7.2(2012) 正态分布总体参数的假设检验

合集下载

正态分布假设检验

正态分布假设检验

正态分布假设检验一、概述正态分布假设检验是统计学中常用的一种方法,用于判断一个数据集是否符合正态分布。

正态分布是指在统计学中,当数据集的频率分布呈钟形曲线时,称其为正态分布。

正态分布在实际应用中非常广泛,因为许多自然现象都遵循这种分布规律。

对于一个数据集而言,如果它符合正态分布,则可以使用一系列的统计方法进行进一步的研究和分析。

二、检验方法1. 假设检验假设检验是指通过样本数据来推断总体参数的方法。

在正态分布假设检验中,我们需要对总体均值和标准差进行假设检验。

具体而言,我们需要提出原假设和备择假设两个假设:原假设:样本数据符合正态分布;备择假设:样本数据不符合正态分布。

在进行实际计算时,我们需要根据样本数据来计算出样本均值和标准差,并使用这些数据来推断总体均值和标准差是否符合正态分布。

2. 正态概率图正态概率图是判断一个数据集是否符合正态分布的常用方法之一。

它通过将数据集的分位数与正态分布的分位数进行比较,来判断数据集是否符合正态分布。

具体而言,正态概率图将数据集的每个值按照从小到大的顺序排列,并计算出每个值对应的标准化值(即该值与样本均值之间的差除以样本标准差)。

然后,将这些标准化值按照从小到大的顺序排列,并绘制在图表上。

如果数据集符合正态分布,则这些标准化值应当近似于一个直线。

3. 偏度和峰度检验偏度和峰度是用来描述一个数据集形态特征的指标。

在正态分布中,偏度为0,峰度为3。

因此,在进行正态分布假设检验时,我们可以通过计算样本偏度和峰度来判断样本是否符合正态分布。

具体而言,如果样本偏度和峰度与正态分布相差不大,则可以认为样本符合正态分布。

三、实例演示以下是一个实例演示,在Python中使用scipy库进行正态分布假设检验:```pythonimport numpy as npfrom scipy import stats# 生成100个随机数data = np.random.normal(0, 1, 100)# 进行正态性检验k2, p = stats.normaltest(data)alpha = 0.05# 输出检验结果print("p = {}".format(p))if p < alpha:print("数据不符合正态分布")else:print("数据符合正态分布")```在上述代码中,我们首先生成了一个包含100个随机数的数据集。

7-2 正态总体均值与方差的假设检验

7-2 正态总体均值与方差的假设检验
因为 X ~ N ( , 2 ), 0.15,
要检验假设 H 0 : 10.5, H1 : 10.5,
n 15,
x 10.48,

2
0.05,
x 0 10.48 10.5 0.516, 则 / n 0.15 / 15
查表得 u0.05 1.645,
H1 : 0 10
x 9.2
s 1.6
x 0 9.2 10 于是 T 3.54 2.01 t0.025 49 s n 1.6 50
故在 0.05 的水平下,丰产林的树高与10米的差异 有统计意义。(拒绝原假设)
例7 某车间生产某种化学纤维的强度服从正态分布,且原来
单边检验
2
得H0 的拒绝域为:
2 n 1 S 2 0
12 n

2 n 1 S 2 0
2 n
作业
• 习题七:3,5,9,12.
• 复习第七章(可做习题七之1~13题) • 复习5~7章,准备课堂测验
例5 P160 8 从某批矿砂中,抽取容量为 5 的一个样本,测得其 含镍量为(单位:%) 3.25 3.27 3.24 3.26 3.24 设测量值服从正态分布,问在 这批矿砂的含镍量为 3.25 ?
例1 某切割机在正常工作时, 切割每段金属棒的平 均长度为10.5cm, 标准差是0.15cm, 今从一批产品中 随机的抽取15段进行测量, 其结果如下(单位:cm) 10.4 10.6 10.1 10.4 10.5 10.3 10.3 10.2 10.9 10.6 10.8 10.5 10.7 10.2 10.7 假定切割的长度X服从正态分布, 且标准差没有 变化, 试问该机工作是否正常? ( 0.1) 解

