打浆对纤维的五个作用

打浆对纤维的五个作用
打浆对纤维的五个作用

打浆对纤维的五个作用

在打浆过程中纤维没有发生化学变化。不论应用何种型式的打浆设备,主要都是使纤维产生切断、压溃、润胀和细纤维化作用,而这些都是纤维细胞壁的变化。

在植物纤维化学中已经讲过,植物纤维的构造可分为胞间层(L)、初生壁(P)、次生壁外层(S1)、次生壁中层(S2)、次生壁内层或称三生壁(S3)。根据观察分析,纤维各层细胞壁无论在物理结构和化学组成上都是不同的,因而就具有不同的特性。可以认为,初生壁是一层类似塑料的多孔层薄膜,它的厚度为0.1~1微米,其细纤维成网状的排列。从结构观点来看,它是各向同性的,且木素含量较高,因而它只能透水,而不能润胀,反而还会在打浆时限制次生壁中层的润胀。至于次生壁外层,它是介于初生壁与次生壁中间的一个过渡层,在物理结构或化学成分上都比较接近初生壁的性质。次生壁中层是纤维的主要部分,比其它各层都显得厚得多,它的厚度为1.0~5.0微米,其细纤维的排列是高度各向异性的,且与纤维的轴向呈一定的角度,因而造成纤维的纵向结合强度大,而横向的结合强度弱,所以沿着纤维的横向润胀就较为容易。次生壁中层的木素含量较低,这一情况极其有利于纤维在打浆时的润胀。次生壁内层较薄,其木素含量也较低。一般认为,打浆对纤维的作用和纤维的变化除压溃、揉搓、分裂以外,大体可主要分为以下五方面细胞壁的位移和变形,初生壁和次生壁外层的破除、润胀、细纤维化和切断等。当然这几方面的作用不是截然分开的,而是交错进行的。现分述如下:

(一)细胞壁的位移和变形

一些研究者认为,在次生壁中层的细纤维能发生位移。用偏光显微镜可以很容易观察到纤维上的亮点,这就是细纤维的位移.根据观察,未打浆的纤维有位移,而开始打浆后又出现了新的位移点,随着打浆过程的进行,位移点逐步扩大,并变得更为清晰。根据用偏光显微镜拍照所得的照相图,位移可分为三种型式。打浆的机械作用使得次生壁中层一定位置的细纤维弯曲,这样细纤维之间空隙有所增加,以致能够进入较多的水分。当初生壁还没有被破除之前,次生壁中层发生位移和润胀又会使纤维更加柔软,从而促进初生壁的破坏。有些研究结果认为,对针叶树管胞来说,在制浆和打浆之后,位移和变形发生在髓射线的部位。

(二)初生壁和次生壁外层的破除

蒸煮和漂白后的纤维仍存有一定数量的初生壁,影响着纤维润胀。同时,它和次生壁外层都会妨碍次生壁中层细纤维的细纤维化,影响着纤维的结合力。因此需要在打浆过程中借助于机械作用把初生壁和次生壁外层破坏,以利于纤维的润胀和细纤维化作用。对于不同种类的纸浆,初生壁和次生壁外层破除的难易程度和破除的情况亦是不尽相同的。例如,亚硫酸盐纸浆的初生壁和次生壁外层破除,就比硫酸盐纸浆容易一些,其原因可能是由于在蒸煮过程中,亚硫酸盐的蒸煮药液和硫酸盐法的蒸煮药液,无论在其化学性质特别是PH值,或进入纤维的途径都是不相同的。因而造成了亚硫酸盐纸浆纤维的初生壁,甚至是次生壁外层在制浆过程中受到破坏的程度,均比硫酸盐法纸浆的为高,因而在打浆过程中较易于破除。

对初生壁破除情况进行的实验研究表明,用PFI磨对漂白亚硫酸盐木浆和未漂白硫酸盐木浆进行打浆,经过不同打浆时间的处理后,在显微镜下观察100根纤维的情况,并将观察结果分为四组。对于漂白亚硫酸盐浆,仅在500转,即稍为打浆至16。SR时,半数以上的纤维失掉了部分的初生壁;在2000转时,即约22。SR,纤维初生壁几乎全部受到破坏。而对于未漂硫酸盐浆,初生壁的破除速度大大减慢。随着打浆时间的增长,纤维的润胀和细纤

维化程度都有所提高,因而,纸页的抗张强度亦随之增加。

(三)润胀

所谓润胀是指高分子化合物在吸收液体的过程中,伴随体积膨胀的一种物理现象。纸浆纤维之所以有润胀能力,主要是由于其带有羟基的关系,因而能在极性性液体中发生润胀。打浆时,纤维首先吸水而发生润胀,比容有时增加,纤维细胞壁结构变得更为松弛,内聚力则有所下降,从而提高了纤维的柔软性和可塑性。与此同时,由于润胀引起内聚力的降低,就更有利于打浆机械作用对细纤维纸的进一步细纤维化,其结果大大增加了纤维的表面积和游离的羟基数目,这无疑将会在纸页干燥时增加纤维之间的接触面积。润胀程度同纸料的组成有关。半纤维素含量高的亚硫酸盐浆较容易润胀,而硫酸盐浆就比亚硫酸盐浆润胀程度小些。木素含量高的纸料不易润胀,因此漂白能改进这种纸料的润胀能力。

测定纸料润胀程度是比较困难的,若干种润胀测定方法均尚未被公认。现举亚米(Jayme)所介绍的离心机法,作为示例。亚米是采用未漂亚硫酸盐浆作为原料,在离心磨(Jokromill)中进行不同时间的打浆,取出后测定打浆度,再用离心机甩掉水分,测其保水值,并以此作为润胀程度的比较。

(四)细纤维化

细纤维化作用是指在打浆过程中,打浆设备的机械物理作用使纤维获得纵向分裂,并分离出细纤维,而且使纤维产生起毛现象。一般认为,细纤维化可分为外部细纤维化和内部细纤维化,上述情况必属于前者,而后者用一般光学显微镜是观察不到的。有的资料认为,在打浆过程中,纤维的细纤维化是在纤维吸水润胀以后,才开始的。由于吸水润胀,致使内聚力减少,细胞壁相邻的同心层之间的侧链有所破坏,从而给水分的进入,创造了条件,使层与层之间彼此滑动而使纤维变得柔软可塑。

许多研究者把打浆过程细胞壁的变化称为内部细纤维化。爱曼顿(Emerton)形象地提出打浆过程中纤维变形的两种型式,一种是细胞壁的弹性变形(1),一种是塑性变形(2)。爱曼顿指出,纤维细胞壁的变形可以是弹性或塑性的。纤维的塑性变形达到某一平衡状态;而弹性变形是,当其变形应力消失以后,纤维将恢复到其原始形状。显然,通过打浆处理,希望能使纤维获得塑性变形。纤维细胞塑性变形的能力,是随着内部细纤维化过程的进展而提高的。内部细纤维化实质上是指破坏纤维细胞壁同心层间的连接的过程,从而使次生壁中层中发生层间的滑动。为此,当纤维处于高度润胀和细纤维化状态时,纤维将会保持良好的柔韧和可塑性,而纤维与纤维之间即可能保持优异的接触,有利于纤维的结合,和在随后纸张干燥时,得到较高的强度和紧度。

