等腰三角形存在性问题及真题典例分析(含解析)

等腰三角形存在性问题及真题典例分析(含解析)
等腰三角形存在性问题及真题典例分析(含解析)

等腰三角形存在性问题

几何图形存在性问题是中考二次函数压轴题一大常见类型,等腰三角形、直角三角形、平行四边形、矩形、菱形、正方形等均有涉及,本系列从等腰三角形开始,逐一介绍各种问题及常规解法.

等腰三角形存在性问题

【问题描述】

如图,点A坐标为(1,1),点B坐标为(4,3),在x轴上取点C使得△ABC是等腰三角形.

【几何法】“两圆一线”得坐标

(1)以点A为圆心,AB为半径作圆,与x轴的交点即为满足条件的点C,有AB=AC;(2)以点B为圆心,AB为半径作圆,与x轴的交点即为满足条件的点C,有BA=BC;(3)作AB的垂直平分线,与x轴的交点即为满足条件的点C,有CA=CB.

【注意】若有三点共线的情况,则需排除.

作图并不难,问题是还需要把各个点坐标算出来,可通过勾股或者三角函数来求.

C 21+23,0()

C 11-23,0()C 1H =C 2H =13-1=23作AH ⊥x 轴于H 点,AH =1AC 1=AB=4-1()2+3-1()2=13

34C C 、同理可求,下求5C .

显然垂直平分线这个条件并不太适合这个题目,如果A 、B 均往下移一个单位,当点A 坐标为(1,0),点B 坐标为(4,2)时,可构造直角三角形勾股解:

故C 5坐标为(

196,0)

解得:x =

136

3-x ()2+22=x 2

设AC 5=x ,则BC 5=x ,C 5H =3-x AH =3,

BH =2

而对于本题的5C ,或许代数法更好用一些.

【代数法】表示线段构相等

(1)表示点:设点5C 坐标为(m ,0),又A 点坐标(1,1)、B 点坐标(4,3)

, (2)表示线段:5AC =

5BC

(3)分类讨论:根据

55AC BC =

(4)求解得答案:解得:236m =,故5C 坐标为23,06??

???

. 【小结】

几何法:(1)“两圆一线”作出点;

(2)利用勾股、相似、三角函数等求线段长,由线段长得点坐标.

代数法:(1)表示出三个点坐标A 、B 、C ;

(2)由点坐标表示出三条线段:AB 、AC 、BC ; (3)根据题意要求取①AB =AC 、②AB =BC 、③AC =BC ; (4)列出方程求解.

问题总结:

(1)两定一动:动点可在直线上、抛物线上;

(2)一定两动:两动点必有关联,可表示线段长度列方程求解; (3)三动点:分析可能存在的特殊边、角,以此为突破口.

【中考真题解析】

如图,在平面直角坐标系中,二次函数2y ax bx c =++交x 轴于点(4,0)A -、(2,0)B ,交y 轴于点(0,6)C ,在y 轴上有一点(0,2)E -,连接AE . (1)求二次函数的表达式;

(2)若点D 为抛物线在x 轴负半轴上方的一个动点,求ADE ?面积的最大值;

(3)抛物线对称轴上是否存在点P ,使AEP ?为等腰三角形?若存在,请直接写出所有P 点

的坐标,若不存在请说明理由.

【分析】

(1)233

642

y x x =--+;

(2)可用铅垂法,当点D 坐标为()2,6-时,△ADE 面积最大,最大值为14; (3)这个问题只涉及到A 、E 两点及直线x =-1(对称轴)

①当AE =AP 时,以A 为圆心,AE 为半径画圆,与对称轴交点即为所求P 点. ∵AE

=

1AP AH =3

,∴1

PH

故(1P -

、(21,P

-. ②当EA =EP 时,以E 点为圆心,EA 为半径画圆,与对称轴交点即为所求P 点. 过点E 作EM 垂直对称轴于M 点,则EM =1,

34P M P M ===,

故(31,2P -

-、(41,2P --.

③当P A =PE 时,作AE 的垂直平分线,与对称轴交点即为所求P 点. 设()51,P m -,()()2

2

25140P A m =-++-,()()2

2

25=102P E m --++ ∴()2

2921m m +=++,解得:m =1. 故()51,1P -.

综上所述,P 点坐标为(1

P -、(21,P

-、(31,2P --

+、(41,2P --、()51,1P -.

【补充】“代数法”用点坐标表示出线段,列方程求解亦可以解决.

【中考真题(删减)】

如图,抛物线24y ax bx =++交x 轴于(3,0)A -,(4,0)B 两点,与y 轴交于点C ,连接AC ,BC .点P 是第一象限内抛物线上的一个动点,点P 的横坐标为m .

(1)求此抛物线的表达式;

(2)过点P 作PM x ⊥轴,垂足为点M ,PM 交BC 于点Q .试探究点P 在运动过程中,

是否存在这样的点Q ,使得以A ,C ,Q 为顶点的三角形是等腰三角形.若存在,请求出此时点Q 的坐标,若不存在,请说明理由;

【分析】

(1)211

433

y x x =-++;

(2)①当CA =CQ 时,∵CA =5,∴CQ =5,

考虑到CB 与y 轴夹角为45°,故过点Q 作y 轴的垂线,垂足记为H ,

则CH QH ==

,故Q

点坐标为-??

. ②当AC =AQ 时,考虑直线BC 解析式为y =-x +4,可设Q 点坐标为(m ,-m +4),

AQ =

5=,解得:m =1或0(舍),

故Q 点坐标为(1,3).

③当QA =QC 时,作AC 的垂直平分线,显然与线段BC

无交点,故不存在. 综上所述,Q

点坐标为??

或(1,3).

如图所示,二次函数2(1)2y k x =-+的图像与一次函数2y kx k =-+的图像交于A 、B 两点,点B 在点A 的右侧,直线AB 分别与x 、y 轴交于C 、D 两点,其中0k <. (1)求A 、B 两点的横坐标;

(2)若OAB ?是以OA 为腰的等腰三角形,求k 的值.

【分析】

(1)A 、B 两点横坐标分别为1、2; (2)求k 的值等价于求B 点坐标,

B 点横坐标始终为2,故点B 可以看成是直线x =2上的一个动点, 满足△OAB 是以OA 为腰的等腰三角形, 又A 点坐标为(1,2)

,故OA = ①当OA =OB

时,即OB =

记直线x =2与x 轴交点为H 点, ∵OH =2,∴BH =1,

故B 点坐标为(2,1)或(2,-1),k =-1或-3. ②当AO =AB 时,易知B 点坐标为(2,0),k =-2. 综上所述,k 的值为-1或-2或-3.

如图,已知二次函数2y ax bx c =++的图像与x 轴相交于(1,0)A -,(3,0)B 两点,与y 轴相交于点(0,3)C -.

(1)求这个二次函数的表达式;

(2)若P 是第四象限内这个二次函数的图像上任意一点,PH x ⊥轴于点H ,与线段BC 交

于点M ,连接PC .当PCM ?是以PM 为一腰的等腰三角形时,求点P 的坐标.

