微波萃取技术

微波萃取技术
微波萃取技术

微波萃取技术

摘要:微波萃取技术区别于传统的溶剂萃取,作为一种新型高效的萃取技术,是近年来的研究热门课题。微波可以穿透萃取介质,直接加热物料,能缩短萃取时间和提高萃取效率。本文对近年的微波萃取技术以及其研究做了综述,介绍了微波萃取的特点,主要影响因素及其应用。

关键词:微波;微波萃取;高效

Technology of Microwave Assisted Extraction

Abstract: Microwave assisted extraction has attracted growing interest as it allows rapid extractions of solutes from solid matrices in recent years, with high extraction efficiency comparable to that of the classical techniques. Microwave assisted extraction consists of heating the extraction in contact with the sample with microwaves energy. But unlike classical heating, microwaves heat all the samples simultaneously without heating the vessel. Therefore,the solution reaches its boiling point very rapidly, leading to very short extraction time. This review gives a brief presentation of the theory of microwave and extraction systems. A discussion of the main parameters that influence the extraction efficiently, and its applications.

Key Words: Microwave ; Microwave assisted extraction; efficiency

溶剂萃取是重要的传质单元操作]1[,其基本原理是通过溶质在两种互不相溶(或部分互溶)的液相之间不同的分配性质来实现液体混合物中某一单独或多种组分的分离或提纯。溶剂萃取通常在常温或较低温度下进行,具有能耗低的特点,较适用于热敏性物质的分离,经济效益较佳,有利于连续化的大规模生产。

20世纪初,石油工业中芳烃抽提使用了溶剂萃取法,此举标志着溶剂萃取法工业应用的开始。20世纪60年代以来,溶剂萃取技术在石油化工、湿法冶金等领域中用于大规模的工业生产。但作为一种传统的提取方法溶剂萃取存在着一些缺陷]2[如:有效成分提取不完全,这样不仅增加了生产成本,更重要的是会影响效率;溶剂消耗量大,无论是水煎法还是溶剂浸提法,都需要较多的水资源和有机溶剂,并且不可避免地引起较多能源如电、燃料等的消耗;有效成分在提取过程中可能造成损失。此外还有费试剂、效率低、重现性差,而且所用试剂通常有毒,易对环境和操作人员造成危害的缺点。现今,溶剂萃取技术已在超临界流体萃取、双水相萃取、微波萃取、膜萃取、反胶团萃取、电泳萃取、超声萃取、预分散萃取、非平衡溶剂萃取等方面得到了发展。本文主要综述一些与微波萃取技术相关的知识。

1.微波萃取的基本原理

微波]3[是一种在1 mm~1 m(其相应的频率为300~30万MHz)的电磁波。常用的微波频率为2450MHz的波长。它具有波动性、高频性、热特性和非热特性四大基本特性。

微波萃取(Microwave Extraction,ME),又称微波辅助提取(Microwave—Assisted Extraction,MAE),是微波和传统的溶剂萃取法相结合而成的一种萃取方法。1986年,Ganzler等首先在分析化学制样(天然产物成分的提取)技术中应用了微波萃取法。

微波萃取的基本原理是微波直接与被分离物作用,即微波能直接作用于样品基体内。当它作用于分子时,促进了分子的转动运动,分子若此时具有一定的极性,便在微波作用下瞬时极化,当频率为2450 MHz时,分子就以24.5亿次/s 的速度做极性变换运动,从而产生键的振动、撕裂和粒子之间的相互摩擦、碰撞,促进分子活性部分(极性部分)更好地接触和反应,时而迅速生成大量的热能,引起温度升高。由于不同物质的介电常数不同,从而吸收微波能的程度也各不相同,产生的热能及传递到周围环境的热能也是各不相同的,在微波场作用下,基体物

质的某些区域或萃取体系中的某些组分由于吸收微波能力的不同差异被选择性地加热,这样可以从基体或体系中分离出被萃物。微波能量是通过极性分子的偶极旋转和离子传导两种作用直接传递到物质上,导致分子整体快速转向及定向排列,从而产生撕裂和相又摩擦而发热。而传统的加热方式中]2[,因实际操作需要,容器壁大多由热的不良导体制成,热由器壁传导到溶液内部需要时间;相反,微波加热是一个内部加热过程,它不同于普通的外部加热方式将热量由外向内传递,而是同时直接作用于内部和外部的介质分子,是整个物料同时被加热,从而保证了能量的快速传导和充分利用。

2微波萃取的特点

2.1 高选择性

因为微波只对极性分子进行选择性加热,整个萃取过程由微波辐射能穿透介质,到达物料的内部,使基质内部温度迅速上升,增大萃取成分在介质中的溶解度,然后微波在产生的电磁场加速了目标物向溶剂的扩散,因此,对天然产物活性成分有很强的选择性溶出,活性成分分子极性越强,选择性越高。微波萃取过程的核心是一个解吸和扩散的串联控制过程]4[,解吸和扩散的快慢决定了萃取过程的速率。很多人把微波辅助强化萃取过程归结为微波导致细胞破裂,实际上,细胞破裂主要是强化了有效成分的扩散。,在其他量不变的情况下,随着萃取时间和微波功率的增大,萃取浓度增大,即解吸量增大,并且开始时解吸量随时间的增大迅速增大,随后随时间的增大趋于不变;解吸量随着微波功率的增大而增大。另外,在微波场中,如果位移极化相同或位移极化相对转向极化忽略不计,则极性分子物质比非极性分子物质获得更多的能量,微波对极性分子物质的萃取更有效。焦淑清提到与传统溶剂浸取法相比,微波技术萃取红花羊蹄甲花中色素.具有省时、操作方便色素提取率高等特点;刘传斌]5[等用微波破细胞与溶剂提取相结合的方法提取高山红景天愈伤组织中红景天苷,将药材经1分钟微波处

理后,室温下水提取10分,可将红景天苷充分提取出来,与传统提取方法相比,前者具有时间短、不需加热、提取液中杂质少等优点;王绢]6[等应用微波萃取葛根中的总黄酮、葛根素,结果表明提取效率明显提高,提取时间明显缩短,有效成分的得率显著提高;刘红]7[等利用微波萃取技术提取山楂多糖,结果表明提取率可由传统提取法的10.05%提高至16.07%,而提取时间则由3h缩短至20min;付志红]8[等利用微波萃取技术提取车前子多糖,并与水提法和超声提取法进行了对比,结果表明提取时间分别为65s、l h和30min,而提取率则分别为1.867%、1.243%、1.764%,可见微波萃取法的提取时间最短,对目标物的选择性即提取率最高。刘俊以乙醇为溶剂提取土茯苓总黄酮,考察了提取时间、微波功率、乙醇浓度、固液比和提取温度对土茯苓总黄酮提取率的影响,结果表明微波辅助提取土茯苓总黄酮的提取率为93.2%,比传统加热提取法高17.4%。

2.2 高效性

在同一对象提取中,采用传统方法需要几小时至十几小时,超声提取法也需半小时到一小时,而微波提取只需几秒到几分钟即可完成,并且目标成分提取率更高,可见,微波提取速率提高了几十至几百倍,甚至几千倍,大大缩短了萃取时间。焦淑清]4[对比试验结果表明,与溶剂浸提法相比,微波法萃取红花羊蹄甲花中色素的提取时间由20 h减少到30 s,色素含量接近,提取率有所提高;孟庆廷]9[中提到该法与传统浸取法相比,具有很大的优越性,主要表现在节省提取时间、产品叶绿素提取率较传统的提取方法提高20%左右。

2.3 节物、节能、环保的优越性

微波萃取由于微波功率较小且辐射时间短,是传统方法能耗的几十分之一,甚至几百乃至几千分之几。这是因为,微波浸取可以使固液浸取过程得到明显的强化,它的浸取效率要比传统方法的浸取效率高得多。另一方面它又由于受溶剂

