多自由度振动

多自由度振动
多自由度振动

多自由度系统振动分析典型教案

第2章多自由度系统的振动 基本要点: ①建立系统微分方程的几种方法; ②固有频率、固有振型的概念以及固有振型关于质量和刚度矩阵的加权正交性; ③多自由度系统运动的解耦—模态坐标变换及运用模态叠加法求解振动系统的响应。 引言 多自由度振动系统的几个工程实例;多自由度系统振动分析的特点;多自由度系统振动分析与单自由度系统的区别与联系。 §2.1多自由度系统的振动方程 ●方程的一般形式:质量矩阵、阻尼矩阵、刚度矩阵和激振力 §2.2建立系统微分方程的方法 ●影响系数:刚度影响系数、柔度影响系数 ●刚度矩阵法、柔度矩阵法及这两种方法的特点;Lagrange方程法 §2.3无阻尼系统的自由振动 ●二自由度系统的固有振动:固有频率、固有振型。 ●二自由度系统的自由振动 ●二自由度系统的运动耦合与解耦 弹性耦合,惯性耦合; 振动系统的耦合取决于坐标系的选择; ●多自由度系统的固有振动 固有振动的形式及条件:特征值、特征向量、模态质量、模态刚度; 固有振型的性质:关于质量矩阵和刚度矩阵的加权正交性; 刚体模态; ●运动的解耦:模态坐标变换(主坐标变换)。 ●多自由度系统的自由振动 §2.4无阻尼系统的受迫振动 ●频域分析:动刚度矩阵和频响函数矩阵,频响函数矩阵的振型展开式,系统反 共振问题。 ●时域分析:单位脉冲响应矩阵,任意激励下的响应,模态截断问题,模态加速 度法。 §2.5比例阻尼系统的振动 ●多自由度系统的阻尼:Rayleigh比例阻尼。 ●自由振动 ●受迫振动:频响函数矩阵,单位脉冲响应矩阵,任意激励下的响应。 §2.6一般粘性阻尼系统的振动

●自由振动:物理空间描述,状态空间描述。 ●受迫振动:脉冲响应矩阵,频响函数矩阵,任意激励下的响应。 思考题: ①刚度矩阵和柔度矩阵在什么条件下是互逆的两个矩阵?从物理上和数学两方面加以解 释? ②为什么说模态质量、模态刚度的数值大小没有直接意义? ③证明固有振型关于质量矩阵和刚度矩阵的加权正交性,并讨论其物理意义。 ④在实际的多自由度系统振动分析中,为什么要进行模态截断? 参考书目 1.胡海岩,机械振动与冲击,航空工业出版社,2002 2.故海岩,机械振动基础,北京航空航天大学出版社,2005 3.季文美,机械振动,科学出版社,1985。(图书馆索引号:TH113.1/1010) 4.郑兆昌主编, 机械振动上册,机械工业出版社,1980。(图书馆索引号: TH113.1/1003-A) 5.Singiresu S R, Mechanical vibrations,Longman Prentice Hall, 2004(图书馆索引 号:TH113.1/WR32)

0727第三章 两自由度系统振动(讲)

第三章两自由度系统振动 §3-1 概述 单自由度系统的振动理论是振动理论的基础。在实际工程问题中,还经常会遇到一些不能简化为单自由度系统的振动问题,因此有必要进一步研究多自由度系统的振动理论。 两自由度系统是最简单的多自由度系统。从单自由度系统到两自由度系统,振动的性质和研究的方法有质的不同。研究两自由度系统是分析和掌握多自由度系统振动特性的基础。 所谓两自由度系统是指要用两个独立坐标才能确定系统在振动过程中任何瞬时的几何位置的振动系统。很多生产实际中的问题都可以简化为两自由度的振动系统。例如,车床刀架系统(a)、车床两顶尖间的工件系统(b)、磨床主轴及砂轮架系统(c)。只要将这些系统中的主要结合面(或芯轴)视为弹簧(即只计弹性,忽略质量),将系统中的小刀架、工件、砂轮及砂轮架等视为集中质量,再忽略存在于系统中的阻尼,就可以把这些系统近似简化成图(d)所示的两自由度振动系统的动力学模型。 以图3.1(c)所示的磨床磨头系统为例分析,因为砂轮主轴安装在砂轮架内轴承上,可以近似地认为是刚性很好的,具有集中质量的砂轮主轴系统支承在弹性很好的轴承上,因此可以把它看成是支承在砂轮架内的一个弹簧——质量系统。此外,砂轮架安装在砂轮进刀

拖板上,如果把进刀拖板看成是静止不动的,而把砂轮架与进刀拖板的结合面看成是弹簧,把砂轮架看成是集中的质量,则砂轮架系统又近似地可以看成是支承在进刀拖板上的另一个弹簧——质量系统。这样,磨头系统就可以近似地简化为图示的支承在进刀拖板上的两自由度系统。 在这一系统的动力学模型中,m1是砂轮架的质量,k1是砂轮架支承在进刀拖板上的静刚度,m2是砂轮及其主轴系统的质量,k2是砂轮主轴支承在砂轮架轴承上的静刚度。取每个质量的静平衡位置作为坐标原点,取其铅垂位移x1及x2分别作为各质量的独立坐标。这样x1和x2就是用以确定磨头系统运动的广义坐标。(工程实际中两自由

