《奥比岛》黑暗行星

《奥比岛》黑暗行星

《奥比岛》黑暗行星

进入黑暗行星

1、穿上路线徽章和太空服并点击飞船,倒数完毕即可进入

黑暗行星上的东西:

有保护蘑菇任务(已知12关)

采矿(带上精灵)要花10金币,随意点击地上就可以!

存款机

奥比岛广场、阳光大道有存款机

点击可以获得号码,密码是自己的奥比密码。

最少存2000元

有活期存款(每天百分之三的利息)-最少存200

有定期存款-(分别:3天 7天 15天)

颜色迷惑

精灵岛,章鱼旁边的盘子

按上下左右键即可

(按键盘上的)

百度攻略& 提供,更多精彩攻略访问https://www.360docs.net/doc/2013007400.html,

1

必修二《行星的运动》教案

★课题 6.1 行星的运动 ★教学目标 (一)知识与技能: 1.知道地心说和日心说的基本内容。 2.学习开普勒三大定律,能用三大定律解决问题。 3.了解人类对行星的认识过程是漫长复杂的,真是来 之不易的。 (二)过程与方法: 4.体会精确的观察记录在科学研究中的重要地位。 5.对过对开普勒三定律的学习了解天体运动的规律。 (三)情感态度与价值观: 6.通过托勒密、哥白尼、第谷·布拉赫、开普勒等几 位科学家对行星运动的不同认识,了解人类认识事物本质的曲折性并加深对行星运动的理解。 7.了解伽利略等科学家为科学献身的精神,学习前人 对问题一丝不苟、孜孜以求的精神。 ★重难点: 掌握天体运动的演变过程; 熟记开普勒三定律. ★课时安排:1课时 ★新课引入:同学们,在前面的学习中我们已经学习了运动学\静力学及动力学的基本知识并且用这些知识研究了地面上物体的运动,现在我们就放开视野,从今天开始我们来研究天空中的运动:天体运动。首先是太阳系行星的运动. 研究天体的运动是从古到今科学研究的永恒主题。关于行星的运动,历史上有两种对立的说法,这是历史上牺牲最大的科学争论。

★新课教学 一、地心说 1、地心说:认为地球是宇宙中心,任何星球都围绕地球旋转。 2、代表人物:托勒密(公元90——168年) 3、存在条件:第一符合人们的日常经验,第二人们多信奉宗教神学,认为地球是宇宙中心。 但: 随着观测精度的不断提高,地心说算出的行星位置偏离观测位置越来越大 二、日心说 1、日心说:太阳是静止不动的,地球和其他行星都绕太阳运动 2、代表人物:哥白尼(1473——1543) 3、存在条件:地心说解释天体运动不仅复杂,而且许多问题都不能解释。而用日心说,许多天体运动的问题不但能解决,而且还变得特别简单。 进入高中物理的第一节课就学了参考系的选择,我们知道运动的描述是相对的,从表面上看,两学说只不过是参考系的改变.但大家要注意,这是一两千年前的争论,运动描述的相对性是物理学发展后,一非常现代的科学观点,它们所谓的静止是绝对静止,就像我们还没读书,没学物理时认为地面是绝对静止的,其它物体相对地面的在动叫做运动的物体,地心说的观点就是地球绝对静止,日心说的观点就是太阳绝对静止.现在看来古代的两种学说都不完善,地心说和日心说的共同点:天体的运动都是匀速圆周运动。因为太阳、地球等天体都是运动的(运动是绝对的),鉴于当时对自然科学的认识能力,日心说比地心说更先进,在太阳系中我们认为太阳是静止的 师:“日心说”所以能够战胜“地心说”是因为好多“地心说”不能解析的现象“日心说”则能说明,也就是说,“日心说”比“地心说”更科学、更接近事实.例如:若地球不动,昼夜交替是太阳绕地球运动形成的.那么,每

高中物理 7.1 行星的运动

7.1行星的运动 知识与技能 1.知道地心说和日心说的基本内容。 2.知道所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。 3.知道所有行星的轨道半长轴的三次方跟它的公转周期的二次方的比值都相等,且这个比值与行星的质量无关,但与太阳的质量有关。 4.理解人们对行星运动的认识过程是漫长复杂的,真理是来之不易的。 过程与方法 1.通过托勒密、哥白尼、第谷、开普勒等几位科学家对行星运动的不同认识,了解人类认识事物本质的曲折性并加深对行星运动的理解。 情感态度与价值观 1.澄清对天体运动神秘、模糊的认识,掌握人类认识自然规律的科学方法。 2.感悟科学是人类进步不竭的动力。 教学重点 1.理解和掌握开普勒行星运动定律,认识行星的运动。学好本节有利于对宇宙中行星的运动规律的认识,掌握人类认识自然规律的科学方法,并有利于对人造卫星的学习。 教学难点 1.对开普勒行星运动定律的理解和应用,通过本节的学习可以澄清人们对天体运动神秘、模糊的认识。 教学过程:略 新课教学 引入: 7.2太阳与行星间的引力 7.3万有引力定律 知识与技能 1.理解太阳与行星间存在引力 2.能根据开普勒行星运动定律和牛顿第三定律推导出太阳与行星间的引力表达式

