电力电子技术仿真研究

电力电子技术仿真研究
电力电子技术仿真研究

电力电子技术仿真实训

2009年

仿真实训1——桥式整流电路仿真研究 (2)

仿真实训2——直流降压变换器仿真研究 (9)

仿真实训3——单相逆变器仿真研究 (12)

仿真实训4——单相交流调压器仿真研究 (15)

仿真实训1——桥式整流电路仿真研究

一、准备工作

1、预习Matlab/simulink 仿真软件;

2、预习整流电路的几种形式和原理,重点预习单相桥式全控整流电路。有能力的同学也可以预习其他各种形式的整流电路。

二、操作方法

1、带电阻性负载的仿真实验

启动MATLAB7.0(或6.5), 进入SIMULINK后建新文档,绘制单相全波可控整流器结构模型图,如图1所示。双击各模块,在出现的对话框内设置相应的参数。

图1带电阻负载单相桥式全控整流电路模型

(1)晶闸管元件参数设置

双击晶闸管模块,本例元件参数对话框如图2所示。

a)晶闸管元件内电阻R on,单位为Ω。

b)晶闸管元件内电阻L on,单位为H。注意,电感不能设置为0。

图2 可关断晶闸管元件的参数设置对话框

c)晶闸管元件的正向管压降V f,单位为V。

d)电流下降到10%的时间t f,单位为秒(s)。

e)电流拖尾时间T q,单位为秒(s)。

f)初始电流I C,单位为A,与晶闸管元件初始电流的设置相同。通常将I C 设置为0。

g)缓冲电阻R s,单位为Ω,为了在模型中消除缓冲电路,可将缓冲电阻R s 设置为inf。

h)缓冲电容C s,单位为F,为了在模型中消除缓冲电路,可将缓冲电容C s 设置为0。为了得到纯电阻R s,可将电容C s参数设置为inf。

(2)单个电阻、电容、电感元件的参数设置。

双击RLC模块,整个电阻、电容、电感元件的参数设置对话框如图3所示。

本例中设置电阻R=10Ω,电感L=0H,电容C为inf。串联RLC分支与并联RLC 分支的设置方法见表1。

图3 单个电阻、电容、电感元件的参数设置对话框

表1 单个电阻、电容、电感元件的参数

元件串联RLC分支并联RLC分支

类别电阻

数值

电感

数值

电容

数值

电阻

数值

电感

数值

电容

数值

单个

电阻

R 0 inf R inf 0

单个

电容

0 L inf inf L 0

单个

电感

0 0 C inf inf C

(3)固定时间间隔的脉冲发生器参数设置

双击脉冲发生器模块(pulse),固定时间间隔的脉冲发生器参数设置对话框如图4所示。本例中振幅设置为5V,周期与电源电压设置一致,为0.02S(即频率为50Hz),脉冲宽度为2,初相位(控制角)为0.0025,(45°)。一定要注意触发脉冲控制角的设置,否则要烧坏晶闸管。

图4 固定时间间隔的脉冲发生器参数设置对话框(4)电源电压的参数设置

双击电源电压模块,参数设置对话框如图52所示。本例中电源电压的幅值为220V,初相位为0°,电源电压的周期与固定时间的脉冲发生器的周期都为0.02s。

图5 电源电压的参数设置对话框

(5)仿真参数设置

选择仿真中仿真参数设计,出现仿真对话框如图6。不同版本的matlab,对话框有些不同。图6是在matlab 7.0下的对话框。

图6 仿真参数设置对话框

(6)信号标签的传递

信号标签传递的方法有两种:

(a)选择信号线并双击,在信号标签编辑框中输入“< >”,在此括号中输入信号标签即可传递信号标签,然后选择“Edit”菜单中的“Update Diagram”命令来刷新模型。

(b)选择信号线,然后选择“Edit”菜单中的“Signal Properties”命令;或单击右键,选择弹出快捷菜单中的“Signal Properties”命令,出现如图7所示的对话框,在“Signal Name”下写上信号线的名称,当一个带有标签的信号与Scope模块连接时,信号标签将作为标题显示。

图7 Signal Properties对话框

(7)仿真

单击工具栏的按钮或“Simulation”菜单下的“Start”命令进行仿真,双击示波器模块,得到仿真结果如图8所示。

图8 电阻负载,控制角为45°是单相桥式整流器仿真结果

(8)示波器参数的设置

单击示波器工具栏中图标,出现如图9所示“General”选项卡和“Data History”选项卡对话框,在本例中设置的坐标系数目为6,显示时间为0.1(设置的是横坐标),坐标系的标签为all。

单击右键,选择弹出快捷菜单中的“Axes properities”命令,出现如图10所示示波器的纵坐标参数设置对话框。本对话框中设置的是触发信号纵坐标。

图9示波器参数设置对话框图10示波器的纵坐标参数设置对话框

2、带电阻电感性负载的仿真

带电阻电感性负载的仿真与带电阻性负载的仿真方法基本相同,但需要将RLC的串联分支设置为电阻电感性负载。本例中设置的电阻R=1Ω,L=0.01H,电容为inf。

图11为电阻电感性负载仿真图。

图11 电阻电感负载单相桥式全控整流仿真结果

三、注意事项

1、分析各种整流电路原理时要抓住相控控制方法的本质。

2、仿真时要与实际电路联系起来,要知道所设置参数的含义。

仿真实训2——直流降压变换器仿真研究

一、任务准备

1、复习matlab中的simulink的使用。

2、复习直流降压变换器的工作原理。

二、实施方法

1、启动MATLAB6.5(7.0),进入SIMULINK后建新文档,绘制直流降压变换器仿真模型图,如图1所示,双击个模块,在出现的对话框内设置相应的参数。

图1电直流降压变换器仿真模型图

2、仿真步骤

1)参数设置

模块参数名参数值

直流电源Vs

Amplitud

e/V

200

电感模块L

Inductan

ce/H

0.01

电阻模块Resistan 5

R ce/

0.002

脉冲模块PeridodT

S/s

50

Pulse Pulse

Width(%)

模型中IGBT和二极管的参数可以保持蕴含值,电源电压和负载电阻可以根据实际情况设定,驱动脉冲宽度和电感值可以根据对输出电压电流的脉动要求选择。

2)设置仿真时间为0.05s,算法ode15s。

3)起动仿真,仿真结果如图2所示。其中图2—a为变换器输出电压波形,IGBT的开关频率为500Hz,占空比为0.5。b为负载波形;c为加滤波器的波形。

a)换器输出电压仿真波形:

b)负载输出波形

c)滤波后的仿真波形

图2直流降压变换器仿真结果(9)记录仿真结果,写在实训报告中。

三、注意事项

1、注意遵守实验室使用规范

2、每个同学独立完成此项任务。

任务小结

本任务对直流降压变换器的进行了仿真研究。

仿真实训3——单相逆变器仿真研究

一、任务准备

1、复习电压型单相全桥逆变电路的工作原理

2、复习正弦波脉宽调制(SPWM)调频、调压的原理。

3、研究单相全桥逆变电路触发控制的要求。

二、实施方法

1、采用正弦波脉宽调制,通过改变调制频率,实现交直交变频。交直流变换部分(AC/DC)为不可控整流电路,逆变部分(DC/AC)有四只IGBT管组成单相桥式逆变电路径,电路采用双极性控制方式。输出经LC低通滤波器,滤除高次谐波,得到频率可调的正弦波(基波)交流输出。

