2015-2016学年高中物理 第4章 匀速圆周运动 第1讲 匀速圆周运动快慢的描述题组训练 鲁科版必修2

2015-2016学年高中物理 第4章 匀速圆周运动 第1讲 匀速圆周运动快慢的描述题组训练 鲁科版必修2
2015-2016学年高中物理 第4章 匀速圆周运动 第1讲 匀速圆周运动快慢的描述题组训练 鲁科版必修2

第1讲 匀速圆周运动快慢的描述

[时间:60分钟]

题组一 对匀速圆周运动的理解

1.做匀速圆周运动的物体,下列不变的物理量是( ) A .速度 B .速率 C .角速度 D .周期 2.质点做匀速圆周运动,则( )

A .在任何相等的时间里,质点的位移都相等

B .在任何相等的时间里,质点通过的路程都相等

C .在任何相等的时间里,质点运动的平均速度都相同

D .在任何相等的时间里,连接质点和圆心的半径转过的角度都相等 题组二 圆周运动各物理量间的关系

3.一般的转动机械上都标有“转速××× r/min”,该数值是转动机械正常工作时的转速,不同的转动机械上标有的转速一般是不同的.下列有关转速的说法正确的是( ) A .转速越大,说明该转动机械正常工作时转动的线速度一定越大 B .转速越大,说明该转动机械正常工作时转动的角速度一定越大 C .转速越大,说明该转动机械正常工作时转动的周期一定越大 D .转速越大,说明该转动机械正常工作时转动的周期一定越小 4.一个电子钟的秒针角速度为( ) A .π rad/s B .2π rad/s C.π

30

rad/s D.π

60

rad/s 5.假设“神舟”十号实施变轨后做匀速圆周运动,共运行了n 周,起始时刻为t 1,结束时刻为t 2,运行速度为v ,半径为r .则计算其运行周期可用( )

A .T =

t 2-t 1n B .T =t 1-t 2

n C .T =2πr

v

D .T =2πv

r

6.汽车在公路上行驶一般不打滑,轮子转一周,汽车向前行驶的距离等于车轮的周长.某国产轿车的车轮半径约为30 cm ,当该型号的轿车在高速公路上行驶时,驾驶员面前速率计的指针指在“120 km/h”上,可估算出该车轮的转速约为( ) A .1 000 r/s B .1 000 r/min C .1 000 r/h D .2 000 r/s

7.如图1所示,静止在地球上的物体都要随地球一起转动,a 是位于赤道上的一点,b 是位于北纬30°的一点,则下列说法正确的是( )

图1

A .a 、b 两点的运动周期都相同

B .它们的角速度是不同的

C .a 、b 两点的线速度大小相同

D .a 、b 两点线速度大小之比为2∶ 3

8.甲、乙两个做匀速圆周运动的质点,它们的角速度之比为3∶1,线速度之比为2∶3,那么下列说法中正确的是( ) A .它们的半径之比为2∶9 B .它们的半径之比为1∶2 C .它们的周期之比为2∶3 D .它们的周期之比为1∶3 题组三 传动问题

9.如图2所示为常见的自行车传动示意图.A 轮与脚蹬子相连,B 轮与车轴相连,C 为车轮.当人蹬车匀速运动时,以下说法中正确的是( )

图2

A .A 轮与

B 轮的角速度相同 B .A 轮边缘与B 轮边缘的线速度相同

C .B 轮边缘与C 轮边缘的线速度相同

D .B 轮与C 轮的角速度相同

10.如图3所示是一个玩具陀螺.a 、b 和c 是陀螺上的三个点.当陀螺绕垂直于地面的轴线以角速度ω稳定旋转时,下列表述正确的是( )

图3

A .a 、b 和c 三点的线速度大小相等

B .a 、b 和c 三点的角速度相等

C .a 、b 的角速度比c 的大

D .c 的线速度比a 、b 的大

11.无级变速是指在变速范围内任意连续地变换速度,其性能优于传统的挡位变速器,很多高档汽车都应用了“无级变速”.图4所示为一种“滚轮—平盘无级变速器”的示意图,它由固定在主动轴上的平盘和可随从动轴移动的圆柱形滚轮组成.由于摩擦的作用,当平盘转动时,滚轮就会跟随转动,如果认为滚轮不会打滑,那么主动轴的转速n 1、从动轴的转速

n 2、滚轮半径r 以及滚轮中心距离主动轴轴线的距离x 之间的关系是( )

图4

A .n 2=n 1x

r B .n 1=n 2x r

C .n 2=n 1x 2

r 2 D .n 2=n 1

x r

12.如图5所示的传动装置中,B 、C 两轮固定在一起绕同一轴转动,A 、B 两轮用皮带传动,三个轮的半径关系是r A =r C =2r B .若皮带不打滑,求A 、B 、C 三轮边缘上a 、b 、c 三点的角速度之比和线速度大小之比.

图5

题组四综合应用

13.做匀速圆周运动的物体,10 s内沿半径为20 m的圆周运动100 m,试求物体做匀速圆周运动时:

(1)线速度的大小;

(2)角速度的大小;

(3)周期的大小.

14.如图6所示,小球A在光滑的半径为R的圆形槽内做匀速圆周运动,当它运动到图中a 点时,在圆形槽中心O点正上方h处,有一小球B沿Oa方向以某一初速度水平抛出,结果恰好在a点与A球相碰,求:

图6

(1)B球抛出时的水平初速度大小;

(2)A球运动的线速度最小值.

答案精析

第4章 匀速圆周运动

第1讲 匀速圆周运动快慢的描述

1.BCD [物体做匀速圆周运动时,速度的大小虽然不变,但它的方向在不断变化,选项B 、C 、D 正确.]

2.BD [如图所示,经T 4,质点由A 到B ,再经T

4,质点由B 到C ,由于线

速度大小不变,根据线速度的定义,Δs =v ·T

4,所以相等时间内通过的

路程相等,B 对;但位移x AB 、x BC 大小相等,方向并不相同,平均速度不

同,A 、C 错;由角速度的定义ω=Δθ

Δt 知Δt 相同,Δθ=ωΔt 相同,D 对.]

3.BD [转速n 越大,角速度ω=2πn 一定越大,周期T =2πω=1

n 一定越小,由v =ωr 知

只有r 一定时,ω越大,v 才越大,B 、D 对.] 4.C

5.AC [由题意可知飞船匀速圆周运动n 周所需时间Δt =t 2-t 1,故其周期T =Δt n =t 2-t 1

n

故选项A 正确;由周期公式有T =2πr v

,故选项C 正确.]

6.B [由公式ω=2πn ,得v =r ω=2πrn ,其中r =30 cm =0.3 m ,v =120 km/h =1003 m/s ,

代入得n =1 000

18π

r/s ,约为1 000 r/min.]

7.AD [地球绕自转轴转动时,地球上各点的周期及角速度都是相同的.地球表面物体做圆周运动的平面是物体所在纬度线平面,其圆心分布在整条自转轴上,不同纬度处物体做圆周运动的半径是不同的,b 点半径r b =

3r a

2

,由v =ωr ,可得v a ∶v b =2∶ 3.] 8.AD [由v =ωr ,得r =v ω,r 甲r 乙=v 甲ω乙v 乙ω甲=29,A 对,B 错;由T =2πω,得T 甲∶T 乙=2πω甲∶

ω乙

=1

3

,C 错,D 对.] 9.BD [A 、B 两轮以链条相连,其边缘线速度相同,B 、C 同轴转动,其角速度相同.] 10.B [a 、b 和c 均是同一陀螺上的点,它们做圆周运动的角速度都是陀螺旋转的角速度ω,B 对、C 错;三点的运动半径关系r a =r b >r c ,据v =ωr 可知,三点的线速度关系v a =v b >v c ,

A 、D 错.]