2 r Mm G F 3.理解万有引力定律的含义并会推导万有引力定律 4.理解地面上物体所受的重力与天体间的引力是同一性质的力,即服从平方反比定律的万有引力 过程与方法 1.通过推导太阳与行星间的引力公式,体会逻辑推理在物理学中的重要性 2.体会推导过程中的数量关系 情感态度与价值观 1.感受太阳与行星间的引力关系,从而体会大自然的奥秘 2.通过学习认识和借鉴科学的实验方法,充实自己的头脑,更好地去认识世界,建立科 学的价值观 教学重点 1.根据开普勒行星运动定律和牛顿第三定律推导出太阳与行星间的引力公式,记住推导出的引力公式 2.在研究具体问题时,如何选取参考系 3.质点概念的理解 教学难点 1.太阳与行星间的引力公式推导过程 2.什么情况下可以把物体看作质点 教具 多媒体视频 课时安排 1课时 教学过程 开普勒定律发现之后,人们便开始更深入的思考:行星为什么这样运动? 这节课我们“追寻着牛顿的足迹”,用自己的手和脑,重新“发现”万有引力定律。 一. 太阳对行星的引力 为了简化问题,行星的轨道按圆来处理,请猜想太阳与行星的引力与什么因数有关 研究的问题中,只有太阳、行星,那么他们之间的引力可能与太阳的质量、行星的质量、他们之间的距离以及行星与太阳之间的媒介物有关,还可能与太阳与行星的形状、大小有关。太阳与行星的是否可以看作质点?太阳与行星之间是真空,对太阳与行星的引力

行星齿轮的注塑模具设计

引言 伴随着全世界范围内机械加工技术的发展和计算机技术的进步,模具工业已是高新技术产业化的重要领域。例如,在电子产品生产中,制造集成电路的引线框架的精密级进冲模和精密的集成电路塑封模,计算机的机壳、插件和许多元件器件的制造中的精密塑料模具、精密冲压模具等,都是产品生产不可或缺的工具装备。精密模具已使模具行业成为一个与高新技术产品互为依托的产业。1996年至2002年间,我国模具制造业的产值年平均增长14%左右,2003年增长25%左右,沿海一带城市的增长在25%以上。而近几年来,我国模具技术有了很大发展,模具技术有了很大的提高。生产的模具有些已接近或达到国际水平。大型、精密、复杂、高效和长寿命模具又上了新台阶。 虽然在很多方面我国的模具有了很大的发展,但仍有很比较突的问题。目前模具设计及模具制造大都依靠设计的经验进行设计。模具的好坏完全由个人的平时累计的经验控制。这样使得模具设计的周期长,效率低且模具的质量也难以保证。模具工业除需要“高技艺”的从业人员外,还需要更多的“高技术”来保证。本文就是以提高模具设计效率,缩短设计周期,降低模具成本,保证模具质量为目的,试探性的研究三维技术在冲压模具中的应用与开发。 1

2 绪论 2.1模具概述 塑料,Plastic,是以高分子合成树脂为主要成分,在一定的温度和压力下,可塑成一定形状且在常温下保持形状不变的材料。 模具,mould,是利用其特定形状去成型具有一定形状和尺寸的制品的工具。 成型塑料制品的模具叫做塑料模具。对塑料模具的全面要求是:能生产出在尺寸精度、外观、物理性能等各方面均能满足使用要求的优质制品。从模具使用的角度,要求高效率、自动化、操作简便;从模具制造的角度,要求结构合理、制造容易、成本低廉。 注射成型生产中使用的模具称为注射成型模具,简称注射模,也称为注塑模。注射模主要适用于热塑性塑料的成型加工,近年来也逐渐用于加工部分热固性塑料塑料制件。注射模具有很多优点,如对塑料的适应性较广,塑料制件的外观质量较好,生产效率特别高,易于实现自动化生产等,广泛用于塑料制件的生产中。 注射模具的结构由塑件的复杂程度及注射机的结构形式等因素决定。注射模具可分为动模和定模两大部分,定模部分安装在注射机的固定模板上,动模部分安装在注射机的移动模板上,注射时动模与定模闭合构成浇注系统和型腔,开模时动模与定模分离,由推出机构推出塑品。 根据模具上各个零部件所起的作用注塑模具一般有以下几部分组成:定模机构、动模机构、浇注系统、导向装置、顶出机构、抽芯机构、冷却和加热装置、排气系统等。 注塑成型全过程分为:塑化过程、充模过程、冷却凝固过程、脱模过程,由这四个过程就形成了一个循环,完成了一次成型一个乃至数十个塑件的过程。 1.1.1我国模具业存在的问题 1、模具水平落后 在模具制造水平上,虽然我国有些设备已达到或接近世界先进水平,但总体上要比德、美、日、法、意等,发达国家落后许多。国内模具的使用寿命只有国外发达国家的1/2至1/10,甚至更短。模具生产周期却比国际先进水平长许多。此外,开发

行星齿轮减速器设计DOC

1 引言 行星齿轮传动在我国已有了许多年的发展史,很早就有了应用。然而,自20世纪60年代以来,我国才开始对行星齿轮传动进行了较深入、系统的研究和试制工作。无论是在设计理论方面,还是在试制和应用实践方面,均取得了较大的成就,并获得了许多的研究成果。近20多年来,尤其是我国改革开放以来,随着我国科学技术水平的进步和发展,我国已从世界上许多工业发达国家引进了大量先进的机械设备和技术,经过我国机械科技人员不断积极的吸收和消化,与时俱进,开拓创新地努力奋进,使我国的行星传动技术有了迅速的发展[1] 。 2 设计背景 试为某水泥机械装置设计所需配用的行星齿轮减速器,已知该行星齿轮减速器的要求输入功率为 1 740KW p =,输入转速11000rpm n = ,传动比为35.5p i =,允许传动 比偏差0.1P i ?=,每天要求工作16小时,要求寿命为2年;且要求该行星齿轮减速器传动结构紧凑,外廓尺寸较小和传动效率高。 3 设计计算 3.1选取行星齿轮减速器的传动类型和传动简图 根据上述设计要求可知,该行星齿轮减速器传递功率高、传动比较大、工作环境恶劣等特点。故采用双级行星齿轮传动。2X-A 型结构简单,制造方便,适用于任何工况下的大小功率的传动。选用由两个2X-A 型行星齿轮传动串联而成的双级行星齿轮减速器较为合理,名义传动比可分为17.1p i =,25p i =进行传动。传动简图如图1所示:

图1 3.2 配齿计算 根据2X-A 型行星齿轮传动比 p i 的值和按其配齿计算公式,可得第一级传动的内 齿轮1b ,行星齿轮1c 的齿数。现考虑到该行星齿轮传动的外廓尺寸,故选取第一级中心齿轮1a 数为17和行星齿轮数为3p n =。根据内齿轮()11 1 1 b a p i z z =- ()17.1117103.7103b z =-=≈ 对内齿轮齿数进行圆整后,此时实际的P 值与给定的P 值稍有变化,但是必须控制在其传动比误差范围内。实际传动比为 i =1+=7.0588 其传动比误差i ?= ip i ip -= 7.17.0588 7.1 -=5℅ 根据同心条件可求得行星齿轮c1的齿数为 ()1 11243c b a z z z =-= 所求得的1ZC 适用于非变位或高度变位的行星齿轮传动。再考虑到其安装条件为: 11 2 za zb += C =40 ()整数

6.1行星的运动(教案)

6.1 行星的运动 (一)教学目标 1、指示目标:了解人类对人类对行星运动规律的认识过程,知道开普勒三大定律 2、能力目标:会利用地球的公转周期与公转半径计算任意一个太阳系行星半径的方法 3、情感、态度、价值观:学习古人在追求真理时候的执着,研究问题的任性,培养学生 健全的人格。 (二)教学过程 ●1、学生阅读书本两分钟,从书上获取信息 提问 1.古代人对天体运动存在哪些看法? 2.“地心说”和“日心说”的观点分别是什么? 3.哪种学说统治时间更长?为什么? 板书:一、历史回顾 板书:1、地心说 资料:地心说的起源很早,最初由古希腊学者欧多克斯提出,经亚里士多德完善,又让托勒密进一步发展成为 “地心说”。在16世纪“日心说”创立之前的1000多年中,“地心说”一直占统治地位。亚里士多德的地心说认为,宇宙是一个有限的球体,分为天地两层,地球位于宇宙中心,所以日月围绕地球运行,物体总是落向地面。地球之外有9个等距天层,由里到外的排列次序是:月球天、水星天、金星天、太阳天、火星天、木星天、土星天、恒星天和原动力天,此外空无一物。上帝推动了恒星天层,才带动了所有天层的运动。人类居住的地球,则静静地屹立在宇宙中心。 地球是宇宙的中心。地球是静止不动的, 太阳、月亮以及其它行星都绕地球运动。 统治很长时间的原因: ①符合人们的日常经验; ②符合宗教地球是宇宙的 中心的说法。 托勒密的“地心说”体系 地心说是长期盛行于古代欧洲的宇宙学说。它最初由古希腊学者欧多克斯在公元前三世纪提出,后来经托勒密(90-168)进一步发展而逐渐建立和完善起来。 板书:代表人物:托勒密(90-168) 板书2、日心说 太阳是静止不动的,地球和其它行星都绕太阳转动。

行星齿轮设计【模板】

第二章 原始数据及系统组成框图 (一)有关原始数据 课题: 一种行星轮系减速器的设计 原始数据及工作条件: 使用地点:减速离合器内部减速装置; 传动比:p i =5.2 输入转速:n=2600r/min 输入功率:P=150w 行星轮个数:w n =3 内齿圈齿数b z =63 第五章 行星齿轮传动设计 (一)行星齿轮传动的传动比和效率计算 行星齿轮传动比符号及角标含义为: 123i 1—固定件、2—主动件、3—从动件 1、齿轮b 固定时(图1—1),2K —H (NGW )型传动的传动比b aH i 为 b aH i =1-H ab i =1+b z /a z 可得 H ab i =1-b aH i =1-p i =1-5.2=-4.2 a z =b z /b aH i -1=63*5/21=15 输出转速: H n =a n /p i =n/p i =2600/5.2=500r/min 2、行星齿轮传动的效率计算: η=1-|a n -H n /(H ab i -1)* H n |*H ψ H ψ=*H H H a b B ψψψ+ H a ψ为a —g 啮合的损失系数,H b ψ为b —g 啮合的损失系数,H B ψ为轴承的损失系数,H ψ 为总的损失系数,一般取H ψ=0.025 按a n =2600 r/min 、H n =500r/min 、H ab i =-21/5可得

η=1-|a n -H n /(H ab i -1)* H n |*H ψ=1-|2600-500/(-4.2-1)*500|*0.025=97.98% (二) 行星齿轮传动的配齿计算 1、传动比的要求——传动比条件 即 b aH i =1+b z /a z 可得 1+b z /a z =63/5=21/5=4.2 =b aH i 所以中心轮a 和内齿轮b 的齿数满足给定传动比的要求。 2、保证中心轮、内齿轮和行星架轴线重合——同轴条件 为保证行星轮g z 与两个中心轮a z 、b z 同时正确啮合,要求外啮合齿轮a —g 的中心距等于内啮合齿轮b —g 的中心距,即 w (a )a g - =()w b g a - 称为同轴条件。 对于非变位或高度变位传动,有 m/2(a z +g z )=m/2(b z -g z ) 得 g z =b z -a z /2=63-15/2=24 3、保证多个行星轮均布装入两个中心轮的齿间——装配条件 想邻两个行星轮所夹的中心角H ?=2π/w n 中心轮a 相应转过1?角,1?角必须等于中心轮a 转过γ个(整数)齿所对的中心角, 即 1?=γ*2π/a z 式中2π/a z 为中心轮a 转过一个齿(周节)所对的中心角。 p i =n/H n =1?/H ?=1+b z /a z 将1?和H ?代入上式,有 2π*γ/a z /2π/w n =1+b z /a z 经整理后γ=a z +b z =(15+63)/2=24 满足两中心轮的齿数和应为行星轮数目的整数倍的装配条件。 4、保证相邻两行星轮的齿顶不相碰——邻接条件 在行星传动中,为保证两相邻行星轮的齿顶不致相碰,相邻两行星轮的中心距应大于两轮齿顶圆半径之和,如图1—2所示