有人曾用超声波处理纤维浆料,结果的浆度上长很少,而润胀值却剧烈增加,初生壁和次生壁外层都充分保留着。用这种纸料抄出的纸页强度也很高,这足以说明超声波处理使纤维产生了强烈的内部细纤维化。可以在普通显微镜下观察到,纤维的纵向分裂,以及由此而分丝出细纤维,这是外部细纤维化。前已述及,次生壁中层是细胞壁的主要部分,由于细纤维在其上是平行排列的,因而易于向两侧润胀,这样,如果次生壁外层未被破除,次生壁中层势必只能朝细胞腔方向作有限的向内润胀,而难于实现外部细纤维化。导致发生外部细纤维化的过程,首先有赖于细纤维之间的主要物质(半纤维素)的润胀。当有足够的润胀压力,就能使细纤维之间的氢键破裂,从而使纤维进一步朝两侧膨胀。如果没有次生壁外层的限制,次生壁中导就易于发生纵向分裂产生细纤维。但事实上,除非在一般高度粘状打浆的情况下,次生壁外层并没有全部除去。可是也有的资料指出,次生壁外层中半纤维素含量高,例如,在针叶木亚硫酸盐纸浆中,其次生壁外层有相当数量的木糖,它对氢键联结是特别有效的。因此,是否需要在打浆过程中除去全部次生壁外层,还是一个有待进一步研究的问题。

膳食纤维的作用

食物纤维是一种特殊的营养素,其本质是碳水化合物中不能被人体消化酶所分解的多糖类物质。食物纤维有数百种之多,其中包括了纤维素、半纤维素、果胶、木质素、树胶和植物黏胶、藻类多糖等。 @维护肠道健康的“多面手”。 肠道是人体中最大的免疫器官,70%的淋巴分布于肠道之中。膳食纤维对于肠道的保护作用不容小觑。肠道年龄的界定主要是以肠道内有益菌 群与有害菌群的比例作为判断依据。而膳食纤维能够促进有益菌生长、抑制有害菌繁殖,从而维持正常的肠道功能。 另外,如果食物在肠内的时间太长,肠道微生物代谢产生的有害物质及分解的酵素长时间与肠黏膜接触。会造成有害物质的吸收和黏膜细胞受到伤害。粪便在肠内的时间过长,各种毒素的吸收会导致肠道肿瘤发生。而膳食纤维可使肠道中的食物膨胀变软,促进肠道蠕动和排便,所以减少了致癌物质在肠道内的停留时间,能够预防肠癌。 @治疗糖尿病的有力武器。 经过科学研究,可溶性膳食纤维在降低餐后血糖及胆固醇浓度方面有突出的贡献。由于膳食纤维可以使胃肠通过时间大大增加,而且吸水后体积增加并有一定黏度,所以延缓了葡萄糖的吸收。过去糖尿病患者的保健食品大多是不溶性纤维,而现在可溶性膳食纤维的广泛应用,必将进一步改善糖尿病患者的饮食质量和治疗效果。 @预防心脑血管疾病。 肝脏中的胆固醇会转变成胆酸,到达小肠后能帮助消化脂肪,然后胆酸会回到肝脏再转变成胆固醇。可溶性纤维可以让胆酸不被小肠肠壁吸收,而通过消化道排出体外。于是,当肠内食物再进行消化时,肝脏只能靠吸收血中的胆固醇来补充胆酸,从而降低了血液中的胆固醇含量。这样一来,冠心病和中风的发病率也会大大降低。 @减少胆结石的发生。 胆结石形成的原因是胆固醇合成过多及胆汁酸合成过少。增加膳食纤维,可降低胆汁中胆固醇含量,减少胆汁酸的再吸收,起到预防胆结石的 作用。 @起到减肥的作用。 在控制能量摄人的同时,摄人富含纤维的膳食会起到减肥的作用。为大多数富含纤维的食物,如谷物、全麦面、豆类、水果和蔬菜中只有少

纤维素酶的作用机理及进展的研究

纤维素酶的作用机理及进展的研究 摘要:纤维素酶广泛存在于自然界的生物体中,本文论述了纤维素酶的性质,重点介绍了纤维素酶的作用机理、应用及其研究进展,并对其研究前景做了展望。关键词:纤维素酶;纤维素;作用机理; 0引言 纤维素酶在饲料、酒精、纺织和食品等领域具有巨大的市场潜力,已被国内外业内人士看好,将是继糖化酶、淀粉酶和蛋白酶之后的第四大工业酶种,甚至在中国完全有可能成为第一大酶种,因此纤维素酶是酶制剂工业中的一个新的增长点。 纤维素占植物干重的35%-50%[1],是世界上分布最广、含量最丰富的碳水化合物。对人类而言,它又是自然界中最大的可再生物质。纤维素的利用和转化对于解决目前世界能源危机、粮食短缺、环境污染等问题具有十分重要的意义[2]。 1 纤维素酶的性质 纤维素酶是一种重要的酶产品,是一种复合酶,主要由外切β-葡聚糖酶、内切β-葡聚糖酶和β-葡萄糖苷酶等组成,还有很高活力的木聚糖酶活力。纤维素酶是四级结构,,产生纤维素酶的菌种容易退化,导致产酶能力降低。由于纤维素酶难以提纯,实际应用时一般还含有半纤维素酶和其他相关的酶,如淀粉酶(amylase)、蛋白酶(Protease)等。 纤维素酶的断键机制与溶菌酶一样,遵循双置换机制。纤维素与酶相互作用中,是酶被底物分子所吸附,然后进行酶解催化,酶的活性较低,仅为淀粉酶的1/100[3] 纤维素酶对底物分子的分解,必须先发生吸附作用。纤维素酶的吸附不仅与自身性质有关,也与底物密切相关,但纤维素酶的吸附机制总体并未弄清,仍需进一步研究[4]。 2 纤维素酶的作用原理 (1)、纤维素酶在提高纤维素、半纤维素分解的同时,可促进植物细胞壁的溶解使更多的植物细胞内溶物溶解出来并能将不易消化的大分子多糖、蛋白质和脂类降解成小分子物质有利于动物胃肠道的消化吸收。 (2)、纤维素酶制剂可激活内源酶的分泌,补充内源酶的不足,并对内源酶进行调整,保证动物正常的消化吸收功能,起到防病,促生长的作用。 (3)、消除抗营养因子,促进生物健康生长。半纤维素和果胶部分溶于水后会产生粘性溶液,增加消化物的粘度,对内源酶造成障碍,而添加纤维素酶可降低粘度,增加内源酶的扩散,提高酶与养分接触面积,促进饲料的良好消化。 (4)、纤维素酶制剂本身是一种由蛋白酶、淀粉酶、果胶酶和纤维素酶等组成的多酶复合物,在这种多酶复合体系中一种酶的产物可以成为另一种酶的底物,从而使消化道内的消化作用得以顺利进行。也就是说纤维素酶除直接降解纤维素,促进其分解为易被动物所消化吸收的低分子化合物外,还和其他酶共同作用提高奶牛对饲料营养物质的分解和消化。

