无机非金属材料知识点

无机非金属材料知识点
无机非金属材料知识点

无机非金属材料知识点

一、重要概念

1、无机非金属材料

①以某些元素的氧化物、碳化物、氮化物、卤素化合物、硼化物以及硅酸盐、铝酸盐、磷酸盐、硼酸盐等物质组成的材料。

②是除有机高分子材料和金属材料以外的所有材料的统称。

2、陶瓷

①从制备上开看,陶瓷是由粉状原料成型后在高温作用下硬化而形成的制品。

②从组分上来看,陶瓷是多晶、多相(晶相、玻璃相和气相)的聚集体。

3、玻璃

①狭义:熔融物在冷却过程中不发生结晶的无机物质

②一般:若某种材料显示出典型的经典玻璃所具有的各种特征性质,则不管其组成如何都可称为玻璃(具有玻璃转变温度 Tg)。

玻璃转变温度:热膨胀系数和比热等物理性质的突变温度。

具有Tg的非晶态材料都是玻璃。

4、水泥

凡细磨成粉末状,加入适量水后,可成为塑性浆体,既能在空气中硬化,又能在水中硬化,并能将砂、石、钢筋等材料牢固地胶结在一起的水硬性胶凝材料,通称为水泥。

5、耐火材料

耐火度不低于1580℃的无机非金属材料

6、复合材料

复合材料是两种或两种以上物理、化学性质不同的物质组合而成的一种新的多相固体材料。

通过复合效应获得原组分所不具备的性能。可以通过材料设计使各组分的性能互相补充并彼此关联,从而获得更优秀的性能。

二、陶瓷知识点

1、陶瓷制备的工艺步骤

原材料的制备→坯料的成型→坯料的干燥→制品的烧成或烧结

2、陶瓷的天然原料

①可塑性原料:黏土质陶瓷成瓷的基础(高岭石、伊利石、蒙脱石)

②弱塑性原料:叶蜡石、滑石

③非塑性原料:减塑剂:石英助熔剂:长石

3、坯料的成型的目的

将坯料加工成一定形状和尺寸的半成品,使坯料具有必要的机械强度和一定的致密度

4、陶瓷的成型方法

①可塑成型:在坯料中加入水或塑化剂,制成塑性泥料,然后通过手工、挤压或机加工成型;(传统陶瓷)

②注浆成型:将浆料浇注到石膏模中成型

③压制成型:在金属模具中加较高压力成型;(特种陶瓷)

5、烧结

将初步定型密集的粉块(生坯)高温烧成具有一定机械强度的致密体。

固相烧结:烧结发生在单纯的固体之间

液相烧结:有液相参与,加助溶剂产生液相

好处:降低烧结温度,促进烧结

6、陶瓷的组织结构:晶相、玻璃相、气相

①晶相:陶瓷的主要组成;分为主晶相和次晶相

②玻璃相:玻璃相对陶瓷的机械强度、介电性能、耐热性等不利,不能成为陶瓷的主导组成部分。

玻璃相在陶瓷中的作用:粘结:粘结晶粒,填充空隙,提高致密度

降低烧成温度,促进烧结

③气相:气孔;降低强度,造成裂纹。

7、陶瓷力学性能的特点

①硬度:高②强度:抗拉强度很低、抗压强度非常高

③塑性:塑性极差④韧性:韧性差、脆性大

8、陶瓷热学性能的特点

①导热性:差,良好的绝热材料

②热稳定性(抗热震性):概念:材料承受温度的急剧变化而不至于被破坏的能力。陶瓷抗热震性一般较差

9、结构陶瓷

①概念:能作为工程结构材料使用的陶瓷,一般具有高强度、高硬度、高弹性模量、耐磨损、耐高温、耐腐蚀、抗氧化等优异性能,可以承受金属材料和高分子材料难以胜任的严酷工作环境。

②常见种类:Al2O3、ZrO2、SiC、Si3N4…陶瓷

③应用:……

10、陶瓷增韧技术:【机理:阻碍裂纹的扩展】

①相变增韧:相变可吸收能量;体积膨胀可松弛裂纹尖端的拉应力,甚至产生

压应力。

②微裂纹增韧:温度变化引起的热膨胀差或相变引起的体积差,均会产生弥散分布的微裂纹;