行星齿轮传动设计详解

1 绪论 行星齿轮传动与普通定轴齿轮传动相比较,具有质量小、体积小、传动比大、承载能力大以及传动平稳和传动效率高等优点,这些已被我国越来越多的机械工程技术人员所了解和重视。由于在各种类型的行星齿轮传动中均有效的利用了功率分流性和输入、输出的同轴性以及合理地采用了内啮合,才使得其具有了上述的许多独特的优点。行星齿轮传动不仅适用于高速、大功率而且可用于低速、大转矩的机械传动装置上。它可以用作减速、增速和变速传动,运动的合成和分解,以及其特殊的应用中;这些功用对于现代机械传动发展有着重要意义。因此,行星齿轮传动在起重运输、工程机械、冶金矿山、石油化工、建筑机械、轻工纺织、医疗器械、仪器仪表、汽车、船舶、兵器、和航空航天等工业部门均获得了广泛的应用[1-2]。 1.1 发展概况 世界上一些工业发达国家,如日本、德国、英国、美国和俄罗斯等,对行星齿轮传动的应用、生产和研究都十分重视,在结构优化、传动性能,传动功率、转矩和速度等方面均处于领先地位,并出现一些新型的行星传动技术,如封闭行星齿轮传动、行星齿轮变速传动和微型行星齿轮传动等早已在现代化的机械传动设备中获得了成功的应用。行星齿轮传动在我国已有了许多年的发展史,很早就有了应用。然而,自20世纪60年代以来,我国才开始对行星齿轮传动进行了较深入、系统的研究和试制工作。无论是在设计理论方面,还是在试制和应用实践方面,均取得了较大的成就,并获得了许多的研究成果。近20多年来,尤其是我国改革开放以来,随着我国科学技术水平的进步和发展,我国已从世界上许多工业发达国家引进了大量先进的机械设备和技术,经过我国机械科技人员不断积极的吸收和消化,与时俱进,开拓创新地努力奋进,使我国的行星传动技术有了迅速的发展[1-8]。 1.2 3K型行星齿轮传动 在图4所示的3K型行星齿轮传动中,其基本构件是三个中心轮a、b和e,故其传动类型代号为3K[10]。在3K型行星传动中,由于其转臂H不承受外力矩的作用,所以,它不是基本构件,而只是用于支承行星轮心轴所必需的结构元件,

运动与能量知识点总结

第二章运动与能量 一、运动得描述 1、物理学就是研究自然界得物质结构、相互作用与运动规律得自然科学. 2、物质由分子组成,分子由原子组成,原子由原子核与核外电子组成,原子核由质子与中子组成。 3、机械运动 (1)定义:物理学里把物体位置变化叫做机械运动。 (2)特点:机械运动就是宇宙中最普遍得现象。 (3)机械运动:(三种运动:分子运动、机械运动、天体运动) (4)分类:(根据运动路线)①曲线运动②直线运动 4、参照物 (1)定义:判断物体就是否运动与如何运动,要选择另一个物体作为标准,这个被选作标准得物体叫参照物。 (2)参照物选取得原则: ①假定性:参照物就是假定不动得 ②任意性:参照物得选取就是任意得 ③不唯一性:可以选择不同得物体作为参照物 ④排己性:一般不取自身为参照物 ⑤方便性:生活中大部分时候都选择地面为参照物 5、运动与静止得相对性 (1)总结:同一个物体选取得参照物不同,运动状态不同。 (2)例如:坐在行驶汽车中得乘客,以司机为参照物,乘客就是静止得;以地面为参照物,乘客就是运动得。 (3)练习 ①诗句“满眼风光多闪烁,瞧山恰似走来迎,仔细瞧山山不动,就是船行”其中“瞧山 恰似走来迎”与“就是船行”所选得参照物分别就是船与山。 ②坐在向东行使得甲汽车里得乘客,瞧到路旁得树木向后退去,同时又瞧到乙汽车也 从甲汽车旁向后退去,试说明乙汽车得运动情况。 分三种情况:①乙汽车没动②乙汽车向东运动,但速度没甲快③乙汽车向西运动。 ③解释毛泽东《送瘟神》中得诗句“坐地日行八万里,巡天遥瞧一千河" 第一句:以地心为参照物,地面绕地心转八万里。 第二句:以月亮或其她天体为参照物在那可瞧到地球上许多河流. 二、运动得速度 1、比较物体运动快慢得方法: I、观众法:相同时间比路程,路程越长,运动越快。(同时启程得步行人与骑车人快慢) II、裁判方法:相同路程比时间,时间越短,运动越快(百米运动员快慢) III、综合法:时间、路程都不同,比单位时间内通过得路程。 (百米赛跑运动员同万米运动员比较快慢)

(完整word版)行星齿轮减速器设计

1引言 行星齿轮传动在我国已有了许多年的发展史,很早就有了应用。然而,自20 世纪60年代以来,我国才开始对行星齿轮传动进行了较深入、系统的研究和试制工作。无论是在设计理论方面,还是在试制和应用实践方面,均取得了较大的成就, 并获得了许多的研究成果。近20 多年来,尤其是我国改革开放以来,随着我国科学技术水平的进步和发展,我国已从世界上许多工业发达国家引进了大量先进的机械设备和技术,经过我国机械科技人员不断积极的吸收和消化,与时俱进,开拓创新地努力奋进,使我国的行星传动技术有了迅速的发展[1]。 2设计背景 试为某水泥机械装置设计所需配用的行星齿轮减速器,已知该行星齿轮减速器的要求输入功率为p1740KW ,输入转速n1 1000rpm , 传动比为i p 35.5, 允许传动比偏差iP0.1, 每天要求工作16小时,要求寿命为2 年;且要求该行星齿轮减速器传动结构紧凑,外廓尺寸较小和传动效率高。 3设计计算 3.1选取行星齿轮减速器的传动类型和传动简图 根据上述设计要求可知,该行星齿轮减速器传递功率高、传动比较大、工作环境恶劣等特点。故采用双级行星齿轮传动。2X-A 型结构简单,制造方便,适用于任何工况下的大小功率的传动。选用由两个2X-A 型行星齿轮传动串联而成的双级行星齿轮减速器较为合理,名义传动比可分为i p1 7.1, i p2 5进行传动。传动简图如图1所示:

图1 3.2 配齿计算 根据 2X-A 型行星齿轮传动比 i p 的值和按其配齿计算公式,可得第一级传动的内 齿轮 b1, 行星齿轮 c1 的齿数。现考虑到该行星齿轮传动的外廓尺寸,故选取第一级中 心齿轮 a1数为 17 和行星齿轮数为 np 3 。根据内齿轮 z b1 i p1 1 z a1 zb1 7.1 1 17 103.7 103 对内齿轮齿数进行圆整后,此时实际的 P 值与给定的 P 值稍有变化,但是必须控 制在其传动比误差范围内。实际传动比为 i = 1+ za 1 =7.0588 zb 1 其传动比误差 i = ip i = 7.1 7.0588 =5℅ ip 7.1 根据同心条件可求得行星齿轮 c1 的齿数为 所求得的 ZC1适用于非变位或高度变位的行星齿轮传动。再考虑到其安装条件为: 第二级传动比 i p2为 5,选择中心齿轮数为 23 和行星齿轮数目为 3,根据内齿轮 zb1 z c1 z b1 z a1 2 43 za1 zb1 2 C = 40 整数

行星的运动-教案

行星的运动 【教学目标】 1.了解地心说和日心说两种不同的观点。 2.知道开普勒对行星运动的描述。 【教学重难点】 重点:开普勒行星运动定律。 难点:用开普勒定律解决有关天体运动问题。 【教学过程】 对天体运动的认识存在地心说和日心说两种对立的看法,通过人们长期的观察、置疑和刻苦计算,最终发现了开普勒行星运动的三大定律,为人们解决行星的运动问题提供了依据,澄清了以前人们对天体运动神秘、模糊的认识,有力地推动了天体力学的发展。 (一)地心说和日心说 1.在人类研究天体运动的漫长过程中,地心说和日心说是两种对立的观点。由于地心说符合宗教神学关于地球是宇宙中心的说法,所以地心说统治了人们很长时间。但是用地心说描述天体的运动不仅复杂,而且问题很多,而用日心说确能简单地描述天体的运动,而且更重要的是日心说更为科学,所以日心说最终战胜了地心说。 2.地心说认为地球是宇宙的中心,是静止不动的,太阳、月亮及其他的行星都绕地球运动。日心说认为太阳是静止不动的,地球和其他行星都绕太阳运动。 3.必须认识到,每一种学说都是人类认识客观世界过程中阶段性的产物,都有其局限性。今天我们认识的太阳系也只不过是宇宙中的一个小星系,太阳系本身也在宇宙中不停地运动着。 (二)开普勒行星运动的定律 1.开普勒第一定律(轨道定律):所有的行星分别在大小不同的椭圆轨道上围绕太阳运动,太阳是在这些椭圆的一个焦点上。 由于行星的椭圆轨道都很接近圆,例如地球绕太阳椭圆轨道的半长轴为1.495×108km,半短轴为1.4948×108km,所以中学阶段在分析和处理天体运动问题时,地球的椭圆轨道作为圆来处理。这是一种突出主要因素,忽略次要因素的理想化方法。理想化方法是研究物理问题常用的方法之一。

试从天体运动变化分析易学原理

从天体运动规律中领悟易学原理 易学之感悟 茫茫宇宙浩瀚无边,满天星斗广布宇寰。在这浩如烟海的星空中,银河系里有一太阳系,太阳与九大行星在宇宙中永不休止地运动着,仅据现代科技手段探测表明,在太阳系的九大行星中,只有地球充满了绿色和生机,是太阳系中唯一有生命物质的星球。地球上的生命物质起源于宇宙星空,它必然要受到来自宇宙星空和地球自身的种种影响。几年来本人阅读了一些天文学杂志,对天体运动进行了一番研究,再结合易学研究,得出了许多学习心得和体会,在此撰写成文,和各位爱好者共勉。 一、地球磁偏角对人类的影响 磁偏角是指地轴与地磁场南北极主轴线的夹角,我国是世界上最早发现磁偏角的国家,考察古代文献,最早记载磁偏角的是北宋科学家沈括,他在《梦溪笔谈》中谈到了地球磁偏角,说明我国人民早在一千一百多年前就认识到了磁偏角现象。 地球磁偏角决定了地球的倾斜方向和角度,众所周知,地球在围绕太阳公转过程中,地轴始终是倾斜的,其倾斜方向是西北东南,也正是由于地轴的倾斜,形成了黄赤交界角。所谓黄赤交角是指地球的自转轨道面(赤道面)与其公转轨道面(黄道面)形成的夹角,这个夹角的度数为23.5度。由于黄赤交角的存在,地球上就出现了南北回归线和南北极圈以及五带划分。地球的自转造成了昼夜更替,公转造成了四季变化,因此地球上的季节变化,晨昏交替等自然现象皆由地球运动造成的,所以说磁偏角对人类的生产和生活具有重大影响。例如,人们日出而作,日落而息,这是适应晨昏交替的自然规律;春播秋收,夏天避暑冬日防寒,这是遵循地球公转规律的结果。因而生活在地球上的人,既受宇宙天体的影响,又受地球自身的影响,所以人类的生产与生活必须与地球的运动规律相适应。 地球是太阳系的成员之一,而太阳系又在银河系中运动,银河系在更高层次的总星系中运动着,因此地球的运动必然要受到太阳系及其它星系的影响,那么生活在地球上的人同样会受到来自宇宙空间各种天体的影响,这就是古人提出的天人相应学说。由于古人对天体的认识受技术条件的局限,为了表达天体对人体的影响,古人则用天干地支以及星曜或神煞来记录人体受天体运动的