亲和力的限制较小,可供选择的溶剂较多,在选择无毒或低毒溶剂的同时还可减少其用量。由此可见,该技术暨节约物耗、能耗,又做到绿色环保。曾小明]10[利用微波技术萃取熊果酸,大大缩短了萃取时间,节省溶剂,并且获得较高的萃取得率;许玲玲,李群力,麻佳蕾]11[中得到结论:微波萃取法和回流提取法提取鲜姜,提取得到的6-姜酚的含量是相近的,但是用微波萃取法得到的生姜提取物中6-姜酚的纯度很高,而采用回流提取法提取所用的时间长、效率低、操作麻烦,得到的生姜提取物中6-姜酚的纯度很低,杂质多。说明微波萃取法在提取效率和节能方面优于回流提取法。

2.4 加热均匀

常规加热,为提高加热速度,就需要升高加热温度,容易产生外焦内生现象。微波加热的物体各部位通常都能均匀渗透电磁波,产生热量,因此均匀性大大改善]12[。

3 微波萃取的设备及步骤

3.1 微波萃取的设备

微波萃取装置一般为带有功率选择和控温、控压、控时附件的微波制样设备。用于微波萃取的设备分两类:一类为微波萃取罐,另一类为连续微波萃取线。两者主要区别:一个是分批处理物料,类似多功能提取罐;另一个是以连续方式工作的萃取设备。一般由聚四氟乙烯材料制成专用密闭容器作为萃取罐,它能允许微波能自由通过、耐高温高压且不与溶剂反应。一般设计每个系统可容纳多个萃取罐,因此试样的批处理量大大提高。

3.2 微波萃取步骤

将极性溶剂或极性溶剂和非极性溶剂混合物与被萃样品混合装入微波制样容器中,在密闭状态下,用微波制样系统加热,加热后样品过滤得到的滤液可进行分析测定,或作进一步处理。微波萃取溶剂应选用极性溶剂,如乙醇、甲醇、丙酮、水等,纯非极性溶剂不吸收微波能量,使用时可在非极性的溶剂中加入一定浓度的极性溶剂,不能直接使用纯非极性溶剂。在微波萃取中要求控制溶剂温度保持在沸点以下和在待测物分解温度以下。

微波萃取工艺流程:

选料一清洗一粉碎一微波萃取一分离一浓缩一干燥一粉化一产品

3.3 微波萃取的参数

一般说来,工业微波萃取设备必须具备以下基本条件]13[:(1)微波发生功率足够大,工作状态稳定,一般应配备有温控附件。(2)设备结构合理,可随意调整,便于拆卸和运输,能连续运转,操作简便。(3)安全,微波泄露符合要求,用大于l0mW量程的漏场仪在距离被测处5 m处检测,漏场强度应小于5mW/cm2。

3.4 微波萃取的影响因素

微波萃取操作过程中,萃取参数包括萃取溶剂、萃取功率和萃取时间。影响萃取效果的因素很多,包括萃取剂、物料含水量、微波剂量、温度、时间、操作压力及溶剂pH值等。

3.4.1 萃取剂

微波萃取由于受溶剂亲和力的限制较小,可供选择的溶剂较多,同时减少了溶剂的用量。另外,微波提取如果用于大生产,则安全可靠,无污染,属于绿

色工程,生产线组成简单,并可节省投资。在微波萃取中,应尽量选择对微波透明或部分透明的介质作为萃取剂,也就是选择介电常数较小的溶剂,同时要求萃取剂对目标组分要有较强的溶解能力,对萃取成分的后续操作干扰较小。这样,微波便可以透过或大部分透过萃取剂,达到萃取目的。萃取溶剂的种类很多,已报道有甲醇、乙醇、异丙醇、丙酮、乙酸、甲苯、二氯甲烷、四氯甲烷、正己烷、异辛烷、2,2,4—三甲基戊烷、四甲基铵等有机溶剂和硝酸、盐酸、氢氟酸、磷酸等无机溶剂以及己烷一丙酮体系、二氯甲烷.甲醇体系、水.甲苯体系等混合溶剂。由于离子液体具有蒸气压低、挥发性小、溶解能力强、萃取能力好、液态范围宽等独特的物理化学性质,同时对微波有强的吸收和热转换能力,现已用做微波萃取溶剂。

溶剂的极性对萃取效率有很大的影响。不同的基体,所使用的溶剂也完全不同。所以在选择溶剂时,除了要考虑对目标化合物有较强的溶解能力外,还必须考虑溶剂的极性。溶剂极性的大小直接影响其在微波场中的升温行为。黄瑞华等研究了水(强极性)、无水乙醇(中等极性)、正己烷(弱极性)与中药饮片组成的体系在微波作用下饮片内部以及溶剂主体温度的升温规律,发现极性越强的溶剂吸收微波能越多,升温越大。郝金玉等圆利用微波萃取技术对西番莲籽进行研究,结果表明非极性溶剂适用于微波萃取含水物料。同时溶剂的体积也影响萃取的的效果,主要是液料比大小。如果固相与液相浓度相差越大,传质推动力也就越大,萃取也就越容易,但是溶剂体积越大的,浓缩产品困难,损耗的能量较大。所以应该选择适宜的体积,一般必须浸没全部样品]14[。

3.4.2 物料含水量

水是介电常数较大的物质。可以有效吸收微波能转化为热能,所以物料含水量的多少对萃取率的影响很大。对含水量较少的物料,一般采用再湿的方法使之有效吸收所需的微波能。含水量的多少对萃取时间也有很大影响。

3.4.3微波剂量

在微波萃取过程中,所需的微波剂的确定应以最有效的萃取出目标组分为原则。一般所选用的微波能功率在200~1 000 W,频率在2 000-30万MHz。在选择微波功率时,应该综合考虑萃取效果和节能。功率过大,微波会产生瞬间高温,加热不均,促使局部过热,溶剂也会产生局部剧烈沸腾,造成溶剂大量损失,热不稳定的物质也会发生分解或部分分解,同时耗能较大。一般采用的功率500w~900w比较合适]14[。

3.4.4 萃取时间

一般微波萃取辐射时间在10~100 S之间。对于不同的物质,最佳萃取时间不同。微波连续辐射时间不能太长,由于一次辐射时间太长,会使系统的温度升的很高(即使是非极性溶剂也会由于与含水物料传热而升温超过溶剂的沸点,引起溶剂的剧烈沸腾,不仅造成溶剂大量损失,而且还会带走已溶解入溶剂的部分溶质,影响提取率)。郝金玉等研究了在微波辐射总时间相同的情况下,每次连续辐射时间即微波剂量对提取率影响,得出在保证系统温度低于溶剂沸点的情况下,微波剂量越大,提取率越高。

3.4.5 其它因素

温度、基体物质、溶液的pH值、压力等因素对萃取的效率以及溶剂回收率也有不同程度的影响,最佳条件的选择应根据处理物料的不同而有所不同。

以上对照几组实验中,樊素芳等对红枣多糖提取率影响的大小依次为反应时间>料液比>微波功率>反应温度.这一结果说明反应时间在影响提取率的因素中是最重要的;李旺英等对微波萃取穿心莲中总黄酮的工艺研究中影响程度依次是微波功率>穿心莲粒度>微波作用时间>溶剂用量;曾小明在《野生猕猴桃根熊果酸微波萃取工艺的响应面优化》中提到,在试验范围内,4个参试因子均能极显著地影响熊果酸的提取,显著性顺序为乙醇浓度>萃取时间> 萃取温度>液料比,由此可知对于不同的物质,微波萃取有不同的影响因素,要具体问题具体分析。

4 展望

微波萃取技术是一种很有发展潜力的绿色萃取分离技术,它已经广泛应用到很多行业中,尽管该技术具有快速、高效、选择性强、能耗少、环境污染小、产品提取率高等优点,但还有很多方面还需要发展和完善。

首先,微波萃取技术的机制还没有完全形成定论,尚需要进一步进行大量的研究工作,形成统一完整的理论,只有这项技术形成了统一完整的理论,才能推动其更好的发展,使其应用领域更为广泛。