正态分布的参数估计及假设检验教学指导书

正态分布的参数估计及假设检验教学指导书

正态分布的参数估计及假设检验一、实验目的掌握参数估计和假设检验的 MATLAB 的有关命令。

二、实验内容及要求1、掌握参数估计和假设检验的 MATLAB 的有关命令;2、熟练掌握单个正态总体期望和方差的区间估计;3、熟练掌握两个正态总体期望差和方差比的区间估计的命令;4、熟练掌握对单个正态总体均值、方差的假设检验;5、掌握对两个正态总体均值、方差有关的假设检验;6、对统计结果能进行正确的分析。

三、实验的重点和难点实验的重点和难点是要求学生掌握基本的MATLAB 软件的编程语言,掌握基本的调用命令。

四、实验准备掌握假设检验的相关步骤;(1) 根据问题提出合理的原假设0H 和备择假设;(2) 给定显著性水平α, 一般取较小的正数, 如0.05,0.01等; (3) 选取合适的检验统计量及确定拒绝域的形式; (4) 令P{当0H 为真拒绝0H }α≤, 求拒绝域;(5) 由样本观察值计算检验统计量的值, 并做出决策: 拒绝0H 或接受0H . 五、实验步骤下面是MATLAB 软件提供的一些常用的参数估计函数命令. 一、矩估计命令:mu_ju=mean(X) % 返回样本X 的均值sigma2_ju =moment(X,2) % 返回样本X 的2阶中心矩 例1. 来自某总体X 的样本值如下:232.50, 232.48, 232.15, 232.52, 232.53, 232.30, 232.48, 232.05, 232.45, 232.60, 232.47, 232.30,求X 的均值与方差的矩估计。

解:x=[232.50, 232.48, 232.15, 232.52, 232.53, 232.30, 232.48,232.05, 232.45, 232.60, 232.47, 232.30];mu_ju=mean(X)sigma2_ju= moment(X,2)输出:mu_ju =232.4025sigma2_ju =0.0255二、单个总体极大似然估计与区间估计(参数均未知)命令1: [a,b]=namefit (X, ALPHA) % 返回总体参数的极大似然估计a与置信度为100(1- ALPHA)%.的置信区间,若参数为多个,ab也是多个,若省略ALPHA,置信度为0.95常用分布的参数估计函数表3-1 参数估计函数表函数名调用形式函数说明binofit PHAT= binofit(X, N)[PHA T, PCI] = binofit(X,N)[PHA T, PCI]= binofit (X, N, ALPHA)二项分布的概率的最大似然估计置信度为95%的参数估计和置信区间返回水平α的参数估计和置信区间poissfit Lambdahat=poissfit(X)[Lambdahat, Lambdaci] = poissfit(X)[Lambdahat,Lambdaci]=poissfit(X, ALPHA)泊松分布的参数的最大似然估计置信度为95%的参数估计和置信区间返回水平α的λ参数和置信区间normfit [muhat,sigmahat,muci,sigmaci] = normfit(X)[muhat,sigmahat,muci,sigmaci]=normfit(X,ALPHA)正态分布的最大似然估计,置信度为95%返回水平α的期望、方差值和置信区间betafit PHAT =betafit (X)[PHA T, PCI]= betafit (X, ALPHA)返回β分布参数a和b的最大似然估计返回最大似然估计值和水平α的置信区间unifit [ahat,bhat] = unifit(X)[ahat,bhat,ACI,BCI] = unifit(X)[ahat,bhat,ACI,BCI]=unifit(X, ALPHA)均匀分布参数的最大似然估计置信度为95%的参数估计和置信区间返回水平α的参数估计和置信区间expfit muhat =expfit(X)[muhat,muci] = expfit(X)[muhat,muci] = expfit(X,alpha)指数分布参数的最大似然估计置信度为95%的参数估计和置信区间返回水平α的参数估计和置信区间gamfit phat =gamfit(X)[phat,pci] = gamfit(X)[phat,pci] = gamfit(X,alpha)γ分布参数的最大似然估计置信度为95%的参数估计和置信区间返回最大似然估计值和水平α的置信区间weibfit phat = weibfit(X)[phat,pci] = weibfit(X)[phat,pci] = weibfit(X,alpha)韦伯分布参数的最大似然估计置信度为95%的参数估计和置信区间返回水平α的参数估计及其区间估计Mlephat = mle('dist',data)[phat,pci] = mle('dist',data)[phat,pci] = mle('dist',data,alpha)[phat,pci] = mle('dist',data,alpha,p1)分布函数名为dist的最大似然估计置信度为95%的参数估计和置信区间返回水平α的最大似然估计值和置信区间仅用于二项分布,pl为试验总次数说明:各函数返回已给数据向量X的参数最大似然估计值和置信度为(1-α)×100%的置信区间。