11.A [由滚轮不会打滑可知,主动轴上的平盘与可随从动轴转动的圆柱形滚轮在接触点处的线速度相同,即v 1=v 2,由此可得x ·2πn 1=r ·2πn 2,所以n 2=n 1x

r

,选项A 正确.] 12.1∶2∶2 1∶1∶2 解析 a 、b 两点比较:v a =v b 由v =ωr 得:ωa ∶ωb =r B ∶r A =1∶2

b 、

c 两点比较ωb =ωc

由v =ωr 得:v b ∶v c =r B ∶r C =1∶2 所以ωa ∶ωb ∶ωc =1∶2∶2

v a ∶v b ∶v c =1∶1∶2

13.(1)10 m/s (2)0.5 rad/s (3)4π s

解析 (1)依据线速度的定义式v =Δs Δt 可得v =Δs Δt =100

10 m/s =10 m/s.

(2)依据v =ωr 可得ω=v r =10

20

rad/s =0.5 rad/s. (3)T =2πω=2π

0.5 s =4π s

14.(1)R

g

2h (2)2πR g 2h

解析 (1)小球B 做平抛运动,其在水平方向上做匀速直线运动,则

R =v 0t ①

在竖直方向上做自由落体运动,则

h =12

gt 2②

由①②得v 0=R t =R

g 2h

. (2)设相碰时,A 球转了n 圈,则A 球的线速度

v A =

2πR T =2πR

t /n =2πRn g

2h

当n =1时,其线速度有最小值,即

v min =2πR

g 2h

.

高一物理圆周运动专题练习(word版

一、第六章 圆周运动易错题培优(难) 1.两个质量分别为2m 和m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴OO ’的距离为L ,b 与转轴的距离为2L ,a 、b 之间用强度足够大的轻绳相连,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g .若圆盘从静止开始绕转轴缓慢地加速转动,开始时轻绳刚好伸直但无张力,用ω表示圆盘转动的角速度,下列说法正确的是( ) A .a 、b 所受的摩擦力始终相等 B .b 比a 先达到最大静摩擦力 C .当2kg L ω=a 刚要开始滑动 D .当23kg L ω=b 所受摩擦力的大小为kmg 【答案】BD 【解析】 【分析】 【详解】 AB .木块随圆盘一起转动,静摩擦力提供向心力,由牛顿第二定律可知,木块受到的静摩擦力f =mω2r ,则当圆盘从静止开始绕转轴缓慢地加速转动时,木块b 的最大静摩擦力先达到最大值;在木块b 的摩擦力没有达到最大值前,静摩擦力提供向心力,由牛顿第二定律可知,f=mω2r ,a 和b 的质量分别是2m 和m ,而a 与转轴OO ′为L ,b 与转轴OO ′为2L ,所以结果a 和b 受到的摩擦力是相等的;当b 受到的静摩擦力达到最大后,b 受到的摩擦力与绳子的拉力合力提供向心力,即 kmg +F =mω2?2L ① 而a 受力为 f′-F =2mω2L ② 联立①②得 f′=4mω2L -kmg 综合得出,a 、b 受到的摩擦力不是始终相等,故A 错误,B 正确; C .当a 刚要滑动时,有 2kmg+kmg =2mω2L +mω2?2L 解得 34kg L ω=

高一物理《圆周运动》六套练习题附答案

匀速圆周运动练习 1.一质点做圆周运动,速度处处不为零,则:①任何时刻质点所受的合力一定不为零,②任何时刻质点的加速度一定不为零,③质点速度的大小一定不断变化,④质点速度的方向一定不断变化 其中正确的是( ) A .①②③ B .①②④ C .①③④ D .②③④ 2.火车轨道在转弯处外轨高于内轨,其高度差由转弯半径与火车速度确定.若在某转弯处规定行驶速度为v ,则下列说法中正确的是( ) ①当以速度v 通过此弯路时,火车重力与轨道支持力的合力提供向心力 ②当以速度v 通过此弯路时,火车重力、轨道支持力和外轨对轮缘弹力的合力提供向心力 ③当速度大于v 时,轮缘挤压外轨 ④当速度小于v 时,轮缘挤压外轨 A.①③ B.①④ C.②③ D.②④ 3.如图所示,在皮带传动装置中,主动轮A 和从动轮B 半径不等,皮带与轮之间无相对滑动,则下列说法中正确的是( ) A .两轮的角速度相等 B .两轮边缘的线速度大小相等 C .两轮边缘的向心加速度大小相等 D .两轮转动的周期相同 4.用细线拴着一个小球,在光滑水平面上作匀速圆周运动,下列说法正确的是( ) A .小球线速度大小一定时,线越长越容易断 B .小球线速度大小一定时,线越短越容易断 C .小球角速度一定时,线越长越容易断 D .小球角速度一定时,线越短越容易断 5.长度为0.5m 的轻质细杆OA ,A 端有一质量为3kg 的小球,以O 点为圆心,在竖直平面内做圆周运动,如图所示,小球通过最高点时的速度为2m/s ,取g=10m/s 2 ,则此时轻杆OA 将( ) A .受到6.0N 的拉力 B .受到6.0N 的压力 C .受到24N 的拉力 D .受到24N 的压力 6.滑块相对静止于转盘的水平面上,随盘一起旋转时所需向心力的来源是( ) A .滑块的重力 B .盘面对滑块的弹力 C .盘面对滑块的静摩擦力 D .以上三个力的合力 7.如图所示,固定的锥形漏斗内壁是光滑的,内壁上有两个质量相等的小球A 和B ,在各自不同的水平面做匀速圆周运动,以下说法正确的是( ) A.V A >V B B.ωA >ωB C.a A >a B D.压力N A >N B 8.一个电子钟的秒针角速度为( ) A .πrad/s B .2πrad/s C . 60πrad/s D .30 πrad/s 9.甲、乙、丙三个物体,甲放在广州,乙放在上海,丙放在北京.当它们随地球一起转动时,则 ( ) A B

高中物理圆周运动专题讲解

圆周运动的向心力及其应用 【要点梳理】 要点一、物体做匀速圆周运动的条件 要点诠释: 物体做匀速圆周运动的条件:具有一定速度的物体,在大小不变且方向总是与速度方向垂直的合外力的作用下做匀速圆周运动。 要点二、关于向心力及其来源 1、向心力 要点诠释 (1)向心力的定义:在圆周运动中,物体受到的合力在沿着半径方向上的分量叫做向心力. (2)向心力的作用:是改变线速度的方向产生向心加速度的原因。 (3)向心力的大小: 2 2 v F ma m mr r ω=== 向向 向心力的大小等于物体的质量和向心加速度的乘积; 对于确定的物体,在半径一定的情况下,向心力的大小正比于线速度的平方,也正比于角速度的平方; 线速度一定时,向心力反比于圆周运动的半径;角速度一定时,向心力正比于圆周运动的半径。 如果是匀速圆周运动则有: 22 222 2 4 4 v F ma m mr mr mr f r T π ωπ===== 向向 (4)向心力的方向:与速度方向垂直,沿半径指向圆心。 (5)关于向心力的说明: ①向心力是按效果命名的,它不是某种性质的力; ②匀速圆周运动中的向心力始终垂直于物体运动的速度方向,所以它只能改变物体的速度方向,不能改变速度的大小; ③无论是匀速圆周运动还是变速圆周运动,向心力总是变力,但是在匀速圆周运动中向心力的大小是不变的,仅方向不断变化。 2、向心力的来源 要点诠释 (1)向心力不是一种特殊的力。重力(万有引力)、弹力、摩擦力等每一种力以及这些力的合力或分力都可以作为向心力。 (2)匀速圆周运动的实例及对应的向心力的来源 (如表所示):