其次,开发一系列新型的绿色溶剂作为微波萃取溶剂(如离子液体)]15[。离子液体是由离子组成,具有蒸气压低、挥发性小、溶解能力强、萃取能力好、液态范围宽等独特的物理化学性质,同时对微波具有强的吸收和热转换能力,非常适合做微波萃取的萃取溶剂。离子液体的使用可以减少易挥发性有机溶剂萃取分离过程中对环境的污染。随着化工新产品、新工艺的开发或为实现绿色化工生产,对物理过程提出了一些特殊要求,需要不断的发展出新的单元操作或化工技术。利用微波萃取技术的优点,结合其它新型分离技术的特点,以节约能耗、提高效率、洁净无污染生产为宗旨,开发集成化、微型化、自动化的化工技术将是未来的发展趋势。

再次,由于微波萃取法是利用物质在外加电场的作用下分子发生极化]16[,快速定向转动而发生剧烈碰撞和相互摩擦引起发热,短时间内产生很大的能量,从而促使有效成分的快速溶出和释放,因此它对提取设备要求较高。故把微波萃取法应用于实际大生产还有待深入研究。

参考文献:

[1] 郝艳霜,耿梅英,冯志华等. 蒲公英多糖微波提取工艺试验[J].中国兽医杂志

2009,45(09):62-63

[2] 韩宇萍,宓穗卿. 微波萃取技术在中药成分提取中的应用[J].中国新药与临

理,2003,14(06):430-433

[3] 韩增,张德华,宁平. 微波萃取天然物活性组分[J].云南化工,2008,35(05):69-72

[4] 郭平生,刘海力,宁军贤等. 萃取过程中微波强化有效成分解吸机理[J]. 广西师范大学

报,2009,27(01):54-58

[5] 刘传斌,王威,白凤武等. 高山红景天愈伤组织中红景天甙的微波破细胞提取,过程工程学

报.2001(04):56-58

[6] 王绢,沈平襄,沈永嘉等.微波辅助萃取葛根中有效成分的研究.中国药科大学学报,2002,

33(5):379-382

[7] 刘红,薛梅,李炳奇等.山楂多糖的微波提取和含量测定.石河子大学学报,2007 (2)

[8] 付志红,谢明勇,聂少平等.微波技术用于车前子多糖的提取.食品科学2005,

26(3):151-154.

[9] 孟庆廷,郭庆军,孙玉红等. 微波萃取甘蓝叶绿素工艺研究[J]. 山东化工,2009,38:1-7

[10] 曾小明. 野生猕猴桃根熊果酸微波萃取工艺的响应面优化[J]. 生产

用,2009,25(02):133-137

[11] 许玲玲,李群力,麻佳蕾. 微波萃取法萃取鲜姜有效成分6-姜酚的工艺研究[J].现代食品

科技,2009,25(06):620-621

[12] 王明芝,于丽梅,高春梅等. 微波萃取技术在中药及天然产物提取中的应用[J].人参研

究,2009(02):29-33

[13] 马梅芳,高宇源,吕伟. 微波萃取在中药成分提取中的应用研究进展[J].江西中医学院学

报,2005,17(05):74-77

[14] 章凯,黄国林. 微波萃取技术及其在果胶提取中的应用[J]. 中国酿造,2009(04):09-13

[15] 焦淑清,徐晶莹. 微波萃取红花羊蹄甲花红色素的研究[J]. 食品研究与开

发,2009,30(04):190-192

[16] 许玲玲,李群力,麻佳蕾. 微波萃取法萃取鲜姜有效成分6-姜酚的工艺研究[J].现代食品

科技,2009,25(06):620-621

茶叶中咖啡因的微波提取工艺

实验2 茶叶中咖啡因的微波提取工艺 一、实验目的 1.明确微波提取法提取原理; 2.学会用微波提取法提取茶叶中的咖啡因; 3.使用分光光度计,建立标准曲线,检测茶叶中咖啡因的含量。 二、实验原理 咖啡因是杂环化合物嘌呤的衍生物,它的化学名称为:1,3,7-三甲基-2,6-二氧嘌呤,其结构式如下: N N H N N N N N O O CH3 CH3 H3C 嘌呤咖啡因 含结晶水的咖啡因系无色针状结晶,味苦,能溶于水、乙醇、氯仿等。在100℃时即失去结晶水,并开始升华,120℃时升华相当显著,至178℃时升华很快。无水咖啡因的熔点为234.5℃。 从茶叶中提取咖啡因传统的方法有乙醇回流法和碳酸钠溶液煮沸法。但前者需在Soxhlet萃取器中回流约2.5h 以上, 周期较长、醇耗、能耗较大, 不利于工业化生产。后者虽只需煮沸20m in, 但煮沸后呈泥胶状, 过滤和萃取均很难, 致使收率很低。 微波是频率介于300 MHz和300 GHz之间的电磁波。微波提取的原理是微射线辐射于溶剂并透过细胞壁到达细胞内部,由于溶剂及细胞液吸收微波能,细胞内部温度升高,压力增大,当压力超过细胞壁的承受能力时,细胞壁破裂,位于细胞内部的有效成分从细胞中释放出来,传递转移到溶剂周围被溶剂溶解。微波具有穿透力强、选择性高、加热效率高等特点.微波作用于植物细胞壁,其热效应促使细胞壁破裂和细胞膜中的酶失去活性,细胞中多糖容易突破细胞壁和细胞膜而被提取出来,大大加快了反应提取速度、反应时间以分、秒计,有效地提高了多糖得率。微波提取法是强化固液提取过程颇具发展潜力的一项新型辅助提取技

术。 三、仪器与试剂 仪器:微波萃取仪;紫外-可见分光光度计;分析天平(1台);50 mL容量瓶(8个);100 mL 容量瓶(1个);1 mL 、2 mL 吸量管;50mL烧杯(10个); 100mL(3个); 布式漏斗;滤纸;抽滤瓶等。 试剂:无水乙醇;0.5 mg/mL咖啡因标准溶液等。 四、实验步骤: (一)、制作标准曲线 从无水乙醇为溶剂的咖啡因储备液( c = 500. 0μg/ mL) 中移取0. 50 ,1. 00 ,1. 50 ,2. 00 ,2. 50 ,3. 00 ,3. 50 mL于7 个50 mL 容量瓶中用50%的乙醇定容,得到浓度为5. 00 ,10. 00 ,15. 00 ,20. 00 ,25. 00 ,30. 00 ,35. 00μg/ mL 的系列标准溶液。在紫外分光光度计上测其最大吸收波长处的吸光度A ,得标准曲线。 (二)、咖啡因的提取 1.提取工艺流程 原料→粉碎→加入溶剂→微波处理→过滤→离心→粗提液→测定吸光度值2.提取工艺条件优化 (1).单因素实验 I.微波功率的筛选 微波功率的筛选称取5 g茶叶, 加入80 mL 50 %乙醇, 配制5 份相同混合液, 将混合液放置于微波提取仪中, 设定温度为90 ℃的条件, 改变功率(300 W、400 W、500 W)微波10 min, 测定不同微波功率下提取液的吸光度值A. II.微波时间的筛选 称取5 g 茶叶, 加入80mL50 %乙醇, 配制5 份相同混合液,将混合液放置于微波提取仪中, 在设定温度为90 ℃,微波功率为500 W的条件下,微波加热不同的时间(13 min、14 min、15 min) ,测定不同微波时间条件下提取液的吸光度A. III.微波温度的筛选 称取5 g茶叶,加入80 mL 50 %乙醇,配制6 份相同混合液,将混合液放