膳食纤维的作用有哪些

膳食纤维的作用有哪些 膳食纤维的作用有哪些 食物纤维是一种特殊的营养素,其本质是碳水化合物中不能被人体消化酶所分解的多糖类物质。食物纤维有数百种之多,其中包括了纤维素、半纤维素、果胶、木质素、树胶和植物黏胶、藻类多糖等。 @维护肠道健康的“多面手”。 肠道是人体中最大的免疫器官,70%的淋巴分布于肠道之中。膳食纤维对于肠道的保护作用不容小觑。肠道年龄的界定主要是以肠道内有益菌 群与有害菌群的比例作为判断依据。而膳食纤维能够促进有益菌生长、抑制有害菌繁殖,从而维持正常的肠道功能。 另外,如果食物在肠内的时间太长,肠道微生物代谢产生的有害物质及分解的酵素长时间与肠黏膜接触。会造成有害物质的吸收和黏膜细胞受到伤害。粪便在肠内的时间过长,各种毒素的吸收会导致肠道肿瘤发生。而膳食纤维可使肠道中的食物膨胀变软,促进肠道蠕动和排便,所以减少了致癌物质在肠道内的停留时间,能够预防肠癌。 @治疗糖尿病的有力武器。 经过科学研究,可溶性膳食纤维在降低餐后血糖及胆固醇浓度方面有突出的贡献。由于膳食纤维可以使胃肠通过时间大大增加,而且吸水后体积增加并有一定黏度,所以延缓了葡萄糖的吸收。过去糖尿病患者的保健食品大多是不溶性纤维,而现在可溶性膳食纤维的广泛应用,必将进一步改善糖尿病患者的饮食质量和治疗效果。 @预防心脑血管疾病。 肝脏中的胆固醇会转变成胆酸,到达小肠后能帮助消化脂肪,然后胆酸会回到肝脏再转变成胆固醇。可溶性纤维可以让胆酸不被小肠肠壁吸收,而通过消化道排出体外。于是,当肠内食物再进行消化时,肝脏只能靠吸收血中的胆固醇来补充胆酸,从而降低了血液中的胆固醇含量。这样一来,冠心病和中风的发病率也会大大降低。 @减少胆结石的发生。 胆结石形成的原因是胆固醇合成过多及胆汁酸合成过少。增加膳食纤维,可降低胆汁中胆固醇含量,减少胆汁酸的再吸收,起到预防胆结石的 作用。

酶的作用机理 模型

酶 山东省青岛市城阳第一高级中学高二(二)班 作者姓名:孙一丹王辉韩德琛 指导教师:杨永丰 摘要:大千世界,无奇不有,最奇莫过于生命:而生命,则是一大群化学反应的有机结合体。在这不计其数的反应中,酶,作为其中极重要的一员,无时无刻不控 制影响着生命体的新陈代谢。下面我们将探索神奇的酶世界。本文中将介绍一 种我们自主设想的模型——“带孔的橡皮球”,浅释酶的催化原理。 注:本文中图片均为借助画图板工具手工绘制。 关键词:酶催化原理酶工程 酶的神奇 氧分子是很挑食的,如果不同时给它四个电子,它就不吃。似乎这么慷慨大方的只有碱金属,要不然,谁愿意在常温下给那么多电子啊。但在生物体内却大不相同。是什么能让有机物在体内安静的与氧分子化合?是酶。纤维素是由D-葡萄糖以β1,4-糖苷键连接而成的,如果靠氢离子来分解,需要稀酸加压或浓酸才能催化,而一些以纤维素为碳源的细菌真菌,则可以通过纤维素酶在温和的条件下来分解它们,从而得到养分。 一且生物的几乎所有的生命活动都离不开酶,正是因为有酶协调有序参与才使生命新陈代谢有条不紊地进行着。 酶为什么有这么强大的功能? 下面我们来探讨这个问题。 关于酶 酶是一种高效的生物催化剂,其化学本质是蛋白质。当然也有少数酶是RNA,叫做核酶。所以要认清酶的真面目,首先要搞明白蛋白质的化学情况。 一、蛋白质档案 蛋白质的基本组成单位是氨基酸。在500余种天然氨基酸中,只有20种参与构成了绝大多数的蛋白质。由于除了甘氨酸之外的氨基酸都含有手性碳原子,所以氨基酸有L和D之分。构成生物体的氨基酸基本是L型。 根据其侧链集团的性质,这20种氨基酸可分为酸性氨基酸、碱性氨基酸和非极性氨基酸。 由氨基酸互相脱水缩合而形成的聚酰胺肽长链,叫做肽链。肽链的羧基端称为C-端,氨基端称为N-端。蛋白质是有一条或多条肽链构成的,有的还携有辅酶或辅基、金属离子。 蛋白质是有其构成层次的。1951年丹麦生物化学家Linderstrom-Lang第一次提出蛋白质的一、二、三级结构概念,1958年美国晶体学家Bernal提出蛋白质的四级结构概念。后经国际生物化学与分子生物学协会(IUBMB)的生化命名委员会采纳并作出定义。 一级结构是指蛋白质肽链中氨基酸的种类和排列顺序。如:

纤维素酶的介绍 应用 前景

纤维素酶的生产方法及在食品行业的应用 纤维素酶的生产方法及在食品行业的应用 纤维素酶(cellulase)是降解纤维素生成葡萄糖的一组酶的总称,它不是单成分酶,而是由多个酶起协同作用的多酶体系。 纤维素酶在扩大食品工业原料和植物原料的综合利用,提高原料利用率,净化环境和开辟新能源等方面具有十分重要的意义。 纤维素酶的来源 纤维素酶的来源非常广泛,昆虫、微生物、细菌、放线菌、真菌、动物体内等都能产生纤维素酶。 目前,用于生产纤维素酶的微生物菌种较多的是丝真菌,其中酶活力较强的菌种为木霉属(Trichoderma)、曲霉属(As pergillus)和青霉属(Penicillium),特别是绿色木霉(Trichoder mavirde)及其近缘菌株等较为典型,是目前公认的较好的纤维素酶生产菌。 现已制成制剂的有绿色木霉、黑曲霉、镰刀霉等纤维素酶。同时,反刍动物依靠瘤胃微生物可消化纤维素,因此可以利用瘤胃液获得纤维酶的粗酶制剂。另外,也可利用组织培养法获得所需要的微生物。 纤维素酶的生产方法 目前,纤维素酶的生产主要有固体发酵和液体发酵两种方法。 固体发酵法固体发酵法是以玉米等农作物秸秆为主要原料,其投资少,工艺简单,产品价格低廉,目前国内绝大部分纤维素生产

厂家均采用该技术生产纤维素酶。然而固体发酵法存在根本上的缺陷,以秸秆为原料的固体发酵法生产的纤维素酶很难提取、精制。目前,我国纤维素酶生产厂家只能采用直接干燥法粉碎得到固体酶制剂或用水浸泡后压滤得到液体酶制剂,其产品外观粗糙且质量不稳定,发酵水平不稳定,生产效率较低,易污染杂菌,不适于大规模生产。 液体发酵法液体发酵生产工艺过程是将玉米秸秆粉碎至20目以下进行灭菌处理,然后送发酵釜内发酵,同时加入纤维素酶菌种,发酵时间约为70h,温度低于60℃。采用除菌后的无菌空气从釜低通入进行通气搅拌,发酵完毕后的物料经压滤机板框过滤、超滤浓缩和喷雾干燥后制得纤维素酶产品。液态深层发酵由于具有培养条件容易控制,不易染杂菌,生产效率高等优点,已成为国内外重要的研究和开发方向。 纤维素酶的应用 制酒 在进行酒精发酵时添加纤维素酶可显著提高酒精和白酒的出 酒率和原料的利用率,降低溶液的黏度,缩短发酵时间,而且酒的口感醇香,杂醇油含量低。纤维素酶提高出酒率的原因可能有两方面:一是原料中部分纤维素分解成葡萄糖供酵母使用;另外,由于纤维素酶对植物细胞壁的分解,有利于淀粉的释放和被利用。 将纤维素酶应用于啤酒工业的麦芽生产中可增加麦粒溶解性,