【分析】

(1)223y x x =--;

(2)①当PM =PC 时,(特殊角分析)

考虑∠PMC =45°,∴∠PCM =45°,

即△PCM 是等腰直角三角形,P 点坐标为(2,-3);

②当MP =MC 时,(表示线段列方程)

设P 点坐标为()

2,23m m m --,则M 点坐标为(),3m m -, 故线段()()

223233PM m m m m m =----=-+ 故点M 作y 轴的垂线,垂足记为N ,则MN =m , 考虑△MCN

是等腰直角三角形,故MC =,

∴23m m -+

,解得3m =0(舍), 故P

点坐标为(3-.

综上所述,P 点坐标为(2,-3

)或(3-.

【中考真题(删减)】

如图,在平面直角坐标系中,抛物线24

9

y x bx c =-++经过点(5,0)A -和点(1,0)B .

(1)求抛物线的解析式及顶点D 的坐标;

(2)如图,连接AD 、BD ,点M 在线段AB 上(不与A 、B 重合),作DMN DBA ∠=∠,

MN 交线段AD 于点N ,是否存在这样点M ,使得DMN ?为等腰三角形?若存在,求

出AN 的长;若不存在,请说明理由.

【分析】

(1)241620

999

y x x =--+,顶点D 坐标为()2,4-;

(2)考虑到∠DAB =∠DBA =∠DMN ,即有△BMD ∽△ANM (一线三等角).

①当MD =MN 时,有△BMD ≌△ANM , 可得AM =BD =5,故AN =BM =1;

②当NM =ND 时,则∠NDM =∠NMD =∠DAB , △MAD ∽△DAB ,可得AM =

256,11

6

BM = ∴AN AM

BM BD

=

,即25

61156

AN =, 解得:5536

AN =

③当DM =DN 时,∠DNM =∠DMN =∠DAB ,显然不成立,故不存在这样的点M . 综上,AN 的值为1或5536

【中考真题(删减)】

如图,直线4y x =-+与x 轴交于点B ,与y 轴交于点C ,抛物线2y x bx c =-++经过B ,C 两点,与x 轴另一交点为A .点P

BC 上由点B 向点C 运动(点P 不与点B 和点C 重合),设运动时间为t 秒,过点P 作x 轴垂线交x 轴于点E ,交抛物线于点M .

(1)求抛物线的解析式;

(2)如图,连接AM 交BC 于点D ,当PDM ?是等腰三角形时,直接写出t 的值.

【分析】

(1)234y x x =-++;

(2)①考虑到∠DPM =45°,当DP =DM 时,即∠DMP =45°,

直线AM :y =x +1,

联立方程:2341x x x -++=+, 解得:13x =,21x =-(舍). 此时t =1.

②当PD=PM时,∠PMD=∠PDM=67.5°,∠MAB=22.5°,

考虑tan∠22.5°

1,

直线AM

)11 y x

=+,

联立方程:

)

23411 x x x

-++=

解得:

15

x=

21

x=-(舍).

此时t

1 -.

综上所述,t的值为1

1.

附:tan22.5°

1.

2

2

1

122.5°

22.5°

45°

45°

tan22.51

?==

【总结】具体问题还需具体分析题目给的关于动点的条件,选取恰当的方法,可减轻计算量.

全等三角形中等腰三角形证明题专训

全等三角形、等腰三角形 1、已知:如图,AD =AE ,AB =AC ,∠DAE =∠BAC .,求证:BD =CE . 2、已知:如图,△ABC 中,AD ⊥BC 于D ,E 是AD 上一点, BE 的延长线交AC 于F ,若BD=AD ,DE=DC 。求证:BF ⊥AC 。 4、如图:AE=BD ,AB=DE ,求证:∠A=∠D 5、在△ABC 中,∠ACB=90°,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E .试问DE ,AD ,BE 具有怎样的等量关系?并加以证明. 6、已知:如图,点C 在线段AB 上,以AC 和BC 为边在AB 的同侧作等边三角形 △ACM 和△BCN ,连结AN 、BM ,分别交CM 、CN 于点P 、Q .求证:CP=CQ . 7、已知:如图,AB//DE ,AE//BD ,AF=DC ,EF=BC 。求证:∠C=∠F 。 A B C D E F A B C D E F

9、如图,△ABC 中,AB=AC,BC=BD,AD=DE=EB ,求∠A 的度数。 10、如图,在Rt △ABC 中,在斜边AB 上截取AE=AC ,BD=BC ,求∠DCE 的度数。 11、在△ABC 中,∠A =90°,AB=AC ,D 为BC 的中点. (1)如图1,E ,F 分别是AB ,AC 上的点,且BE=AF ,求证:△DEF 为等腰直角三角形;(2)如图2,若E ,F 分别是AB ,CA 延长线上的点,仍有BE=AF ,其他条件不变,?那么△DEF 是否仍为等腰直角三角形?证明你的结论. 12、如图,△ABC 中,D 是BC 的中点,过D 点的直线GF 交AC 于F ,交AC 的平行线BG 于G 点,DE⊥DF,交AB 于点E ,连结EG 、EF.(1)求证:BG =CF. (2)请你判断BE+CF 与EF 的大小关系,并说明理由. 13、如图,已知∠BAC=90o,AD ⊥BC, ∠1=∠2,EF ⊥BC, FM ⊥AC,求证:FM=FD 。 图1 图2 F E D C B A G C B

等腰三角形存在性问题的解决策略

《等腰三角形存在性问题的解决策略》学习单 问:等腰三角形有哪些主要的性质? 出示问题1:已知△ABC中,一边AB=3,另两边BC=t,AC=2t-4, 若△ABC是等腰三角形则t= 出示问题2:如图在Rt△ABC中, ∠ACB=90°, AB=10cm,AC=8cm,动点D从C出发沿着CB 以1cm/s的速度向终点B移动,动点E从B出发沿BA以3cm/s的速度向终点A移动,两点同时出发,当一点到达终点时另一点也随之停止。设运动的时间为t(s) (1)用t的代数式表示BE与BD的长;BE= ,BD= ; (2)是否存在时间t ,使△DBE是等腰三角形;若存在,求出所有符合条件的t的值;

(3)以BE,BD为邻边做平行四边形BDFE,是否存在时间t,使得EF平分∠AED或者DF平分∠CDE,若存在求出相应的时间t的值。 问题2拓展:如图在Rt△ABC中, ∠ACB=90°, AB=10cm,AC=8cm,动点D从C出发沿着CB以1cm/s的速度向终点B移动,动点E从B出发沿BA以3cm/s的速度向终点A移动,两点同时出发,当一点到达终点时另一点也随之停止。设运动的时间为t(s) (4)以BE,BD为邻边做平行四边形BDFE,过点D,E,F做圆☉O,当t取何值时,☉O与△ABC的边BC或AB 相切。

问题3、已知△ABC中,AB=AC=5,BC=8,P是线段BC上的动点(不包括端点)作∠APQ=∠B,交AC于Q, (1)求证?ABP ~?PCQ (2)设CP=t,是否存在一点P ,使得△APQ是等腰三角形;若存在求出相应的t值,若不存在说明理由。 拓展:如图,AB是圆O的直径,弦CD⊥AB于点H,连接BC.CD=24,BC=15. (1)求tan∠DCB的值; (2)P是劣弧AC上的动点,连接PD交AB于点E,当△APE为等腰三角形时,求AE的值.