微波辅助萃取技术的应用和研究进展

微波辅助萃取技术的应用和研究进展  王新 郑先哲  (东北农业大学 工程学院,哈尔滨,150030)  摘要:本文描述了微波辅助萃取技术是一种很有潜力的萃取技术,全面综述了它在农业、食品工业、环境分析化学、传统中医药工业等方面的应用和研究进展。微波辅助萃取技术在传统萃取工艺基础上进行了强化传热、传质,试验体现了微波萃取技术具有装置简单、应用范围广、萃取效率高、重现性好、消耗溶剂和时间少、污染少等优点。目前,微波辅助萃取技术的工业化问题已倍受重视,这必将推动微波辅助萃取技术向更深、更广的领域发展。 关键词:微波辅助萃取;植物性物料;食品; 中图分类号:S26.201 0引言  微波辅助萃取技术是一种新兴技术。现今已有许多试验采用微波辅助萃取的方法,并且已形成了多种比较完善的微波辅助萃取系统。最新研究引进了将微波辅助萃取技术预处理样品和其它分析技术结合使用,发展前景很广[1,2,3]。在不同的试验中,各自体现了装置简单、应用范围广、萃取效率高、重复性好、消耗溶剂及时间少、环境污染少等优点[4]。  在实验室或工厂里,将微波技术改进后,用于从不同的植物原料中萃取许多挥发性组分。它的原理与索式提取、蒸汽蒸馏和浸提等传统方法是不同的。微波加热是样品直接吸收微波能[5]。微波能也是一种能量。在能量传输过程中,微波能直接影响极性分子原料。微波电磁场能让这些极性分子迅速极化。当使用频率为2450兆赫兹的微波能萃取时,溶质或溶剂中的极性分子将以每分钟24.5亿次的速度做极性反转运动,使分子间产生相互摩擦和碰撞。通过这种方式的运动,分子内的活性组分(极性部分)彼此间会加速碰撞并加速反应,同时产生了大量的热能,这些热能促使细胞破裂、同时细胞液溢出并且扩散到溶剂中[6]。因此,微波促1使细胞里的有效组分自由的流出,在低温条 收编日期:年月日 作者简介:王新(1979-),女(汉),辽宁省大连市,研究生,农产品加工及贮藏工程  通讯地址:150030,ml_earquake@https://www.360docs.net/doc/203230878.html, 通讯作者:郑先哲(1968-),男(汉),吉林省德惠,教授,通讯地址:150030,zhengxz2006@https://www.360docs.net/doc/203230878.html, 件下若进一步利用萃取媒介,将其捕获、溶解,再借助于过滤、分离技术,就可得到萃取物。 1微波萃取技术在萃取植物中天然活性组分方面的应用  自1986 年Ganzler等人首先报道了微波用于天然产物中化学成分的提取后,微波萃取被广泛用于生物碱类、黄酮类、蒽醌类、皂苷类等多种试验研究。如周志等[7]用微波从茶叶中提取茶多酚。郭振库等[8]应用自行设计的具较高压力控制精度的专用微波制样系统,对金银花中有效成分绿原酸和异绿原酸类化合物的提取条件进行了分析,并与超声波提取进行了比较,结果提取率提高了近2成。 邵海等[9]人用微波萃取核桃油工艺的研究等等。  2007年,Flamini Guido等[10]将新型的微波方法应用在从植物中萃取香精油试验研究。比起传统方法,微波方法萃取的香精油,含氧化混合物较高、单萜很少。由此可见,微波加热是更有效的,体现了省时、节能的优点。Lucchesi Marie等[11]研究了无溶剂的小豆蔻香精油的萃取。多参数的研究形成了一个中心合成设计,用来评估影响无溶剂萃取小豆蔻种子香精油的性能的三个变量的影响。由电荷耦合器件提供的统计结果表明试验选择的参数:萃取时间,微波辐射能和种子的水分含量都是相当关键的。  2微波萃取技术在食品工业上中的应用  最近,许多作者就微波萃取技术在物理、化学性质等方面的近期应用介绍了一些

微波萃取技术

微波萃取技术 摘要:微波萃取技术区别于传统的溶剂萃取,作为一种新型高效的萃取技术,是近年来的研究热门课题。微波可以穿透萃取介质,直接加热物料,能缩短萃取时间和提高萃取效率。本文对近年的微波萃取技术以及其研究做了综述,介绍了微波萃取的特点,主要影响因素及其应用。 关键词:微波;微波萃取;高效 Technology of Microwave Assisted Extraction Abstract: Microwave assisted extraction has attracted growing interest as it allows rapid extractions of solutes from solid matrices in recent years, with high extraction efficiency comparable to that of the classical techniques. Microwave assisted extraction consists of heating the extraction in contact with the sample with microwaves energy. But unlike classical heating, microwaves heat all the samples simultaneously without heating the vessel. Therefore,the solution reaches its boiling point very rapidly, leading to very short extraction time. This review gives a brief presentation of the theory of microwave and extraction systems. A discussion of the main parameters that influence the extraction efficiently, and its applications. Key Words: Microwave ; Microwave assisted extraction; efficiency 溶剂萃取是重要的传质单元操作]1[,其基本原理是通过溶质在两种互不相溶(或部分互溶)的液相之间不同的分配性质来实现液体混合物中某一单独或多种组分的分离或提纯。溶剂萃取通常在常温或较低温度下进行,具有能耗低的特点,较适用于热敏性物质的分离,经济效益较佳,有利于连续化的大规模生产。

微波萃取技术及其应用

开发与应用 Development and Application  微波萃取技术及其应用  骆健美1 卢学英2 张敏卿1 (1天津大学化学工程研究所,天津,300072; 2天津大学自动化学院,天津,300072) 提 要 本文对微波萃取技术进行了简要综述,具体介绍了微波萃取的原理、特点、萃取参数、设备、优越性及近些年来的研究进展和应用,并展望了微波萃取技术的发展前景。 关键词 微波萃取,样品处理,超临界流体萃取 萃取是分离和提纯物质的一种常用方法。传统的萃取方法有索氏萃取、搅拌萃取和超声波萃取,但由于具有费时、费试剂、效率低、重现性差等缺点,近年来已不能满足发展的需要,因而先后提出了超临界流体萃取(SFE)、微波萃取(M AE)和加速溶剂萃取(ASE)。但因存在技术缺陷、设备复杂、运行成本高或萃取效率低等问题,超临界萃取和加速溶剂萃取的发展和应用受到了限制,而微波萃取则克服了以上缺点,表现出良好的发展前景和巨大的应用潜力。1986年,匈牙利学者G anzler K.报道了利用微波能从土壤、种子、食品、饲料中萃取分离各种类型化合物的样品制备新方法———微波萃取法[1]。 1 微波萃取的原理和特点 1.1 微波萃取的原理 微波是指波长从1mm到1m之间,频率为3×106~3×109H z的电磁波,它介于红外线和无线电波之间。微波在传输过程中遇到不同的介质,依介质性质不同,会产生反射、吸收和穿透现象,这取决于材料本身的几个主要特性:介电常数、介质损耗系数、比热、形状和含水量等。因此在微波萃取领域中,被处理的物料通常是能够不同程度吸收微波能量的介质,整个加热过程是利用离子传导和偶极子转动的机理,因此具有反应灵敏、升温快速均匀、热效率高等优点。其基本原理是:不同物质的介电常数不同,对微波能的吸收程度也不同,由此产生的热量和传递给周围环境的热量也不同。在微波场中,吸收微波能力的差异使基体物质中的某些区域和萃取体系中的某些组分被选择性加热,从而使被萃取物质从基体或体系中分离出来,进入到介电常数小、微波吸收能力较差的萃取剂中[2]。 1.2 微波萃取的特点 传统的萃取过程中,能量首先无规则地传递给萃取剂,再由萃取剂扩散进基体物质,然后从基体中溶解或夹带出多种成分出来,即遵循加热—渗透进基体—溶解或夹带—渗透出来的模式,因此萃取的选择性较差。 对于微波萃取,由于能对体系中的不同组分进行选择性加热,因而成为一种能使目标组分直接从基体中分离的萃取过程。与传统的索氏萃取、超声波萃取相比,其主要特点是:快速,节能,节省溶剂,污染小,而且有利于萃取热不稳定的物质,可以避免长时间的高温引起物质的分解,特别适合于处理热敏性组分或从天然物质中提取有效成分。与超临界萃取相比,微波萃取的仪器设备比较简单廉价,且适用面广,较少受被萃取的仪器物极性的限制(目前超临界流体萃取难以应用于极性较强的物质)。 例如,在分析水中的挥发性有机物[3]时,将微波法与传统的静态顶空气相萃取法进行了对比发现,前者比后者萃取效率提高35%以上,萃取时间从30min减少到1min以内;用萃取方法提取混和饲料中的维生素A、D和E的研究结果[4]表明,微波萃取与磁力搅拌萃取、超声波萃取相比较,虽然回收率均在90%~110%之间,但微波萃取的回收率最好,可达100%~104%,且萃取时间最短,仅需5min。将微波萃取用于中药萃取的研究表