打浆的作用(课堂参照)

一、打浆的作用和意义 在传统的制浆造纸中,经过洗选、漂白和净化后,未经打浆的浆料中含有很多纤维束。由于纤维太粗太长,表面光滑挺硬而富有弹性,纤维的比表面积小又缺乏结合性能。如将未打浆的纸浆直接用来抄造,在网上很难获得均匀的分布,成纸疏松多孔,表面粗糙容易起毛,结合强度甚低,纸页性能差,故不能满足使用要求。 打浆主要有两大任务: (1)利用物理方法,对水中悬浮的纸浆进行机械或流体处理,使纤维受到剪切力,改变纤维的形态,使纸浆获得某些特征(如机械强度、物理性能和一些胶体性质),以保证抄成的纸和纸板能取得预期的质量要求。 (2)通过打浆控制纸料在网上滤水性,以适应造纸机生产的需要,使纸页能获得良好的成形,以改善纸页的匀度和强度。 打浆的作用主要表现在以下五个方面: (1)细胞壁的位移和变形 打浆的机械作用是次生壁中层的细纤维同心层发生位移和变形,使细纤维之间的间隙增大,水分子更容易渗入,为纤维的润胀创造了有利条件,使纤维变得柔软,对初生壁和次生壁外层的破除起到了重要的促进作用。 (2)初生壁和次生壁外层的破除 由于初生壁和初生壁外层木素含量较多,能透水而不能润胀,并

紧紧地束缚在次生壁中层,使次生壁中层的细纤维得不得松散和润胀。需要通过打浆的机械作用和纤维之间的相互摩擦将初生壁和次生壁外层破除,才能使次生壁中层充分的润胀和细纤维化。 (3)切断和变形 切断是指纤维横向发生断裂的现象。主要是纤维受到打浆设备的剪切力和纤维之间相互摩擦造成纤维横向断裂的结果。 纤维的切断与润胀有一定的关系。纤维吸水润胀后具有良好的柔韧性,纤维就不容易被切断。反正纤维润胀不良而挺硬时,则容易被切断。纤维切断后,断口增加,有利于水分的渗入,又能促进纤维的润胀作用。 纤维切断后在断口处留下许多锯齿形的末端,有利于纤维的分丝帚化和细纤维化。 长纤维经适当切断后,可以提高纸张的匀度和平滑度,但多度切短会降低纸张的强度,特别是撕裂度。所以应根据纸种的要求和原料的特性,严格控制纤维切断的程度。 (4)吸水润胀 “润胀”是指高分子化合物在吸收液体的过程中,伴随着体积膨胀的物理现象。纤维也能吸水润胀。在造纸工业中以往常称为纤维的“水化”或“润胀水化”。打浆的“水化”是纤维与水分子的物理连接作用。 纤维润胀是打浆过程中一个重要问题,纤维润胀以后,其内聚力下降,纤维内部的组织结构变得更为松弛,使纤维的比容和表面积

膳食纤维的作用

膳食纤维的作用有哪些 食物纤维是一种特殊的营养素,其本质是碳水化合物中不能被人体消化酶所分解的多糖类物质。食物纤维有数百种之多,其中包括了纤维素、半纤维素、果胶、木质素、树胶和植物黏胶、藻类多糖等。 @维护肠道健康的“多面手”。 肠道是人体中最大的免疫器官,70%的淋巴分布于肠道之中。膳食纤维对于肠道的保护作用不容小觑。肠道年龄的界定主要是以肠道内有益菌 群与有害菌群的比例作为判断依据。而膳食纤维能够促进有益菌生长、抑制有害菌繁殖,从而维持正常的肠道功能。 另外,如果食物在肠内的时间太长,肠道微生物代谢产生的有害物质及分解的酵素长时间与肠黏膜接触。会造成有害物质的吸收和黏膜细胞受到伤害。粪便在肠内的时间过长,各种毒素的吸收会导致肠道肿瘤发生。而膳食纤维可使肠道中的食物膨胀变软,促进肠道蠕动和排便,所以减少了致癌物质在肠道内的停留时间,能够预防肠癌。 @治疗糖尿病的有力武器。 经过科学研究,可溶性膳食纤维在降低餐后血糖及胆固醇浓度方面有突出的贡献。由于膳食纤维可以使胃肠通过时间大大增加,而且吸水后体积增加并有一定黏度,所以延缓了葡萄糖的吸收。过去糖尿病患者的保健食品大多是不溶性纤维,而现在可溶性膳食纤维的广泛应用,必将进一步改善糖尿病患者的饮食质量和治疗效果。 @预防心脑血管疾病。 肝脏中的胆固醇会转变成胆酸,到达小肠后能帮助消化脂肪,然后胆酸会回到肝脏再转变成胆固醇。可溶性纤维可以让胆酸不被小肠肠壁吸收,而通过消化道排出体外。于是,当肠内食物再进行消化时,肝脏只能靠吸收血中的胆固醇来补充胆酸,从而降低了血液中的胆固醇含量。这样一来,冠心病和中风的发病率也会大大降低。 @减少胆结石的发生。 胆结石形成的原因是胆固醇合成过多及胆汁酸合成过少。增加膳食纤维,可降低胆汁中胆固醇含量,减少胆汁酸的再吸收,起到预防胆结石的 作用。 @起到减肥的作用。

羟丙基甲基纤维素与羧甲基纤维素有什么不同

市场上纤维素,从粘度上分为低粘度、中粘度、高粘度,不同粘度的纤维素有着不同的用途。所以厂家在购买的时候需要分清要做什么用,该用什么纤维素,不能贪图便宜找个替代品,否则做出的东西达不到效果,损失的只会是自己的利益。 羧甲基纤维素CMC、羧甲基淀粉钠(CMS),价位较为便宜(从产品本身性能上说,CMC要比阜盈HPMC低一个档次),羧甲基纤维素用在内墙低档腻子粉中,保水性和稳定性要比阜盈牌羟丙基甲基纤维素差很多,不能在防水腻子和外保温干混料中使用。 很多人认为这些纤维素都呈碱性,一般水泥、灰钙粉也是碱性,认为可以结合使用,但羧甲基纤维素、羧甲基淀粉钠不是单元素,它们在生产过程中使用的氯乙酸属于酸性,在生产纤维素过程中残留的物质与水泥、灰钙粉起反应,所以不能结合,很多厂家因此遭受很大损失,应引起重视。 羧甲基纤维素和羟丙基甲基纤维素用途只是相似,但其作用区别很大的,二者技术指标相差甚远; 二者主要原料同是精制棉是一样的,但其辅料,生产设备,工艺流程是不一样的,羟丙基甲基纤维素生产设备和工艺复杂很多。 两者完全不是一种生产工艺,且其他辅料也不一样的,所以用途也不一样。 不能替代,也不能为了降低成本相互结合。 阜盈羟丙基甲基纤维素(hpmc)化学性能稳定、防霉、保水增稠效果最好,而且不受PH值变化影响,粘度10万的适合用于腻子粉,粘度15万~20万适用于砂浆中,主要增加流平性、施工性,可以减少水泥的用量。另一个作用是水泥砂浆有一个凝固期,在凝固期内需要养护,需供水保持湿润。由于纤维素的保水