要点三、匀速圆周运动与变速圆周运动的区别 1、从向心力看匀速圆周运动和变速圆周运动 要点诠释: (1)匀速圆周运动的向心力大小不变,由物体所受到的合外力完全提供,换言之也就是说物体受到的合外力完全充当向心力的角色。 例如月球围绕地球做匀速圆周运动,它受到的地球对它的引力就是合外力,这个合外力正好沿着半径指向地心,完全用来提供月球围绕地球做匀速圆周运动的向心力。 (2)在变速圆周运动中,向心力只是物体受到的合外力的沿着半径方向的一个

高中物理第2章圆周运动第1节匀速圆周运动学案含解析粤教版必修21118120

学 习 目 标 知 识 脉 络 1.理解匀速圆周运动是一种变速运动. 2.会描述圆周运动的快慢,掌握线速度、角速度、周期的定义及它们之间的关系.(重点) 3.学会用比值定义法来描述物理量. 4.会应用公式进行线速度、角速度、周期、频率、转速的计算. 高中物理第2章圆周运动第1节匀速圆周运动学案含解析 粤教版必修21118120 一、匀速圆周运动及描述的物理量 1.匀速圆周运动 质点沿圆周运动,如果在相等的时间内通过的圆弧长度相等,这种运动就叫作匀速圆周运动. 2.线速度 (1)定义:质点通过的弧长l 跟通过这段弧长所用时间t 的比值. (2)公式:v =l t . (3)矢量性:线速度是矢量,其方向在圆周该点的切线方向上. (4)单位:国际单位制中其单位是米每秒,符号是m/s. (5)意义:表示匀速圆周运动的快慢. 3.角速度 (1)定义:质点做匀速圆周运动时,质点所在半径转过的角度φ跟所用时间t 的比值. (2)公式:ω=φt . (3)单位:国际单位制中其单位是弧度每秒.符号是rad/s. (4)意义:表示匀速圆周运动转动的快慢. 4.周期 (1)定义:匀速圆周运动的物体运动一周所用的时间,用符号T 表示.

(2)单位:国际单位制中其单位是秒,符号s. (3)要点:做圆周运动的物体经过一个周期,又回到原来的位置,其瞬时速度的大小和方向也与原来的大小和方向一样. 5.转速 (1)定义:单位时间内转过的圈数,用符号n 表示. (2)单位:常用单位有转每秒,符号是r/s ,或者转每分,符号r/min. 二、线速度、角速度、周期间的关系 1.线速度与周期的关系为v =2πr T . 2.角速度与周期的关系为ω=2πT . 3.线速度与角速度的关系为v =ωr . 1.思考判断(正确的打“√”,错误的打“×”) (1)匀速圆周运动是变速曲线运动. ( ) (2)匀速圆周运动的线速度恒定不变. ( ) (3)匀速圆周运动的角速度恒定不变. ( ) (4)匀速圆周运动的周期相同,角速度大小及转速都相同. ( ) (5)匀速圆周运动的物体周期越长,转动越快. ( ) (6)做匀速圆周运动的物体在角速度不变情况下,线速度与半径成正比. ( ) 【提示】 (1)√ (2)× 匀速圆周运动的线速度方向改变 (3)√ (4)√ (5)× 周期越长,转动越慢 (6)√ 2.(多选)关于匀速圆周运动,下列说法正确的是( ) A .匀速圆周运动是匀速运动 B .匀速圆周运动是变速运动 C .匀速圆周运动是线速度不变的运动 D .匀速圆周运动是线速度大小不变的运动 BD [这里的“匀速”,不是“匀速度”,也不是“匀变速”,而是速率不变,匀速圆周运动实际上是一种速度大小不变、方向时刻改变的变速运动,故B 、D 正确.] 3.汽车在公路上行驶一般不打滑,轮子转一周,汽车向前行驶的距离等于车轮的周长.某

匀速圆周运动的实例分析

匀速圆周运动的实例分析 北京市密云县第二中学蔡小娟 教学设计思路: 一、教学理念 本节课的教学设计努力遵循教育部颁发的《普通高中物理课程标准》倡导的“促进学生自主学习,让学生积极参与、乐于探究、勇于实验、勤于思考”的教学理念.在课堂教学中以问题为主线,倡导情景设置、师生交流,在自主、合作、探究的氛围中,引导学生自己提出问题,努力促使学生成为一个研究者. 学习任务分析: 圆周运动在实际生活中有广泛的应用,有关圆周运动的问题是对牛顿运动定律的进一步应用,是教学的难点,同时也是学习机械能和电学知识的基础,通过实例分析求解,教会学生解决问题的一般方法,特别要掌握几个模型及条件. 一、培养学生分析向心力来源的能力,引导学生对做圆周运动的物体进行受力分析,让学生清楚地认识到物体沿半径方向受到的合外力,就是提供给物体做圆周运动的向心力. 二、培养学生运用物理知识解决实际问题的能力,通过对例题的分析与讨论(结合动画或课件),引导学生从中领悟、掌握运用向心力公式的思路和方法. 学习者分析: 一、学生学完匀速圆周运动的理论知识,尚缺乏实际的应用,对定律的理解还比较粗浅,本节课帮助学生建立一个生动活泼的场景,利于学生的理解、消化. 二、本节课来源于生活中的大量实例,但学生对相关新事物、新情况的了解较为片面,不能很好地由感性认识提升为理性认识,通过对本节的学习让学生掌握探究学习的一般方法,使其成为学生终身学习的基础. 教学目标: 一、知识与技能 1.知道如果一个力或几个力的合力的效果是使物体产生向心加速度,那么这个力或这个合力就是做匀速圆周运动的物体所受的向心力.会在具体问题中分析向心力的来源.2.能理解运用匀速圆周运动的规律分析和处理生产和生活中的具体实例. 3.知道向心力和向心加速度的公式也适用于变速圆周运动,会求变速圆周运动中物体在特殊点的向心力和向心加速度. 二、过程与方法 1.通过对匀速圆周运动实例的分析,渗透理论联系实际的观点,提高学生分析和解决问题的能力. 2.通过匀速圆周运动的规律在变速圆周运动中使用,渗透特殊性和一般性之间的辩证关系,提高学生的分析能力. 3.通过对离心现象的实例分析,提高学生综合应用知识解决问题的能力. 三、情感态度与价值观 1.通过对几个实例的分析,使学生明确具体问题必须具体分析,理解物理与生活的联系,学会用合理、科学的方法处理问题. 重点难点

高一物理匀速圆周运动知识点及习题教学文稿

高一物理匀速圆周运动知识点及习题

高一物理匀速圆周运动知识介绍 质点沿圆周运动,如果在任意相等的时间里通过的圆弧长度都相等,匀速圆周运动,这种运动就叫做“匀速圆周运动”,匀速圆周运动是圆周运动中,最常见和最简单的运动(因为速度是矢量,所以匀速圆周运动实际上是指匀速率圆周运动)。