微波提取

2.微波技术在中药提取中的应用 2.1 微波及微波特性 2.2 微波技术的发展 2.3 微波提取中药成分原理与应用 2.4 微波提取的评价与存在问题 2.5微波干燥灭菌技术在中药生产中的应用 2.1 微波及微波特性 2.1.1 微波的概念: 微波(microwave .MW)是超高频率电磁波, 波长1~0.001m,频率在300MHz—300GHz的电磁波。 2.1.2 微波的特性: ①似光特性:高频率、波长短—直线传播 ②穿透特性: 反射性:MW→金属.入射角=反射角(金属不发热) 穿透性: MW→某些非金属(透明体)不发热 吸收性: MW→水(发热) 2.1.2 微波的特性: ③热特性: 微波MW→物体内部→热能,内外温度相等,表面水蒸发时温度略低,形成由里到外的温度降低梯度,有利于干燥。 2.1.2 微波的特性: ④非热特性(生物效应): 微生物内H2O在WV作用下产生极性震荡→ 细胞膜结构破裂,细胞分子间氢键松弛→细胞死亡→实现了低温灭菌。 2.2 微波技术的发展 20世纪 30年代:MW用于——防空雷达 40年代,美国:第一台微波炉——也称雷达炉 90年代:加拿大:设计的——微波提取装置取得了多国专利,一次可以处理1~5吨的物料,用于食品,香料,调味品的生产。 1994年:法国研制的SOS-1100型微波萃取仪在美、日、韩、墨西哥、西欧等申请了专利。目前中国:工业微波技术处于实验阶段 2.3 微波提取原理与应用 2.3.1微波提取(Microwave -Assisted Extraction MAE)原理: 微波提取利用了介电加热和离子传导的作用。 ①介电加热: 永久偶极分子在2450MHz电磁场条件下产生 共振频率:4.9×109次/秒, 分子→超高速旋转→动能↑→温度↑ ②离子传导:

微波萃取技术

微波萃取技术 摘要:微波可以穿透萃取介质,直接加热物料,能缩短萃取时间和提高萃取效率。本文对近年的微波萃取技术以及其研究做了综述,介绍了微波萃取的特点、主要影响因素及其应用。微波萃取作为一种新技术,其前景广阔,有望在萃取抽提领域开拓出新的天地。 关键词:微波;微波萃取技术;应用 Abstract:Unlike classical heating, microwaves heat all the sample simultaneously without heating the vessel. Therefore, the solution reaches its boiling point very rapidly, leading to very short extraction times. This review gives a brief presentation of the theory of microwave and extraction systems, a discussion of the main parameters that influence the extraction efficiency, and the main results on the applications. As a new technology, microwave assisted extraction has a broad prospect, and is expected to open up a new field in the extraction area. Key words:microwave; microwave assisted extraction; applications 1 概述 传统的溶剂萃取技术经过不断的技术完善发展、应用范围的拓宽,已成为有效的

微波辅助萃取技术在体内药物分析中的应用

微波辅助萃取技术在体内药物分析中的应用 发表时间:2016-05-20T11:10:40.943Z 来源:《医药前沿》2016年4月第12期作者:魏然程婷婷 [导读] 菏泽市公安局刑事科学技术研究所在检材的预处理这一关键环节发挥着愈发重要的作用,本文简要介绍了该技术的特点、分类以及影响因素。 魏然程婷婷 (菏泽市公安局刑事科学技术研究所山东菏泽 274000) 【摘要】本文简要介绍了微波辅助萃取技术的特点、分类以及影响因素,对于近年来该技术在体内药物分析领域的应用进行了评述,并对其前景进行了展望。 【关键词】微波辅助萃取;药物分析;评述 【中图分类号】R319 【文献标识码】A 【文章编号】2095-1752(2016)12-0379-02 1.引言 微波辅助萃取技术又称微波萃取技术(Microwave assisted extraction-MAE),是微波和传统的溶剂萃取法相结合后形成的一种新型萃取技术[1],在检材的预处理这一关键环节发挥着愈发重要的作用,本文简要介绍了该技术的特点、分类以及影响因素,着重综述近年来其在体内药物分析领域的应用,并进行了展望。 2.微波辅助萃取技术简介 2.1 微波辅助萃取的特点 与其他萃取技术(如索氏萃取、超声萃取、加速溶剂萃取等)相比,微波辅助萃取技术具有加热均匀、快速高效、易于控制、选择性好、回收率高等优点,被誉为“绿色提取工艺”。 2.2 微波辅助萃取的分类 根据萃取罐的类型,微波萃取体系可分为开罐式微波萃取体系与密闭型微波萃取体系两个大类。根据微波作用于萃取体系的方式,亦可分为发散式微波萃取体系与聚焦式微波萃取体系两个大类。 2.3 微波辅助萃取的影响因素 微波萃取技术的影响因素众多,主要有萃取溶剂、萃取温度、萃取时间、溶液pH值等。 3.微波辅助萃取在体内药物分析中的应用 3.1 体内毒品成分分析 孙洪峰[2]等人建立了人体血液中甲基苯丙胺的微波萃取-气相色谱测定方法。考察了各因素对萃取率的影响,并与液-液萃取法进行比较。结果表明,在相同条件下,微波萃取率高于液-液萃取。血液中甲基苯丙胺的最佳提取条件为:调节血样pH为13,以乙酸乙酯为萃取溶剂于30℃下微波提取8min。在此条件下平均萃取率达到81.4%,相对标准偏差为6.4%(n=5),对血液中甲基苯丙胺的最低检测限为220μg/L。 王继芬[3]等人建立了人体血液中3,4-亚甲二氧基苯丙胺(MDA)、3,4-亚甲二氧基甲基苯丙胺(MDMA)的微波萃取-气相色谱测定方法。研究确定了血液中MDA、MDMA的最佳提取条件,即调节血样pH=13,以乙酸乙酯为萃取溶剂,于30℃下微波提取10min。测定的MDA、MDMA平均萃取率分别达96.7%和101.7%,相对标准偏差分别为4.8%和5.3%(n=5),经检测,2种药物和基体得到了很好的分离,对血液中MDA、MDMA的检出限为5×10-8g/mL。 王小波[4]等人建立了血液中可卡因(cocaine,COC)及其代谢物爱冈宁甲基酯(ecgonine methyl ester,EME)的气相色谱-质谱和气相色谱-氢火焰离子化检测方法。该方法采用微波萃取提取血液中的COC和EME,优化并确定了最佳提取条件:以V(氯仿):V(异丙醇)=9:1混合溶液为提取溶剂,0.05mol/L Na2CO3-NaHCO3缓冲溶液调节样品溶液的pH至10.0,在40℃下微波萃取6min;经检测,COC和EME的平均回收率分别为79.91%~99.85%,相对标准偏差(RSD)均小于3.10%,检出限(S/N=3)分别为60mg/L和40mg/L。张月琴[5]等人建立了尿液中氯胺酮(Ketamine)的微波萃取-气相色谱(GC)测定方法。研究确定了尿液中Ketamine的最优提取条件,即以4mol/L NaOH溶液调节尿液pH值为12,在50℃的温度下选用4mL的以乙酸乙酯为萃取剂,萃取时间为8min。在此条件下,检出限(S/N=3)为0.2mg/L;日内及日间精密度均小于3%,回收率为79.5%~101.3%。 3.2 体内农药成分分析 应剑波[6-7]等人利用微波萃取、气相色谱质谱联用仪技术,分别研究了血中常见有机磷、氨基甲酸酯以及杀蚕毒素类农药的检验方法。农药经V(丙酮):V(二氯甲烷):V(环己烷)=4:3:3的混合溶剂微波辅助萃取,浓缩后经GC/MS测定,各类农药的回收率为63%~96.8%,检出限较低,且线性关系良好。该方法操作简便、机械化程度高、处理批量大、重现性好、空白干扰小,可用于医疗、卫生、法庭科学实际案例的药物毒物筛选。 4.结束语 近年来,微波辅助萃取技术正朝着自动化、联用化的方向发展,作为一种新兴的样品前处理技术,由于其不可替代的种种优势,未来必将在体内药物分析领域发挥更加重要的作用。 【参考文献】 [1] K Ganzler,A Salgó,K Valkó Microwave Extraction : A Novel Sample Preparation Method for Chromatography 《Journal of Chromatography A》,?1987,?371:299-306. [2] 孙洪锋,谷学新,王继芬等.微波萃取-气相色谱法测定血液中的甲基苯丙胺《色谱》2007,?25(04):590-593. [3]王继芬,孙洪峰,叶能胜等.微波萃取-气相色谱法测定血液中的MDA和MDMA《应用化学》,2009,?26(01):0-0. [4]王小波,叶能胜,王继芬等微波萃取-气相色谱法测定血液中的可卡因及其代谢物爱冈宁甲基酯《色谱》2010,?28(7):673-676. [5]张月琴,叶能胜,谷学新等.微波辅助萃取-气相色谱法测定尿液中的氯胺酮《分析化学》,2009(2):311-311. [6]应剑波,徐洁蕾,谢伟宏等.微波萃取和PTV-GC/MS/MS结合分析血中常见有机磷农药《中国法医学杂志》,2008,23(06):403-405.