正态总体下参数的假设检验

正态总体下参数的假设检验
在二维平面上,正态分布可以表示为散点图上的椭圆,其中心 为均值$mu$,轴比为$sigma$。
正态分布的性质
1 2
3
集中性
正态分布的曲线关于均值$mu$对称。
均匀性
正态分布的曲线在均值附近最密集,向两侧逐渐扩散。
稳定性
正态分布的方差$sigma^2$决定了曲线的宽度,方差越大 ,曲线越宽。
正态分布在统计学中的应用
两个总体比例的比较案例
案例描述
某项调查显示,某地区支持甲政 策的居民占60%,支持乙政策的 居民占40%。现从该地区随机抽 取200名居民进行调查,得到支持 甲政策的居民有120名,支持乙政 策的居民有80名。
检验步骤
首先计算两组的样本比例和支持 率,然后根据正态分布的性质计 算临界值,最后根据临界值判断 两组之间是否存在显著差异。
检验步骤
首先计算两组的样本均值和标准差,然后根据正态分布的性质计算临界值,最后根据临界值判断两组之间是否存在显 著差异。
结论
如果两组之间的差异超过临界值,则可以认为两种药物治疗慢性胃炎的疗效存在显著差异;否则,不能 认为两种药物治疗慢性胃炎的疗效存在显著差异。
单个总体比例的假设检验案例
案例描述
检验步骤
03
正态总体下参数的假设检验 方法
单个总体均值的假设检验
总结词
单个总体均值的假设检验是统计学中常见的一种检验方法,用于检验单个正态总体均值 的假设。
详细描述
在假设检验中,我们通常会提出一个关于总体均值的假设,然后使用样本数据来检验这 个假设是否成立。对于单个总体均值的假设检验,我们首先需要确定样本数据和总体分 布的性质,然后选择合适的统计量进行计算,最后根据统计量的分布和临界值来判断假

正态总体参数的假设检验

正态总体参数的假设检验

正态总体参数的假设检验 正态总体中有两个参数:正态均值与正态⽅差。

有关这两个参数的假设检验问题经常出现,现逐⼀叙述如下。

(⼀) 正态均值的假设检验 ( 已知情形) 建⽴⼀个检验法则,关键在于前三步l,2,3。

5.判断(同前) 注:这个检验法称为u检验。

(⼆) 正态均值的假设检验 ( 未知情形) 在未知场合,可⽤样本标准差s去替代总体标准差,这样⼀来,u统计量变为t统计量,具体操作如下: 1.关于正态均值常⽤的三对假设为 5.判断 (同前) 注:这个检验法称为t检验。