天体的匀速圆周运动 定义 质点沿圆周运动,如果在任意相等的时间里通过的圆弧长度都相等,这种运动就叫做“匀速圆周运动”,亦称“匀速率圆周运动”。因为物体作圆周运动时速率不变,但速度方向随时发生变化。所以匀速圆周运动的线速度是无时不刻不在变化的。

匀速圆周运动 运动条件 物体作匀速圆周运动时,速度的大小虽然不变,但速度的方向时刻改变,所以匀速圆周运动是变速运动。又由于作匀速圆周运动时,它的向心加速度的大小不变,但方向时刻改变,故匀速圆周运动是变加速运动。“匀速圆周运动”一词中的“匀速”仅是速率不变的意思。做匀速圆周运动的物体仍然具有加速度,而且加速度不断改变,因其加速度方向在不断改变,其运动轨迹是圆,所以匀速圆周运动是变加速曲线运动。匀速圆周运动加速度方向始终指向圆心。做变速圆周运动的物体总能分解出一个指向圆心的加速度,我们将方向时刻指向圆心的加速度称为向心加速度。 公式解析 计算公式 1、v(线速度)=ΔS/Δt=2πr/T=ωr=2πrf (S代表弧长,t代表时间,r代表半径,f代表频率) 2、ω(角速度)=Δθ/Δt=2π/T=2πn (θ表示角度或者弧度) 3、T(周期)=2πr/v=2π/ω 4、n(转速)=1/T=v/2πr=ω/2π 5、Fn(向心力)=mrω^2=mv^2/r=mr4π^2/T^2=mr4π^2f^2 6、an(向心加速度)=rω^2=v^2/r=r4π^2/T^2=r4π^2n^2 7、vmax=√gr (过最高点时的条件) 8、fmin (过最高点时的对杆的压力)=mg-√gr (有杆支撑)

物理教案-匀速圆周运动的实例分析

物理教案-匀速圆周运动的实例分析 教学目标 知识目标 1、进一步理解向心力的概念. 2、理解向心力公式,进一步明确匀速圆周运动的产生条件,掌握向心力公式的应用. 能力目标 1、培养在实际问题中分析向心力来源的能力. 2、培养运用物理知识解决实际问题的能力. 情感目标 1、激发学生学习兴趣,培养学生关心周围事物的习惯. 教学建议 教材分析 教材首先明确提出向心力是按效果命名的力,任何一个力或几个力的合力只要它的作用效果是使物体产生向心加速度,它就是物体所受的向心力,接着详细介绍了火车转弯和汽车过拱桥两个常见的实际问题.后面又附有思考与讨论,开拓学生的思维. 教法建议 1、培养学生分析向心力来源的能力,分析问题时,要首先引导学生对做周围运动的物体进行受力情况分析,并让学生清楚地认识到求出物体沿半径方向受到的合外力,就是提供给物体做圆周运动的向心力. 2、培养学生运用物体知识解决实际问题的能力.通过例题的分析与讨论(结合动画或课件),引导学生从中领悟掌握运用向心力公式的思路和方法.即:第一:根据物体受力情况分析向心力的来源,做匀速圆周运动的物体. 第二:运用向心力公式计算做圆周运动所需的向心力. 第三:由物体实际受到的力提供了它所需要的向心力,列出方程求解. 3、可多举一些实例让学生分析.向心力可由重力、弹力、摩擦力等单独提供,也可由它们的合力提供.

4、在讲述汽车过拱桥的问题时,汽车做的是变速圆周运动,对此要根据牛顿第二定律的瞬时性向学生指出:在变速圆周运动中,物体在各位置受到的向心力分别产生了物体通过各位置的向心加速度,向心力公式仍是适用的.但要注意,对于物体做匀速圆周运动的情况,只有在物体通过最高点和最低点时,向心力才是合外力.同时,还可以向学生指出:此问题中出现的汽车对桥面的压力大于或小于车重的现象,是发生在圆周运动中的超重或失重现象. 教学设计方案 匀速圆周运动的实例分析 教学重点:分析向心力来源. 教学难点:实际问题的处理方法. 主要设计: 一、讨论向心力的来源: 例如:万有引力提供向心力(人造地球卫星);弹力提供向心力(绳系小球在光滑水平面上的匀速圆周运动);摩擦力力提供向心力(物价在转盘上随转盘一起转动);合力提供向心力(圆锥摆等). 二、讨论火车转弯: (一)展示图片1:火车车轮有凸出的轮缘. (二)展示课件1:外轨作用在火车轮缘上的力F是使火车必须转弯的向心力. (三)展示课件2:外轨高于内轨时重力与支持力的合力是使火车转弯的向心力. (四)讨论:为什么转弯处的半径和火车运行速度有条件限制? 三、讨论汽车过拱桥: (一)思考:汽车过拱桥时,对桥面的压力与重力谁大? (二)展示课件3:汽车过拱桥在最高点的受力情况(变变) (三)展示课件4:汽车过凹形桥时低点时的受力情况(变变) (四)总结在圆周运动中的超重、失重情况.

高中物理圆周运动典型例题解析1

圆周运动的实例分析典型例题解析 【例1】用细绳拴着质量为m 的小球,使小球在竖直平面内作圆周运动,则下列说法中,正确的是[ ] A .小球过最高点时,绳子中张力可以为零 B .小球过最高点时的最小速度为零 C .小球刚好能过最高点时的速度是Rg D .小球过最高点时,绳子对小球的作用力可以与球所受的重力方向相 反 解析:像该题中的小球、沿竖直圆环内侧作圆周运动的物体等没有支承物的物体作圆周运动,通过最高点时有下列几种情况: (1)m g m v /R v 2当=,即=时,物体的重力恰好提供向心力,向心Rg 加速度恰好等于重力加速度,物体恰能过最高点继续沿圆周运动.这是能通过最高点的临界条件; (2)m g m v /R v 2当>,即<时,物体不能通过最高点而偏离圆周Rg 轨道,作抛体运动; (3)m g m v /R v m g 2当<,即>时,物体能通过最高点,这时有Rg +F =mv 2/R ,其中F 为绳子的拉力或环对物体的压力.而值得一提的是:细绳对由它拴住的、作匀速圆周运动的物体只可能产生拉力,而不可能产生支撑力,因而小球过最高点时,细绳对小球的作用力不会与重力方向相反. 所以,正确选项为A 、C . 点拨:这是一道竖直平面内的变速率圆周运动问题.当小球经越圆周最高点或最低点时,其重力和绳子拉力的合力提供向心力;当小球经越圆周的其它位置时,其重力和绳子拉力的沿半径方向的分力(法向分力)提供向心力. 【问题讨论】该题中,把拴小球的绳子换成细杆,则问题讨论的结果就大相径庭了.有支承物的小球在竖直平面内作圆周运动,过最高点时:

(1)v (2)v (3)v 当=时,支承物对小球既没有拉力,也没有支撑力; 当>时,支承物对小球有指向圆心的拉力作用; 当<时,支撑物对小球有背离圆心的支撑力作用; Rg Rg Rg (4)当v =0时,支承物对小球的支撑力等于小球的重力mg ,这是有支承物的物体在竖直平面内作圆周运动,能经越最高点的临界条件. 【例2】如图38-1所示的水平转盘可绕竖直轴OO ′旋转,盘上的水平杆上穿着两个质量相等的小球A 和B .现将A 和B 分别置于距轴r 和2r 处,并用不可伸长的轻绳相连.已知两球与杆之间的最大静摩擦力都是f m .试分析角速度ω从零逐渐增大,两球对轴保持相对静止过程中,A 、B 两球的受力情况如何变化? 解析:由于ω从零开始逐渐增大,当ω较小时,A 和B 均只靠自身静摩擦力提供向心力. A 球:m ω2r =f A ; B 球:m ω22r =f B . 随ω增大,静摩擦力不断增大,直至ω=ω1时将有f B =f m ,即m ω=,ω=.即从ω开始ω继续增加,绳上张力将出现.12m 112r f T f m r m /2 A 球:m ω2r =f A +T ;B 球:m ω22r =f m +T . 由B 球可知:当角速度ω增至ω′时,绳上张力将增加△T ,△T =m ·2r(ω′2-ω2).对于A 球应有m ·r(ω′2-ω2)=△f A +△T =△f A +m ·2r(ω′2-ω2). 可见△f A <0,即随ω的增大,A 球所受摩擦力将不断减小,直至f A =0

高一物理圆周运动专题练习(解析版)

一、第六章圆周运动易错题培优(难) 1.如图所示,用一根长为l=1m的细线,一端系一质量为m=1kg的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=30°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为T,取g=10m/s2。则下列说法正确的是() A.当ω=2rad/s时,T3+1)N B.当ω=2rad/s时,T=4N C.当ω=4rad/s时,T=16N D.当ω=4rad/s时,细绳与竖直方向间夹角大于45° 【答案】ACD 【解析】 【分析】 【详解】 当小球对圆锥面恰好没有压力时,设角速度为,则有 解得 AB.当,小球紧贴圆锥面,则 代入数据整理得 A正确,B错误; CD.当,小球离开锥面,设绳子与竖直方向夹角为,则 解得 , CD正确。 故选ACD。

2.如图,质量为m的物块,沿着半径为R的半球形金属壳内壁滑下,半球形金属壳竖直放置,开口向上,滑到最低点时速度大小为v,若物体与球壳之间的摩擦因数为μ,则物体在最低点时,下列说法正确的是() A.滑块对轨道的压力为B.受到的摩擦力为 C.受到的摩擦力为μmg D.受到的合力方向斜向左上方 【答案】AD 【解析】 【分析】 【详解】 A.根据牛顿第二定律 根据牛顿第三定律可知对轨道的压力大小 A正确; BC.物块受到的摩擦力 BC错误; D.水平方向合力向左,竖直方向合力向上,因此物块受到的合力方向斜向左上方,D正确。 故选AD。 3.如图甲所示,半径为R、内壁光滑的圆形细管竖直放置,一可看成质点的小球在圆管内做圆周运动,当其运动到最高点A时,小球受到的弹力F与其过A点速度平方(即v2)的关系如图乙所示。设细管内径略大于小球直径,则下列说法正确的是() A.当地的重力加速度大小为R b B.该小球的质量为a b R C.当v2=2b时,小球在圆管的最高点受到的弹力大小为a D.当0≤v2<b时,小球在A点对圆管的弹力方向竖直向上【答案】BC 【解析】 【分析】 【详解】 AB.在最高点,根据牛顿第二定律 2 mv mg F R -=

第一节匀速圆周运动

物理·必修2(粤教版) 第一节匀速圆周运动 基础达标 1.做匀速圆周运动的物体在运动过程中,下列哪个物理量是变化的()

A .周期 B .角速度 C .速率 D .速度 答案:D 2.做匀速圆周运动的物体,下列说法正确的是( ) A .线速度越大,角速度一定越大 B .线速度越大,周期一定越小 C .角速度越大,周期一定越大 D .角速度越大,周期一定越小 解析:由v =ωr 可知,当v 大时,r 也大,ω不一定大,A 错;由公式v =2πrf 知v 大时,若r 也大,T 不一定小,B 错;由ω=2π T 知, ω与T 有唯一确定关系,D 正确,C 错. 答案:D 3.(双选)一个质点做匀速圆周运动时,它在任意相等的时间内( ) A .通过的弧长相等 B .通过的位移相等

C.转过的角度相等 D.速度的变化相等 答案:AC 4.(2013·上海金山中学高一期末)关于匀速圆周运动物体的线速度、角速度、周期的关系,下列说法中正确的是() A.线速度大的角速度一定大 B.线速度大的周期一定小 C.周期小的半径一定大 D.转速大的周期一定小 答案:D 5.一准确运动的机械钟表,下列说法正确的是() A.秒针转动的周期最长 B.时针转动的周期最大 C.秒针转动的角速度最大 D.秒针、分针、时针上任一点的线速度相同 答案:C

能力提升 6.(双选)甲、乙两物体分别做匀速圆周运动,如果它们转动的半径之比为15,线速度之比为 32,则下列说法正确的是() A.甲、乙两物体的角速度之比是

15 2 B.甲、乙两物体的角速度之比是 10 3 C.甲、乙两物体的周期之比是

匀速圆周运动的实例分析例题[1][1]

匀速圆周运动的实例分析例题[1][1]

匀速圆周运动的实例分析 典型例题1——关于汽车通过不同曲面的问题分析 一辆质量t的小轿车,驶过半径m的一段圆弧形桥面,求: (重力加速度) (1)若桥面为凹形,汽车以20m/s的速度通过桥面最低点时,对桥面压力是多大? (2)若桥面为凸形,汽车以10m/s的速度通过桥面最高点时,对桥面压力是多大? (3)汽车以多大速度通过凸形桥面顶点时,对桥面刚好没有压力? 解: (1)汽车通过凹形桥面最低点时,在水平方向受到牵引力F和阻力f.在竖直方向受到桥面向上的支持力和向下的重力,如图(甲)所示.圆弧形轨道的圆心在汽车上方,支持力与重力的合力为,这个合力就是汽车通过桥面最低点时的向心力,即.由向心力公式有: , 解得桥面的支持力大小为 根据牛顿第三定律,汽车对桥面最低点的压力大小是N.

(2)汽车通过凸形桥面最高点时,在水平方向受到牵引力F和阻力f,在竖直方向受到竖直向下的重力和桥面向上的支持力,如图(乙)所示.圆弧形轨道的圆心在汽车的下方,重力与支持力的合力为,这个合力就是汽车通过桥面顶点时的向心力,即,由向心力公式有 , 解得桥面的支持力大小为 根据牛顿第三定律,汽车在桥的顶点时对桥面压力的大小为N. (3)设汽车速度为时,通过凸形桥面顶点时对桥面压力为零.根据牛顿第三定律,这时桥面对汽车的支持力也为零,汽车在竖直方向只受到重力G作用,重力就是汽车驶过桥顶点时的向心力,即,由向心力公式有 , 解得: 汽车以30 m/s的速度通过桥面顶点时,对桥面刚好没有压力. 典型例题2——细绳牵引物体做圆周运动的系列问题 一根长的细绳,一端拴一质量的小球,使其在竖直平面内绕绳的另一端做圆周运动,求:

2021学年高中物理第2章圆周运动第1节匀速圆周运动学案粤教版必修二.doc

第一节 匀速圆周运动 学习目标:1.[物理观念]知道什么是圆周运动和匀速圆周运动。 2.[物理观念]会描述圆周运动的快慢,掌握线速度、角速度、周期的定义及它们之间的关系。 3.[科学思维]学会用比值定义法来描述物理量。会应用公式进行线速度、角速度、周期、频率、转速的计算。 4.[科学态度与责任]会分析常见的传动装置问题。 一、线速度和角速度 1.圆周运动:质点的运动轨迹是圆的运动。 2.匀速圆周运动:质点的线速度大小不随时间变化的圆周运动。 3.线速度 (1)定义:质点做匀速圆周运动时,质点通过的弧长l 跟通过这段弧长所用时间t 的比值。 (2)公式:v =l t 。 (3)矢量性:线速度是矢量,其方向在圆周该点的切线方向上。 (4)单位:国际单位制中其单位是米每秒,符号是m/s 。 (5)意义:表示匀速圆周运动的快慢。 4.角速度 (1)定义:质点做匀速圆周运动时,质点所在半径转过的角度θ跟所用时间t 的比值。 (2)公式:ω=θt 。 (3)单位:国际单位制中其单位是弧度每秒。符号是rad/s 。 (4)意义:表示匀速圆周运动转动的快慢。 5.周期 (1)定义:匀速圆周运动的质点运动一周所用的时间,用符号T 表示。 (2)单位:国际单位制中其单位是秒,符号s 。 6.转速 (1)定义:物体转过的圈数与所用时间的比值,用符号n 表示。 (2)单位:转速的单位是转每秒,符号是r/s ,或者转每分,符号是r/min 。 二、线速度、角速度、周期间的关系 1.线速度与周期的关系为v =2πr T 。 2.角速度与周期的关系为ω=2πT 。

3.线速度与角速度的关系为v=ωr。 1.思考判断(正确的打“√”,错误的打“×”) (1)匀速圆周运动是变速曲线运动。(√) (2)匀速圆周运动的线速度恒定不变。(×) (3)匀速圆周运动的角速度恒定不变。(√) (4)若匀速圆周运动的周期相同,则角速度大小及转速都相同。(√) 2.(多选)关于匀速圆周运动,下列说法正确的是( ) A.匀速圆周运动是匀速运动 B.匀速圆周运动是变速运动 C.匀速圆周运动是线速度不变的运动 D.匀速圆周运动是线速度大小不变的运动 BD [这里的“匀速”,不是“匀速度”,也不是“匀变速”,而是速率不变,匀速圆周运动实际上是一种速度大小不变、方向时刻改变的变速运动,故B、D正确。] 3.关于地球上不同位置的物体随地球自转的角速度关系、线速度大小关系,下列说法正确的是( ) A.处于同一纬度线上的海拔相同的物体线速度大小相等 B.处于同一经度线上的物体线速度大小相等 C.在赤道上的物体角速度最大 D.在两极处的物体线速度最大 A [地球上不同位置的物体随地球自转时,共轴转动,角速度相同,处于同一纬度线上的海拔相同的物体转动半径相等,由公式v=ωr分析知,线速度大小相等,故A正确,C错误;处于同一经度线上的物体转动半径不全相等,所以线速度不一定大小相等,故B错误;在两极处的物体转动半径最小,则线速度最小,故D错误。] 匀速圆周运动及描述的物理量 日常生活中,时钟指针的尖端、摩天轮上的座舱、电风扇工作时叶片上的点都在做圆周运动,它们的运动有何共同点?有什么不同之处?

高中物理圆周运动知识点总结 高中物理圆周运动公式

高中物理圆周运动知识点总结高中物理圆周运动公式高中物理教学中,圆周运动问题既是一个重点,又是一个难点。下面给大家带来高中物理圆周运动知识点,希望对你有帮助。 1.圆周运动:质点的运动轨迹是圆周的运动。 2.匀速圆周运动:质点的轨迹是圆周,在相等的时间内,通过的弧长相等,质点所作的运动是匀速率圆周运动。 3.描述匀速圆周运动的物理量 (1)周期(T):质点完成一次圆周运动所用的时间为周期。 频率(f):1s钟完成圆周运动的次数。f= (2)线速度(v):线速度就是瞬间速度。做匀速圆周运动的质点,其线速度的大小不变,方向却时刻改变,匀速圆周运动是一个变速运动。 由瞬时速度的定义式v=,当Δt趋近于0时,Δs与所对应的弧长(Δl)基本重合,所以v=,在匀速圆周运动中,由于相等的时间内通过的弧长相等,那么很小一段的弧长与通过这段弧长所用时间的比

值是相等的,所以,其线速度大小v=(其中R是运动物体的轨道半径,T为周期) (3)角速度(ω):作匀速圆周运动的质点与圆心的连线所扫过的角度与所用时间的比值。ω==,由此式可知匀速圆周运动是角速度不变的运动。 4.竖直面内的圆周运动(非匀速圆周运动) (1)轻绳的一端固定,另一端连着一个小球(活小物块),小球在竖直面内作圆周运动,或者是一个竖直的圆形轨迹,一个小球(或小物块)在其内壁上作竖直面的圆周运动,然后进行计算分析,结论如下: ①小球若在圆周上,且速度为零,只能是在水平直径两个端点以下部分的各点,小球要到达竖直圆周水平直径以上各点,则其速度至少要满足重力指向圆心的分量提供向心力 ②小球在竖直圆周的最低点沿圆周向上运动的过程中,速度不断减小(重力沿运动方向的分量与速度方向是相反的,使小球的速度减小),而小球要到达最高点,则必须在最低点具有足够大的速度才

匀速圆周运动专题整理.doc

常见的圆周运动模型 物体做匀速圆周运动时,向心力才是物体受到的合外力.物体做非匀速圆周运动时,向心力是合外力沿半径方 向的分力 ( 或所有外力沿半径方向的分力的矢量和). 具体运动类型如下。 一、匀速圆周运动模型及处理方法 1.随盘匀速转动模型(无相对滑动,二者有共同的角速度) 例 4.如图所示,质量为m 的小物体系在轻绳的一端,轻绳的另一端固定在转轴上。轻绳长度为L 。现在使物体在光滑水平支持面上与圆盘相对静止地以角速度做匀速圆周运动,求: ( 1)物体运动一周所用的时间T ; ω ( 2)绳子对物体的拉力。O 2。火车转弯模型(或汽车拐弯外侧高于内侧时) 汽车做匀速圆周运动,向心力由重力与斜面对汽车的支持力的合力提供,且向心力的方向水平,向心力大小 F 向= mg tan θ,根据牛顿第 二定律: F v2 向= m R, h tanθ=d, 例 . 在高速公路的拐弯处,通常路面都是外高内低.如图所示,在某路段汽车向左拐弯,司机左侧的路面比右侧的 路面低一些.汽车的运动可看作是做半径为R的圆周运动.设内外路面高度差为h,路基的水平宽度为d,路面的宽度为 L.已知重力加速度为g.要使车轮与路面之间的横向摩擦力( 即垂直于前进方向) 等于零,则汽车转弯时的车速应等于 () A. gRh B. gRh C. gRL D. gRd L d h h B对. 3。圆锥摆模型 小球在水平面内是匀速圆周运动,重力和拉力合力提供向心力mg tan 例 6. 如图所示,用细绳系着一个小球,使小球在水平面内做匀速圆周运动,不计空气阻 力,关于小球受力有以下说法,正确的是() A. 只受重力 B.只受拉力 C. 受重力 . 拉力和向心力 D.受重力和拉力 4.双星模型 练习.如图所示,长为 L 的细绳一端固定,另一端系一质量为m的小球。给小球一个合适的初速度,小球便可在水平面内做匀速圆周运动,这样就构成了一个圆锥摆,设细 绳与竖直方向的夹角为θ。下列说法中正确的是θ A.小球受重力、绳的拉力和向心力作用L m