保险学案例分析计算题含详细答案

公式 2、残废给付 ①一次伤害、多处致残的给付 ∑各部位残废程度百分数>100%——全额给付 ∑各部位残废程度百分数<100%—— ∑各部位残废程度百分数×保险金额 一被保险人在一次意外伤害中,造成一肢永久性残废,并丧失中指和无名指,保险金额为1万元,保险公司应给付的残废保险金为多少 若该次事故还造成被保险人双目永久完全失明,则保险公司应给付的残废保险金又为多少 查表可知,一肢永久性残废的残废程度百分率为50%,一中指和一无名指的残废程度百分率为10%,双目永久完全失明的残废程度百分率为100%,则 A、残废保险金=(50%+10%)×10000=6000(元) B、按保险金额给付:1万元 保险的损失分摊机制 设某一地区有1000户住房,每户住房的市场价值为10万元,据以往资料知,每年火灾发生的频率为%。假设每次火灾均为全损,保险公司要求每户房主缴纳110元保险金,保险公司则承担所有风险损失。

请问:风险损失的事实承担者是保险公司吗保险公司怎样兑现承诺所收金额:110×1000=11(万元) 每年可能补偿额:1000×%×100000=10(万元) 赔余额:1万元 风险损失的事实承担者并不是保险公司,而是其他没有遭受风险损失的房主,其承担份额为110元,遭受风险损失者也承担了110元。保险公司不仅没有实质性地承担风险损失,反而因为提供了有效的保险服务而获得了1万元的报酬。 + ——保险公司的作用在于组织分散风险、分摊损失。 李某在游泳池内被从高处跳水的王某撞昏,溺死于水池底。由于李某生前投保了一份健康保险,保额5万元,而游泳馆也为每位游客保了一份意外伤害保险,保额2万元。事后,王某承担民事损害赔偿责任10万元。问题是: (1)因未指定受益人,李某的家人能领取多少保险金 (2)对王某的10万元赔款应如何处理说明理由。 解答:(1)李某死亡的近因属于意外伤害,属于意外伤害保险的保险责任,因此李某的家人只能领到2万元的保险金。 (2)对王某的10万元赔款应全部归李某的家人所有,因为人身保险不适用于补偿原则。

2018年中考数学专题等腰三角形存在性问题(题型全面)压轴题

专题等腰三角形存在性问题 题型一:几何图形 1、如图(1),在△ABC中,AB=AC,∠A=36°. (1)直接写出∠ABC的度数; (2)如图(2),BD是△ABC中∠ABC的平分线. ①找出图中所有等腰三角形(等腰三角形ABC除外),并选其中一个写出推理过程; ②在直线BC上是否存在点P,使△CDP是以CD为一腰的等腰三角形?如果存在,请在图(3)中画出满足条件的所有的点P,并直接写出相应的∠CPD的度数;如果不存在,请说明理由.

变式一:如图,在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点C出发,按C→B→A的路径,以2cm每秒的速度运动,设运动时间为t秒. (1)当t=1时,求△ACP的面积. (2)t为何值时,线段AP是∠CAB的平分线? (3)请利用备用图2继续探索:当t为何值时,△ACP是以AC为腰的等腰三角形?(直接写出结论) 变式二:如图,已知在△ABC中,∠B=90°,AB=8cm,BC=6cm,点P开始从点A 开始沿△ABC的边做逆时针运动,且速度为每秒1cm,点Q从点B开始沿△ABC 的边做逆时针运动,且速度为每秒2cm,他们同时出发,设运动时间我t秒.(1)出发2秒后,求PQ的长; (2)在运动过程中,△PQB能形成等腰三角形吗?若能,则求出几秒后第一次形成等腰三角形;若不能,则说明理由; (3)从出发几秒后,线段PQ第一次把直角三角形周长分成相等的两部分?

变式三:在△ABC中,∠C=90°,AC=BC=2,将一块三角板的直角顶点放在斜边AB 的中点P处,将此三角板绕点P旋转,三角板的两直角边分别交射线AC、CB与点D、点E,图①,②,③是旋转得到的三种图形. (1)观察线段PD和PE之间的有怎样的大小关系,并以图②为例,加以说明;(2)△PBE是否构成等腰三角形?若能,指出所有的情况(即求出△PBE为等腰三角形时CE的长);若不能请说明理由. 变式四:如图,在矩形ABCD中,AB=4,BC=3,点E是边CD上任意一点(点E 与点C、D不重合),过点A作AF⊥AE,交边CB的延长线于点F,连接EF,交边AB于点G.设DE=x,BF=y. (1)求y关于x的函数解析式,并写出自变量x的取值范围; (2)如果AD=BF,求证:△AEF∽△DEA; (3)当点E在边CD上移动时,△AEG能否成为等腰三角形?如果能,请直接写出线段DE的长;如果不能,请说明理由.

等腰三角形计算和证明题集锦(全)

一、计算题: 1. 如图,△ABC 中,AB=AC,BC=BD,AD=DE=EB 求∠A 的度数 2.如图,CA=CB,DF=DB,AE=AD 求∠A 的度数 3. 如图,△ABC 中,AB=AC ,D 在BC 上, DE ⊥AB 于E ,DF ⊥BC 交AC 于点F , 若∠EDF=70°,求∠AFD 的度数 4. 如图,△ABC 中, AB=AC,BC=BD=ED=EA 求∠A 的度数 5. 如图,△ABC 中,AB=AC ,D 在BC 上, ∠BAD=30°,在AC 上取点E ,使AE=AD, 求∠EDC 的度数 6. 如图,△ABC 中,∠C=90°,D 为AB 上一点, 作DE ⊥BC 于E ,若BE=AC,BD=1/2,DE+BC=1, 求∠ABC 的度数 7. 如图,△ABC 中, AD 平分∠BAC ,若AC=AB+BD 求∠B :∠C 的值 二、证明题 8、如图,△ABC 中,∠ABC,∠CAB 的平分线交于点P , 过点P 作DE ∥AB ,分别交BC 、AC 于点D 、E 求证:DE=BD+AE 9、如图,△DEF 中,∠EDF=2∠E ,FA ⊥DE 于点A ,问:DF 、AD 、AE 间有什么样的大小关系。 10、如图,△ABC 中,∠B=60°,角平分线AD 、CE 交于点O 求证:AE+CD=AC A B C D F E