微波萃取的原理

微波萃取技术 地点:微朗科技微波实验室 单位:株洲市微朗科技有限公司 时间:2013-08-23 声明:本研究成果归株洲市微朗科技有限公司所有,仿冒必究. 微波萃取技术是食品和中药有效成分提取的一项新技术。世界上微波技术应用于有机化合物萃取的第一篇文章发表于1986年,国外有专家发现将样品放置于普通家用微波炉里只需短短的几分钟就可萃取传统加热需要几个小时甚至十几个小时的目标物质。通过十几年来的努力和发展,微波萃取技术现已应用到香料、调味品、生物制品、天然色素、茶叶、中草药、化妆品和土壤分析等领域。 1、微波萃取原理 微波萃取是高频电磁波穿透萃取媒质,到达被萃取物料的内部,微波能迅速转化为热能使细胞内部温度快速上升,当细胞内部压力超过细胞壁承受能力,细胞破裂,细胞内有效成分自由流出,在较低的温度下溶解于萃取媒质再通过进一步过滤和分离,便获得萃取物料。在微波辐射作用下被萃取物料成分加速向萃取溶剂界面扩散,从而使萃取速率提高数倍,同时还降低了萃取温度,最大限度保证萃取的质量。

2、微波萃取优点 传统热萃取是以热传导、热辐射等方式由外向里进行,而微波萃取是微波瞬间穿透物料里外同时加热进行萃取。传统热萃取相比,微波萃取的主要优点是: a、质量高,可有效地保护食品、药品以及其他化工物料中的功能成分; b、纯度高、萃取率高; c、对萃取物具有高选择性; d、速度快、省时,可节省50%-90%以上的时间; e、溶剂用量少(可较常规方法少50%-90%以上); f、安全、节能,无污染,生产设备较简单,节省投资。 3、微波萃取与其它萃取方法的比较 微波萃取效率高、纯度高、能耗小、操作费用低,符合环境保护要求。可广泛用于中草药、香料、保健食品、食品、化妆品、茶饮料、调味料、果胶、高粘度壳聚糖等行业。目前在我国微波萃取已经用于多项中草药的浸取生产线之中,如葛根、茶叶、银杏等。微波萃取已列为我国二十一世纪食品加工和中药制药现代化推广技术之一。某中药研究机构的科研工作者,已经用微波萃取方法处理上百种中药。无论是萃取速度、萃取效率还是萃取质量均比常规工艺优越得多。微波萃取技术与现有其他的萃取技术相比有明显的优势。化学溶剂萃取法耗能大,耗材多,耗时长,提取效率低,工业污染量大。超临界流体提取在提取效率上大有提高,但所需装备复杂,溶剂选择范围窄,要高压力容器和高压泵,建立大规模提取生产线难度大,成本高。

谈谈微波萃取技术在中药有效成分提取中的应用

谈谈微波萃取技术在中药有效成分提取 中的应用 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 目前中药有效成分的提取方法多采用室温浸泡、索氏提取法、回流加热以及近年发展起来的超声波强化提取等方法,热回流法提取时间长, 杂质溶出率高, 操作量大。索氏提取法由于保持较高的浓度差, 所以提取率高, 浸液杂质少, 但提取时间长, 溶剂用量较大。室温浸泡提取虽不需要加热, 但提取时间长效率低, 尤其用水作溶剂时易发霉变质。超声提取法虽然可大大缩短提取时间, 但提取率并未显著提高。80 年代发展起来的微波提取有效提高了收率, 它具有穿透力强, 选择性好, 加热效率高等特点。现就微波萃取技术在中药有效成分中的应用作个简单的介绍。 1 微波萃取的原理 微波是一种频率介于300MHz-300GHz 之间的电磁波,波长在1mm ~1m , 因其波长介于远红外线和短波之间, 故称微波。常用的加热频率为2450MHz , 吸收微波能的程度不同, 由此产生的热量和传递给周围环境的热量也不相同。对天然药物来讲, 有效成分

多包埋在有坚硬柔软表皮保护的内部薄壁细胞或液泡中, 所以有效成分的提取实际上是目标成分从细胞内释放, 克服细胞壁、内部基质、固液界面、流体膜阻力扩散到溶剂中的非稳态过程。微波萃取技术的原理就是利用不同组分吸收微波能力的差异, 使基体物质的某些区域或萃取体系中的某些组分被选择性加热, 从而使得被萃取物质从基体或体系中分离, 进入到介电常数较小、微波吸收能力相对较差的萃取剂中, 并达到较高的产率(从细胞破碎的微观角度看, 微波加热导致细胞内的极性物质, 尤其是水分子吸收微波能, 产生大量的热量, 使胞内温度迅速上升, 液态水汽化产生的压力将细胞膜和细胞壁冲破, 形成微小的孔洞;进一步加热, 导致细胞内部和细胞壁水分减少, 细胞收缩, 表面出现裂纹。孔洞或裂纹的存在使胞外溶剂容易进入细胞内, 溶解并释放出胞内产物)。在含水的溶剂萃取极性化合物, 微波辅助萃取显示出较大优势, 因被萃取物胞内含水及极性有效成分的存在, 在微波场中吸收大量能量, 从而在内部产生热效应,被萃取物的细胞结构因产生的热效应而破裂。非极性溶剂则很少或不吸收微波能, 没有自热现象, 它可以起到冷却和溶解双重作用。细胞内部的物质因细胞破裂直接于相对冷的溶剂接触, 由于内外温差加速目标产物由胞