行星齿轮减速机

行星齿轮减速机

2K-H型双极(负号机构)行星齿轮减速器设计 作者朱万胜 指导教师 左家圣 摘要: 本文完成了对一个2K-H型双级负号机构(NW型)的行星齿轮减速器的结构设计和传动设计。此减速器的传动比是15,而且,它具有体积小、重量轻、结构紧凑、外阔尺寸小及传动功率范围大等优点。首先简要介绍了课题的背景以及对齿轮减速器的概述,减速器是一种动力传达机构,利用齿轮的速度转换器,将马达的回转数减速到所要的回转数,并得到较大转矩的机构。然后根据原始数据及给定的系统传动方案图计算其传动效率 并选择电动机的功效,再然后就是对减速器的核心部分行星齿轮的设计,包括其各个齿轮的齿数、几何参数和配齿计算,最后根据强度理论校核齿轮的强度。然后对各齿轮进行受力分析并进行计算,然后设计计算输出轴输入轴并进行对其强度校核。最后在所有理论尺寸都算出来后绘制其总装配图。

关键字:减速器、行星齿轮、 NW型行星传动2K-H bipolar (negative body) design of planetary gear reducer Abstract: The completion of a two-stage negative bodies (NW-type) structure of the planetary gear reducer design and transmission design. This gear transmission ratio is 15, but it also has a small size, light weight, compact structure, small size and wide outside the scope of the advantages of large transmission power. Subjects were briefly introduced the background and an overview of the gear reducer, speed reducer is a dynamic communication agencies, using the gear, the speed converter, the motor's rotational speed decelerated to the desired rotational speed and get more torque institutions. Then the original data and drive a given system to calculate the transmission efficiency of the program graph and select the motor effect, and then that is a core part of the planetary gear reducer design, including all the gear teeth, with tooth geometry parameters and calculated Finally, according to the intensity of strength theory checking gear. Then the force analysis of each gear and calculated, and then design calculations and the input shaft and output shaft to check its strength. Finally, all theories are calculated size of the total assembly drawing after drawing. Keywords: reducer, planetary gear, NW planetary transmission 目录

高中物理_1 行星的运动教学设计学情分析教材分析课后反思

6.1行星的运动学案 主备人: 【学习目标】: 1.知道地心说和日心说的基本内容 2.学习开普勒三大定律,能用三大定律解决问题。 3.了解人类对行星的认识过程是漫长复杂的,是来之不易的。 一.学习过程 【问题1】:第一定律说明了行星运动轨迹的形状,那不同的行星太阳运行时椭圆轨道 相同吗? 【问题2】:行星沿着椭圆轨道运行,太阳位于椭圆的一个焦点上,则行星在远日点的 速率与在近日点的速率谁大? 【问题3】:公式中 的比例系数k 可能与谁有关? 二.典题例解 【例1】 关于行星绕太阳运动的下列说法中正确的是( ) A.所有行星都在同一椭圆轨道上绕太阳运动 B.行星绕太阳运动时太阳位于行星轨道的中心处 C.离太阳越近的行星运动周期越长 D.所有行星的轨道半长轴的三次方跟它的公转周期的二次方的比值都相等 【例题2】理论和实践证明,开普勒定律不仅用于太阳系中的天体运动,而且对一切天体(包括卫星绕行星的运动)都适用。下面对于开普勒第三定律的公式 a 3 / T 2 = k ,下列说法正确的是( ) A 、公式只适用于轨道是椭圆的运动 B 、式中的K 值,对于所有行星(或卫星)都相等 C 、式中的K 值,只与中心天体有关,与绕中心天体旋转的行星(或卫星)无关 k T a 2 3

D 、若已知月球与地球之间的距离,根据公式可求出地球与太阳之间的距离 【例题3】银河系中有两颗行星绕某恒星运行,从天文望远镜中观察到它们的运转周期之比为8:1,则 (1)它们的轨道半径的比为 ( ) A .2:1 B .4:1 C .8:1 D .1:4 (2)两行星的公转速度之比为 ( ) A .1:2 B .2:1 C .1:4 D .4:1 三、当堂练习 1.下列说法正确的是( ) A .地球是宇宙的中心,太阳、月亮及其他行星都绕地球运动 B .太阳是宇宙的中心,所有天体都绕太阳运动 C .太阳是静止不动,地球和其他行星都绕太阳运动 D .“地心说”和哥白尼提出的“日心说”现在看来都是不正确的 2.开普勒定律不仅适用于太阳系中的天体运动,而且对一切天体(包括卫星绕行星的运动)都适用。下面对于开普勒第三定律的公式K T R 2 3 ,下列说法正确的是 ( ) A .公式只适用于轨道是椭圆的运动 B.式中的K 值,对于所有行星(或卫星)都相等 C.式中的K 值,只与中心天体有关,与绕中心天体旋转的行星(或卫星)无关 D.若已知月球与地球之间的距离,根据公式可求出地球与太阳之间的距离

封闭式行星齿轮减速器的设计毕业论文

封闭式行星齿轮减速器的设计毕业论文 目录 毕业论文设计任务书......................................................... I 开题报告 (Ⅱ) 指导教师审查意见 (Ⅲ) 评阅教师评语 (Ⅳ) 答辩会议记录 (Ⅴ) 中文摘要 (Ⅵ) 英文摘要 (Ⅶ) 1 前言 (1) 1.1设计的目的 (1) 1.2研究本课题的意义 (1) 1.3本课题研究的围 (1) 2 选题背景 (2) 2.1题目来源 (2) 2.2研究目的和意义 (2) 2.3国外现状和发展趋势 (2) 2.4应解决的主要问题 (5) 3 方案论证 (6) 3.1设计要求 (6) 3.2方案得拟定 (6) 3.3行星排级数得选择 (6) 3.4最终方案 (7) 4 设计论述 (9) 4.1总体传动比设计 (9) 4.2封闭式行星齿轮减速器各行星排配齿计算配齿计算 (10) 4.3扭矩的计算 (11) 4.4初步计算齿轮的主要参数 (12) 4.5几何尺寸的计算 (15) 4.6装配条件的验算 (15)