微裂纹与主裂纹联结,使主裂纹分叉,改变主裂纹尖端应力场,吸收其能量,阻碍其扩展。

③第二相颗粒弥散增韧:在基体中弥散分布的第二相颗粒阻碍裂纹的扩展。

④与金属复合增韧:金属是一种韧性相,通过其自身的塑性变形,可松弛裂纹尖端应力,并吸收裂纹能量。

⑤增强纤维或晶须增韧阻碍裂纹扩展。

11、功能陶瓷

概念:具有光、电、磁、声、力、生物、化学等功能的陶瓷材料。

12、透明陶瓷

①概念:能透过可见光的陶瓷材料

②使陶瓷透明的方法:

不透明原因:杂质、气孔、晶界使光线吸收和散射

透明的手段:采用高纯度、高细度的原料,同时掺入添加物或采取其他工艺上得措施,把气孔充分排除,适当控制晶粒尺寸,使制品接近

于理论密度,尽可能减少陶瓷材料对光的吸收和散射

13、压电陶瓷

①压电效应:机械力→应变?表面荷电

②压电陶瓷是一种多晶烧结体

③压电陶瓷的压电效应机理:材料内部自发极化产生电畴。

极化处理前:电畴分布无序,宏观极化强度为零。

极化处理后:电畴在一定程度上按外电场取向排列,宏观极化强度不为零,

表现为束缚电荷。

机械作用导致电畴转向,束缚电荷发生变化。

压电陶瓷只有经极化处理后才具有压电效应。

14、热释电陶瓷

①热释电效应:温度变化→应变?表面荷电

②机理:跟压电陶瓷类似

15、半导体陶瓷

PTC半导体陶瓷:①PTC效应:正电阻温度系数效应

②应用:限流、恒温发热、过热保护……

三、玻璃知识点

1、可形成玻璃的物质

①硅酸盐、硼酸盐、磷酸盐、锗酸盐②重金属氧化物③硫化物、卤化物

④金属⑤高分子

2、玻璃制备方法的通性

使材料不发生结晶、或破坏晶体的有序结构使其非晶化

①熔体冷却法:冷却速度必须大于原子调整成晶体的速度。

②非熔融法:气相沉积法、水解法、高能射线辐照法、冲击波法、溅射法等。

3、玻璃性能上的通性

①各向同性:玻璃态物质的质点排列无规则,满足统计均匀分布,因此其物理、

化学性质在任何方向都是相同的

②介稳性:玻璃介于熔融态和晶态之间,属于介稳态

③无固定熔点

④物理化学性质的渐变性:玻璃态物质从熔融状态冷却(或加热)过程中,其物

理化学性质产生逐渐、连续地变。

4、形成玻璃的手段

①冷却速度足够快

冷却速度快到足够使熔体中原子来不及重组成有序的点阵,从而使液态或气态的无定形结构得以被保留。

②使原子无序堆积,不形成晶格。

③破坏晶体的有序结构,使之非晶化机械研磨;高能辐照、强冲击波。

5、传统玻璃熔制

玻璃液的澄清:排除液中的可见气泡

玻璃液的均化:消除尚未熔化的砂粒、条纹等不均匀相,以保证玻璃液中化学组分的均匀,温度较高,为1200~1400℃,此时玻璃液粘度极小。6、玻璃形成的热力学条件

同组成的晶体与玻璃体的内能差别越大,玻璃越容易结晶,即越难形成玻璃。

7、玻璃形成的动力学条件

形成玻璃的关键是熔体的冷却速度(粘度增大的速度)大于质点排列成晶体的速度

8、玻璃形成的结晶化学条件

①熔体中阴离子团的聚合程度

阴离子团低聚合:位移、转动、重排容易,易调整成晶体,不易形成玻璃。阴离子团高聚合:位移、转动、重排困难,难调整成晶体,容易形成玻璃。

②化学键的性质