启动MATLAB6.5(7.0),进入SIMULINK后建新文档,绘制电压型单相全桥逆变电路仿真模型图,如图1所示,双击个模块,在出现的对话框内设置相应的参数。

图1电压型单相全桥逆变电路仿真模型图

(1)交流电压源参数设置。

设置交流峰值电压为220V, 频率为50Hz。

(2)IGBT的参数设置

按下列数据设置参数R n=0.001Ω,L on=1e-6H,U f=0.8,R s=10Ω,C s=250e-6(250×10-6)F

(3)电阻R的参数设置

R=1000Ω,L=0H, C=inf。

(4)电容C的参数设置

R=0Ω,L=0H, C=100μF。

(5)感性负载的参数设置

R=10Ω,L=1H, C=inf。

(8)普通桥的参数设置,如图2所示。

图2普通桥的参数设置对话框

单击仿真按钮进行仿真。双击示波器模块,得到如图3所示仿真结果。

图3电压型单相全桥逆变电路仿真结果

(9)记录仿真结果,写在实训报告中。

三、注意事项

1、注意遵守实验室使用规范

2、每个同学独立完成此项任务。

任务小结

本任务对单相逆变器的各种拓扑结构进行了研究,并针对典型电路进行了仿真研究。

仿真实训4——单相交流调压器仿真研究

一、准备工作

1、预习Matlab/simulink 仿真软件;

2、预习单相交流调压电路的原理,有能力的同学也可以预习三相交流调压电路。

二、实施方法

1、带电阻性负载的仿真实验

启动MATLAB7.0(或6.5), 进入SIMULINK后建新文档,绘制单相交流调压系统模型图,如图1所示。双击各模块,在出现的对话框内设置相应的参数。

(1)交流电压源参数设置

打开参数设置对话框,按要求进行参数设置,主要的参数有交流峰值电压、相位和频率。设置交流峰值电压为220V,频率为50Hz。

(2)晶闸管的参数设置

R

=0.001Ω,L on=0H,V f=0.8Ω,R s=500,C s=250e-9(250×10-9)

n

F。

(3)负载的参数设置

R=450Ω,L=0H,C=inf。

图1单相交流调压系统模型图

(4)脉冲发生器模块(pulse)的参数设置

α=0°时,pulse设置为0,pulse1设置为0.01。

α=60°时,pulse设置为0.00334,pulse1设置为0.01334。

打开仿真/参数窗,选择ode23tb算法,将相无偿设置为1e-3(1×10-3),开始仿真时间为0,停止时间设置为0.1。

设置好各模块参数后,单击工具栏的按钮,得到如图2(a)和2(b)的仿真结果。

(a)控制角为0°(b)控制角为60°

图2 带电阻性负载单相交流调压系统仿真结果

2、带电感性负载的仿真

各模块参数设置同上,但负载模块的参数设置为:R=450Ω,L=0.1H,C=inf。

3(a)和3(b)的仿真结果。

(a)控制角为0°(b)控制角为60°

图3带电感性负载单相交流调压系统仿真结果

3、在报告中要包括以下内容

(1)交流调压的应用场合概述。

(2)本任务的目的。

(3)记录仿真模型和仿真结果。

(4)分析电阻电感性负载时,α角和 角相应关系的变化对调压器工作的影响。

(5)分析仿真中出现的各种问题。

三、注意事项

1、将仿真结果用全屏拷贝的方式复制到U盘中,写报告用。

2、严格执行相关实验实训室的规定。

电力电子技术MATLAB仿真报告模板

《电气专业核心课综合课程设计》 题目:基于MATLAB的电力电子技术 仿真分析 学校: 院(系): 专业班级: 学生姓名: 学号: 指导教师: 目录

1.整流电路仿真………………………………………………………………………………页码 1.1单相半波可控整流系统………………………………………………………………页码 1.1.1晶闸管的仿真…………………………………………………………………页码 1.1.2单相半波可控整流电路的仿真………………………………………………页码 1.2晶闸管三相桥式整流系统的仿真…………………………………………………页码 1.3相位控制的晶闸管单相交流调压器带系统的仿真………………………………页码 2.斩波电路仿真………………………………………………………………………………页码 2.1降压斩波电路(Buck变换器)………………………………………………………页码 2.1.1可关断晶闸管(GTO)的仿真…………………………………………………页码 2.1.2 Buck变换器的仿真………………………………………………………页码 2.2升压斩波电路(Boost变换器)………………………………………………………页 码 2.2.1绝缘栅双极型晶体管(IGBT)的仿真…………………………………………页码 2.2.2 Boost变换器的仿真……………………………………………………………页码4.逆变电路仿真………………………………………………………………………………页码 4.1晶闸管三相半波有源逆变器的仿真………………………………………………页码 5.课程设计总结………………………………………………………………………………页码参考文献……………………………………………………………………………………页码 电气专业核心课综合课程设计任务书

现代电力电子技术作业及答案

2.1 试说明功率二极管的主要类型及其主要工作特点。 2.2 人们希望的可控开关的理想特性有哪些? 2.3 阅读参考文献一,说明常用功率半导体器件的性能特点及其一般应用场合。 2.4 说明MOSFET和IGBT驱动电路的作用、基本任务和工作特点。 3.1 什么是半波整流、全波整流、不控整流、半控整流、全控整流、相控整流? 3.2 什么是电压纹波系数、脉动系数、基波电流数值因数、基波电流移位因数(基波功率因素)和整流输入功率因数? 3.3 简述谐波与低功率因数(电力公害)的危害,并说明当前抑制相控整流电路网侧电流谐波的措施。 4.1 画出降压换流器(Buck电路)的基本电路结构,简要叙述其工作原理,并根据临界负载电流表达式说明当负载电压VO和电流IO一定时,如何避免负载电流断续。 4.2 画出升压换流器(Boost电路)的基本电路结构,推证其输入/输出电压的变压比M表达式,说明Boost电路输出电压的外特性。 4.3 画出升降压换流器(Buck-Boost电路)的基本电路结构,说明电路工作原理,推证其输入/输出电压(电流)间的关系式。 4.4 画出丘克换流器(Cuk电路)的基本电路结构,说明电路工作原理及主要优点,推证其输入/输出电压(电流)间的关系式。 5.1 正弦脉宽调制SPWM的基本原理是什么?幅值调制率ma和频率调制率mf的定义是什么? 5.2 逆变器载波频率fs的选取原则是什么? 5.3 简要说明逆变器方波控制方式与PWM控制方式的优缺点。 5.4 画出三相电压型逆变器双极性驱动信号生成的电路原理图,指出图中各变量的含义,简要叙述其工作原理。 6.1 柔性交流输电系统(FACTS)的定义是什么?FACTS控制器具有哪些基本功能类型? 6.2 什么是高压直流输电(HVDC)系统?轻型高压直流输电系统在哪些方面具有良好的应用前景? 6.3 晶闸管控制电抗器(TCR)的基本原理是什么?晶闸管触发控制角α<90°与α=90°两种情况下等效电抗是否相等,为什么? 6.4 作图说明静止无功发生器(SVG)的工作原理与控制方式,分析其与5.4节所述三相逆变器的异同点? 6.5 简要说明有源电力滤波器(APF)和动态电压恢复器(DVR)的基本功能和系统组成? 6.6 阅读参考文献三,简要说明当前在风力发电技术领域中运用的储能技术、输电技术以及滤波与补偿技术?

