot 是常用的绘制连续信号波形的函数。 严格说来,MATLAB 不能表示连续信号,所以,在用plot()命令绘制波形时,要对自变量t 进行取值,MATLAB 会分别计算对应点上的函数值,然后将各个数据点通过折线连接起来绘制图形,从而形成连续的曲线。因此,绘制的只是近似波形,而且,其精度取决于t 的取样间隔。t 的取样间隔越小,即点与点之间的距离越小,则近似程度越好,曲线越光滑。例如:图1-1是在取样间隔为p=0.5时绘制的波形,而图1-2是在取样间隔p=0.1时绘制的波形,两相对照,可以看出图1-2要比图1-1光滑得多。

Matlab作业3(数值分析)答案

Matlab作业3(数值分析) 机电工程学院(院、系)专业班组 学号姓名实验日期教师评定 1.计算多项式乘法(x2+2x+2)(x2+5x+4)。 答: 2. (1)将(x-6)(x-3)(x-8)展开为系数多项式的形式。(2)求解在x=8时多项 式(x-1)(x-2) (x-3)(x-4)的值。 答:(1) (2)

3. y=sin(x),x从0到2π,?x=0.02π,求y的最大值、最小值、均值和标准差。 4.设x=[0.00.30.8 1.1 1.6 2.3]',y=[0.500.82 1.14 1.25 1.35 1.40]',试求二次多项式拟合系数,并据此计算x1=[0.9 1.2]时对应的y1。解:x=[0.0 0.3 0.8 1.1 1.6 2.3]'; %输入变量数据x y=[0.50 0.82 1.14 1.25 1.35 1.40]'; %输入变量数据y p=polyfit(x,y,2) %对x,y用二次多项式拟合,得到系数p x1=[0.9 1.2]; %输入点x1 y1=polyval(p,x1) %估计x1处对应的y1 p = -0.2387 0.9191 0.5318 y1 = a) 1.2909

5.实验数据处理:已知某压力传感器的测试数据如下表 p为压力值,u为电压值,试用多项式 d cp bp ap p u+ + + =2 3 ) ( 来拟 合其特性函数,求出a,b,c,d,并把拟合曲线和各个测试数据点画在同一幅图上。解: >> p=[0.0,1.1,2.1,2.8,4.2,5.0,6.1,6.9,8.1,9.0,9.9]; u=[10,11,13,14,17,18,22,24,29,34,39]; x=polyfit(p,u,3) %得多项式系数 t=linspace(0,10,100); y=polyval(x,t); %求多项式得值 plot(p,u,'*',t,y,'r') %画拟和曲线 x = 0.0195 -0.0412 1.4469 9.8267

同济大学数值分析matlab编程题汇编

MATLAB 编程题库 1.下面的数据表近似地满足函数2 1cx b ax y ++=,请适当变换成为线性最小二乘问题,编程求最好的系数c b a ,,,并在同一个图上画出所有数据和函数图像. 625 .0718.0801.0823.0802.0687.0606.0356.0995 .0628.0544.0008.0213.0362.0586.0931.0i i y x ---- 解: x=[-0.931 -0.586 -0.362 -0.213 0.008 0.544 0.628 0.995]'; y=[0.356 0.606 0.687 0.802 0.823 0.801 0.718 0.625]'; A=[x ones(8,1) -x.^2.*y]; z=A\y; a=z(1); b=z(2); c=z(3); xh=-1:0.1:1; yh=(a.*xh+b)./(1+c.*xh.^2); plot(x,y,'r+',xh,yh,'b*')

2.若在Matlab工作目录下已经有如下两个函数文件,写一个割线法程序,求出这两个函数 10 的近似根,并写出调用方式: 精度为10 解: >> edit gexianfa.m function [x iter]=gexianfa(f,x0,x1,tol) iter=0; while(norm(x1-x0)>tol) iter=iter+1; x=x1-feval(f,x1).*(x1-x0)./(feval(f,x1)-feval(f,x0)); x0=x1;x1=x; end >> edit f.m function v=f(x) v=x.*log(x)-1; >> edit g.m function z=g(y) z=y.^5+y-1; >> [x1 iter1]=gexianfa('f',1,3,1e-10) x1 = 1.7632 iter1 = 6 >> [x2 iter2]=gexianfa('g',0,1,1e-10) x2 = 0.7549 iter2 = 8