只有当离子键和金属键向共价键过渡时,形成由离子—共价、金属—共价混合键所组成的大阴离子时,就最容易形成玻璃。

③化学键的强度

网络形成体氧化物:能单独形成玻璃,如SiO2、B2O3、P2O5、GeO2。

网络变性体氧化物:不能单独形成玻璃,但能改变网络结构,一般使结构变弱,如Na2O、K2O、CaO。

网络中间体:两者之间,能改善玻璃性能,如Al2O3、TiO2、ZnO、BeO。9、氧化物玻璃的无规网络模型

结构单元:金属离子——氧多面体

正离子在多面体中央;氧在顶角,为公共氧,一个氧最多与两个形成网络的正离子相连。

多面体顶角无规则相连,通过公共氧(桥氧)搭成无规则网络。

R2O或RO(如Na2O、CaO),氧桥被切断出现非桥氧。

10、氧化物玻璃的晶子模型

晶子:晶格极不完整、有序区域极小的晶体。

晶子模型:晶子分散在无定形介质中,晶子与无定形区域无明显界限。

玻璃有近程有序,远程无序的结构特点。

11、高分子玻璃的结构模型

无规线团模型:分子链成无规线团状,各线互相交织、互相穿插。

12、金属玻璃的结构模型

无规硬球堆积模型:把原子视为硬球,尽可能地紧密堆积,球的排列是无规则的(金属键无方向性,原子具有密堆倾向)。

13、硼反常

在B2O3中加入加R2O,刚开始加时,和硅酸盐相反,非但不会破坏桥氧,反而加固网络。这是因为刚开始加R2O时,R2O给出了游离氧,使一部分硼由三角体[BO3]变成四面体[BO4]。

14、微晶玻璃

将加有成核剂的特定组成的基础玻璃,在一定温度下热处理后,就会变成具有微晶体和玻璃相均匀分布的复合材料,又称玻璃陶瓷。

四、水泥知识点

1、硅酸盐水泥

熟料 + 石膏;也称为纯熟料水泥,又叫波特兰水泥。

2、普通硅酸盐水泥(普通水泥)

熟料 + 石膏 + 5%~20%的混合材料

3、矿渣硅酸盐水泥(矿渣水泥)

熟料 + 石膏 + 20%~70%的粒化高炉矿渣

4、火山灰质硅酸盐水泥(火山灰水泥)

熟料 + 石膏 + 20%~40%的火山灰质材料

5、粉煤灰硅酸盐水泥(粉煤灰水泥)

熟料 + 石膏 + 20%~40%的粉煤灰

6、硅酸盐水泥熟料的化学成分

氧化钙(CaO)、氧化硅(SiO2)、氧化铝(Al2O3)和氧化铁(Fe2O3)

7、硅酸盐水泥熟料的矿物组成

硅酸三钙、硅酸二钙、铝酸三钙、铁酸铝四钙、玻璃相

8、生成硅酸盐水泥熟料所用的工业原料

石灰质原料、粘土质原料和校正性原料

9、石膏在水泥中的作用

石膏的作用主要是调节凝结时间;适量的石膏对提高水泥强度有利,尤其是早期强度;但石膏也不宜过多,否则会使水泥产生体积膨胀而使强度降低,甚至影响水泥的安定性。

10、硅酸盐水泥的生产工艺:两磨一烧

生料的配制与磨细→将生料煅烧使之部分熔融形成以硅酸钙为主要成分的熟料矿物→将熟料与适量石膏或适量混合材料共同磨细为水泥。

10、水泥的强度等级

五、耐火材料知识点

1、耐火材料按其主成分的化学性质可分为

酸性:含较多SiO2;硅质、半硅质、黏土质

中性:碳质、高铝质、铬质

碱性:含大量的MgO和CaO;镁质和白云石质耐火材料(强碱性);铬镁系、镁橄榄石质、尖晶石耐火材料(弱碱性)

2、几个指标

气孔率 = 气孔气体/制品总体积(表观体积)