微波萃取原理及应用

微波萃取原理及应用 (2002-07-1 L.Jassie,R.Revesz,T.Kidrstead,E.Hasty, and S.Matz 本章介绍微波辅助溶剂的提取方法,综述了传统的提取方法和先进的液-固分离。讨论加热的微波理论和溶剂的相容性,重点讨论微波提取技术的特性以Soxhlet,超声处理,回流和振荡提取方法的差异。先进的微波提取方法对安全性问题给予特别的关注。讨论了微波辅助提取在天然物,塑料和多聚物,土壤和沉积物的环境污染中的应用。本章还对这一技术未来的发展方向作了展望。 古时候,化学家就致力于将一种物质从另一种物质中提取出来。将珍稀金属从岩石中提炼出来,或从天然物如树皮中抽取没药或乳香,而古代的文明技实现这些提取还缺少办法。即使在今天,混合物中的组分分离依然是一件费力费时的工作。分离科学研究溶液和均相液体中的各种物质,它们因大小,电荷似性和相异性等物理性质分配在其他物质中。我们可以任意的从分离科学中借用词汇和操作概念,不过这里仅讨论固-液分离,并且重点在于通过将物质或相似的物质,溶质溶解到亲和溶剂中从而将其从固态物质或基质中分离出来的方法。 固体中提取液体的传统方法 统的固-液分离方法具有可比较的共同特征。本节简要描述对这一技术比较重要的化学、物理反应,重点讨论各种方法的有关参数,使其优化以提高提取效率传统的溶剂提取可看作溶质从一个相到另一个相的相转移,如液-液提取中从水相进入有机相,或者是从固体到液体溶液的相转移。脱吸是一种物质从固移到溶液中。又如,分析物如多环芳香烃(PAHs)从稀释的水溶液中吸收到土壤颗粒上,吸收取决于它们在固液相之间的分配(1): Kd = Cs/Cw (1) 里,Kd是分配系数,Cs是样品如PAH在固相中的浓度,Cw是样品在液体中的浓度,并假设吸附等温线是线形的。改变液相浓度Cw,需要新的Kd值以用于分析。基于液体溶液中辛醇和水的亲和性的分配系数Kp或Kd可用来表示分析物在溶剂中的溶和能力。也就是说,Kp越大,溶剂越能积累目标分析物。 xhlet提取 xhlet提取一般用于固-液比为1:10-1:50的范围.这样的溶剂比能使溶解度很小的分析物溶解.此法的问题是,即使在最适的溶解条件下,溶剂与溶质匹配很,目标分析物也可能不会脱吸.压缩,铣刨等物理问题,颗粒体积变化以及最佳溶剂也无法与紧密结合溶质(2)竞争限制了溶剂提取的效率. 良好的Soxhlet溶剂应为低沸点液体,在分析物回收时易于蒸发.由于Soxhlet系统处于大气压下,因此提取溶液的热能常低于溶剂沸点.在这一水平下,缺温度得到的重要的速率优势.所以,这种开口气压提取需要16-20小时才能合符要求的溶质回收水平.蒸馏时浸沥基质的纯溶剂由于被冷却水冷凝器冷却,其稍低于沸点,这也是不足之处.当然无论如何,溶质或目标分析物总是暴露在纯净的溶剂中.虽然长时间的提取需要经常除掉溶剂,但自动化操作仍然使 xhlet提取更有用. 自动化快速Soxhlet设备(3)使提取时间减少到1-2小时.Soxtec设备带一个套管,提取的一半时间里,样品浸入沸腾的溶剂里,剩余的30-60分钟内,提取与传统的Soxhlet技术类似.提取时间减少近90%.基质-溶剂比与普通Soxhlet比相似,但样品大小和溶剂量要低些. 动与振荡 合混合,振荡和滚动,可使提取方法简便,有效,但费时并且不够精确.样品-溶剂比与Soxhlet比类似,提取通常需过夜并且常在室温下进行.有时,振荡可在加平台上进行.因为没有压力积累,所以温度很少高于室温.虽然样品处理减少,但本方法所需时间与Soxhlet方法大致相等. 声处理 声处理是一种利用超声波将目的分析物从基质中分离出来的提取方法.喇叭形声波探针于脉冲功率为400-600W时在样品溶剂容器中操作.为便于声波的传递一溶剂容器可置于温水浴中,不过这些提取的效率要低些.超声处理在某些情况下快速,高效,因为气蚀可提高颗粒表面温度,即使整体加热很小时,也能形成高温(4).温度的影响以及振动力和扭矩力使得提取时间从几分钟到数小时.由于一次只能处理一个样品,因此即使提取的速度很快,样品的输出量也很低;同度也较低.样品量通常为30g,溶剂总体积为150-300mL.土壤样品量取决于污染程度,可少至2g,溶剂10-30mL(5),尤其在筛选的情况下.

微波辅助萃取

微波萃取技术 微波萃取,即微波辅助萃取(MAE),是根据不同物质吸收微波能力的差异使得基体物质的某些区域或萃取体系中的某些组分被选择性加热,从而使得被萃取物质从基体或体系中分离,进入到介电常数较小、微波吸收能力相对差的萃取剂中,达到提取的目的。 1. 微波萃取的机理 微波是一种频率在300MHZ至300GHZ之间的电磁波,它具有波动性、高频性、热特性和非热特性四大基本特性。常用的微波频率为2450MHZ。微波加热是利用被加热物质的极性分子(如H2O、CH2Cl2等)在微波电磁场中快速转向及定向排列,从而产生撕裂和相互摩擦而发热。传统加热法的热传递公式为:热源→器皿→样品,因而能量传递效率受到了制约。微波加热则是能量直接作用于被加热物质,其模式为:热源→样品→器皿。空气及容器对微波基本上不吸收和反射,这从根本上保证了能量的快速传导和充分利用。 2. 微波萃取的特点 2.1体现在微波的选择性,因其对极性分子的选择性加热从而对其选择性的溶出。 2.2MAE大大降低了萃取时间,提高了萃取速度,传统方法需要几小时至十几小时,超声提取法也需半小时到一小时,微波提取只需几秒到几分钟,提取速率提高了几十至几百倍,甚至几千倍。 2.3微波萃取由于受溶剂亲和力的限制较小,可供选择的溶剂较多,同时减少了溶剂的用量。另外,微波提取如果用于大生产,则安全可

靠,无污染,属于绿色工程,生产线组成简单,并可节省投资。 3.注意事项 微波萃取一般适用于热稳定性的物质,对热敏性物质,微波加热易导致它们变性或失活;要求物料有良好的吸水性,否则细胞难以吸收足够的微波能将自身击破,产物也就难以释放出来;微波提取对组分的选择性差。

微波萃取技术

微波萃取技术 节选自:郭振库金钦汉《微波萃取技术》 (吉林大学化学系,长春,130023) 摘要:微波萃取技术在有机污染物和有害金属分离的研究和应用方面出现了令人鼓舞的进展。微波萃取方法具有方便、快速、试剂消耗低、回收率高和可用水作萃取溶剂的优点。本综述介绍了微波萃取技术的原理、方法、设备和应用研究现状。 关键词:微波萃取技术设备方法综述 一、概述 现在,绝大多数的分析样品需要使用原子吸收光谱仪(AAS)、电感耦合等离子体发射光谱仪(ICP-AES)、气/液相色谱仪(GC/LC)、质谱仪、分子光谱仪等进行其中成分或元素的测定。这些检测仪器一般都需用均匀液体样品,因此需要对原始样品进行消解、萃取、抽提或分离,然后才可能用上述仪器加以测定。目前,常规样品萃取方法有分液漏斗法、超声萃取法或Soxhlet(索氏)提取法。这些萃取法一般要用几小时或一天的时间,有些样品所需的萃取时间更长。这些常规前处理方法不仅制样时间长,试剂用量大并对环境造成一定程度的污染,而且准确性和精密性已经不适应现代快速测定的要求。此外,常规前处理方法长的制样时间,不能满足需要确定样品有效成分组成和结构的分析研究要求。 自Ganzler等人[1]报导用微波加热促进溶剂萃取污染土壤中的有机化合物以来,分析样品的微波萃取法由于萃取时间短、选择性好、回收率高、试剂用量少、污染低、可用水作萃取剂[2]的优点和可自动控制制样条件等而得到了分析工作人员的认同[3],因而在设备研究、应用开发、机理探讨方面均有可喜的研究报导。虽然微波萃取土壤中的有机污染化合物已有标准方法EPA3546[4],但就目前而言,微波萃取的应用对象还比较少,与微波消解技术相比,微波萃取技术及其应用研究工作还处于最初的阶段[5],微波萃取法还是一种相对年轻的样品处理方法[6]。要使微波萃取法成为一个分析样品制备的常规方法,还需要做更多的技术研究和应用研究工作。粮食、蔬菜、水果、茶叶、咖啡豆、中药、化妆品和乳制品是日常生活中的必需品,这些商品的品质和有害物质检验,样品数量多,要求快速测定,这是微波萃取技术最有应用前景的领域。微波萃取设备与分析测定仪器的成功连用实现在线萃取,将使这种技术获得更为广阔的应用。本文介绍了微波萃取技术及其方法的机理和特点,并对近十多年来国内外微波萃取应用研究进展作一综述。 二、微波萃取方法的原理和特点 根据物质与微波作用的特点,可把物质大致分为三种类型,即吸收微波、反射微波和透过微波的三种物质。简而言之,吸收微波的物质是可以把微波转化为热能的物质,如水、乙醇、酸、碱和盐类,这些物质吸收微波后,自身温度升高,并使共存的其他物质一起受热。透过微波的物质是很少吸收微波能的物质,从分子结构特性上讲是一些非极性物质,如烷烃、聚乙烯等,微波穿过这些物质时,其能量几乎没有损失。反射微波的物质是金属类物质,微波接触到这些物质时发生反射,根据一定的几何形状,这些物质可把微波传输、聚焦或限制在一定的范围内。 根据微波与物质的作用,微波帮助萃取的高效性主要来自于三个方面: 1.微波与被分离物质的直接作用。由于微波具有穿透能力,因而可以直接与样品中有关物质分子或分子中的某个基团作用,被微波作用的分子或基团,很快与整个样品基体或其大分子上的周围环境分离开,从而使分离速度加快并提高萃取率。这种微波与被分离物质的特殊作用,可以称为微波的激活作用。Haswell和Howarth对固相分离过程中非热微波效应的研究,证明了微波在萃取分离中存在着这种特殊作用[7]。