第4章多自由度系统的振动题解

习 题 4-1 在题3-10中,设m 1=m 2=m ,l 1=l 2=l ,k 1=k 2=0,求系统的固有频率和主振型。 解:由题3-10的结果 22121111)(l g m l g m m k k +++ =,2 221l g m k -=,2212l g m k - =,2 2222l g m k k += 代入m m m ==21,021==k k ,l l l ==21 可求出刚度矩阵K 和质量矩阵M ??? ???=m m M 00;?? ?? ??????- - =l mg l mg l mg l mg K 3 由频率方程02=-M p K ,得 0322 =????? ??? ? ?-- - -=mp l mg l mg l mg mp l mg B 0242 2 2224 2 =+-∴l g m p l g m p m l g p ) 22(1-=∴ ,l g p )22(2+= 为求系统主振型,先求出adjB 的第一列 ???? ? ? ?? ??-=l mg mp l mg adjB 2 分别将频率值21p p 和代入,得系统的主振型矩阵为 ??????-=112) 1(A ?? ????+=112)2(A 题4-1图

4-2 题4-2图所示的均匀刚性杆质量为m 1,求系统的频率方程。 解:设杆的转角θ和物块位移x 为广义坐标。利用刚度影响系数法求刚度矩阵k 。 设0,1==x θ,画出受力图,并施加物体力偶与力 2111,k k ,由平衡条件得到, 222111a k b k k +=, a k k 221-= 设1,0==x θ,画出受力图,并施加物体力偶与力2212,k k ,由平衡条件得到, 12k a k 2-=, a k k 222= 得作用力方程为 ?? ? ???=??????????? ?--++????????????? ?00003122222 2122 1x a k a k a k a k b k x m a m θθ 由频率方程02=-M K p ,得 031 2 22222 212221=----+p m a k a k a k p a m a k b k 4-3 题4-3图所示的系统中,两根长度为l 的均匀刚性杆的质量为m 1及m 2,求系统的刚度矩阵和柔度矩阵,并求出当m 1=m 2=m 和 k 1=k 2=k 时系统的固有频率。 解:如图取21,θθ为广义坐标,分别画受力图。由动量矩定理得到, l l k l l k I 4 34343432 11111θθθ+-= 2 2434343432 2211122l l k l l k l l k I θθθθ--= 题4-3图 题4-2图

第六章多自由度体系地微振动

第六章多自由度体系的微振动 教学目的和基本要求:正确理解线性振动的概念和力学体系平衡的分类;能运用拉格朗日方程初步分析两个自由度保守体系的自由振动问题;理解简正坐标的概念并了解利用简正坐标将复杂振动转化为简正振动的方法和意义。 教学重点:掌握运用拉格朗日方程分析两个自由度保守体系的自由振动问题的方法和简正坐标的物理意义。 教学难点:简正坐标的物理意义。 §6.1 振动的分类和线形振动的概念 振动不仅在宏观领域大量存在(如单摆、弹性振子和地震等),在微观领域也是一种普遍现象(如晶体中晶格的振动、光学中分子的振动等)。振动的种类根据所依据的标准不同可有几种分类方法,下面将简单介绍。 一:振动的分类 1.按能量的转换来划分. 自由振动——系统的能量E为常数,即能量守恒。 阻尼振动——系统的能量E逐渐转化为热能Q。 强迫振动——系统不断从外界吸收能量并将其转化为热能Q。 2.按体系的自由度划分. 单自由度振动——体系的自由度S=1。 有限多自由度振动和无限多自由度振动——体系的自由度为大于1的有限值或无限大值。 3.按体系的动力学微分方程的种类划分. 线性振动——体系的运动微分方程为线性方程。 非线性振动——体系的运动微分方程为非线性方程。 4.本章研究的主要问题. 以上我们按不同的标准将振动进行了归类,实际上这几种标准是相互交叉的,也就是说振动还可以按照以上两个或三个标准进行进一步的归类。如线性振动还可以进一步分为单自由度线性振动、有限多自由度线性振动和无限多自由度线性振动。 表6.1给出了同时按自由度和微分方程的种类对振动进行的分类。我们在本章研究的主

要问题是有限多自由度的线性振动,所以有必要对线性和非线性振动做进一步讨论。 表6.1 二:有限多自由度线性振动 1.定义:体系的自由度为有限多个且体系的运动微分方程为线性方程。 例如:单摆的运动微分方程为0=+θθsin l g ,方程为非线性的。但当θ很小时有θθ≈sin , 方程变为线性方程0=+θθl g 。如果同时还存在有阻尼θβ -及强迫力)t (f ,则方程可写成 )t (f l g =++θθβθ ,仍为线性方程。 2.应用:一般情况下当力学体系在其平衡位置做微振动时,只要考虑它的最低级近似即可。这样的振动无论是自由振动、阻尼振动还是强迫振动,也无论自由度的个数是多少,其振动的运动微分方程均可看成是线性的,也就是属于线性振动。 三:平衡位置及其分类. 1.平衡位置的定义及判定方法。 (1)定义:如果力学体系在t=0时静止地处于某一确定位置,当∞?→? t 时该体系仍能保持在此位置,那么该位置即为体系的平衡位置,我们说体系处于平衡态。 (2)判定方法:在§2.4节中我们已指出保守力学体系处于平衡位置时,其势能应取极值(见第二章4.2式),即 s ...,i ,q V i i 210==??,这可以做为保守体系平衡位置的判据。 2.平衡位置的分类及其判定方法. (1)平衡位置的分类:平衡位置按其性质不同可分为三类: ○1稳定平衡:力学体系受到扰动偏离平衡位置后将回到平衡位置或者在平衡位置的附近做微振动。

相关文档
最新文档