4.7齿轮强度验算 (16) 4.8效率的计算 (30) 4.9输入轴的强度校核 (31) 5 结果分析 (32) 5.1计算结果 (32) 5.2结果分析 (33) 6 有限元分析 (34) 6.1有限元简介 (34) 6.2二级行星架的有限元分析过程 (34) 6.3二级行星架有限元分析结果总结 (34) 7 总结 (37) 参考文献 (37) 致谢 (39)

1 前言 1.1 设计的目的 机械毕业设计是学生学习机械专业进行的一项综合训练,其主要目的是通过毕业设计使学生巩固、加深在四年机械课程学习中学到的知识,提高学生综合运用这些知识去分析和解决问题的能力。同时学习机械设计的一般方法,了解和掌握常用机械零部件、机械传动装置和简单机械的设计方法与步骤。 本课题研究的主要问题是电动葫芦中行星齿轮该减速器的设计,针对行星齿轮的结构设计,从而达到优化电动葫芦的结构。研究本课题的目的是使电动葫芦达到体积小,自重轻,结构紧凑,承载能力强,传动效率高,减速器得传动比较大和使用寿命长的目的。 1.2 研究本课题的意义 电动葫芦是工厂、矿山、港口、仓库、货场、商店等常用的起重设备之一,是提高劳动效率,改善劳动条件,实现工业自动化,提高效率,减轻劳动强度的重要工具。因而研究电动葫芦对减轻工人劳动强度、提高劳动效率、提高企业自动化程度、降低生产成本等具有重要的意义。 1.3 本课题研究的围 本次设计主要研究的围是钢丝绳电动葫芦。本次设计的封闭式行星齿轮减速器主要应用于钢丝绳电动葫芦。

NGW型行星齿轮减速器——行星轮的设计DOC

目录 一.绪论 (3) 1.引言 (3) 2.本文的主要内容 (3) 二.拟定传动方案及相关参数 (4) 1.机构简图的确定 (4) 2.齿形与精度 (4) 3.齿轮材料及其性能 (5) 三.设计计算 (5) 1.配齿数 (5) 2.初步计算齿轮主要参数 (6) (1)按齿面接触强度计算太阳轮分度圆直径 (6) (2)按弯曲强度初算模数 (7) 3.几何尺寸计算 (8) 4.重合度计算 (9) 5.啮合效率计算 (10) 四.行星轮的的强度计算及强度校核 (11) 1.强度计算 (11) 2.疲劳强度校核 (15) 1.外啮合 (15) 2.内啮合 (19) 3.安全系数校核 (20)

五.零件图及装配图 (24) 六.参考文献 (25)

一.绪论 1.引言 渐开线行星齿轮减速器是一种至少有一个齿轮绕着位置固定的几何轴线作圆周运动的齿轮传动,这种传动通常用内啮合且多采用几个行星轮同时传递载荷,以使功率分流。渐开线行星齿轮传动具有以下优点:传动比范围大、结构紧凑、体积和质量小、效率普遍较高、噪音低以及运转平稳等,因此被广泛应用于起重、冶金、工程机械、运输、航空、机床、电工机械以及国防工业等部门作为减速、变速或增速齿轮传动装置。 渐开线行星齿轮减速器所用的行星齿轮传动类型很多,按传动机构中齿轮的啮合方式分为:NGW、NW、NN、NGWN、ZU飞VGW、W.W等,其中的字母表示:N—内啮合,W—外啮合,G—内外啮合公用行星齿轮,ZU—锥齿轮。 NGW型行星齿轮传动机构的主要特点有: 重量轻、体积小。在相同条件下比硬齿面渐开线圆柱齿轮减速机重量减速轻1/2以上,体积缩小1/2—1/3; 传动效率高; 传动功率范围大,可由小于1千瓦到上万千瓦,且功率越大优点越突出,经济效益越高; 装配型式多样,适用性广,运转平稳,噪音小; 外齿轮为6级精度,内齿轮为7级精度,使用寿命一般均在十年以上。 因此NGW型渐开线行星齿轮传动已成为传动中应用最多、传递功率最大的一种行星齿轮传动。 2.本文的主要内容 NGW型行星齿轮传动机构的传动原理:当高速轴由电动机驱动时,带动太阳轮回转,再带动行星轮转动,由于内齿圈固定不动,便驱动行星架作输出运动,行星轮在行星架上既作自转又作公转,以此同样的结构组成二级、三级或多级传动。NGW型行星齿轮传动机构主要由太阳轮、行星轮、内齿圈及行星架所组成,