电力电子技术仿真实验指导书

《电力电子技术实验》指导书 合肥师范学院电子信息工程学院

实验一电力电子器件 仿真过程: 进入MATLAB环境,点击工具栏中的Simulink选项。进入所需的仿真环境,如图所示。点击File/New/Model新建一个仿真平台。点击左边的器件分类,找到Simulink和SimPowerSystems,分别在他们的下拉选项中找到所需的器件,用鼠标左键点击所需的元件不放,然后直接拉到Model平台中。 图 实验一的具体过程: 第一步:打开仿真环境新建一个仿真平台,根据表中的路径找到我们所需的器件跟连接器。

提取出来的器件模型如图所示: 图 第二步,元件的复制跟粘贴。有时候相同的模块在仿真中需要多次用到,这时按照常规的方法可以进行复制跟粘贴,可以用一个虚线框复制整个仿真模型。还有一个常用方便的方法是在选中模块的同时按下Ctrl键拖拉鼠标,选中的模块上会出现一个小“+”好,继续按住鼠标和Ctrl键不动,移动鼠标就可以将模块拖拉到模型的其他地方复制出一个相同的模块,同时该模块名后会自动加“1”,因为在同一仿真模型中,不允许出现两个名字相同的模块。 第三步,把元件的位置调整好,准备进行连接线,具体做法是移动鼠标到一个器件的连接点上,会出现一个“十字”形的光标,按住鼠标左键不放,一直到你所要连接另一个器件的连接点上,放开左键,这样线就连好了,如果想要连接分支线,可以要在需要分支的地方按住Ctrl键,然后按住鼠标左键就可以拉出一根分支线了。 在连接示波器时会发现示波器只有一个接线端子,这时可以参照下面示波器的参数调整的方法进行增加端子。在调整元件位置的时候,有时你会遇到有些元件需要改变方向才更方便于连接线,这时可以选中要改变方向的模块,使用Format菜单下的Flip block 和Rotate

现代电力电子技术

现代电力电子技术第1次作业 二、主观题(共12道小题) 11.电力电子技术的研究内容? 答:主要包括电力电子器件、功率变换主电路和控制电路。 12.电力电子技术的分支? 答:电力学、电子学、材料学和控制理论等。 13.电力变换的基本类型? 答: 包括四种变换类型:(1)整流AC-DC (2)逆变DC-AC (3)斩波DC-DC (4)交交电力变换AC-AC 14.电力电子系统的基本结构及特点? 答: 电力电子系统包括功率变换主电路和控制电路,功率变换主电路是属于电路变换的强电电路,控制电路是弱电电路,两者在控制理论的支持下实现接口,从而获得期望性能指标的输出电能。' 15.电力电子的发展历史及其特点? 答:主要包括史前期、晶闸管时代、全控型器件时代和复合型时代进行介绍,并说明电力电子技术的未来发展趋势 16.电力电子技术的典型应用领域? 答:介绍一般工业、交通运输、电力系统、家用电器和新能源开发几个方面进行介绍,要说明电力电子技术应用的主要特征。 17.电力电子器件的分类方式? 答: 电力电子器件的分类 (1)从门极驱动特性可以分为:电压型和电流型 (2)从载流特性可以分为:单极型、双极型和复合型 (3)从门极控制特性可以分为:不可控、半控及全控型 18.晶闸管的基本结构及通断条件是什么? 答:晶闸管由四层半导体结构组成,是个半控型电力电子器件,导通条件:承受正向阳极电压及门极施加正的触发信号。关断条件:流过晶闸管的电流降低到维持电流以下。

19.维持晶闸管导通的条件是什么? 答:流过晶闸管的电流大于维持电流。 20.对同一晶闸管,维持电流I H与擎住电流IL在数值大小上有I L______I H。 答:I L__〉____I H 21.整流电路的主要分类方式? 答: 按组成的器件可分为不可控(二极管)、半控(SCR)、全控(全控器件)三种; 按电路结构可分为桥式电路和半波电路; 按交流输入相数分为单相电路和三相电路。 22.单相全控桥式整流大电感负载电路中,晶闸管的导通角θ=________。 答:180o 现代电力电子技术第2次作业 二、主观题(共12道小题) 11.单相全控桥式整流阻性负载电路中,晶闸管的移相范围________。 答:0-180o 12.有源逆变产生的条件之一是:变流电路输出的直流平均电压Ud的极性必须与整流时输出的极性___ ________,且满足|Ud|<|Ed|。 答:相反 13.

电力电子技术MatLab仿真

本文前言 MA TLAB的简介 MATLAB是一种适用于工程应用的各领域分析设计与复杂计算的科学计算软件,由美国Mathworks公司于1984年正式推出,1988年退出3.X(DOS)版本,19992年推出4.X(Windows)版本;19997年腿5.1(Windows)版本,2000年下半年,Mathworks公司推出了他们的最新产品MATLAB6.0(R12)试用版,并于2001年初推出了正式版。随着版本的升级,内容不断扩充,功能更加强大。近几年来,Mathworks公司将推出MATLAB语言运用于系统仿真和实时运行等方面,取得了很多成绩,更扩大了它的应用前景。MATLAB已成为美国和其他发达国家大学教学和科学研究中最常见而且必不可少的工具。 MATLAB是“矩阵实验室”(Matrix Laboratory)的缩写,它是一种以矩阵运算为基础的交互式程序语言,着重针对科学计算、工程计算和绘图的需要。在MATLAB中,每个变量代表一个矩阵,可以有n*m个元素,每个元素都被看做复数摸索有的运算都对矩阵和复数有效,输入算式立即可得结果,无需编译。MATLAB强大而简易的做图功能,能根据输入数据自动确定坐标绘图,能自定义多种坐标系(极坐标系、对数坐标系等),讷讷感绘制三维坐标中的曲线和曲面,可设置不同的颜色、线形、视角等。如果数据齐全,MATLAB通常只需要一条命令即可做图,功能丰富,可扩展性强。MATLAB软件包括基本部分和专业扩展部分,基本部分包括矩阵的运算和各种变换、代数和超越方程的求解、数据处理和傅立叶变换及数值积分风,可以满足大学理工科学生的计算需要,扩展部分称为工具箱,它实际上使用MATLAB的基本语句编成的各种子程序集,用于解决某一方面的问题,或实现某一类的新算法。现在已经有控制系统、信号处理、图象处理、系统辨识、模糊集合、神经元网络及小波分析等多种工具箱,并且向公式推倒、系统仿真和实时运行等领域发展。MATLAB语言的难点是函数较多,仅基本部分就有七百多个,其中常用的有二三百个。 MATLAB在国内外的大学中,特别是数值计算应用最广的电气信息类学科中,已成为每个学生都应该掌握的工具。MATLAB大大提高了课程教学、解题作业、分析研究的效率。