11、11. 如图,△ABC中,AB=AC, ∠A=100°,BD 平分∠ABC, 求证:BC=BD+AD 12、12. 如图,△ABC中,AB=AC,D为△ABC外一点,且∠ABD=∠ACD =60° 求证:CD=AB-BD 13、13.已知:如图,AB=AC=BE,CD为△ABC中AB 边上的中线 求证:CD=1/2 CE 14、如图,△ABC中,∠1=∠2,∠EDC=∠BAC 求证:BD=ED 15、如图,△ABC中,AB=AC,BE=CF,EF交BC于点G 求证:EG=FG 16、如图,△ABC中,∠ABC=2∠C,AD是BC边上的高,B到点E,使BE=BD 求证:AF=FC 17、如图,△ABC中,AB=AC,AD和BE两条高, 交于点H,且AE=BE 求证:AH=2BD 18、如图,△ABC中,AB=AC, ∠BAC=90°,BD=AB,∠ABD=30°求证:AD=DC 19、如图,等边△ABC中,分别延长BA至点E, 延长BC至点D,使AE=BD 求证:EC=ED 20、如图,四边形ABCD中,∠BAD+∠BCD=180°AD、BC的延长线交于点F,DC、AB的延长线交于点E,∠E、∠F的平分线交于点H 求证:EH⊥FH

等腰三角形存在问题

压轴题(等腰三角形存在问题) 解题思路: 一、如果△ABC是等腰三角形,那么存在①________,②________,③_________三种情况. 二、已知腰长画等腰三角形用圆规画圆,已知底边画等腰三角形用刻度尺画垂直平分线. 三、解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得 解题又好又快.○1几何法一般分三步:分类、画图、计算.○2代数法一般也分三步:罗列三边长,分类列方程,解方程并检验. 针对训练 1.如图,在平面直角坐标系xOy中,已知点D在坐标为(3,4),点P是x轴正半轴上的一个动点,如果△DOP是等腰三角形,求点P的坐标. 2.如图,在矩形ABCD中,AB=6,BC=8,动点P以2个单位/秒的速度从点A出发,沿AC向点C移动,同时动点Q以1个单位/秒的速度从点C出发,沿CB向点B移动,当P、Q 两点中其中一点到达终点时则停止运动.在P、Q两点移动过程中,当△PQC为等腰三角形时,求t的值. 3.如图,直线y=2x+2与x轴交于点A,与y轴交于点B,点P是x轴正半轴上的一个动点,直线PQ与直线AB垂直,交y轴于点Q,如果△APQ是等腰三角形,求点P的坐标.

4.(2016临沂市26题满分13分) 如图,在平面直角坐标系中,直线y=—2x+10与x轴、y轴相交于A、B两点.点C的坐标是(8,4),连接AC、BC. (1)求过O、A、C三点的抛物线的解析式,并判断△ABC的形状; (2)动点P从点O出发,沿OB以每秒2个单位长度的速度向点B运动;同时,动点Q从点B出发,沿BC以每秒1个单位长度的速度向点C运动.规定其中一个点到达端点时,另一个动点也随之停止运动.设运动时间为t秒,当t为何值时,PA=QA? (3)在抛物线的对称轴上,是否存在点M,使以A、B、M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由。

(完整版)保险学案例分析计算题含详细答案

2、残废给付 ①一次伤害、多处致残的给付 ∑各部位残废程度百分数>100%——全额给付 ∑各部位残废程度百分数<100%—— ∑各部位残废程度百分数×保险金额 一被保险人在一次意外伤害中,造成一肢永久性残废,并丧失中指和无名指,保险金额为1万元,保险公司应给付的残废保险金为多少? 若该次事故还造成被保险人双目永久完全失明,则保险公司应给付的残废保险金又为多少? 查表可知,一肢永久性残废的残废程度百分率为50%,一中指和一无名指的残废程度百分率为10%,双目永久完全失明的残废程度百分率为100%,则 A、残废保险金=(50%+10%)×10000=6000(元) B、按保险金额给付:1万元 保险的损失分摊机制 设某一地区有1000户住房,每户住房的市场价值为10万元,据以往资料知,每年火灾发生的频率为0.1%。假设每次火灾均为全损,保险公司要求每户房主缴纳110元保险金,保险公司则承担所有风险损

请问:风险损失的事实承担者是保险公司吗?保险公司怎样兑现承诺? 所收金额:110×1000=11(万元) 每年可能补偿额:1000×0.1%×100000=10(万元) 赔余额:1万元 风险损失的事实承担者并不是保险公司,而是其他没有遭受风险损失的房主,其承担份额为110元,遭受风险损失者也承担了110元。保险公司不仅没有实质性地承担风险损失,反而因为提供了有效的保险服务而获得了1万元的报酬。+ ——保险公司的作用在于组织分散风险、分摊损失。 李某在游泳池内被从高处跳水的王某撞昏,溺死于水池底。由于李某生前投保了一份健康保险,保额5万元,而游泳馆也为每位游客保了一份意外伤害保险,保额2万元。事后,王某承担民事损害赔偿责任10万元。问题是: (1)因未指定受益人,李某的家人能领取多少保险金? (2)对王某的10万元赔款应如何处理?说明理由。 解答:(1)李某死亡的近因属于意外伤害,属于意外伤害保险的保险责任,因此李某的家人只能领到2万元的保险金。 (2)对王某的10万元赔款应全部归李某的家人所有,因为人身

与等腰三角形有关的证明题

与等腰三角形有关的证明题 例1.如图,等腰△ABC中,AB=AC,D是AB边上一点,E是AC延长线上一点,且BD=CE,DE交BC于F。 求证:DF=EF 分析:要证DF=EF,只需设法证明DF与EF所在的三角形全等, 但由于DF所在的△DFB比EF所在的△EFC显然大,故应考虑添加 辅助线。 作DG∥AC,交BC于G,则∠DGB=∠ACB 从而∠DGF=∠ECF(等角的补角相等) 由AB=AC,得∠B=∠ACB 从而∠DGB=∠B,DG=BD=CE 在△DFG与△EFC中,∠DGF=∠ECF,∠DFG=∠EFC(对顶角相等) 故∠GDF=∠FEC 又DG=CE,所以△DFG≌△EFC 所以DF=EF 例2.如图,等腰△ABC中,AB=AC,D是BC上任一点,DE⊥AB于E, DF⊥AC于F。 求证:为定值。 分析:所谓定值是指不论点D在底边BC的何处,DE+DF的大小总是 等于已知的或隐含的某条线段的长,也就是说定值是一个常量。那么本题的 定值究竟是多少呢?我们可以考虑点D所在的特殊位置,当点D与点B重 合时,DE的长度为0,DF等于AC边上的高,可见,(DE+DF)的定值是腰上的高,因此,作△ABC的高BG,然后只需证明DE+DF=BG即可。 要证,可在BG上截取GH=DF,然后只需证BH=DE。连接DH,则只需证明△BDE≌△DBH。易知四边形DFGH是矩形,从而DH∥AC,∠BDH=∠C,∠BHD=∠DHG=90°=∠BED。又AB=AC,∠EBD=∠ABC=∠C,所以∠BDH=∠EBD。所以∠EDB=∠DBH。又BD为公共边,所以△BDE≌△DBH。 如果注意到高,联想到三角形面积,则 可采用如下简单的证法: 连接AD 则由,得: 又AB=AC 边上的高=定值

初中数学 等腰三角形存在性问题

等腰三角形存在性问题 几何图形存在性问题是中考二次函数压轴题一大常见类型,等腰三角形、直角三角形、平行四边形、矩形、菱形、正方形等均有涉及,本系列从等腰三角形开始,逐一介绍各种问题及常规解法. 等腰三角形存在性问题 【问题描述】 如图,点A坐标为(1,1),点B坐标为(4,3),在x轴上取点C使得△ABC是等腰三角形. 【几何法】“两圆一线”得坐标 (1)以点A为圆心,AB为半径作圆,与x轴的交点即为满足条件的点C,有AB=AC;(2)以点B为圆心,AB为半径作圆,与x轴的交点即为满足条件的点C,有BA=BC;(3)作AB的垂直平分线,与x轴的交点即为满足条件的点C,有CA=CB. 【注意】若有三点共线的情况,则需排除. 作图并不难,问题是还需要把各个点坐标算出来,可通过勾股或者三角函数来求.