(三)正态⽅差的假设检验 检验正态⽅差有关命题成⽴与否,⾸先想到要⽤样本⽅差。

在基础上依据抽样分布特点可构造统计量作为检验之⽤。

具体操作如下: 1.关于正态⽅差常⽤的三对假设为 5.判断(同前) 注:这个检验法称为检验。

注:关于正态标准差的假设与上述三对假设等价,不另作讨论。

(四) ⼩结与例⼦ 上述三组有关正态总体参数的假设检验可综合在表1.5-1上,以供⽐较和查阅。

续表 [例1.5-2] 某电⼯器材⼚⽣产⼀种云母带,其厚度在正常⽣产下服从N(0.13,0.0152)。

某⽇在⽣产的产品中抽查了10次,发现平均厚度为0.136,如果标准差不变,试问⽣产是否正常?(取 =0.05)来源:考试通 解:①⽴假设:②由于已知,故选⽤u检验。

③~④根据显著性⽔平 =0.05及备择假设可确定拒绝域为{ >1.96}。

⑤由样本观测值,求得检验统计量: 由于u未落在拒绝域中,所以不能拒绝原假设,可以认为该天⽣产正常。

[例1.5-3] 根据某地环境保护法规定,倾⼊河流的废⽔中⼀种有毒化学物质的平均含量不得超过3ppm。

已知废⽔中该有毒化学物质的含量X服从正态分布。

该地区环保组织对沿河的⼀个⼯⼚进⾏检查,测定每⽇倾⼊河流的废⽔中该物质的含量,15天的记录如下(单位:ppm)3.2,3.2,3.3,2.9,3.5,3.4,2.5,4.3,2.9,3.6,3.2,3.0,2.7,3.5,2.9 试在⽔平上判断该⼚是否符合环保规定? 解:①如果符合环保规定,那么应该不超过3ppm,不符合的话应该⼤于3ppm。

假设检验(2012)

假设检验(2012)

抽样分布
拒绝域
/2 1- 接受域
观测样本 的统计量
拒绝域 /2
临界值
H0值
临界值
样本统计量
从图可知,样本统计量的值越偏离原假设的值,拒绝原假设的把握就越大, 同时,样本统计量的值越靠近原假设的值,拒绝原假设的把握就越小.
左侧检验(显著性水平与拒绝域)
抽样分布
拒绝域

1- 接受域
观测样本
的统计量
假设检验:运用统计理论对上述假设进行检 验,在原假设与备择假设中选择其一。
2 .假设检验基本原理
假设检验的基本依据—小概率原理:
小概率事件在一次试验中几乎不可能发生。
假设检验的基本思想 小概率 事件发生 前提: 承认 原假设
进行一次实验
拒绝 原假设
大概率 事件发生
接受 原假设
显著水平与两类错误 第一类错误:弃真(显著水平α) 显著 水平 与 两类 错误
3.假设检验的步骤
一个完整的假设检验过程,通常包括以下四个步骤:
提出原假设(Null
hypothesis)与备择假设(Alternative hypothesis)
确定适当的检验统计量,并计算检验统计量的值
规定显著性水平α
作出统计决策
二、正态总体参数的假设检验
1 .正态总体参数假设检验的步骤
第一步:建立原假设H0和备择假设H1.原假设应该 是希望犯第Ι类错误概率小的假设。 常用的假设形式 :
属于决策中 的假设!
解:设新机床加工的零件的椭 圆度为X,且EX=μ
1)提出假设:假定新机床加工的零 件的椭圆度与以前无显著差异, 即 H0: = 0.081, H1: μ 0.081
X 0.081 N (0,1) n 3)=0.05,查表得临界值:

7.2正态总体的参数假设检验

7.2正态总体的参数假设检验

∵ X ~ N(µ,σ ),
2
σ2 ) ∴X ~ N(µ, n
X − µ0
当H0 为真 时, 利用 统计 u = 量 这 种检 验法 称为u 检验 . 法
σ/ n
~ N(0,1)来 确定 绝域 , 拒 的
由于µ的点估计是x ,
当H 0:µ = µ 0 为真时,
当 x − µ 0 ≥ k , 拒绝H 0
10.9 10.6 10.8 10.5 10.7 10.2 10.7 假定切割的长度服从正态分布, 假定切割的长度服从正态分布 且标准差没有变 试问该机工作是否正常? 化, 试问该机工作是否正常 (α = 0.05)
解 依题意 X ~ N ( µ ,σ 2 ), µ ,σ 2均为未知,
要检验假设 H 0 : µ = 10.5, H 1 : µ ≠ 10.5,
一个有用的结论
α , 当显著性水平均为 时
检验问题 H 0 : µ ≤ µ 0 , H 1 : µ > µ 0 和 检验问题 H 0 : µ = µ 0 , H 1 : µ > µ 0
有相同的拒绝域. 有相同的拒绝域
练习:346页6(1)
(3) 假设检验H0 : µ ≥ µ0 , H1 : µ < µ0 .
P( X − µ0 ≤ −k) = P(u = X − µ0
σ/ n

−k
σ/ n
) =α
σx , 当H :µ ≥ µ 为真时, n 由于µ的点估计是 σ σ uα 则x ≤ µ 0 k+拒绝H = µ 0 − u1−α 当x − µ ≤ − ,
0 0
拒绝域为
−k
= uα 即u ≤ uα
0
0
n
n

正态分布的假设检验方法

正态分布的假设检验方法

正态分布的假设检验方法正态分布是一个重要的统计概念,经常用于解决各种实际问题。

不同于其它常见分布,正态分布具有非常特殊的性质,其中最突出的就是其反映了许多现实生活中的随机变量(例如人的身高、体重等)的分布类似于正态分布的情况。

随着科技与数据收集技术的不断进步,人们能够收集到越来越多的实际数据,并采用各种统计方法来分析这些数据。

在实际应用中,对于一些特定的问题,我们需要检验数据是否符合正态分布,并进而研究相关假设问题。

这需要运用到假设检验的方法,因此本文将对正态分布的假设检验方法进行详细阐述,包括其基础理论、假设设定方法、检验统计量的计算以及显著性检验的实现等。

一、基础理论正态分布是统计学中一个重要的概念,它是一个连续型概率分布,通常由两个参数μ和σ描述,其中μ是正态分布的均值,σ是正态分布的标准差。

对于一个正态分布的随机变量x ~N(μ,σ²),它的概率密度函数可以表示为:$$ f(x)=\frac{1}{\sigma\sqrt{2\pi}}\mathrme^{−(x−\mu)^2/2\sigma^2} $$在实际研究中,许多随机变量的分布都具有类似于正态分布的特性,在大样本情况下,它们的概率密度图常常能够像钟形曲线一样展示出来,因此我们可以通过正态分布模型,来描述某些随机变量的概率分布情况。

随着数据科学的不断进步,我们现在可以通过各种手段来收集数据,并利用统计工具对这些数据进行分析。

假设检验是其中一个最基础的分析方法,它通常用于判断某一假设是否成立。

正态分布的假设检验方法,就是一种基于正态分布模型的检验方法。

二、假设设定方法在进行正态分布的假设检验时,我们通常要设定两个假设,分别为原假设和备择假设。

原假设($H_0$)是我们想要检验的假设,而备择假设($H_1$)则是对原假设的拒绝。

在正态分布的假设检验中,常见的假设包括以下两种:1. 单样本均值检验对于单样本均值检验,我们设定以下的原假设和备择假设:$$ H_0:\mu=\mu_0 \ \ \ \ \ H_1:\mu\neq\mu_0 $$其中,$H_0$表示总体均值等于特定值$\mu_0$,$H_1$表示总体均值不等于$\mu_0$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 2 ( n 1 ) 和 ( n 1 ) 1 临界值 2 2
1、已知 , 的假设检验
2 2 0
H0: 0,H1: 0
选统计量U
X 0
0
n
2
~ N (0,1)
接受域W0 : U U1
拒绝域W1 : U U1
2
2、 未知, 的假设检验
n
i
X X 0 )
2
[( X
i 1
n
i
X ) ( X 0 )]2