微波辅助提取技术

微波辅助提取技术 生命与科学学院食品科学专业柳佳齐201207033 一微波提取技术的基本原理 微波是指频率在300兆赫至300千兆赫的电磁波,是无线电波中一个有限频带的简称,是分米波、厘米波、毫米波和亚毫米波的统称。微波频率比一般的无线电波频率高,通常也称为“超高频电磁波”。微波作为一种电磁波也具有波粒二象性。微波的基本性质通常呈现为穿透、反射、吸收三个特性。对于玻璃、塑料和瓷器,微波几乎是穿越而不被吸收。对于水和食物等就会吸收微波而使自身发热。而对金属类东西,则会反射微波。 微波提取全称应是微波辅助提取技术。微波辅助提取又称微波萃取,是颇具发展潜力的一种新的萃取技术,是微波和传统的溶剂提取法相结合而成的一种提取方法。依据溶剂极性不同,它可以透过溶剂,使物料直接被加热,其热量传递和质量传递是一致的。 微波萃取的机理可从以下3个方面来分析:①微波辐射过程是高频电磁波穿透萃取介质到达物料内部的微管束和腺胞系统的过程。由于吸收了微波能,细胞内部的温度将迅速上升,从而使细胞内部的压力超过细胞壁膨胀所能承受的能力,结果细胞破裂,其内的有效成分自由流出,并在较低的温度下溶解于萃取介质中。通过进一步的过滤和分离,即可获得所需的萃取物。②微波所产生的电磁场可加速被萃取组分的分子由固体内部向固液界面扩散的速率。例如,以水作溶剂时,在微波场的作用下,水分子由高速转动状态转变为激发态,这是一种高能量的不稳定状态。此时水分子或者汽化以加强萃取组分的驱动力,或者释放出自身多余的能量回到基态,所释放出的能量将传递给其他物质的分子,以加速其热运动,从而缩短萃取组分的分子由固体内部扩散至固液界面的时间,结果使萃取速率提高数倍,并能降低萃取温度,最大限度地保证萃取物的质量。③由于微波的频率与分子转动的频率相关连,因此微波能是一种由离子迁移和偶极子转动而引起分子运动的非离子化辐射能,当它作用于分子时,可促进分子的转动运动,若分子具有一定的极性,即可在微波场的作用下产生瞬时极化,并以24.5亿次/s的速度作极性变换运动,从而产生键的振动、撕裂和粒子间的摩擦和碰撞,并迅速生成大量的热能,促使细胞破裂,使细胞液溢出并扩散至溶剂中。在微波萃取中,吸收微波能力的差异可使基体物质的某些区域或萃取体系中的某些组分被选择性加热,从而使被萃取物质从基体或体系中分离,进入到具有较小介电常数、微波吸收能力相对较差的萃取溶剂中。 二微波萃取的工艺流程 微波提取与常规提取工艺近似,仅在实施提取的关键点上有自身特点,其工艺流程:选料→清洗→粉碎→浸泡→微波提取→分离→浓缩→干燥→粉化→成品。其操作一般包括以下几步:(1)将物料切碎,使之更充分地吸收微波能;(2)将物料与适宜的萃取剂混合,置于微波设备中,接受辐照(关键性的一步);(3)从萃取相中分离除去残渣。 在实际操作中,将切碎的干药材在溶剂中浸泡适当时间(一般为0.5~1.5 h),再进入微波提取这一步非常重要。因为经浸润后的物料,内部溶剂量增加,利于更好地吸收微波能,达到升温与细胞破壁的目的。也可使提取时间缩短,节约能源。 三微波提取设备 微波提取的设备主要分两类:一类是微波提取罐,另一类为连续微波提取线。两者主要区别:提取罐是分批处理物料,类似常规的多功能提取罐;连续微波提取线是以连续方式工作的提取设备。具体参数一般由设备生产厂根据使用厂家的要求设计。

微波萃取技术应用及其研究进展

微波萃取技术应用及其研究进展 刘春娟 (广东省轻工职业技术学校,广东广州 510310) [摘 要]微波萃取技术作为一种新的萃取分离技术,为样品预处理方法带来了许多新的思维,已受到国内外许多行业科研工作者的广泛关注,具有很大的发展潜力和应用前景。文章综述了最近几年的微波萃取技术发展及其应用。 [关键词]微波;微波萃取;应用;进展 The Application and Research Development of Microwave Assisted Extraction Liu Chunjuan (Guangdong Light Industry Technology School, Guangzhou 510310, China) Abstract: As a new technology of extraction and seperation, microwave assisted extraction technology has brought lots of new thought. It has greatly been taken care of by many researchers of science in all kinds of institute. It can grow up a great deal of develoment potential and be used in many new areas of application. The paper gave a brief presentation on the application and development of microwave assisted extraction technology in the last years. Keywords:microwave;microwave assisted extraction;application;development 1986年,匈牙利学者Ganzler等[1]报导了微波能应用于分析试样预处理,并提出一种新的萃取方法——微波萃取法,为有机分析特别是环境有机分析的试样预处理开辟了一条新路子。微波萃取作为一种新的萃取分离技术,已受到国内外许多行业科研工作者的广泛关注。微波萃取克服了传统萃取方法费时、费试剂、效率低、重现性差等缺点,也克服了其它新方法的不足。微波萃取法虽然还年轻,却为样品预处理方法带来了许多新的思维,具有很大的发展潜力和应用前景。进入到二十世纪九十年代以后,特别是在最近七、八年中,微波萃取法得到了环境分析科研人员的极大关注,成为环境有机分析试样预处理方法研究的一个新的热点。 微波萃取是利用微波能强化溶剂萃取的效率,使固体或半固体试样中的某些有机物成分与基体物质有效地分离;它能保持分析对象的原本化合物状态。微波加热时间很短,可避免一些热不稳定性物质发生分解反应;微波萃取的主要特点是快速、节能、节省溶剂、污染小、可实行多份试样同时处理;仪器设备比较简单、廉价;适应面较广、较少受被萃取物极性的限制。这使它优于传统的索氏抽提和超声萃取,也优于超临界流体萃取和加速溶剂萃取[1]。 1 微波萃取技术的应用 自从Ganzler等将微波能用于萃取土壤、生物和植物样品中的各种有机成分后,微波协助萃取越来越受到人们的关注。到1995年底为止所能检索到的相关文献还很少,但从1996年初以来,相关文献已愈数百篇,其应用的范围也已覆盖到有机分析的各个方面。从已见报导的文献来看,该方法可用于提取土壤、沉积物中的多环芳烃(PAH S)、多氯联苯(PCBs)和杀虫剂、除草剂以及多种酚类化合物和其它中性、碱性有机污染物;提取沉积物中的有机锡化合物、三烷基和磷酸三烷基酯(TAP S);提取食品中的某些有机物成分、植物种子和鼠粪中的某些生物 [收稿日期]2007-10-21 [作者简介]刘春娟(1970-),女,广东人,硕士,讲师,研究方向为环境分析。

相关文档
最新文档