实验6 Matlab数值计算实验报告

Tutorial 6 实验报告 实验名称:Matlab数值计算 实验目的: 1、掌握数据统计与分析的方法; 2、掌握数据插值和曲线拟合的方法及其应用; 3、掌握多项式的常用运算。 实验内容: 1.利用randn函数生成符合正态分布的10×5随机矩阵A,进行如下操作: (1)求A的最大元素和最小元素; (2)求A的每行元素的和以及全部元素的和; (3)分别对A的每列元素按升序、每行元素按降序排列。 2.用3次多项式方法插值计算1-100之间整数的平方根。 3.某气象观测站测得某日6:00-18:00之间每隔2h的室内外温度(°C)如下表所示。 使用三次样条插值分别求出该日室内外6:30-17:30之间每隔2h各点的近似温度,并绘制插值后的温度曲线。 4.已知lgx在[1,101]区间10个整数采样点的函数值如下表所示,

试求lgx 的5次拟合多项式p(x),并绘制lgx 和p(x)在[1,101]区间的函数曲线。 5. 有3个多项式(),(),()P x x x x P x x P x x x =+++=+=++4322 123 24522 3,试进行下列操作: (1) 求()()()()P x P x P x P x =+123。 (2) 求()P x 的根。 (3) 当x 取矩阵A 的每一元素时,求()P x 的值。其中: .....A --?? ??=?? ???? 112140752350525 6. 求函数在指定点的数值导数。 (),,f x x ==123 7. 用数值方法求定积分。 (1)I π =? 210的近似值。 (2)ln() x I dx x += +?1 22011 实验结果: 1.

数值分析matlab代码

1、%用牛顿法求f(x)=x-sin x 的零点,e=10^(-6) disp('牛顿法'); i=1; n0=180; p0=pi/3; tol=10^(-6); for i=1:n0 p=p0-(p0-sin(p0))/(1-cos(p0)); if abs(p-p0)<=10^(-6) disp('用牛顿法求得方程的根为') disp(p); disp('迭代次数为:') disp(i) break; end p0=p; end if i==n0&&~(abs(p-p0)<=10^(-6)) disp(n0) disp('次牛顿迭代后无法求出方程的解') end 2、disp('Steffensen加速'); p0=pi/3; for i=1:n0 p1=0.5*p0+0.5*cos(p0); p2=0.5*p1+0.5*cos(p1); p=p0-((p1-p0).^2)./(p2-2.*p1+p0); if abs(p-p0)<=10^(-6) disp('用Steffensen加速求得方程的根为') disp(p); disp('迭代次数为:') disp(i) break; end p0=p; end if i==n0&&~(abs(p-p0)<=10^(-6)) disp(n0) disp('次Steffensen加速后无法求出方程的解') end 1、%使用二分法找到方程 600 x^4 -550 x^3 +200 x^2 -20 x -1 =0 在区间[0.1,1]上的根, %误差限为 e=10^-4 disp('二分法')

a=0.2;b=0.26; tol=0.0001; n0=10; fa=600*(a.^4)-550*(a.^3)+200*(a.^2)-20*a-1; for i=1:n0 p=(a+b)/2; fp=600*(p.^4)-550*(p.^3)+200*(p.^2)-20*p-1; if fp==0||(abs((b-a)/2)0 a=p; else b=p; end end if i==n0&&~(fp==0||(abs((b-a)/2)