2 2 ( X X ) ( X ) 2 ( X i X )( X 0 ) i 0 i 1
n
i 1
i
X ) n( X 0 ) 2( X 0 ) ( X i X )
2
X 0 选统计量T n ~ t(n 1) S n 1
检验法: “ t 检验法”
(1)双侧检验: H0: 0,H1: 0
接受域W0 : T T1
2
拒绝域W1 : T T1
2
2 ~ N ( , ), 例2. 某厂生产合金钢,其抗拉强度
现在抽查5件样品,测得抗拉强度为 46.8,45.0,48.3,45.1,44.7, 要检验假设强度是否为48?
接受域W0 : U U1
2
拒绝域W1 : U U1
2
例 7.1.1
某药厂包装硼酸粉, 规定每袋净重为 0.5
( kg ) ,设每袋重量服从正态分布,标准差
0.014 (kg) 。为检验包装机的工作是否正常,随
机抽取 10 袋,称得净重分别为: 0.496 0.510 0.515 0.506 0.518 0.512 0.524 0.497 0.488 0.511 问这台包装机的工作是否正常? ( 0.05)
正态总体参数的
假设检验
7.2.1 正态总体均值的检验
2 N ( , ) 均值 的检验 一、单个总体
2 1、已知 2 0 ,的假设检验
选统计量U
X 0
0
n
~ N (0,1)
检验法: “ U 检验法”或“ Z 检验法”
(1)双侧检验: H0: 0,H1: 0
2
2
2 (n 1) Sn 1

2 0
(n 1)
2
临界值 2 和
2 1 2
解:1) H 0 : 0 ;
H1 : 0
n
H 0成立
2)统计量 T X 0 Sn 1 3)计算观测值
~ t(4)
X 45.98, S n 1 1.535
|T | | 45.98 48 | 2.942 1.535 / 5
4)与临界值比较
| T | 2.942 2.7764 t 0.025 (4)
2 2
1

2
(n)
2 2
拒绝域( , (n) ) (1 (n), )
2 2
( X i 0 )
2 2 i 1 2 0
n
2 2 [(n 1) Sn n ( X ) 1 0 ]
2 0
( X
i 1
n
i
0 )
2
( X
i 1
2 ( X ) i 0 i 1 n
统计量 2
2
02 02 2 (n)
2 2 (n 1) Sn n ( X ) 1 0
临界值 ,
2
2
1

2
2 拒绝域( , ) (12 , ) 2 2
4、未知, 的检验
统计量

查表得U1 / 2 U0.975 1.96
临界值
接受域为W0 [U1 / 2 ,U1 /2 ] [1.96, 1.96]
U W0

不拒绝H0
p P{|U | U}
p 2
p 2
U
U
当 p 时,落在接受域 不拒绝H0
2、 未知, 的假设检验
2 X ~ N ( , 0 . 014 ) 解:设每袋净重为随机变量 X ,则
H 0 : 0 , H 1 : 0
X 0 X 0.5 取统计量U 0 n 0.014 10
0.5077 0.5 计算得 U 1.7393 统计量观测值 0.014 10
2 2 i 1
n
2 2 2 2 (n 1)Sn n ( X ) 0 ( n 1 ) S n ( X ) 1 0 n1 0
2、单个总体,未知, 的检验
统计量
2
( X
i 1
n
i
X)
2 0
2

2

2 (n 1) Sn 1

2 0
(n 1)
(统计量的值落在拒绝域内)
结论:拒绝原假设,即认为 48
7.2.2
正态总体方差的检验
2 0 , 1、单个总体,已知 的检验
2 2 H0: 2 0 ,H1: 2 0
统计量
2
( X
i 1
n
i
0 )
2 0
2

2
(n)
2
临界值 (n),
2
H0: 0,H1: 0
X 0 选统计量T n ~ t(n 1) S n 1
检验法: “ t 检验法”
接受域W0 : T T1
2
拒绝域W1 : T T1
2
2 3、已知 0 , 的检验
2 2 H0: 2 0 ,H1: 2 0
相关文档
最新文档