行星的运动教案

教学目的: 1、了解人类对行星运动规律的认识历程 2、了解观察的方法在认识行星运动规律中的作用 3、知道开普勒行星运动定律,知道开普勒行星运动定律的科学价值,了解开普勒第三定律 中k值大小只与中心天体有关 4、体会科学家探求真理的态度和科学精神 教学重点、难点 重点:开普勒三大定律内容的学习,并将三大定律的内容拓展到其他行星系统中 难点:准确认识开普勒第三定律 教学过程: 新课引入:前面一章我们学习了圆周运动的相关知识,那么这一章我们将运用我们前面所学的知识来学习万有引力与航天。关于这一章的内容,我们主要学习的是,行星的运动,万有引力定律的内容及其应用,还有人造卫星与宇宙速度。看到这些,有些同学应该有些激动,因为在这一章我们将去认识那些遥远巨大的星球。今天我们就学习这一章的第一节行星的运动。 新课:大家花30秒时间阅读一下本节第一段 …… 提问:古人关于天体的运动存在什么看法? …… 一种是托勒密的地心说,(ppt演示) 另一种是哥白尼的日心说,(ppt演示) 提问:相比之下谁的学说更加接近事实? 那么哥白尼的日心说到底是否描述了事实呢?天体的运动是否真的是完美和谐的圆周运动呢? 既然有同学提出来不是,那么你能不能拿出证据支持你的说法? …… 下面我们来看这样一张表格,这是地球上四个节气的日期统计表,每个季节的天数是不是一样的?每一年的各个节气是不是发生在同一天? 如果地球是匀速圆周运动的话,四个季节时间分布应该很均匀。 丹麦科学家第谷就对行星进行了观测记录,大家可以想象一下,在当时那种条件下,做这件事所需要的智慧和执着。最后第谷还没有能完成这项任务,最后交给他的学生开普勒,他挑灯夜战了20年时间,发现并总结得出开普勒行星运动定律。也就是本节课我们重点学习的内容。 开普勒第一定律,所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。 我们可以怎样得到一个椭圆呢? 老师手中现在有一些器材,大家能不能利用这些东西给我画一个椭圆。(请同学操作) 利用所得到的椭圆来指明焦点,半长轴,半短轴,近日点,远日点。 (继续利用ppt演示行星绕太阳运动的状态),大家找找行星运动速度有什么特点? 这个特点被开普勒隐藏在了开普勒第二定律中,对任意一个行星来说,他与太阳的连线在相等的时间内扫过相等的面积。(强调)大家看PPT上这三块橘红色的面积,若果他们的面积大小相等,那么行星扫过他们时肯定花了相等的时间。 (太阳系行星运动的演示),大家可以看到中间这些行星的椭圆轨道有一些接近圆轨道。那么我们把这些星球的运动周期,轨道半长轴的数据观测整理出来后,得到一个表格。那么从这些看似混乱的数据中我们可以得到什么呢?首先我们可以看到,月球和同步卫星的数据差

高中物理对行星运动问题的研究

对行星运动问题的研究 在杨维纮主编的《力学》教材267页上,有一个关于行星在各种能量下运动轨迹的图示,即图5.12。图中有一个现象引起了我的注意——所有曲线在y 轴上交点相同,即所有曲线的焦半径相同。这是一个偶然么,又是 所有轨迹焦半径相同是否要满足一定条件,真对这个疑问我进行了一系列研究。 首先,要证焦半径相同,就要明确焦半径:圆的焦半径为R,抛物线(y 2=2Px )的焦半 径为P ,与椭圆(1b y a x 2222=+)焦半径为a b 2,双曲线(1b y a x 22 22=-)的焦半径为a b 2。 因为圆周运动最简单,所以我以圆周运动作参考来考察其他运动,看其他轨迹的焦半径 是否等于圆的直径R 。 设圆周运动的速度为0V 。因为 2 20R mM G R V m =,所以 2 0V G M R = ,同时 )其中动E 2r m h m r 21,r Mm G 2r m h m r 21E (Ih m M G E 2222222 22=+-+==。 在确定了圆周运动的基本量后,我先对比抛物线作了比较,具体运算如下: ?????==离日最近点距离公式)焦半径相同)(2GM h p 2( R p 2 得(即近日点速度)0 MAX 2V V = 由焦动量守恒可得,在焦半径处切向速度0V V =。 很有意思的结果:焦半径相同的圆与抛物线在焦半径处切向速度居然相同,而且与质量无关。 于是我猜想,会不会这便是焦半径相同行星轨迹曲线的共同性质。 于是我借助椭圆运动加以验证。但轨迹为椭圆的运动方程过于复杂,于是我采用了将猜想答案代入方程组检验的方法。具体解题如下: 在建立几何模型时我选了直角坐标系,因为直角坐标我比较熟悉,而且本题中我也只用了2个特殊点,即焦半径上的点与离日最近点,这两点的切法向分量正好是x 轴与y 轴方向,算是取了一次巧。

行星齿轮减速器项目可行性分析报告(模板参考范文)

行星齿轮减速器项目 可行性分析报告 规划设计 / 投资分析

行星齿轮减速器项目可行性分析报告说明 该行星齿轮减速器项目计划总投资5230.46万元,其中:固定资产投 资4124.95万元,占项目总投资的78.86%;流动资金1105.51万元,占项 目总投资的21.14%。 达产年营业收入7414.00万元,总成本费用5851.33万元,税金及附 加88.80万元,利润总额1562.67万元,利税总额1867.01万元,税后净 利润1172.00万元,达产年纳税总额695.01万元;达产年投资利润率 29.88%,投资利税率35.69%,投资回报率22.41%,全部投资回收期5.96年,提供就业职位138个。 本报告所描述的投资预算及财务收益预评估均以《建设项目经济评价 方法与参数(第三版)》为标准进行测算形成,是基于一个动态的环境和 对未来预测的不确定性,因此,可能会因时间或其他因素的变化而导致与 未来发生的事实不完全一致,所以,相关的预测将会随之而有所调整,敬 请接受本报告的各方关注以项目承办单位名义就同一主题所出具的相关后 续研究报告及发布的评论文章,故此,本报告中所发表的观点和结论仅供 报告持有者参考使用;报告编制人员对本报告披露的信息不作承诺性保证,也不对各级政府部门(客户或潜在投资者)因参考报告内容而产生的相关

后果承担法律责任;因此,报告的持有者和审阅者应当完全拥有自主采纳权和取舍权,敬请本报告的所有读者给予谅解。 ...... 主要内容:项目基本信息、建设背景分析、市场分析、调研、项目建设方案、选址评价、项目工程方案分析、项目工艺说明、环境保护、项目生产安全、项目风险评估、节能分析、实施进度、投资方案说明、经济收益分析、项目结论等。

相关文档
最新文档