信号与系统MATLAB实验总汇

实验一、MATLAB 编程基础及典型实例 一、实验目的 (1)熟悉MATLAB 软件平台的使用; (2)熟悉MATLAB 编程方法及常用语句; (3)掌握MATLAB 的可视化绘图技术; (4)结合《信号与系统》的特点,编程实现常用信号及其运算。 示例一:在两个信号进行加、减、相乘运算时,参于运算的两个向量要有相同的维数,并且它们的时间变量范围要相同,即要对齐。编制一个函数型m 文件,实现这个功能。function [f1_new,f2_new,n]=duiqi(f1,n1,f2,n2) a=min(min(n1),min(n2)); b=max(max(n1),max(n2)); n=a:b; f1_new=zeros(1,length(n)); f2_new=zeros(1,length(n)); tem1=find((n>=min(n1))&(n<=max(n1))==1); f1_new(tem1)=f1; tem2=find((n>=min(n2))&(n<=max(n2))==1); f2_new(tem2)=f2; 四、实验内容与步骤 (2)绘制信号x(t)=)3 2sin(2t e t ?的曲线,t 的范围在0~30s ,取样时间间隔为0.1s 。t=0:0.1:30; y=exp(-sqrt(2)*t).*sin(2*t/3); plot(t,y);

(3)在n=[-10:10]范围产生离散序列:?? ?≤≤?=Other n n n x ,033,2)(,并绘图。n=-10:1:10; z1=((n+3)>=0); z2=((n-3)>=0); x=2*n.*(z1-z2); stem(n,x);(4)编程实现如下图所示的波形。 t=-2:0.001:3; f1=((t>=-1)&(t<=1)); f2=((t>=-1)&(t<=2)); f=f1+f2; plot(t,f); axis([-2,3,0,3]);

MATLAB数值分析实验三(线性方程求解及精度分析)

佛山科学技术学院 实 验 报 告 课程名称 数值分析 实验项目 数值积分 专业班级 机械工程 姓 名 余红杰 学 号 2111505010 指导教师 陈剑 成 绩 日 期 月 日 一、实验目的 1、 掌握程序的录入和matlab 的使用和操作; 2、 了解影响线性方程组解的精度的因素——方法与问题的性态。 3、 学会Matlab 提供的“\”的求解线性方程组。 二、实验要求 1、按照题目要求完成实验内容; 2、写出相应的Matlab 程序; 3、给出实验结果(可以用表格展示实验结果); 4、分析和讨论实验结果并提出可能的优化实验。 5、写出实验报告。 三、实验步骤 1、用LU 分解及列主元高斯消去法解线性方程组 a)??????? ??=??????? ????????? ??----15900001.582012151526099999.2310 7104321x x x x , 输出b Ax =中系数LU A =分解的矩阵L 和U ,解向量x 和)det(A ;用列主元法的行交换次序解向量x 和求)det(A ;比较两种方法所得结果。 2、用列主高斯消元法解线性方程组b Ax =。 (1)、???? ? ??=????? ??????? ??--11134.981.4987.023.116.427 .199.103.601.3321x x x

(2)、???? ? ??=????? ??????? ??--11134.981.4990.023.116.427 .199.103.600.3321x x x 分别输出)det(,,A b A ,解向量x ,(1)中A 的条件数。分析比较(1)、(2)的计算结果 3、线性方程组b Ax =的A 和b 分别为 ??????? ??=1095791068565778710A ,?????? ? ??=31332332b 则解T x ),1,1,1,1(=. 用MATLAB 内部函数求)det(A 和A 的所有特征值和2)(A cond . 若令 ?????? ? ??=+98.99599.6989.998.585604.508.72.71.8710A A δ, 求解b x x A A =++))((δδ,输出向量x δ和2x δ,从理论结果和实际计算两方面分析线性 方程组b Ax =解的相对误差22/x x δ以及A 的相对误差 /A A δ的关系。 四、实验结果 1: %run311.m clc,clear; A = [10 -7 0 1;-3 2.099999 6 2;5 -1 5 -1;2 1 0 2]; b = [8;5.90001;5;1]; %L U 分解 format short %小数点后四位,不然会受到后面的影响 [L U] = lu(A) %解方程组,输出A ,det(A) y = L\b; format long %小数点后15位显示 x = U\y