C 21+23,0() C 11-23,0()C 1H =C 2H =13-1=23作AH ⊥x 轴于H 点,AH =1AC 1=AB=4-1()2+3-1()2=13 34C C 、同理可求,下求5C . 显然垂直平分线这个条件并不太适合这个题目,如果A 、B 均往下移一个单位,当点A 坐标为(1,0),点B 坐标为(4,2)时,可构造直角三角形勾股解: 故C 5坐标为( 196,0) 解得:x = 136 3-x ()2+22=x 2 设AC 5=x ,则BC 5=x ,C 5H =3-x AH =3, BH =2 而对于本题的5C ,或许代数法更好用一些.

【代数法】表示线段构相等 (1)表示点:设点5C 坐标为(m ,0),又A 点坐标(1,1)、B 点坐标(4,3) , (2)表示线段:5AC = 5BC (3)分类讨论:根据 55AC BC = , (4)求解得答案:解得:236m =,故5C 坐标为23,06?? ??? . 【小结】 几何法:(1)“两圆一线”作出点; (2)利用勾股、相似、三角函数等求线段长,由线段长得点坐标. 代数法:(1)表示出三个点坐标A 、B 、C ; (2)由点坐标表示出三条线段:AB 、AC 、BC ; (3)根据题意要求取①AB =AC 、②AB =BC 、③AC =BC ; (4)列出方程求解. 问题总结: (1)两定一动:动点可在直线上、抛物线上; (2)一定两动:两动点必有关联,可表示线段长度列方程求解; (3)三动点:分析可能存在的特殊边、角,以此为突破口.

关于财产保全保险的几个重要问题及典型案例分析

关于财产保全保险的几个重要问题及典型案例分析 ?诉讼财产保全责任保险:是指投保人与保险公司(保险人)签订保险产品合约,保险公司以保险产品作为担保物,对诉讼当事人(被保险人)的财产保全行为进行担保,当被保险人申请错误依法应承担经济赔偿责任时,由保险人根据约定的赔偿限额负责赔偿或先行垫付,继而实现诉讼财产保全担保的目的。 ?附录:28个典型诉讼保全责任保险案例分享(裁判文书均附有链接,点开即可查看裁判文书原文),请到陈特的公共邮箱下载 一、诉讼财产保全责任保险的背景 诉讼财产保全,是指在民事诉讼中,人民法院为保证将来的判决能得以实现,根据当事人的申请,或者人民法院依职权决定,对当事人争议的有关财物采取临时性强制措施的制度。具体措施一般有查封、扣押、冻结。诉讼财产保全是我国民事诉讼程序的一项重要法律制度,对保障当事人的合法诉讼权益、保证判决的顺利执行、维护宪法和法律的尊严具有重要意义。 司法实践中,法院极少依职权主动采取财产保全措施,因此财产保全一般由当事人申请,由人民法院审查决定是否采取财产保全措施。根据我国《民事诉讼法》及相关司法解释,当事人申请诉前财产保全必须提供担保,申请诉讼财产保全可以责令当事人提供担保。实践中,法院对诉讼财产保全申请是否要提供担保以及担保的金额要求较严,在诉前财产保全中很少不要求当事人提供担保,且担保物的价值必须与被担保物的价值相当,增加了当事人的负担。诉讼财产保全担保制度客观上造成部分经济困难的当事人无法启动财产保全司法程序,造成诉讼权利难以有效保障,致使当事人的诉讼目的落空。 诉讼财产保全责任保险是指投保人与保险公司(保险人)签订保险产品合约,保险公司以保险产品作为担保物,对诉讼当事人(被保险人)的财产保全行为进行担保,当被保险人申请错误依法应承担经济赔偿责任时,由保险人根据约定的赔偿限额负责赔偿或先行垫付,继而实现诉讼财产保全担保的目的。 相关法律关系如下图所示: 诉讼财产保全责任保险是对我国《民事诉讼法》规定的诉讼财产保全担保制度的创新,即当申请人因申请错误给被申请人造成损失的,由保险人直接承担赔偿责任,不仅具有“财产保全担保规则”的作用,而且能打破“担保规则”的局限性,这一既担保又担责的特点是普通的担保保函所不具备的,有利于降低诉讼双方当事人及法院的保全风险,有利于保护被申请人的合法权益。 二、诉讼财产保全责任险的特点和优势 目前,全国各级法院能够接受的诉讼保全担保方式主要有以下三种:申请人个人财产担保、银行担保以及担保公司担保。但是,上述三种担保方式均存在缺陷和不足:首先,法院接受的申请人提供担保的财产标的种类较为严苛,一般只

(完整版)一次函数与等腰三角形的存在性问题

一次函数与等腰三角形的存在性问题 一.选择题(共3小题) 1.在平面直角坐标系中有两点:A(﹣2,3),B(4,3),C是坐标轴x轴上一点,若△ABC是直角三角形,则满足条件的点C共有() A.2个B.3个C.4个D.6个 2.(2008?天津)在平面直角坐标系中,已知点A(﹣4,0),B(2,0),若点C在一次函数y=﹣x+2的图象上,且△ABC为直角三角形,则满足条件 的点C有() A.1个B.2个C.3个D.4个 3.(2016?江宁区一模)已知点A,B的坐标分别为(﹣4,0)和(2,0), 在直线y=﹣x+2上取一点C,若△ABC是直角三角形,则满足条件的点C 有() A.1个B.2个C.3个D.4个 二.填空题(共4小题) 4.(2015?杭州模拟)在平面直角坐标系xOy中,点A(﹣4,0),B(2,0),设点C是函数y=﹣(x+1)图象上的一个动点,若△ABC是直角三角形,则点C的坐标是. 5.(2009秋?南昌校级期末)在直角坐标系中,点A、B、C的坐标分别为(1,2)、(0,0)、(3,0),若以点A、B、C、D为顶点构成平行四边形,则点D 的坐标应为. 6.(2009秋?扬州校级期中)在平面直角坐标系中若△ABC的顶点坐标分别为:A(3,0)、B(﹣1,0)、C(2,3)、若以点A、B、C、D为顶点的四边形是平行四边形,则点D的坐标为. 7.(2010春?江岸区期中)一个平行四边形在平面直角坐标系中三个顶点的 坐标分别是(﹣1,﹣1),(﹣2,3),(3,﹣1),则第四个顶点的坐标 为. 三.解答题(共14小题) 8.四边形ABCD中,BD,AC相交于O,且BD⊥AC,求证:AB2+CD2=AD2+BC2.9.如图,直线y=﹣x+3与x轴、y轴分别交于点A,点B,在第一象限是 否存在点P,使以A,B,P为顶点的三角形是等腰直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.