人教版(2019)高一物理必修二:第六章第1节 圆周运动 教案

《圆周运动》教案 一、教学目标 1.认识圆周运动、匀速圆周运动的特点,能说出线速度、角速度以及周期的物理意义并能推导出线速度和角速度间的关系。 2.通过构建线速度、角速度等概念的过程,渗透极限法的物理思维,提升逻辑思维能力。 3.体会物理知识来源于生活服务于生活的价值观,增强学习物理的兴趣。 二、教学重难点 重点:线速度、角速度和周期的概念以及线速度角速度之间的关系; 难点:线速度、角速度和周期概念引入的必要性。 三、教学过程 (一)新课导入 教师展示钟表指针、摩天轮、秋千的图片,提问指针的尖端、摩天轮上的游客、秋千座椅,它们的运动有什么共同点?(轨迹都是圆) 教师讲解圆周运动的概念,随后播放自行车车轮转动的动画,并提问大、小两个齿轮边缘上的点,哪个运动得更快些?同一个齿轮上到转轴的距离不同的点,哪个运动得更快些?由此引入本节新课《圆周运动》。 (二)新课讲授 1.线速度 教师提问认为大、小两个齿轮边缘上的点运动快慢一样的理由是什么?(通过同一

条链条连接,在相同时间内通过的路程相同) 教师总结这是用路程来描述圆周运动的快慢,即线速度。组织学生以物理小组为单位,根据曲线运动的特点,5分钟的时间讨论下面的问题,汇报总结结论。 做圆周运动的物体线速度的大小和方向如何确定?(线速度的大小可以用路程除以时间,方向为物体做圆周运动时该点的切线方向) 教师补充总结:线速度是状态量,表示某一时刻对应的物理量,因此可以借鉴瞬时速度的含义给出线速度大小的表示方法即s v t ?=?,并给出匀速圆周运动的概念。 教师提问匀速圆周运动中的“匀速”表示什么意思?(速率不变) 2.角速度 教师提问认为大、小两个齿轮边缘上的点运动快慢不一样的理由是什么?(在相同时间内转过的圈数不同) 教师总结这是用角度来描述圆周运动的快慢,即角速度。组织学生结合线速度的定义自主探究得出角速度的概念,即t θω?=?。 教师补充总结角速度的单位是弧度每秒。 3.周期 教师组织学生观察电扇叶片的运动状态并提问电扇叶片上每一点都做匀速圆周运动,这种运动整体上具有什么特性?如何定量的描述这种特性?(周期性、转动一周的时间) 教师讲解周期的概念,随后组织学生阅读教材并回答问题:什么是转速?转速的单位是什么?(转速是指物体转动的圈数与所用时间之比,单位为转每秒,或转每分) 4.线速度与角速度的关系 教师组织学生自主探究回答问题:圆周中的弧长和对应的圆心角之间有什么关系?(s r θ=)线速度和角速度之间又存在什么关系?(v r ω=)

高中物理实验:圆周运动

高中物理实验:圆周运动 实验仪器:自行车 教师操作:让学生观察自行车后轮、齿轮、脚踏板转动现象。 实验结论:皮带、齿轮传动——线速度相同;同轴转动——角速度相同。 向心力 实验仪器:向心力实验器(J2131)、弹簧测力计、停表、游标卡尺 向心力实验器: 指针较长,圆柱体的少量位移经过杠杆的放大,使显示更为明显。但指针有质量,同时,转动时会做离心运动,所以制造时加了指针配量,使指针系统成静平衡。再通过适当选择摆杆的质量维持指针系统的动平衡。因而实验时无需考虑指针的质量和它可能做离心运动的影响。 转动轴由立柱上的钢珠支撑,转动轴下部有定位锥套。实验前调整配重的位置时应将定位锥套退下,调整后将套重新推向上。 构造 游标卡尺是工业上常用的测量长度的仪器,它由尺身及能在尺身上滑动的游标组成。若从背面看,游标是一个整体。游标与尺身之间有一弹簧片(图中未能画出),利用弹簧片的弹力使游标与尺身靠紧。游标上部有一紧固螺钉,可将游标固定在尺身上的任意位置。尺

身和游标都有量爪,利用内测量爪可以测量槽的宽度和管的内径,利用外测量爪可以测量零件的厚度和管的外径。 深度尺与游标尺连在一起,可以测槽和筒的深度。 尺身和游标尺上面都有刻度。以准确到0.1毫米的游标卡尺为例,尺身上的最小分度是1毫米,游标尺上有10个小的等分刻度,总长9毫米,每一分度为0.9毫米,比主尺上的最小分度相差0.1毫米。量爪并拢时尺身和游标的零刻度线对齐,它们的第一条刻度线相差0.1毫米,第二条刻度线相差0.2毫米,……,第10条刻度线相差1毫米,即游标的第10条刻度线恰好与主尺的9毫米刻度线对齐。 使用 用软布将量爪擦干净,使其并拢,查看游标和主尺身的零刻度线是否对齐。如果对齐就可以进行测量:如没有对齐则要记取零误差:游标的零刻度线在尺身零刻度线右侧的叫正零误差,在尺身零刻度线左侧的叫负零误差(这件规定方法与数轴的规定一致,原点以右为正,原点以左为负)。 测量时,右手拿住尺身,大拇指移动游标,左手拿待测外径(或内径)的物体,使待测物位于外测量爪之间,当与量爪紧紧相贴时,即可读数 读数 读数时首先以游标零刻度线为准在尺身上读取毫米整数,即以毫米为单位的整数部分。然后看游标上第几条刻度线与尺身的刻度线对齐,如第6条刻度线与尺身刻度线对齐,则小数部分即为0.6毫米

高一物理必修2圆周运动复习知识点总结及经典例题详细剖析

匀速圆周运动专题 从现行高中知识体系来看,匀速圆周运动上承牛顿运动定律,下接万有引力,因此在高一物理中占据极其重要的地位,同时学好这一章还将为高二的带电粒子在磁场中的运动及高三复习中解决圆周运动的综合问题打下良好的基础。 (一)基础知识 1. 匀速圆周运动的基本概念和公式 (1)线速度大小,方向沿圆周的切线方向,时刻变化; (2)角速度,恒定不变量; (3)周期与频率; (4)向心力,总指向圆心,时刻变化,向心加速度,方向与向心力相同; (5)线速度与角速度的关系为,、、、的关系为 。所以在、、中若一个量确定,其余两个量也就确定了,而还和有关。 2. 质点做匀速圆周运动的条件 (1)具有一定的速度; (2)受到的合力(向心力)大小不变且方向始终与速度方向垂直。合力(向心力)与速度始终在一个确定不变的平面内且一定指向圆心。

3. 向心力有关说明 向心力是一种效果力。任何一个力或者几个力的合力,或者某一个力的某个分力,只要其效果是使物体做圆周运动的,都可以认为是向心力。做匀速圆周运动的物体,向心力就是物体所受的合力,总是指向圆心;做变速圆周运动的物体,向心力只是物体所受合外力在沿着半径方向上的一个分力,合外力的另一个分力沿着圆周的切线,使速度大小改变,所以向心力不一定是物体所受的合外力。 (二)解决圆周运动问题的步骤 1. 确定研究对象; 2. 确定圆心、半径、向心加速度方向; 3. 进行受力分析,将各力分解到沿半径方向和垂直于半径方向; 4. 根据向心力公式,列牛顿第二定律方程求解。 基本规律:径向合外力提供向心力