作用,水泥砂浆凝固所需的水分从纤维素的保水中得到保证,因此不需要养护就可以达到凝固的效果。

@@纤维素酶水解机理及影响因素

收稿日期:2007-04-13 作者简介:黄翊(1980-),男,广东广州人,助理工程师,现从事石油化工设计工作。 纤维素酶水解机理及影响因素 黄翊 (广东省石油化工设计院,广东广州 510130) 摘要:对纤维素酶水解的机理进行了阐述,并初步探讨了各类因素对水解的影响。关键词:纤维素酶;水解 中图分类号:Q55 文献标识码:A 文章编号:1008-021X (2007)05-0029-03 The HydrolysisM echan ics of Cellulose and I nfluenc i n g Factor HUAN G Yi (Guangdong Petr oche m ical Engineering Design I nstitute,Guangzhou 510130,China ) Abstract :This text expound the hydr olysis mechanics of cellul ose,and p reli m inary discuss s ome influencing fact ors on hydr olyzati on .Key words :cellulase;hydr olyzati on 纤维素是自然界中最丰富的可再生资源之一,如将其以工业规模转化成葡萄糖的技术开发成功,那么纤维素资源便可成为人类食粮、动物饲料、发酵工业原料以及能源的新来源。但目前有效利用纤维素生物量的主要障碍是纤维素酶的酶解效率低,与淀粉酶比较相差2个数量级以上,进而导致纤维素酶解过程中纤维素酶的成本过高,约占纤维素糖化工艺的40%以上,从而严重阻碍了纤维素酶在纤维素糖化中的广泛应用。酶的固定化技术为提高纤维素酶的使用效率,降低成本,提供了可能性。因为固定化酶比游离酶具有较好的稳定性,并且可以重复使用和回收,又便于连续化操作,因而可以大大降低成本。1 反应机理 1.1 纤维素酶的作用机制及理化性质 纤维素酶是降解纤维素生成葡萄糖的一组酶的总称。目前普遍认为:完全降解纤维素至少需要有3种功能不同但又互补的纤维素酶的3类组分:EG (内切葡聚糖酶)、CBH (外切葡聚糖纤维二糖水解 酶)和CB (纤维二糖酶或β-葡萄糖苷酶),在它们的协同作用下才能将纤维素水解至葡萄糖。纤维素的降解过程,首先是纤维素酶分子吸附到纤维素表面,然后,EG 在葡聚糖链的随机位点水解底物,产生寡聚糖;CBH 从葡聚糖链的非还原端进行水解,主要产物为纤维二糖;而CB 可水解纤维素二糖为葡 萄糖。需要这三类酶的"协同"才能完成对纤维素的降解。其中对结晶区的作用必须有EG 和CBH,对无定形区则仅EG 组分就可以。 纤维素酶分子由催化结构域(catalytic domain,CD )、纤维素结合结构域(cellul ose -binding domain,CBD )和一个连接桥(linker )三部分组成。不同来源 的纤维素酶分子其特征和催化的活性不尽相同。酶分子都被糖基化,糖基化与蛋白质之间以共价键或解离的络合状态存在。酶分子糖基化的程度决定了酶的多形性和相对分子质量的差别。近年来,纤维素酶分子结构与功能的研究取得了一定的进展。不同来源内、外切酶的CD 晶体结构分析结果表明:纤维素酶遵循溶菌酶的作用机制;真菌和细菌来源的纤维素酶的CBD 的三维结构也得到了解析。真菌和细菌产生的纤维素酶分子差别很大,但它们的催化区在一级结构上氨基酸数量和二维结构上的大小却基本一致,但它们的连接桥和CBD 却存在明显的差异。真菌纤维素酶的连接桥一般富含Glu,Ser 和Thr,而细菌纤维素酶的连接桥则完全是由Pr o -Thr 这样的重复顺序组成。另一方面,真菌的CBD 由33~36个氨基酸残基组成,且具有高度的同源;而细菌纤维素酶的CBD 由100~110个氨基酸组成,同源性也较低。在高级结构的分子形状上,真菌纤维素酶的CD 、连接桥和CBD 呈直线连接,CD 与CBD 间为180°,而细菌纤维素酶的连接桥CD 与CBD 之

造纸原理部分答案

绪论 简述造纸生产流程及任务 打浆——添料——纸料前处理和流送——纸的抄造和整理 a、打浆:对纸浆纤维进行必要的切短和细纤维化处理,以便取得生产纸或纸板所要求的物理性质和机械强度等性能。 b、添料:添加色料、填料、胶料、助剂等;为了减少墨水对纸的浸渍、改善纸的白度、不透明度和印刷性能、改变纸的颜色或色调以及赋予纸张特定的性质(例如提高干、湿强度等),需要在打浆的同时或在打浆后的贮浆池中加入胶料、填料、色料和其它助剂进行添料。 c、纸料前处理和流送:净化、精选、流浆箱中的布浆、整流、上网; 打浆、添料后的纸料中难免混入金属或非金属杂质、纤维束或浆团和空气,需要对纸料进行净化、筛选、脱气等前处理,以免影响成品纸的质量和给造纸过程带来困难。纸料的流体特性,使得纸料很容易输送到各个工段。 d、纸(纸板)的抄造和整理:净化、筛选、脱了气的纸料流送进入流浆箱,均匀分布在造纸机网部脱水,首先抄成湿纸,接着经过压榨→干燥→压光→卷取→切纸→选纸或复卷→打包→入库。 第一章打浆 1.什么叫打浆? 打浆——利用物理方法处理悬浮于水中的纸浆纤维,使其具有适应纸机生产上要求的特性,并使所生产纸张能达到预期的质量。 2.打浆的目的和任务是什么?打浆前后浆料性质有什么变化?打浆的主要任务:(一)改变纤维的形态,使纸浆获得某些特性(如机械强度、物理性能和胶体性质),以保证纸页的抄造质量。 (二)通过打浆调节和控制纸料在网上的滤水性能,以适应造纸机生产的需要,使纸页获得良好的成形,改善纸页的匀度和强度指标。 打浆作用的性质:打浆是物理变化,打浆作用对纸浆产生的纤维结构和胶体性质的变化,都属于物理变化,并不引起纤维的化学变化或产生新的物质。 注:打浆作用会使纤维表面暴露一些新的基团,但这是纤维本身原有的,与化学变化无关。 3.打浆对纤维的作用原理是什么?六种主要作用:(一)细胞壁的位移和变形(二)初生壁和次生壁外层的破除(三)吸水润胀(四)细纤维化(五)横向切断或变形(六)产生碎纤维片4.纤维结合力有哪几种?试用氢键理论解释纸页的强度是如何获得的? 纸的强度取决于①成纸中纤维间的结合力②纤维本身的强度③纸中纤维的分布和排列方向,而最终决定纸页强度的,是成纸中纤维间的结合力。 纤维的结合力有四种:氢键结合力;化学主价键力;极性键吸引力;表面交织力 其中,氢键的结合力最重要,与打浆的关系最密切。打浆的主要目的之一就是增加氢键结合力,从而提高成纸的强度。 纤维间氢键的形成过程(I)----通过水分子形成的水桥连接 氢键理论认为,水与羟基极易形成氢键。经过打浆的纸料纤维,可以通过偶极性水分子与纤维形成纤维-水-水-纤维的松散连接的氢键结合。 纤维间氢键的形成过程(II)----单层水分子形成的氢键结合 当纸料在网上滤水后,经过压榨进一步脱出水分,使两纤维间的距离靠拢,在纤维间形成了比较有规则的单层水分子连接的氢键结合,即纤维-水-纤维的氢键结合。纤维间氢键的形成过程(III)----过程完成,形成氢键结合 纸页经加热干燥进一步脱除水分,水分蒸发时,纤维受水的表面张力作用,使纸页收缩,纤维进一步靠拢,从而使纤维素分子间的羟基距离小于2.8 ?,最终形成了氢键结合,即纤维-纤维间的氢键结合氢键理论认为,打浆过程的机械作用增大了纤维的外表面,游离出大量极性羟基(-OH+),水与羟基极易形成氢键结合,形成极性水分子的胶体膜,当水分子蒸发时,相邻纤维间的羟基通过相面结合,从而将纤维结合在一起。这就是纸张强度增加的主要原因。氢键形成的条件:有游离羟基的存在;两羟基之间的距离在2.8 ?以内。