北师大版三角形的证明(全章节复习题)

等腰三角形(基础)知识讲解 【学习目标】 1.了解等腰三角形、等边三角形的有关概念, 掌握等腰三角形的轴对称性; 2. 掌握等腰三角形、等边三角形的性质,会利用这些性质进行简单的推理、证明、计算和作图. 3.理解并掌握等腰三角形、等边三角形的判定方法及其证明过程.通过定理的证明和应用,初步了解转化思想,并培养学生逻辑思维能力、分析问题和解决问题的能力. 4. 理解反证法并能用反证法推理证明简单几何题. 【要点梳理】 要点一、等腰三角形的定义 1.等腰三角形 有两条边相等的三角形,叫做等腰三角形,其中相等的两条边叫做腰,另一边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角. 如图所示,在△ABC中,AB=AC,△ABC是等腰三角形,其中AB、AC为腰,BC为底边,∠A是顶角,∠B、∠C是底角. 2.等腰三角形的作法 已知线段a,b(如图).用直尺和圆规作等腰三角形ABC,使AB=AC=b,BC=a. 作法:1.作线段BC=a; 2.分别以B,C为圆心,以b为半径画弧,两弧 相交于点A; 3.连接AB,AC. △ABC为所求作的等腰三角形 3.等腰三角形的对称性 (1)等腰三角形是轴对称图形; (2)∠B=∠C; (3)BD=CD,AD为底边上的中线.

(4)∠ADB=∠ADC=90°,AD为底边上的高线. 结论:等腰三角形是轴对称图形,顶角平分线(底边上的高线或中线)所在的直线是它的对称轴. 4.等边三角形 三条边都相等的三角形叫做等边三角形.也称为正三角形.等边三角形是一类特殊的等腰三角形,有三条对称轴,每个角的平分线(底边上的高线或中线)所在的直线就是它的对称轴. 要点诠释:(1)等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝 角(或直角).∠A=180°-2∠B,∠B=∠C=180 2 A ?-∠ . (2)等边三角形与等腰三角形的关系:等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形. 要点二、等腰三角形的性质 1.等腰三角形的性质 性质1:等腰三角形的两个底角相等,简称“在同一个三角形中,等边对等角”. 推论:等边三角形的三个内角都相等,并且每个内角都等于60°. 性质2:等腰三角形的顶角平分线、底边上中线和高线互相重合.简称“等腰三角形三线合一”. 2.等腰三角形中重要线段的性质 等腰三角形的两底角的平分线(两腰上的高、两腰上的中线)相等. 要点诠释:这条性质,还可以推广到一下结论: (1)等腰三角形底边上的高上任一点到两腰的距离相等。 (2)等腰三角形两底边上的中点到两腰的距离相等. (3)等腰三角形两底角平分线,两腰上的中线,两腰上的高的交点到两腰的距离相等,到底边两端上的距离相等. (4)等腰三角形顶点到两腰上的高、中线、角平分线的距离相等. 要点三、等腰三角形的判定定理 1.等腰三角形的判定定理 如果一个三角形有两个角相等,那么这个三角形是等腰三角形.可以简单的说成:在一个三角形中,等角对等边. 要点诠释:(1)要弄清判定定理的条件和结论,不要与性质定理混淆.判定定理得到的结论是等腰三角形,性质定理是已知三角形是等腰三角形,得到边和角关系. (2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形. 2.等边三角形的判定定理 三个角相等的三角形是等边三角形. 有一个角是60°的等腰三角形是等边三角形. 3. 含有30°角的直角三角形

等腰三角形的存在性问题

10.(2016山东省临沂市)如图,在平面直角坐标系中,直线y=﹣2x+10与x 轴,y轴相交于A,B两点,点C的坐标是(8,4),连接AC,BC. (1)求过O,A,C三点的抛物线的解析式,并判断△ABC的形状; (2)动点P从点O出发,沿OB以每秒2个单位长度的速度向点B运动;同时,动点Q从点B出发,沿BC以每秒1个单位长度的速度向点C运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t 秒,当t为何值时,PA=QA? (3)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由. 11.(2016山东省日照市)阅读理解: 我们把满足某种条件的所有点所组成的图形,叫做符合这个条件的点的轨迹.例如:角的平分线是到角的两边距离相等的点的轨迹. 问题:如图1,已知EF为△ABC的中位线,M是边BC上一动点,连接AM 交EF于点P,那么动点P为线段AM中点. 理由:∵线段EF为△ABC的中位线,∴EF∥BC,由平行线分线段成比例得:动点P为线段AM中点. 由此你得到动点P的运动轨迹是:. 知识应用: 如图2,已知EF为等边△ABC边AB、AC上的动点,连结EF;若AF=BE,且等边△ABC的边长为8,求线段EF中点Q的运动轨迹的长. 拓展提高: 如图3,P为线段AB上一动点(点P不与点A、B重合),在线段AB的同侧分别作等边△A PC和等边△PBD,连结AD、BC,交点为Q. (1)求∠AQB的度数; (2)若AB=6,求动点Q运动轨迹的长.

12.(2016山东省日照市)如图1,抛物线 2 3 [(2)] 5 y x n =--+ 与x轴交于 点A(m﹣2,0)和B(2m+3,0)(点A在点B的左侧),与y轴交于点C,连结BC. (1)求m、n的值; (2)如图2,点N为抛物线上的一动点,且位于直线BC上方,连接CN、BN.求△NBC面积的最大值; (3)如图3,点M、P分别为线段BC和线段OB上的动点,连接PM、PC,是否存在这样的点P,使△PCM为等腰三角形,△PMB为直角三角形同时成立?若存在,求出点P的坐标;若不存在,请说明理由. 13.(2016山西省)综合与探究 如图,在平面直角坐标系中,已知抛物线 28 y ax bx =+-与x轴交于A,B 两点,与y轴交于点C,直线l经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE,已知点A,D的坐标分别为(﹣2,0),(6,﹣8). (1)求抛物线的函数表达式,并分别求出点B和点E的坐标; (2)试探究抛物线上是否存在点F,使△FOE≌△FCE?若存在,请直接写出点F的坐标;若不存在,请说明理由; (3)若点P是y轴负半轴上的一个动点,设其坐标为(0,m),直线PB与直线l交于点Q,试探究:当m为何值时,△OPQ是等腰三角形.