现代电力电子技术的发展(精)

现代电力电子技术的发展 浙江大学电气工程学院电气工程及其自动化992班马玥 (浙江杭州310027 E-mail: yeair@https://www.360docs.net/doc/1f1814329.html,学号:3991001053 摘要:本文简要回顾电力电子技术的发展,阐述了现代电力电子技术发展的趋势,论述了走向信息时代的电力电子技术和器件的创新、应用,将对我国工业尤其是信息产业领域形成巨大的生产力,从而推动国民经济高速、高效可持续发展。 关键词:现代电力电子技术;应用;发展趋势 The Development of Modern Power Electronics Technique Ma Yue Electrical Engineering College. Zhejiang University. Hangzhou 310027, China E-mail: yeair@https://www.360docs.net/doc/1f1814329.html, Abstract: This paper reviews the development of power electronics technique, as well as its current situation and anticipated trend of development. Keywords: modern power electronics technique, application, development trend. 1、概述 自本世纪五十年代未第一只晶闸管问世以来,电力电子技术开始登上现代电气传动技术舞台,以此为基础开发的可控硅整流装臵,是电气传动领域的一次革命,使电能的变换和控制从旋转变流机组和静止离子变流器进入由电力电子器件构成的变流器时代,这标志着电力电子的诞生。

电力电子技术与电力系统分析matlab仿真

电气2013级卓班电力电子技术与电力系统分析 课程实训报告 专业:电气工程及其自动化 班级: 姓名: 学号: 指导教师:

兰州交通大学自动化与电气工程学院 2016 年 1 月日

电力电子技术与电力系统分析课程实训报告 1 电力电子技术实训报告 1.1 实训题目 1.1.1电力电子技术实训题目一 一.单相半波整流 参考电力电子技术指导书中实验三负载,建立MATLAB/Simulink环境下三相半波整流电路和三相半波有源逆变电路的仿真模型。仿真参数设置如下: (1)交流电压源的参数设置和以前实验相关的参数一样。 (2)晶闸管的参数设置如下: R=0.001Ω,L =0H,V f=0.8V,R s=500Ω,C s=250e-9F on (3)负载的参数设置 RLC串联环节中的R对应R d,L对应L d,其负载根据类型不同做不同的调整。 (4)完成以下任务: ①仿真绘出电阻性负载(RLC串联负载环节中的R d= Ω,电感L d=0,C=inf,反电动势为0)下α=30°,60°,90°,120°,150°时整流电压U d,负载电流L 和晶闸管两端电压U vt1的波形。 d ②仿真绘出阻感性负载下(负载R d=Ω,电感L d为,反电动势E=0)α=30°,60°,90°,120°,150°时整流电压U d,负载电流L d和晶闸管两端电压U vt1的波形。 ③仿真绘出阻感性反电动势负载下α=90°,120°,150°时整流电压U d,负载电流L d和晶闸管两端电压U vt1的波形,注意反电动势E的极性。 (5)结合仿真结果回答以下问题: ①该三项半波可控整流电路在β=60°,90°时输出的电压有何差异?

现代电力电子技术发展及其应用

现代电力电子技术发展及其应用 摘要:电力电子技术是研究采用电力电子器件实现对电能的控制和变换的科学,是介于电气工程三大主要领域——电力、电子和控制之间的交叉学科,在电力、工业、交通、航空航天等领域具有广泛的应用。电力电子技术的应用已经深入到工业生产和社会生活的各个方面,成为传统产业和高新技术领域不可缺少的关键技术,可以有效地节约能源。 一、引言 自上世纪五十年代末第一只晶闸管问世以来,电力电子技术开始登上现代电气控制技术舞台,标志着电力电子技术的诞生。究竟什么是电力电子技术呢?电力电子技术就是采用功率半导体器件对电能进行转换、控制和优化利用的技术,它广泛应用于电力、电气自动化及各种电源系统等工业生产和民用部门。它是介于电力、电子和控制三大领域之间的交叉学科。目前,电力电子技术的应用已遍及电力、汽车、现代通信、机械、石化、纺织、家用电器、灯光照明、冶金、铁路、医疗设备、航空、航海等领域。进入21世纪,随着新的理论、器件、技术的不断出现,特别是与微控制器技术的日益融合,电力电子技术的应用领域也必将不断地得以拓展,随之而来的必将是智能电力电子时代。 二、电力电子技术的发展 现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压

和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。 1、整流器时代 大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。 2、逆变器时代 七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。 3、变频器时代 进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能

电力电子课程设计matlab仿真实验

一.课程设计目的 (1)通过matlab的simulink工具箱,掌握DC-DC、DC-AC、AC-DC电路的仿真。通过设置元器件不同的参数,观察输出波形并进行比较,进一步理解电路的工作原理; (2)掌握焊接的技能,对照原理图,了解工作原理; (3)加深理解和掌握《电力电子技术》课程的基础知识,提高学生综合运用所学知识的能力; 二.课程设计内容 第一部分:simulink电力电子仿真/版本matlab7.0 (1)DC-DC电路仿真(升降压(Buck-Boost)变换器) 仿真电路参数:直流电压20V、开关管为MOSFET(内阻为0.001欧)、开关频率20KHz、电感L为133uH、电容为1.67mF、负载为电阻负载(20欧)、二极管导通压降0.7V(内阻为0.001欧)、占空比40%。仿真时间0.3s,仿真算法为ode23tb。 图1-1

占空比为40%的,降压后为12.12V。触发脉冲、电感电流、开关管电流、二极管电流、负载电流、输出电压的波形。 图1-2 占空比为60%的,升压后为28.25V。触发脉冲、电感电流、开关管电流、二极管电流、负载电流、输出电压的波形。

图1-3 ? 图1-4 升降压变换电路(又称Buck-boost电路)的输出电压平均值可以大于或小于输入直流电压,输出电压与输入电压极性相反,其电路原理图如图1-4(a)所示。它主要用于要求输出与输入电压反相,其值可大于或小于输入电压的直流稳压电源 工作原理: ①T导通,ton期间,二极管D反偏而关断,电感L储能,滤波电容C向负载提供能量。 ②T关断,toff期间,当感应电动势大小超过输出电压U0时,二极管D导通,电感L 经D向C和RL反向放电,使输出电压的极性与输入电压 在ton期间电感电流的增加量等于toff期间的减少量,得: 由的关系,求出输出电压的平均值为:

电力电子技术matl新编仿真实验报告

电力电子技术m a t l新编仿真实验报告 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

上海电机学院卢昌钰 BG0801 10号 1.单相半波可控整流电路 (1)电阻性负载(R=1欧姆,U2=220V,α=30°) 接线图 电阻性负载二次电压,输出电压,二次电流,输出电流,晶闸管电压曲线 输入电压与输出电压波形 (2)阻感负载(R=1欧姆,L=,U2=220V,α=30°) 接线图 阻感负载二次电压,输出电压,二次电流,输出电流,晶闸管电压曲线 输入电压与输出电压波形 (3)阻感负载+续流二极管(R=1欧姆,L=,U2=220V,α=30°)有问题 接线图 阻感负载二次电压,输出电压,二次电流,输出电流,晶闸管电压曲线 输入与输出电压波形 2.单相桥式全控整流电路

(1)电阻性负载(R=1欧姆,U2=220V,α=60°) 电阻性负载电路图搭建 电阻负载输入电压和输出电压对比 电阻负载直流电压和电流波形 电阻负载时晶闸管T1的波形 电流i2的曲线 (2)电感性负载(R=1欧姆,L=,α=60°,U2=220V,) 阻感负载电路图搭建 阻感负载电压输入与输出波形 阻感负载输出电流id 阻感负载输出电压ud 阻感负载交变时的电流i2

阻感负载交变时的电压u2 阻感负载VT1的电压波形 (3)电感性负载+续流二极管(R=1欧姆,L=,α=60°,U2=220V,) 电感性负载+续流二极管接线图 输入和输出电压波形 负载电流 负载电压 二次侧电流 晶闸管两端电压 3.单相桥式半空整流电路 (1)电阻负载(R=1欧姆,α=60°,U2=220V,) 接线图 二次侧电压,负载电压,二次侧电流,负载电流,晶闸管电压,二极管电压,二 极管电流波形图 (2)阻感负载(R=1欧姆,L=,α=60°,U2=220V,) 接线图 二次侧电压,负载电压,二次侧电流,负载电流,晶闸管电压,二极管电压,二 极管电流波形图 (3)阻感负载+续流二极管(R=1欧姆,L=,α=60°,U2=220V,) 接线图 二次侧电压,负载电压,二次侧电流,负载电流,晶闸管VT1电压,二极管VD4 电压,二极管VD4电流波形图

现代电力电子技术的发展、现状与未来展望综述上课讲义

现代电力电子技术的发展、现状与未来展 望综述

课程报告 现代电力电子技术的发展、现状与 未来展望综述 学院:电气工程学院 姓名: ********* 学号: 14********* 专业: ***************** 指导教师: *******老师 0 引言

电力电子技术就是使用电力半导体器件对电能进行变换和控制的技术,它是综合了电子技术、控制技术和电力技术而发展起来的应用性很强的新兴学科。随着经济技术水平的不断提高,电能的应用已经普及到社会生产和生活的方方面面,现代电力电子技术无论对传统工业的改造还是对高新技术产业的发展都有着至关重要的作用,它涉及的应用领域包括国民经济的各个工业部门。毫无疑问,电力电子技术将成为21世纪的重要关键技术之一。 1 电力电子技术的发展[1] 电力电子技术包含电力电子器件制造技术和变流技术两个分支,电力电子器件的制造技术是电力电子技术的基础。电力电子器件的发展对电力电子技术的发展起着决定性的作用,电力电子技术的发展史是以电力电子器件的发展史为纲的。 1.1半控型器件(第一代电力电子器件) 上世纪50年代,美国通用电气公司发明了世界上第一只硅晶闸管(SCR),标志着电力电子技术的诞生。此后,晶闸管得到了迅速发展,器件容量越来越大,性能得到不断提高,并产生了各种晶闸管派生器件,如快速晶闸管、逆导晶闸管、双向晶闸管、光控晶闸管等。但是,晶闸管作为半控型器件,只能通过门极控制器开通,不能控制其关断,要关断器件必须通过强迫换相电路,从而使整个装置体积增加,复杂程度提高,效率降低。另外,晶闸管为双极型器件,有少子存储效应,所以工作频率低,一般低于400 Hz。由于以上这些原因,使得晶闸管的应用受到很大限制。 1.2全控型器件(第二代电力电气器件) 随着半导体技术的不断突破及实际需求的发展,从上世纪70年代后期开始,以门极可关断晶闸管(GTO)、电力双极晶体管(BJT)和电力场效应晶体管(Power-MOSFET)为代表的全控型器件迅速发展。全控型器件的特点是,通过对门极(基极、栅极)的控制既可使其开通又可使其关断。此外,这些器件的开关速度普遍高于晶闸管,可用于开关频率较高的电路。这些优点使电力电子技术的面貌焕然一新,把电力电子技术推进到一个新的发展阶段。 1.3电力电子器件的新发展 为了解决MSOFET在高压下存在的导通电阻大的问题,RCA公司和GE公司于1982年开发出了绝缘栅双极晶体管(IGBT),并于1986年开始正式生产并逐渐系列化。IGBT是MOS?FET和BJT得复合,它把MOSFET驱动功率小、开关速度快的优点和BJT通态压降小、载流能力大的优点集于一身,性能十分优越,使之很快成为现代电力电子技术的主导器件。与IGBT 相对应,MOS 控制晶闸管(MCT)和集成门极换流晶闸管(IGCT)都是MOSFET和GTO的复合,它们都综合

模拟电子技术课程设计(Multisim仿真)

《电子技术Ⅱ课程设计》 报告 姓名 xxx 学号 院系自动控制与机械工程学院 班级 指导教师 2014 年 6 月18日

目录 1、目的和意义 (3) 2、任务和要求 (3) 3、基础性电路的Multisim仿真 (4) 3.1 半导体器件的Multisim仿真 (4) 3.11仿真 (4) 3.12结果分析 (4) 3.2单管共射放大电路的Multisim仿真 (5) 3.21理论计算 (7) 3.21仿真 (7) 3.23结果分析 (8) 3.3差分放大电路的Multisim仿真 (8) 3.31理论计算 (9) 3.32仿真 (9) 3.33结果分析 (9) 3.4两级反馈放大电路的Multisim仿真 (9) 3.41理论分析 (11) 3.42仿真 (12) 3.5集成运算放大电路的Multisim仿真(积分电路) (12) 3.51理论分析 (13) 3.52仿真 (14) 3.6波形发生电路的Multisim仿真(三角波与方波发生器) (14) 3.61理论分析 (14) 3.62仿真 (14) 4.无源滤波器的设计 (14) 5.总结 (18) 6.参考文献 (19)