膳食纤维的组成、特性、功能及在食品加工中的应用

鳖婆堡塞全鱼蔓主旦三些皇些堂垄叁堡!!塑!:杰鋈!婆塞整治病的钱财就会滚滚流向西方人的口袋。以前科学落后,中国人缺乏开发西药的实力。西方的西药跃期占有我国的大量市场.如果今天我们的领导者和科学研究者在选题、决策上失误.将会使大量的中草药资源流失,或变成西草药,或变成西药,我们只能给我们的子孙后代留下一个中草药的空白。愧对子孙。 其实用研究西药的方法、手段研究重要,并无损我中华民族古老的医药文化,与传统的中医药理论也不对立。可以想象:如果我们用先进的分离技术高效的分离材料,获得了中药物质中的有限成分纯品,不是可以将药用机理研究的更深入吗.如果我们再将其进行新的配伍,是完全可能开发出有我们自己知识产权的新药,只有这样,我们才能利用知识产权这一武器保护我们的中医药资源。 当然,这里除了观念和习惯努力的干扰外,确实也受到分离技术的材料的限制。 我非常希望经过我们大家共同的努力,不仅可以开发出我们自己的高效分离材料,也能为我国的生物及医药产品的升级.发展取得更大的成果,也许会有这么一天,我们的中药有效成分大多被确定,中药剂型得到重大突破性改进,而且这一切都已受到知识产权的保护,全世界人民在受到西药的毒副作用的困扰下,大量选用新型的中药,那时中华民族可就真正强大了。 3在固相合成,组合化学领域中的应用 活性多肽是生化药物中非常活跃的一个领域,主要包括:多肽激素,生长调节因子及一些抗生素药物如:胸腺激素(肽),促皮质素。降钙素,颉氨霉素,环孢菌素,多糖菌素,以往用均相化学合成法,费时费工。纯度不高。现在采用固相合成,则可利用计算器自动化完成。这里的一个关键技术就是使用了高分子有机载体。 除了多肽的固相合成,人们还发展了寡核苷酸及寡糖的固相合成。 固相合成的技术的发展,使人们在组合化学中得到了充分的体现。 膳食纤维的组成、特性、功能及在食品加工中的应用 薛胜平胡淑美张秋红王立巧张香香 (华北制药康欣有限公司,石家庄050015) 摘要:本文对膳食纤维的组成、特性、功能及在食品工业上的应用做了阐述,指出添扣膳食纤维的保健食品及食品在21世纪将有极广阔的应用前景. 关键词:膳食纤堆,功鸽,应用,保健食品 尺^ 自19世纪80年代德国人在研究饲料中提出“粗纤维“一词以来。对纤维索等多糖类碳水化合物的研究日益深入.1972年Torwell首次提出膳食纤维的概念。1976年他将膳食纤维定义为:不被人体消化吸收的多糖类碳水化合物和木质素.1987年Englyst以非淀粉多糖的概念代替膳食纤维,从专业的角度更合适,但人们仍然袭用膳食纤维一词。 一42

羟丙基甲基纤维素醚

维素醚作为建筑干混砂浆产品中的最主要外加剂,对于干混砂浆的性能和成本起着关键性的作用。那么,什么是羟丙基甲基纤维素醚?为此,安徽金水桥建材有限公司为大家总结了相关信息,希望能够为大家带来帮助。 羟丙基甲基纤维素(INN名称:Hypromellose),亦有简化作羟丙甲纤维素(hydroxypropyl methylcellulose,缩写作HPMC),是属于非离子型纤维素混合醚中的一个品种。它是一种半合成的、不活跃的、黏弹性的聚合物,常于眼科学用作润滑科,又或在口服药物中充当辅料或赋型剂,常见于各种不同种类的商品。作为食品添加剂,羟丙甲纤维素可担当以下角色:乳化剂、增稠剂、悬浮剂及动物明胶的替代品。它的《食品法典》代码(E编码)是E464。 溶于水及大多数极性c和适当比例的乙醇/水、丙醇/水、二氯乙烷等,在乙醚、丙酮、无水乙醇中不溶,在冷水中溶胀成澄清或微浊的胶体溶液。水溶液具有表面活性,透明度高、性能稳定。HPMC

具有热凝胶性质,产品水溶液加热后形成凝胶析出,冷却后又溶解,不同规格的产品凝胶温度不同。 安徽金水桥建材有限公司是年产3000吨羟丙基甲基纤维素(羟丙甲\hpmc纤维素)的高新技术企业。羟丙基甲基纤维素品型号有kh60和kh75,羟丙基甲基纤维素的粘度有:5万、10万、15万、20万分类;广泛应用于建筑、乳胶涂料、聚氯乙烯、陶瓷以及纺织生产中。产品质量先进,畅销国内、国际市场,深受用户好评。 公司占地面积45亩,厂房面积19.8亩,办公楼3.75亩,位于安徽省宿州市经济技术开发区,距市中心2公里。京浦铁路,206国道,310省道纵穿开发区,合徐高速公路沿开发区西缘穿过。宿州市位于安徽省最北部,史有“皖北大门”之称,宿州市居中靠东、承东启西、连南接北,是贯通华东、华南、华中、华北地区的重要交通枢纽,铁路、公路、水路交通十分便捷。连霍高速、京福高速在宿州市纵横贯穿,京沪、陇海两大铁路干线呈“十”字状贯穿全境,已建成的京沪高速铁路经过宿州市,并设有车站,从宿州市3个小时可到

膳食纤维的分类和作用

膳食纤维的分类和作用 蛋白质、糖、脂肪、维生素、无机盐、水是人体所必需的六种营养素,在人们的生命活动中起着至关重要的作用,也是人们进行合理饮食搭配的主要考虑因素。我国原来是以植物性食品为主食的国家,但是近年来随着人民生活水平的逐渐提高,人们的饮食习惯已发生了很大的改变,随之而来的是肥胖症、糖尿病、动脉硬化、冠心病和恶性肿瘤等疾病的发病率有所增加,这些疾病不仅在老年人群中很常见,在中青年人群中也开始增加,甚至少年儿童的成人病发病率有所上升,研究发现食物中脂肪和糖类摄取量过多而植物性食物摄取量不足是导致这一现象发生的重要原因。植物性食物中含量较多的是纤维素,食物纤维素包括粗纤维、半粗纤维和木质素。食物纤维素是一种不被消化吸收的物质,过去认为是“废物”,现在认为它在保障人类健康,延长生命方面有着重要作用。因此,称它为“白金”第七种营养素。由此,纤维素这一物质越来越引起人们的注意,也开始成为众多食品研究者和大众的关注热点。 膳食纤维 定义:膳食纤维(dietary fiber,DF)是不被人体消化道分泌的消化酶所消化的、且不被人体吸收利用的多糖和木质素。 一、膳食纤维分类 (一)DF包括一大类具有相似生理功能的物质,按溶解性可将膳食纤维分为可溶性膳食纤维和不溶性膳食纤维。 可溶性膳食纤维主要是 ①植物细胞壁内的储存物质和分泌物 ②部分半纤维素 ③部分微生物多糖 ④合成类多糖,如果胶、魔芋多糖、瓜儿胶、阿拉伯糖等; 不溶性膳食纤维包括 ①半纤维素 ②不溶性半纤维素 ③木质素 ④抗性淀粉 ⑤一些不可消化的寡糖 ⑥美拉德反应的产物 ⑦虾、蟹等类动物表皮中所含的甲壳素