财产保险案例分析试题.doc

厂房租赁合同到期,员工不慎失火引火灾,损毁财产可否赔付? 1999 年1 月2 日,A 公司向本市一家印刷厂租借了一间100 多平方米的厂房做生产车间,双方在租赁合同中约定租赁期为一年,若有一方违约,则违约方将支付违约金。同年3 月6 日,A 公司向当地保险公司投保了企业财产险,期限 为一年。当年A 公司因订单不断,欲向印刷厂续租厂房一年,遭到拒绝,因此A 公司只好边维持生产边准备搬迁。次年 1 月2 日至18 日间,印刷厂多次与 A 公司交涉,催促其尽快搬走,而 A 公司经理多次向印刷厂解释,并表示愿意交付 违约金。最后,印刷厂法人代表只得要求 A 公司最迟在 2 月10 日前交还厂房,否则将向有关部门起诉。2 月3 日,A 公司职员不慎将撒在地上的煤油引燃起火,造成厂房内设备损失215000 元,厂房屋顶烧塌,需修理费53000 元,A 公司于是向保险公司索赔。保险公司是否应该赔偿?如果要赔,赔多少?为什么? 【争议】 本案中厂房内设备属企业财产险的保险责任范围,保险公司理应赔偿其损失,这一点不存在争议,但租借合同已到期,保险公司对是否仍应对厂房屋顶 修理费进行赔偿产生了分歧。 第一种意见:租赁合同到期后,A 公司对印刷厂厂房已不存在保险利益。 第二种意见:A 公司继续违约使用印刷厂厂房期间,厂房屋顶烧塌,即 A 公司违约行为在先,在保险标的上的利益不合法,保险公司不应给予赔偿。 【评析】 一、根据《保险法》第11条第3 款规定。“保险利益是指投保人对保险标的具有的法律上承认的利益”。而在财产保险中,他无权对依法享有他物权的 财产,如承租人对其承租的房屋,享有保险利益。因此本案中, A 公司投保时,

等腰三角形的证明习题及答案

M E D C B A 等腰三角形 一、选择题 1. 如图,边长为4的等边△ABC 中,DE 为中位线,则四边形BCED 的面积为( ) (A )32 (B )33 (C )34 (D )36 2. 如图,⊿ABC 和⊿CDE 均为等腰直角三角形,点B,C,D 在一条直线上,点M 是AE 的中点,下列结论:①tan ∠AEC=CD BC ;②S ⊿ABC +S ⊿CDE ≧S ⊿ACE ;③BM ⊥DM;④BM=DM.正确结论的个数是( ) (A )1个 (B )2个 (C )3个 (D )4个 3. 如果一个等腰三角形的两边长分别是5cm 和6cm ,那么此三角形 的周长是 A .15cm B .16cm C .17cm D .16cm 或17cm 二、填空题 1. 边长为6cm 的等边三角形中,其一边上高的长度为________. 2. 等腰三角形的周长为14,其一边长为4,那么,它的底边为 . 3. 在等腰Rt △ABC 中,∠C =90°,AC =1,过点C 作直线l ∥AB ,F 是l 上的一点,且AB =AF ,则点F 到直线BC 的距离为 . 4. 已知等边△ABC 中,点D,E 分别在边AB,BC 上,把△BDE 沿直线DE 翻折,使点B 落在点B ˊ处,DB ˊ,EB ˊ分别交边AC 于点F ,G ,若∠ADF=80o ,则∠EGC 的度数为 5. 如图6,在△ABC 中,AB=AC ,∠BAC 的角平分线交BC 边于点D ,AB=5,BC=6, 则AD=_______. 6.如图(四)所示,在△ABC 中,AB=AC ,∠B=50°,则∠A=_______。

中考压轴题等腰三角形存在性问题 -

中考压轴题等腰三角形存在性问题 数学因运动而充满活力,数学因变化而精彩纷呈.动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等.解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况.以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射. 动态几何形成的存在性问题是动态几何中的基本类型,包括等腰(边)三角形存在问题;直角三角形存在问题;平行四边形存在问题;矩形、菱形、正方形存在问题;梯形存在问题;全等三角形存在问题;相似三角形存在问题;其它存在问题等.本专题原创编写面动形成的等腰三角形存在性问题模拟题. 在中考压轴题中,面动形成的等腰三角形存在性问题的重点和难点在于应用分类思想和数形结合的思想准确地进行分类. 原创模拟预测题1.如图,抛物线 223 y x x =-++与y轴交于点C,点D(0,1),点P是 抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为. 【答案】(122)或(122). 【分析】当△PCD是以CD为底的等腰三角形时,则P点在线段CD的垂直平分线上,由C、D坐标可求得线段CD中点的坐标,从而可知P点的纵坐标,代入抛物线解析式可求得P 点坐标. 【解析】 ∵△PCD是以CD为底的等腰三角形,∴点P在线段CD的垂直平分线上,如图,过P作 PE⊥y轴于点E,则E为线段CD的中点,∵抛物线 223 y x x =-++与y轴交于点C,∴C (0,3),且D(0,1),∴E点坐标为(0,2),∴P点纵坐标为2,在 223 y x x =-++中, 令y=2,可得 2232 x x -++=,解得x=12 ±,∴P点坐标为(122)或(12, 2),故答案为:(122)或(12,2).

30个财产保险案例解析

30个财产保险案例解析

30个财产保险案例 例1:某外贸企业于1995年5月8日将一批出口货物向保险公司投保货物运输保险,起运港为上海,目的港为伦敦;保险金额为500万元。6月23 日货轮在新加坡沉没,如果: 1、货物全部损失,即损失程度=100%,且货物在出险时的当地市价为420万元,则保险人应当赔偿的金额=保险金额×100%=500万元。再如货物在出险时的当地市价为620万元,则保险人应当赔偿的金额同样是500万元。 2、货物部分损失,损失程度=80%,且货物在出险时的当地市价为450万元,则保险人应当赔偿的金额=保险金额×80%=500万元×80%=400万元。又如货物在出险时市价为600万元,则保险人应当赔偿的金额同样是400万元。 例2:某企业于1997年12月1日向保险公司投保企业财产保险,保险期限自1998年1月1日至12月31日,保险金额为100万元。1998年4月23日企业遭受水灾。经核查,该企业在出险时保险财产的保险价值为120万元,实际遭受损失30万元,问保险人应当如何赔偿? 分析:因为被保险人(企业)投保的是企业财产保险,是不定值保险;而且保险金额为100万元,少于金额为120万元的保险价值,所以保险人应当采用不足额保险的比例赔偿方式,即:赔偿额=30×100/120=25万元在上例中,如果该企业投保的保险金额为120万元,在出险时保险财产的保险价值也为120万元,实际遭受损失30万元,则保险人应当赔偿:赔偿额=保险财产实际损失额=30万元 在例2中,如果该企业投保的保险金额为100万元,在出险时保险财产的保险价值也为80万元,则: 1、当实际遭受部分损失30万元时,保险人赔偿的金额=保险财产实际损失额=30万元; 2、当实际遭受全部损失80万元时,保险人赔偿的金额=保险财产实际损失额=80万元; 例3:一游客到北京旅游,在游览了故宫博物院后,出于爱护国家财产的动机,自愿交付保险费为故宫投保。问该游客是否具有保险利益?分析:游客对