一、目的和意义 该课程设计是在完成《电子技术2》的理论教学之后安排的一个实践教学环节.课程设计的目的是让学生掌握电子电路计算机辅助分析与设计的基本知识和基本方法,培养学生的综合知识应用能力和实践能力,为今后从事本专业相关工程技术工作打下基础。这一环节有利于培养学生分析问题,解决问题的能力,提高学生全局考虑问题、应用课程知识的能力,对培养和造就应用型工程技术人才将能起到较大的促进作用。 二、任务和要求 本次课程设计的任务是在教师的指导下,学习Multisim仿真软件的使用方法,分析和设计完成电路的设计和仿真。完成该次课程设计后,学生应该达到以下要求: 1、巩固和加深对《电子技术2》课程知识的理解; 2、会根据课题需要选学参考书籍、查阅手册和文献资料; 3、掌握仿真软件Multisim的使用方法; 4、掌握简单模拟电路的设计、仿真方法; 5、按课程设计任务书的要求撰写课程设计报告,课程设计报告能正确反映设计和仿真结果。

电力电子技术仿真研究

电力电子技术仿真实训 2009年 仿真实训1——桥式整流电路仿真研究 (2) 仿真实训2——直流降压变换器仿真研究 (9) 仿真实训3——单相逆变器仿真研究 (12) 仿真实训4——单相交流调压器仿真研究 (15)

仿真实训1——桥式整流电路仿真研究 一、准备工作 1、预习Matlab/simulink 仿真软件; 2、预习整流电路的几种形式和原理,重点预习单相桥式全控整流电路。有能力的同学也可以预习其他各种形式的整流电路。 二、操作方法 1、带电阻性负载的仿真实验 启动MATLAB7.0(或6.5), 进入SIMULINK后建新文档,绘制单相全波可控整流器结构模型图,如图1所示。双击各模块,在出现的对话框内设置相应的参数。 图1带电阻负载单相桥式全控整流电路模型 (1)晶闸管元件参数设置 双击晶闸管模块,本例元件参数对话框如图2所示。 a)晶闸管元件内电阻R on,单位为Ω。 b)晶闸管元件内电阻L on,单位为H。注意,电感不能设置为0。

图2 可关断晶闸管元件的参数设置对话框 c)晶闸管元件的正向管压降V f,单位为V。 d)电流下降到10%的时间t f,单位为秒(s)。 e)电流拖尾时间T q,单位为秒(s)。 f)初始电流I C,单位为A,与晶闸管元件初始电流的设置相同。通常将I C 设置为0。 g)缓冲电阻R s,单位为Ω,为了在模型中消除缓冲电路,可将缓冲电阻R s 设置为inf。 h)缓冲电容C s,单位为F,为了在模型中消除缓冲电路,可将缓冲电容C s 设置为0。为了得到纯电阻R s,可将电容C s参数设置为inf。 (2)单个电阻、电容、电感元件的参数设置。 双击RLC模块,整个电阻、电容、电感元件的参数设置对话框如图3所示。

西南交大网院《现代电力电子技术(主观题)》

《现代电力电子技术》第一次作业(主观题) 本次作业是本门课程本学期的第1次作业,注释如下: 二、主观题(共12道小题) 11.电力电子技术的研究内容? 参考答案:主要包括电力电子器件、功率变换主电路和控制电路。 12.电力电子技术的分支? 参考答案:电力学、电子学、材料学和控制理论等。 13.电力变换的基本类型? 参考答案: 包括四种变换类型:(1)整流AC-DC (2)逆变DC-AC (3)斩波DC-DC (4)交交电力变换AC-AC 14.电力电子系统的基本结构及特点? 参考答案: 电力电子系统包括功率变换主电路和控制电路,功率变换主电路是属于电路变换的强电电路,控制电路是弱电电路,两者在控制理论的支持下实现接口,从而获得期望性能指标的输出电能。' 15.电力电子的发展历史及其特点? 参考答案:主要包括史前期、晶闸管时代、全控型器件时代和复合型时代进行介绍,并说明电力电子技术的未来发展趋势 16.电力电子技术的典型应用领域? 参考答案:介绍一般工业、交通运输、电力系统、家用电器和新能源开发几个方面进行介绍,要说明电力电子技术应用的主要特征。 17.电力电子器件的分类方式?

参考答案: 电力电子器件的分类 (1)从门极驱动特性可以分为:电压型和电流型 (2)从载流特性可以分为:单极型、双极型和复合型 (3)从门极控制特性可以分为:不可控、半控及全控型 18.晶闸管的基本结构及通断条件是什么? 参考答案:晶闸管由四层半导体结构组成,是个半控型电力电子器件,导通条件:承受正向阳极电压及门极施加正的触发信号。关断条件:流过晶闸管的电流降低到维持电流以下。 19.维持晶闸管导通的条件是什么? 参考答案:流过晶闸管的电流大于维持电流。 20.对同一晶闸管,维持电流I H与擎住电流IL在数值大小上有I L______I H。 参考答案:I L__〉____I H 21.整流电路的主要分类方式? 参考答案: 按组成的器件可分为不可控(二极管)、半控(SCR)、全控(全控器件)三种; 按电路结构可分为桥式电路和半波电路; 按交流输入相数分为单相电路和三相电路。 22.单相全控桥式整流大电感负载电路中,晶闸管的导通角θ=________。 参考答案:180o 《现代电力电子技术》第二次作业(主观题) 本次作业是本门课程本学期的第2次作业,注释如下: 二、主观题(共12道小题) 11.单相全控桥式整流阻性负载电路中,晶闸管的移相范围________。 参考答案:0-180o 12.有源逆变产生的条件之一是:变流电路输出的直流平均电压Ud的极性必须与整流时输出的极性___________,且满足|Ud|<|Ed|。 参考答案:相反 13.

现代电力电子技术

现代电力电子技术

现代电力电子技术二、主观题(共12道小题) (主观题请按照题目,离线完成,完成后纸质上交学习中心,记录成绩。在线只需提交客观题答案。) 11. 电力电子技术的研究内容? 12. 电力电子技术的分支? 13. 电力变换的基本类型? 14. 电力电子系统的基本结构及特点? 15. 电力电子的发展历史及其特点? 16. 电力电子技术的典型应用领域? 17. 电力电子器件的分类方式? 18. 晶闸管的基本结构及通断条件是什么? 19. 维持晶闸管导通的条件是什么? 20. 对同一晶闸管,维持电流I H与擎住电流IL在数值大小上有I L______I H。 21. 整流电路的主要分类方式? 22. 单相全控桥式整流大电感负载电路中,晶闸管的导通角θ=________。

现代电力电子技术二、主观题(共12道小题) 11. 电力电子技术的研究内容? 参考答案:主要包括电力电子器件、功率变换主电路和控制电路。 12. 电力电子技术的分支? 参考答案:电力学、电子学、材料学和控制理论等。 13. 电力变换的基本类型? 参考答案: 包括四种变换类型:(1)整流AC-DC (2)逆变DC-AC (3)斩波DC-DC (4)交交电力变换AC-AC 14. 电力电子系统的基本结构及特点? 参考答案: 电力电子系统包括功率变换主电路和控制电路,功率变换主电路是属于电路变换的强电电路,控制电路是弱电电路,两者在控制理论的支持下实现接口,从而获得期望性能指标的输出电能。'