⑧植物细胞壁的蜡质与角质 ⑨不消化的细胞壁蛋白。 1.纤维素(cellulose)在化学结构上与淀粉相似,是以β-1,4糖苷键连接的直链聚合物,不能被人类肠道淀粉酶所分解。草食动物由于其瘤胃中微生物能产生纤维素酶,故可以利用纤维素功能。 2.半纤维素(hemicellulose)与纤维素一样主要以β-1,4糖苷键连接,也存在β-1,3 糖苷键,根据主链和支链上所含的单糖不同可分为木聚糖、半乳聚糖、甘露聚糖和阿拉伯糖的多聚体。有的还含有半乳糖醛酸和葡萄糖醛酸。 3.木质素虽然木质素包括在粗纤维和不可利用碳水化物的范畴内,但它并不是真正的碳水化物,而是苯基-丙烷衍生物的复杂聚合物,它与纤维素、半纤维素共同构成植物的细胞壁。 4.果胶(pectin)果胶主链成分为半乳糖醛酸酯,典型的侧链为半乳糖和阿拉伯糖,是存在与蔬菜和水果软组织中的无定形物质。它可在热溶液中溶解,而在酸性溶液中遇热形成凝胶,在食品加工中做为增稠剂使用。 5.抗性淀粉(RS)包括改性淀粉和经过冷却加热处理的淀粉。抗性淀粉在生理功能上与膳食纤维极为相似,故归入膳食纤维。它属于不溶性膳食纤维,但通常兼具可溶性膳食纤维的特点,可用做葡萄糖的缓释剂,用于降低餐后血糖。有动物研究表明,在体内和体外试验中抗性淀粉都可促进益生菌的生长,增加大肠双歧杆菌的数目。 6.不可消化寡糖具有生理调节作用的不可消化寡糖(non-digestible oligosaccharide,NDO)是有3~9个单聚糖合成的短链多糖。这些多糖可能由相同或不同的单体聚合、并经不同的键连接而成。NDO是某些植物如豆科籽实、谷物中的天然成分(棉子糖—存在于蜂蜜、也是大豆低聚糖的成分之一、水苏糖)。此外,还可以生产NDO作为饲料和食品中的功能性添加剂,例如可以通过部分水解菊粉制备低聚果糖(FOS),由乳糖制备低聚半乳糖(TOS)。NDO的生理功能和化学性质均取决与其化学组成。NDO大多可溶于水,乙醇及体液,但在体内PH条件下却相当稳定,NDO的营养功能源于其独特的发酵品质,也被称为双歧因子。纤维素、半纤维素不具有类似的功能,这可能是由于异质性造成的,NDO对外源性的非特异性刺激作用可以阻止不良微生物区系的建立。 7.树胶(gum)和粘胶(mucilage)是由不同的多糖及其衍生物组成。阿拉伯胶(arabicgum)、瓜儿胶(guargum)属于这类物质,可用于食品加工作为稳定剂。(二)根据来源不同,膳食纤维可分为以下六类。

纤维素酶的水解机制和作用条件

纤维素酶的水解机制和作用条件 纤维素酶对大家来说已经不陌生,现在已经广泛应用在工业生产过程中,纤维素酶在植物提取和饲料中的功能是其他产品所无法替代的。然而纤维素酶在其发展过程中经历了漫长的过程,随着越来越多的生物学家对其进行研究,纤维素酶的水解过程才逐渐被人们掌握。下面详细介绍纤维素酶的研究过程和其水解机制。 1 纤维素酶的研究过程 在自然界中,绝大多数的纤维素是由微生物通过分泌纤维素酶来进行降解的。早在l850年,Mifscherlich己经观察到微生物分解纤维素现象。但纤维素酶的研究则是从1906年Seilliere在蜗牛消化液中发现了分解天然纤维素的酶,以后才逐渐开始的。1912年 Pringsheim 从耐热性纤维素细菌中分离出纤维素酶。1933年Grassman分辨出了一种真菌纤维素酶的两个组分。1954年,美国陆军 Natick实验室开始研究军用纤维素材料微生物降解的防护问题,后来发现纤维素经微生物降解后,可产生经济、丰富的生产原料,并且有望解决自然界不断产生的固体废物问题,于是纤维素酶得到了广泛的关注。 2 纤维素酶的水解机制 关于纤维素酶水解的机制至今仍无完全统一的认识,目前普遍接受的理论主要为协同理论。该理论认为,纤维素的酶水解过程是由C1酶、Cx酶、β-葡萄糖苷酶系统作用的结果,水解过程为:先是Cx酶作用于纤维素分子非结晶区内部的β-1, 4糖苷键,形成短链的β-寡聚糖;C1酶作用于β-寡聚糖分子的非还原末端,以二糖为单位进行切割产生纤维二糖;接着,部分降解的纤维素进一步由C1酶和 Cx酶协同作用,分解生成纤维二糖、纤维三糖等低聚糖;最后由β-葡萄糖苷酶作用分解为葡萄糖。纤维二糖对CBH和EG有强烈抑制作用,β-葡萄糖苷酶 BG将纤维二糖和纤维三糖水解为葡萄糖,从反应混合物中除去抑制。