matlab信号与系统实验报告

实验一 基本信号的产生与运算 一、 实验目的 学习使用MATLAB 产生基本信号、绘制信号波形、实现信号的基本运算。 二、 实验原理 MATLAB 提供了许多函数用于产生常用的基本信号:如阶跃信号、脉冲信号、指数信号、正弦信号和周期方波等等。这些信号是信号处理的基础。 1、 利用MATLAB 产生下列连续信号并作图。 (1)51),1(2)(<<---=t t u t x (2)300),3 2sin()(3.0<<=-t t e t x t (3)1.01.0,3000cos 100cos )(<<-+=t t t t x (4)2000),8.0cos()1.0cos()(<<=t t t t x ππ 答:(1)、 >> t=-1:0.02:5; >> x=(t>1); >> plot(t,-2*x); >> axis([-1,5,-3,1]); >> title('杨婕婕 朱艺星'); >> xlabel('x(t)=-2u(t-1)'); (2)、 >> t=0:0.02:30; >> x=exp(-0.3*t).*sin(2/3*t);

>> plot(t,x); >> title('杨婕婕朱艺星'); >> xlabel('x(t)=exp(-0.3*t).*sin(2/3*t)'); 因为原函数在t=15后x(t)取值接近于零,所以将横坐标改成0到15,看得更清晰 axis([0,15,-0.2,0.6]);

(3)>> t=-0.1:0.01:0.1;x=cos(100*t)+cos(3000*t);plot(t,x); >> title('杨婕婕朱艺星'); >>xlabel('x=cos(100*t)+cos(3000*t)'); 因为t的间隔取太大,以至于函数不够准确,缩小t的间隔: t=-0.1:0.002:0.2;x=cos(100*t)+cos(3000*t); plot(t,x);title('杨婕婕') >> t=-0.1:0.0001:0.1; x=cos(100*t)+cos(3000*t); >> plot(t,x);title('杨婕婕朱艺星');

实验6答案 Matlab数值计算

实验6 Matlab数值计算 实验目的: 1、掌握数据统计与分析的方法; 2、掌握数据插值和曲线拟合的方法及其应用; 3、掌握多项式的常用运算。 实验内容: 1.利用randn函数生成符合正态分布的10×5随机矩阵A,进行如下操作: (1)求A的最大元素和最小元素; (2)求A的每行元素的和以及全部元素的和; (3)分别对A的每列元素按升序、每行元素按降序排列。 a = randn(10,5)+10; ma = max(max(a)) mi = min(min(a)) s = sum(a,2) sa = sum(sum(a)) p = sort(a) p1 = -sort(-a,2) 2.用3次多项式方法插值计算1-100之间整数的平方根。 f = sqrt(n); interp1(n,f,(1:100),'cubic') 3.某气象观测站测得某日6:00-18:00之间每隔2h的室内外温度(°C)如下表所示。

使用三次样条插值分别求出该日室内外6:30-17:30之间每隔2h 各点的近似温度,并绘制插值后的温度曲线。 n= 6:2:18; f1 = [18 20 22 25 30 28 24]; f2 = [15 19 24 28 34 32 30]; r = 6.5:2:17.5; w = interp1(n,f1,r,'spline'); w1 = interp1(n,f2,r,'spline'); subplot(211),plot(r,w) subplot(212),plot(r,w1) 4. 已知lgx 在[1,101]区间10个整数采样点的函数值如下表所示, 试求lgx 的5次拟合多项式p(x),并绘制lgx 和p(x)在[1,101]区间的函数曲线。 x = linspace(1,101,10); y = log(x) /log(10); p = polyfit(x,y,5) y1 = polyval(p,x) plot(x,y,':o',x,y1,'-*') legend('sin(x)','fit') 5. 有3个多项式(),(),()P x x x x P x x P x x x =+++=+=++4 3 2 2 123245223,试进 行下列操作: (1) 求()()()()P x P x P x P x =+123。 (2) 求()P x 的根。 (3) 当x 取矩阵A 的每一元素时,求()P x 的值。其中: .....A --?? ? ?=?????? 11214075 2350 5 25 p1 = [1 2 4 0 5]; p2 = [0 0 0 1 2];

相关文档
最新文档