培优专题等腰三角形含答案

9、等腰三角形【知识精读】 (-)等腰三角形的性质 1. 有关定理及其推论 定理:等腰三角形有两边相等; 定理:等腰三角形的两个底角相等(简写成“等边对等角”)。 推论1:等腰三角形顶角的平分线平分底边并且垂直于底边,这就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。 推论2:等边三角形的各角都相等,并且每一个角都等于60°。等腰三角形是以底边的垂直平分线为对称轴的轴对称图形; 2. 定理及其推论的作用 等腰三角形的性质定理揭示了三角形中边相等与角相等之间的关系,由两边相等推出两角相等,是今后证明两角相等常用的依据之一。等腰三角形底边上的中线、底边上的高、顶角的平分线“三线合一”的性质是今后证明两条线段相等,两个角相等以及两条直线互相垂直的重要依据。 (二)等腰三角形的判定 1. 有关的定理及其推论 定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”。) 推论1:三个角都相等的三角形是等边三角形。

推论2:有一个角等于60°的等腰三角形是等边三角形。 推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。 2. 定理及其推论的作用。 等腰三角形的判定定理揭示了三角形中角与边的转化关系,它是证明线段相等的重要定理,也是把三角形中角的相等关系转化为边的相等关系的重要依据,是本节的重点。 3. 等腰三角形中常用的辅助线 等腰三角形顶角平分线、底边上的高、底边上的中线常常作为解决有关等腰三角形问题的辅助线,由于这条线可以把顶角和底边折半,所以常通过它来证明线段或角的倍分问题,在等腰三角形中,虽然顶角的平分线、底边上的高、底边上的中线互相重合,添加辅助线时,有时作哪条线都可以,有时需要作顶角的平分线,有时则需要作高或中线,这要视具体情况来定。 【分类解析】 例1. 如图,已知在等边三角形ABC中,D是AC的中点,E为BC 延长线上一点,且CE=CD,DM⊥BC,垂足为M。求证:M是BE的中点。 分析:欲证M是BE的中点,已知DM⊥BC,所以想到连结BD,证 1∠ABC,而由CE=CD,BD=ED。因为△ABC是等边三角形,∠DBE= 2 1∠ACB,所以∠1=∠E,从而问题得证。 又可证∠E= 2 证明:因为三角形ABC是等边三角形,D是AC的中点

保险学案例分析报告题

案例分析题 1.有一承租人向房东租借房屋,租期10个月。租房合同中写明,承租人在租借期应对房屋损坏负责,承租人为此而以所租借房屋投保火灾保险一年。租期满后,租户按时退房。退房后半个月,房屋毁于火灾。于是承租人以被保险人身份向保险公司索赔。保险人是否承担赔偿责任?为什么? 如果承租人在退房时,将保单转让给房东,房东是否能以被保险人身份向保险公司索赔赔?为什么? 2.某企业投保企业财产保险综合险,保险金额80万元,保险有效期间从1999年1月1日至12月31日。若: (1)该企业于2月12日发生火灾,损失金额为40万元,保险事故发生时的实际价值为100万元,则保险公司应赔偿多少?为什么? (2)5月18日因发生地震而造成财产损失60万元,保险事故发生时的实际价值为100万元,则保险公司应赔偿多少?为什么? (3)12月18日因下暴雨,仓库进水而造成存货损失70万元,保险事故发生时的企业财产实际价值为70万元,则保险公司应赔偿多少?为什么? 3.某甲车主将其所有的车辆向A保险公司投保了保险金额为40万元的车辆损失险、向B 保险公司投保了赔偿限额为100万元第三者责任险,乙车没有投保。后造成交通事故,导致乙车辆财产损失32万元和人身伤害8万元,甲车辆损失28元和人身伤害2万元。经交通管理部门裁定,甲车主负主要责任,为80%;乙车主负次要责任,为20%,按照保险公司免赔规定(负主要责任免赔15%,负次要责任免赔5%),则: (1)A保险公司应赔偿多少? (2)B保险公司应赔偿多少? 1.(1)保险人不承担赔偿责任。因为承租人对该房屋已经没有保险利益。(3分) (2)房东不能以被保险人的身份索赔。因为保单转让没有经过保险人办理批单手续,房东与保险人没有保险关系。(3分) 2.(1)保险公司赔偿金额=损失金额×保险保障程度=40×80/100=32万元。因为该保险为不足额保险,所以采用比例赔偿方式。(2分) (2)由于地震属于企业财产保险综合险的责任免除,所以保险公司可以拒赔。(2分)

二次函数与等腰三角形存在性问题

老师 学生学管师 学科 名称 年级上课时间月日 _ _ :00-- __ :00 课题 名称 等腰三角形的存在问题 教学 重点 教 学 过 程 1.(2011?)如图,直线y=3x+3交x轴于A点,交y轴于B点,过A、B两点的抛物线交x轴于另 一点C(3,0). (1)求抛物线的解析式; (2)在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由. 2.(2011?)如图.已知二次函数y=﹣x2+bx+3的图象与x轴的一个交点为A(4,0),与y轴交于

点B. (1)求此二次函数关系式和点B的坐标; (2)在x轴的正半轴上是否存在点P.使得△PAB是以AB为底边的等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由. 3.(2011?)如图,在平面直角坐标系中,A、B两点的坐标分别是(0,1)和(1,0),P是线段 AB上的一动点(不与A、B重合),坐标为(m,1﹣m)(m为常数).

(1)求经过O、P、B三点的抛物线的解析式; (2)当P点在线段AB上移动时,过O、P、B三点的抛物线的对称轴是否会随着P的移动而改变;(3)当P移动到点()时,请你在过O、P、B三点的抛物线上至少找出两点,使每个点都能与P、B两点构成等腰三角形,并求出这两点的坐标. 4.(2011?市綦江县潭已知抛物线y=ax2+bx+c(a>0)的图象经过点B(12,0)和C(0,-6),对称轴为x=2.

(1)求该抛物线的解析式: (2)点D 在线段AB 上且AD =AC ,若动点P 从A 出发沿线段AB 以每秒1个单位长度的速度匀速运动,同时另一动点Q 以某一速度从C 出发沿线段CB 匀速运动,问是否存在某一时刻,使线段PQ 被直线CD 垂直平分?若存在,请求出此时的时间t (秒)和点Q 的运动速度;若不存在,请说明理由; (3)在(2)的结论下,直线x =1上是否存在点M ,使△MPQ 为等腰三角形?若存在,请求出所有点M 的坐标;若不存在,请说明理由. 4.(2011?贵港)如图,已知直线y=﹣x+2与抛物线y=a (x+2)2 相交于A 、B 两点,点A 在y 轴上,M 为抛物线的顶点. (1)请直接写出点A 的坐标及该抛物线的解析式; C A B y x O P D Q

相关文档
最新文档