15. 电力电子的发展历史及其特点? 参考答案:主要包括史前期、晶闸管时代、全控型器件时代和复合型时代进行介绍,并说明电力电子技术的未来发展趋势 16. 电力电子技术的典型应用领域? 参考答案:介绍一般工业、交通运输、电力系统、家用电器和新能源开发几个方面进行介绍,要说明电力电子技术应用的主要特征。 17. 电力电子器件的分类方式? 参考答案: 电力电子器件的分类 (1)从门极驱动特性可以分为:电压型和电流型 (2)从载流特性可以分为:单极型、双极型和复合型 (3)从门极控制特性可以分为:不可控、半控及全控型 18. 晶闸管的基本结构及通断条件是什么? 参考答案:晶闸管由四层半导体结构组成,是个半控型电力电子器件,导通条件:承受正向阳极电压及门极施加正的触发信号。关断条件:流过晶闸管的电流降低到维持电流以下。 19. 维持晶闸管导通的条件是什么? 参考答案:流过晶闸管的电流大于维持电流。 20. 对同一晶闸管,维持电流I H与擎住电流IL在数值大小上有I L______I H。 参考答案:I L__〉____I H 21. 整流电路的主要分类方式? 参考答案: 按组成的器件可分为不可控(二极管)、半控(SCR)、全控(全控器件)三种; 按电路结构可分为桥式电路和半波电路; 按交流输入相数分为单相电路和三相电路。

电力电子技术MatLab仿真.

本文前言 MATLAB的简介 MATLAB是一种适用于工程应用的各领域分析设计与复杂计算的科学计算软件,由美国Mathworks公司于1984年正式推出,1988年退出3.X(DOS)版本,19992年推出4.X(Windows)版本;19997年腿5.1(Windows)版本,2000年下半年,Mathworks公司推出了他们的最新产品MATLAB6.0(R12)试用版,并于2001年初推出了正式版。随着版本的升级,内容不断扩充,功能更加强大。近几年来,Mathworks公司将推出MATLAB语言运用于系统仿真和实时运行等方面,取得了很多成绩,更扩大了它的应用前景。MATLAB已成为美国和其他发达国家大学教学和科学研究中最常见而且必不可少的工具。 MATLAB是“矩阵实验室”(Matrix Laboratory)的缩写,它是一种以矩阵运算为基础的交互式程序语言,着重针对科学计算、工程计算和绘图的需要。在MATLAB中,每个变量代表一个矩阵,可以有n*m个元素,每个元素都被看做复数摸索有的运算都对矩阵和复数有效,输入算式立即可得结果,无需编译。MATLAB强大而简易的做图功能,能根据输入数据自动确定坐标绘图,能自定义多种坐标系(极坐标系、对数坐标系等),讷讷感绘制三维坐标中的曲线和曲面,可设置不同的颜色、线形、视角等。如果数据齐全,MATLAB通常只需要一条命令即可做图,功能丰富,可扩展性强。MATLAB软件包括基本部分和专业扩展部分,基本部分包括矩阵的运算和各种变换、代数和超越方程的求解、数据处理和傅立叶变换及数值积分风,可以满足大学理工科学生的计算需要,扩展部分称为工具箱,它实际上使用MATLAB的基本语句编成的各种子程序集,用于解决某一方面的问题,或实现某一类的新算法。现在已经有控制系统、信号处理、图象处理、系统辨识、模糊集合、神经元网络及小波分析等多种工具箱,并且向公式推倒、系统仿真和实时运行等领域发展。MATLAB语言的难点是函数较多,仅基本部分就有七百多个,其中常用的有二三百个。 MATLAB在国内外的大学中,特别是数值计算应用最广的电气信息类学科中,已成为每个学生都应该掌握的工具。MATLAB大大提高了课程教学、解题作业、分析研究的效率。

《现代电力电子技术》离线作业答案

现代电力电子技术第1次作业 一、单项选择题(只有一个选项正确,共4道小题) 1. 在晶闸管应用电路中,为了防止误触发应将幅值限制在不触发区的信号是( ) (A) 干扰信号 (B) 触发电压信号 (C) 触发电流信号 (D) 干扰信号和触发信号 正确答案:A 2. 当晶闸管承受反向阳极电压时,不论门极加何种极性触发电压,管子都将工作在( ) (A) 导通状态 (B) 关断状态 (C) 饱和状态 (D) 不定 正确答案:B 3. 晶闸管工作过程中,管子本身产生的管耗等于管子两端电压乘以() (A) 阳极电流 (B) 门极电流 (C) 阳极电流与门极电流之差 (D) 阳极电流与门极电流之和 正确答案:A 4. 电阻性负载三相半波可控整流电路,相电压的有效值为U2,当控制角α=0°时,整流输出电压平均值等于() (A) 1.41U2 (B) 2.18U2 (C) 1.73U2 (D) 1.17U2 正确答案:D 四、主观题(共14道小题) 5. 电力电子技术的研究内容? 参考答案:主要包括电力电子器件、功率变换主电路和控制电路。 6. 电力电子技术的分支? 参考答案:电力学、电子学、材料学和控制理论等。 7. 电力变换的基本类型? 参考答案:包括四种变换类型:(1)整流AC-DC (2)逆变DC-AC

(3)斩波DC-DC (4)交交电力变换AC-AC。 8. 电力电子系统的基本结构及特点? 参考答案: 电力电子系统包括功率变换主电路和控制电路,功率变换主电路是属于电路变换的强电电路,控制电路是弱电电路,两者在控制理论的支持下实现接口,从而获得期望性能指标的输出电能。 9. 电力电子的发展历史及其特点? 参考答案: 主要包括史前期、晶闸管时代、全控型器件时代和复合型时代进行介绍,并说明电力电子技术的未来发展趋势。 10. 电力电子技术的典型应用领域? 参考答案:介绍一般工业、交通运输、电力系统、家用电器和新能源开发几个方面进行介绍,要说明电力电子技术应用的主要特征。 11. 电力电子器件的分类方式? 参考答案:电力电子器件的分类如下 (1)从门极驱动特性可以分为:电压型和电流型 (2)从载流特性可以分为:单极型、双极型和复合型 (3)从门极控制特性可以分为:不可控、半控及全控型。 12. 晶闸管的基本结构及通断条件是什么? 参考答案: 晶闸管由四层半导体结构组成,是个半控型电力电子器件,导通条件:承受正向阳极电压及门极施加正的触发信号。关断条件:流过晶闸管的电流降低到维持电流以下。 13. 维持晶闸管导通的条件是什么? 参考答案:流过晶闸管的电流大于维持电流。 14. 对同一晶闸管,维持电流IH与擎住电流IL在数值大小上有IL______IH。 参考答案:IL〉IH。 15. 电力电子技术的定义和作用? 参考答案:电力电子技术是研究利用电力电子器件实现电能变换和控制的电路,内容涉及电力电子器件、功率变换技术和控制理论,作用是把粗电变成负载需要的精电。 16. 双极型器件和单极型器件的特点与区别? 参考答案: 双极型,电流驱动,通流能力很强,开关速度较低,所需驱动功率大,驱动电路复杂; 单极型,电压驱动,开关速度快,输入阻抗高,热稳定性好,所需驱动功率小而且驱动电路简单。