打浆对草浆纤维形态的影响

№.2 陕西科技大学学报 Apr.2008?42? J OU RNAL OF SHAANXI UN IV ERSIT Y OF SCIENCE&TECHNOLO GY Vol.26  文章编号:100025811(2008)022******* 打浆对草浆纤维形态的影响 刘 叶,王志杰,罗 清 (陕西科技大学制浆与造纸工程学院,陕西西安 710021) 摘 要:在实验室条件下,研究了麦草浆及苇浆不同打浆方式及打浆程度对纤维形态的影响, 利用纤维质量分析仪(FQA)分析了纤维长度、粗度、卷曲、扭结等形态参数及细小纤维含量的 变化.结果表明,较之低浓打浆,经中浓打浆的纤维重均长度、粗度、扭结和卷曲指数高而细小 纤维含量低,且随着打浆度上升,低浓打浆使扭结指数和卷曲指数上升,中浓打浆使扭结和卷 曲指数下降,中浓打浆粗度下降比低浓打浆快. 关键词:草浆;打浆;纤维形态 中图分类号:TS71+3 文献标识码:A 0 引言 打浆对植物纤维形态和特性影响重大,有关纤维长度及宽度等形态参数已有不少研究,但打浆对纤维粗度、卷曲和扭结等形态参数的影响研究却较少,尤其是对于非木材纤维的研究就更少[123].据估计,到2010年,非木材纤维的利用将减少25%[4].然而,非木材纤维在中国仍然占据着很重要的地位.本课题在实验室条件下,分别对麦草浆及苇浆进行了不同方式的打浆,研究了打浆对纤维形态参数,包括重均长度、卷曲指数、扭结指数、粗度及细小纤维含量等的影响,旨在为优化短纤维的打浆工艺提供一定的理论指导. 1 实验 1.1 原料 实验所用原料为陕西某纸厂漂白麦草浆,水分81.6%;新疆某纸厂漂白苇浆板,水分9.8%. 1.2 打浆 (1)中浓打浆.纸浆经标准纤维解离器解离后在PFI磨中进行打浆,浆浓10%. (2)低浓打浆.低浓打浆在瓦利打浆机中进行,浆浓2%. 1.3 分析与检测 纤维长度、卷曲指数、扭结指数、细小纤维含量和纤维粗度等纤维形态参数采用加拿大Optest仪器公司生产的纤维质量分析仪(FQA)测定. 2 结果与分析 2.1 中浓打浆对纤维形态的影响 2.1.1 中浓打浆对纤维重均长度的影响 较之算术平均长度和双重均长度,纤维重均长度对纸张的物理强度影响最大[5],因此本文以纤维重均3收稿日期:2008-02-16 作者简介:刘 叶(1978-),女,陕西省大荔县人,工程师,在读硕士生,研究方向:造纸湿部化学 基金项目:陕西科技大学自选科研项目(ZX05202)

hpmc纤维素用途

hpmc羟丙基甲基纤维素主要用于聚氯乙烯生产中的分散剂,此外在其他石油化工、涂料、建材、除漆剂、造纸、化妆品等产品生产中作增稠剂、稳定剂、乳化剂、成膜剂等。那么,hpmc纤维素用途是什么?为此,安徽金水桥建材有限公司为大家总结了相关信息,希望能够为大家带来帮助。 本品为工业级HPMC,主要用途为聚氯乙烯生产中做分散剂,系悬浮聚合制备PVC的主要助剂。另外,在其他石油化工、涂料、建材、除漆剂、农业化学品、油墨、纺织印染、陶瓷、造纸、化妆品等产品生产中作增稠剂、稳定剂、乳化剂、赋形剂、保水剂、成膜剂等。在合成树脂方面的应用,可使获得的产品具有颗粒规整、疏松、视比重适宜,加工性能优良等特点,从而基本上取代了明胶和聚乙烯醇作分散剂。另外,在建筑工业施工过程中,主要用于砌墙,灰泥粉饰,嵌缝等机械化施工中;特别在装饰性施工中,用做粘贴瓷砖、大理石、塑料装饰,粘贴强度高,还可以减少水泥用量。用于涂料行业中做增稠剂,可使图层光亮细腻,不脱粉,改善流平性能等。

安徽金水桥建材有限公司是年产3000吨羟丙基甲基纤维素(羟丙甲\hpmc纤维素)的高新技术企业。羟丙基甲基纤维素品型号有kh60和kh75,羟丙基甲基纤维素的粘度有:5万、10万、15万、20万分类;广泛应用于建筑、乳胶涂料、聚氯乙烯、陶瓷以及纺织生产中。产品质量先进,畅销国内、国际市场,深受用户好评。 公司占地面积45亩,厂房面积19.8亩,办公楼3.75亩,位于安徽省宿州市经济技术开发区,距市中心2公里。京浦铁路,206国道,310省道纵穿开发区,合徐高速公路沿开发区西缘穿过。宿州市位于安徽省最北部,史有“皖北大门”之称,宿州市居中靠东、承东启西、连南接北,是贯通华东、华南、华中、华北地区的重要交通枢纽,铁路、公路、水路交通十分便捷。连霍高速、京福高速在宿州市纵横贯穿,京沪、陇海两大铁路干线呈“十”字状贯穿全境,已建成的京沪高速铁路经过宿州市,并设有车站,从宿州市3个小时可到北京、2个小时到上海。水路运输主要航线由宿州港经洪泽湖至长江中下游各港口城市,经大运河至江、浙、沪等地或经淮河到淮河沿岸

羧甲基纤维素酶测定原理

纤维素酶活力的测定 一、目的 学习和掌握3,5-二硝基水杨酸(DNS)法测定纤维素酶活力的原理和方法,了解纤维素酶的作用特性。 二、原理 纤维素酶是一种多组分酶,包括C1 酶、CX 酶和β-葡萄糖苷酶三种主要组分。其中C1酶的作用是将天然纤维素水解成无定形纤维素,CX 酶的作用是将无定形纤维素继续水解成纤维寡糖,β-葡萄糖苷酶的作用是将纤维寡糖水解成葡萄糖。纤维素酶水解纤维素产生的纤维二糖、葡萄糖等还原糖能将碱性条件下的3,5-二硝基水杨酸(DNS)还原,生成棕红色的氨基化合物,在540nm 波长处有最大光吸收,在一定范围内还原糖的量与反应液的颜色强度呈比例关系,利用比色法测定其还原糖生成的量就可测定纤维素酶的活力。 三、实验材料、主要仪器和试剂 1.实验材料 (1)纤维素酶制剂 500mg (2)新华定量滤纸 50mg / 份× 4 (3)脱脂棉花 50mg / 份× 4 (4)羧甲基纤维素钠(CMC) 510mg (5)水杨酸苷 500mg 2.主要仪器 (1)722 型或其他型号的可见分光光度计 (2)恒温水浴2 台 (3)沸水浴锅 (4)电炉子 (5)剪刀 (6)万分之一分析天平 (7)恒温干燥箱 (8)冰箱 (9)试管架 (10)胶头滴管 (11)具塞刻度试管20mL×24 (12)移液管或加液器0.5 mL×3;2mL×7 (13)容量瓶100 mL×6;1000 mL×3 (14)量筒50 mL×2;100 mL×1;500 mL×1 (15)烧杯100 mL×6;500mL×3;1 000 mL×1 3.试剂(均为分析纯)

(1)浓度为1mg/mL 的葡萄糖标准液 将葡萄糖在恒温干燥箱中105℃下干燥至恒重,准确称取100mg 于100mL 小烧杯中,用少量蒸馏水溶解后,移入100mL 容量瓶中用蒸馏水定容至100mL,充分混匀。4℃冰箱中保存(可用12~15 天)。(2)3,5-二硝基水杨酸(DNS)溶液 准确称取DNS 6.3g 于500mL 大烧杯中,用少量蒸馏水溶解后,加入2mol/L NaOH 溶液262mL,再加到500mL 含有185g 酒石酸钾钠(C4H4O6KNa · 4H2O,MW=282.22)的热水溶液中,再加5g结晶酚(C6H5OH,MW=94.11)和5g无水亚硫酸钠(Na2SO3,MW=126.04),搅拌溶解,冷却后移入1 000mL 容量瓶中用蒸馏水定容至1 000mL,充分混匀。贮于棕色瓶中,室温放置一周后使用。 (3)0.05 mol/L pH4.5 的柠檬酸缓冲液A 液(0.1 mol/L 柠檬酸溶液):准确称取C6H8O7 · H2O (MW=210.14)21.014g 于500mL大烧杯中,用少量蒸馏水溶解后,移入1 000mL 容量瓶中用蒸馏水定容至1 000mL,充分混匀。4℃冰箱中保存备用。

相关文档
最新文档