(三)常见问题及处理要点 1. 皮带传动问题 例1:如图1所示,为一皮带传动装置,右轮的半径为r,a是它边缘上的一点,左侧是一轮轴,大轮的半径为4r,小轮的半径为2r,b点在小轮上,到小轮中心的距离为r,c点和d点分别位于小轮和大轮的边缘上,若在传动过程中,皮带不打滑,则() A. a点与b点的线速度大小相等 B. a点与b点的角速度大小相等 C. a点与c点的线速度大小相等 D. a点与d点的向心加速度大小相等 图1 解析:皮带不打滑,故a、c两点线速度相等,选C;c点、b点在同一轮轴上角速度相等,半径不同,由,b点与c点线速度不相等,故a与b线速度不等,A错;同样可判定a与c角速度不同,即a与b角速度不同,B错;设a点的线速度为,则a点向 心加速度,由,,所以,故,D 正确。本题正确答案C、D。 点评:处理皮带问题的要点为:皮带(链条)上各点以及两轮边缘上各点的线速度大小相等,同一轮上各点的角速度相同。

2020高中物理人教版(2019)第二册教师文档含习题:第六章 第1节圆周运动 Word版含解析

第六章圆周运动 第1节圆周运动 1.圆周运动:□01圆周或一段□02圆弧的机械运动称为圆周运动。 2.线速度 (1)定义:物体沿圆弧经过某点附近时,一段很短的时间Δt内通过的弧长为Δs,则□03弧长Δs与□04时间Δt之比称为线速度的大小,用符号v表示。 (2)定义式:□05v=ΔsΔt。 (3)标矢性:线速度是矢量,方向为物体做圆周运动时该点的□06切线方向。 (4)物理意义:描述做圆周运动的物体在某点时运动的□07快慢。 3.匀速圆周运动 (1)定义:沿着圆周,并且线速度的大小□08处处相等的运动。 (2)性质:线速度的方向是时刻□09变化的,所以是一种□10变速运动,“匀速”是指□11速率不变。 4.角速度 (1)定义:物体沿圆弧经过某点附近时,一段很短的时间Δt内半径转过的角为Δθ,则□12角Δθ与□13所用时间Δt之比叫作角速度,用符号ω表示。 (2)定义式:□14ω=ΔθΔt。 (3)单位:角的单位是□15弧度,符号是□16rad,所以角速度的单位是弧度

每秒,符号是□17rad/s或□18s-1。 (4)物理意义:描述做圆周运动的物体绕圆心□19转动的快慢。 (5)匀速圆周运动是角速度□20不变的圆周运动。 5.周期与转速 6.线速度与角速度的关系 (1)两者关系:在圆周运动中,□23乘积。 (2)关系式:v□24ωr。 典型考点一匀速圆周运动的理解 1.(多选)质点做匀速圆周运动,则() A.在任何相等的时间里,质点的位移都相同 B.在任何相等的时间里,质点通过的路程都相等 C.在任何相等的时间里,质点运动的平均速度都相同 D.在任何相等的时间里,连接质点和圆心的半径转过的角度都相等 答案BD

高中物理圆周运动总结

图圆周运动的实例分析 (1)匀速圆周运动与非匀速圆周运动 a.圆周运动是变速运动 b.最常见的圆周运动有:①天体(包括人造天体)在万有引力作用下的运动;②核外电子在库仑力作用下绕原子核的运动;③带电粒子在垂直匀强磁场的平面里在磁场力作用下的运动;④物体在各种外力(重力、弹力、摩擦力、电场力、磁场力等)作用下的圆周运动。 c.匀速圆周运动只是速度方向改变,而速度大小不变。做匀速圆周运动的物体,它所受的所有力的合力提供向心力,其方向一定指向圆心。非匀速圆周运动的物体所受的合外力沿着半径指向圆心的分力,提供向心力,产生向心加速度;合外力沿切线方向的分力,产生切向加速度,其效果是改变速度的大小。 例1:如图3-1所示,两根轻绳同系一个质量m=0.1kg 的小球,两绳的另一端分别固定在轴上的A 、B 两处,上面绳AC 长L=2m ,当两绳都拉直时,与轴的夹角分别为30°和45°,求当小球随轴一起在水平面内做匀速圆周运动角速度为ω=4rad/s 时,上下两轻绳拉力各为多少? 【审题】两绳张紧时,小球受的力由0逐渐增大时,ω可能出现两个临界值。 【解析】如图3-1所示,当BC 刚好被拉直,但其拉力T2恰为零,设此时角速度为ω1,AC 绳上拉力设为T1,对小球有: mg T =?30cos 1 ① 30sin L ωm =30sin T AB 2 11②代入数据得:s rad /4.21=ω, 要使BC 绳有拉力,应有ω>ω1,当AC 绳恰被拉直,但其拉力T1恰为零,设此时角速度为ω2,BC 绳拉力为 T2,则有mg T =?45cos 2 ③ T2sin45°=m 22ωLACsin30°④代入数据得:ω2=3.16rad/s 。要使 AC 绳有拉力,必须ω<ω2,依题意ω=4rad/s>ω2,故AC 绳已无拉力,AC 绳是松驰状态,BC 绳与杆的夹角θ>45°,对小球有: mg T =θcos 2,T2cos θ =m ω2LBCsin θ ⑤而LACsin30°=LBCsin45°,LBC= 2m ⑥由⑤、⑥可解得 N T 3.22=;01=T 【总结】当物体做匀速圆周运动时,所受合外力一定指向圆心,在圆周的切线方向上和垂直圆周平面的方向上 的合外力必然为零。 (2)同轴装置与皮带传动装置 在考查皮带转动现象的问题中,要注意以下两点:a 、同一转动轴上的各点角速度相等;b 、和同一皮带接触的各点线速度大小相等。 例2:如图3-2所示为一皮带传动装置,右轮的半径为r ,a 是它边缘上的一点,左侧是一轮轴,大轮半径为4r ,小轮半径为2r ,b 点在小轮上,到小轮中心距离为r ,c 点和d 点分别位于小轮和大轮的边缘上,若在传动过程中,皮带不打滑,则 A .a 点与b 点线速度大小相等 B .a 点与c 点角速度大小相等 C .a 点与d 点向心加速度大小相等 D .a 、b 、c 、d 四点,加速度最小的是b 点 【审题】 分析本题的关键有两点:其一是同一轮轴上的各点角速度相同;其二是皮带不打滑时,与 皮带接触的各点线速度大小相同。这两点抓住了,然后再根据描述圆周运动的各物理量之间的关系就不难得出正确的结论。 【解析】由图3-2可知,a 点和c 点是与皮带接触的两个点,所以在传动过程中二者的线速度大小相等,即va =vc ,又v =ωR , 所以 ωar =ωc·2r ,即ωa =2ωc .而b 、c 、d 三点在同一轮轴上,它们的角速度相等,则ωb =ωc =ωd =21 ωa ,所以选项B错.又vb =ωb·r = 21 ωar =2 v a ,所以选项A 也错.向心加速度:aa =ωa2r ;ab =ωb2·r =(2 ωa )2r =41ωa2r =41aa ;ac =ωc2·2r =(2 1ωa )2·2r = 21ωa2r =21aa ;ad =ωd2·4r =(21 ωa )2·4r =ωa2r =aa .所以选项C 、D 均正确。 【总结】 a .向心力是根据力的效果命名的.在分析做圆周运动的质点受力情况时,切记在物体的作用力(重力、弹力、摩擦力等)以外不要再 添加一个向心力。 图 图

相关文档
最新文档