电力电子仿真仿真实验报告

目录 实验一:常用电力电子器件特性测试 (3) (一)实验目的: (3) 掌握几种常用电力电子器件(SCR、GTO、MOSFET、IGBT)的工作特性; (3) 掌握各器件的参数设置方法,以及对触发信号的要求。 (3) (二)实验原理 (3) (三)实验内容 (3) (四)实验过程与结果分析 (3) 1.仿真系统 (3) 2.仿真参数 (4) 3.仿真波形与分析 (4) 4.结论 (10) 实验二:可控整流电路 (11) (一)实验目的 (11) (二)实验原理 (11) (三)实验内容 (11) (四)实验过程与结果分析 (12) 1.单相桥式全控整流电路仿真系统,下面先以触发角为0度,负载为纯电阻负载为例 (12) 2.仿真参数 (12) 3.仿真波形与分析 (14) 实验三:交流-交流变换电路 (19) (一)实验目的 (19) (三)实验过程与结果分析 (19) 1)晶闸管单相交流调压电路 (19) 实验四:逆变电路 (26) (一)实验目的 (26)

(二)实验内容 (26) 实验五:单相有源功率校正电路 (38) (一)实验目的 (38) (二)实验内容 (38) 个性化作业: (40) (一)实验目的: (40) (二)实验原理: (40) (三)实验内容 (40) (四)结果分析: (44) (五)实验总结: (45)

实验一:常用电力电子器件特性测试 (一)实验目的: 掌握几种常用电力电子器件(SCR、GTO、MOSFET、IGBT)的工作特性; 掌握各器件的参数设置方法,以及对触发信号的要求。(二)实验原理 将电力电子器件和负载电阻串联后接至直流电源的两端,给器件提供触发信号,使器件触发导通。 (三)实验内容 ?在MATLAB/Simulink中构建仿真电路,设置相关参数。 ?改变器件和触发脉冲的参数设置,观察器件的导通情况及负载端电压、器件电流的变化情况。 (四)实验过程与结果分析 1.仿真系统 以GTO为例,搭建仿真系统如下:

电力电子系统的计算机仿真

《电力电子系统的计算机仿真》题目:方波逆变电路的计算机仿真

电力电子技术综合了电子电路、电机拖动、计算机控制等多学科知识,是一门实践性和应用性很强的课程。由于电力电子器件自身的开关非线性,给电力电子电路的分析带来了一定的复杂性和困难,一般常用波形分析的方法来研究。仿真技术为电力电子电路的分析提供了崭新的方法。 我们在电力电子技术课程的教学中引入了仿真,对于加深学生对这门课程的理解起到了良好的作用。掌握了仿真的方法,学生的想法可以通过仿真来验证,对培养学生的创新能力很有意义,并且可以调动学生的积极性。实验实训是本课程的重要组成部分,学校的实验实训条件毕竟是有限的,也受到学时的限制。而仿真实训不受时间、空间和物质条件的限制,学生可以在课外自行上机。仿真在促进教学改革、加强学生能力培养方面起到了积极的推动作用。 【关键字】电力电子,MATLAB,仿真。

第一章电力电子与MATLAB软件的介绍 一、电力电子概况 二、MATLAB软件介绍 第二章电力电子器件介绍 一、电力二极管特性介绍 二、晶闸管特性介绍 三、IGBT特性介绍 第三章主电路工作原理 一、单相桥式逆变电路 二、三相桥式逆变电路 三、PWM控制基本原理 第四章仿真模型的建立 一、单极性SPWM触发脉冲波形的产生 二、双极性SPWM触发脉冲波形的产生 三、单极性SPWM方式下的单相桥式逆变电路 四、双极性SPWM方式下的单相桥式逆变电路第五章仿真结果分析 第六章心得体会 第七章参考文献

第一章电力电子与MATLAB软件的 介绍 一、电力电子概况 电力电子技术是一门新兴的应用于电力领域的电子技术,就是使用电力电子器件(如晶闸管,GTO,IGBT等)对电能进行变换和控制的技术。电力电子技术所变换的“电力”功率可大到数百MW甚至GW,也可以小到数W甚至1W以下,和以信息处理为主的信息电子技术不同电力电子技术主要用于电力变换。 电力电子技术分为电力电子器件制造技术和交流技术(整流,逆变,斩波,变频,变相等)两个分支。 一般认为,电力电子技术的诞生是以1957年美国通用电气公司研制出的第一个晶闸管为标志的,电力电子技术的概念和基础就是由于晶闸管和晶闸管变流技术的发展而确立的。此前就已经有用于电力变换的电子技术,所以晶闸管出现前的时期可称为电力电子技术的史前或黎明时期。70年代后期以门极可关断晶闸管(GTO),电力双极型晶体管(BJT),电力场效应管(Power-MOSFET)为代表的全控型器件全速发展(全控型器件的特点是通过对门极既栅极或基极的控制既可以使其开通又可以使其关断),使电力电子技术的面貌焕然一新进入了新的发展阶段。80年代后期,以绝缘栅极双极型晶体管(IGBT 可看作MOSFET和BJT的复合)为代表的复合型器件集驱动功率小,开关速度快,通态压降小,在流能力大于一身,性能优越使之成为现代电力电子技术的主导器件。为了使电力电子装置的结构紧凑,体积减小,常常把若干个电力电子器件及必要的辅助器件做成模块的形式,后来又把驱动,控制,保护电路和功率器件集成在一起,构成功率集成电路(PIC)。目前PIC的功率都还较小但这代表了电力电子技术发展的一个重要方向 利用电力电子器件实现工业规模电能变换的技术,有时也称为功率电子技术。一般情况下,它是将一种形式的工业电能转换成另一种形式的工业电能。例如,将交流电能变换成直流电能或将直流电能变换成交流电能;将工频电源变换为设备所需频率的电源;在正常交流电源中断时,用逆变器(见电力变流器)将蓄电池的直流电能变换成工频交流电能。应用电力电子技术还能实现非电能与电能之间的转换。例如,利用太阳电池将太阳辐射能转换成电能。与电子技术不同,电力电子技术变换的电能是作为能源而不是作为信息传感的载体。因此人们关注的是所能转换的电功率。 电力电子技术是建立在电子学、电工原理和自动控制三大学科上的新兴学科。因它本身是大功率的电技术,又大多是为应用强电的工业服务的,故常将它归属于电工类。电力电子技术的内容主要包括电力电子器件、电力电子电路和电力电子装置及其系统。电力电子器件以半导体为基本材料,最常用的材料为单晶硅;它的理论基础为半导体物理学;它的工艺技术为半导体器件工艺。近代新型电力电子器件中大量应用了微电子学的技术。电力电子电路吸收了电子学的理论基础,根据器件的特点和电能转换的要

相关文档
最新文档