体积密度:试样烘干后的质量与其体积之比值,即制品单位体积(表观体积)的质量。

真密度:耐火材料的质量与其真体积(即不包括气孔体积)之比。

3、耐火材料热导率 ~ 气孔

耐火材料中所含气孔对其热导率的影响最大。一般说来,气孔率越大,热导率越低。

4、耐火度

耐火材料在无荷重条件下,抵抗高温作用而不熔化的性质。

无机非金属材料工程导论论文

标题:高性能CVD金刚石薄膜涂层刀具的研究进展 姓名: 罗敏一 学号:2010440791 班级:无机普2010级01班

高性能CVD金刚石薄膜涂层刀具的研究进展 摘要: CVD金刚石薄膜涂层刀具制造设备投资小,性能价格比高,极富市场竞争力,因而可成为高效高精度切削加工有色金属及其合金、复合材料和硬脆非金属材料的最理想的新一代刀具材料。关键词: CVD金刚石薄膜涂层刀具化学气相沉积法刀具性能 1 引言 金刚石薄膜在力学方面具有许多独特的优良性能,它接近天然金刚石的硬度和耐磨性,具有低摩擦系数、低热膨胀系数、高热导率以及高化学稳定性等特性,从而使其在工模具和耐磨器件领域具有广阔的应用前景,已成为理想的刀具材料。 用金刚石刀具切削硅铝合金等硬质材料时具有加工精度高、切削寿命长、切削力小及加工效率高等优点。随着汽车工业的发展对金刚石刀具需求量越来越大,天然单晶金刚石和人造聚晶金刚石刀具制造工艺复杂成本较高,而用化学气相沉积方法在硬质合金表面生长一层金刚石薄膜制成的刀具具有金刚石的特性,而且制造简单成本较低,是较好的替代品。目前国内外研究单位都在积极开发金刚石薄膜涂层刀具,但未形成规模生产和应用,原因是涂层工艺基体材料及刀具几何参数还不能保证。 CVD金刚石薄膜涂层刀具是在刀具基体上直接沉积金刚石薄膜,因而适用于制造复杂形状的刀具。与其他金刚石刀具相比,CVD金刚石薄膜涂层刀具制造设备投资小,性能价格比高,极富市场竞争力,因而可成为高效

高精度切削加工有色金属及其合金、复合材料和硬脆非金属材料的最理想的新一代刀具材料。 2 CVD金刚石薄膜涂层刀具制备工艺-化学气相沉积法(CVD) 化学气相沉积(CVD)属于原子沉积类,是利用气态的先驱反应物通过原子、分子间化学反应的途径生成固态涂层的技术。基于此特点,CVD过程大多在相对较高的压力和较高的沉积温度环境下进行,因为较高的压力有助于提高涂层的沉积速率。较高的沉积温度可保证化学反应的顺利进行。CVD涂层工艺温度约为1 000℃,结合力可靠,但也带来了一些性能上的缺陷,如刀具切削刃需经过钝化预处理,刀具表面易出现残余拉应力,且不能用于高速钢刀具表面涂层;另外CVD技术的沉积温度太高,超过了许多材料的热处理温度,在这样高的沉积温度下。镀层和硬质合金基体材料都面临着晶粒长大和失碳问题,从而产生一种或几种复式碳化物,即所谓的η相,且通常生成在涂层和基体的界面特别是刃口上。这种相很脆,降低硬质合金的抗弯强度,同时增大刃口的脆性,从而导致刀刃在使用过程中过早损坏。 涂层表面状态和切削用量对金刚石薄膜涂层刀具损坏形式有很大影响。未研磨的金刚石薄膜涂层刀具表面较粗糙,切屑沿前刀面流出时摩擦阻力较大,切削铝合金等时被切削材料容易在前刀面粘附并进而形成较大的积屑瘤,切削过程中积屑瘤频繁脱落,将对金刚石薄膜产生周期性的剥离作用,从而容易使金刚石薄膜从基体剥落。相反,对金刚石薄

高分子材料与无机非金属、金属材料的区别

高分子材料与无机非金属材料、金属材料的区别有机高分子化合物简称高分子化合物或高分子,又称高聚物,与无机非金属材料、高分子材料并称三大材料。高分子材料一般具有以下特点: (1)力学性能:比强度高,韧性高,耐疲劳性好,但易应力松弛和蠕变; (2)反应性:大多数是惰性的,耐腐蚀,但粘连时要表面处理,加聚合物共混时需要表面处理,另外,有的高分子材料容易吸收紫外线或红外线及可见光发生降解; (3)物理性能:密度小,很高的电阻率,熔点相比金属较低,限制了使用领域高分子化合物的一般具有特殊的结构,使它表现出了非同凡响的特性。例如,高分子主链有一定内旋自由度,可以弯曲,使高分子链具有柔性;高分子结构单元间的作用力及分子链间的交联结构,直接影响它的聚集态结构,从而决定高分子材料的主要性能。 此外高分子材料可用纤维增强(复合材料)制成高性能的新型材料,可设极性大,部分性能超过金属。当前,高分子材料正趋向功能化,合金化发展,比传统材料有更大的发展空间和更广阔使用的领域。 高分子化合物固、液、气三种存在状态的变化一般并不很明显。固体高分子化合物的存在状态主要有玻璃态、橡胶态和纤维态。固体状态的高分子化合物多是硬而有刚性的物体。无定形的透明固体高分子化合物很像玻璃,故称它为玻璃态。在橡胶态下,高分子链处于自然无规则和卷曲状态,在应力作用下被拉伸,去掉应力又恢复卷曲,表现出弹性。纤维是由高分子化合物构成的长度对直径比大很多倍的纤细材料。 通常使用的高分子材料,常是由高分子化合物加入各种添加剂所形成,其基本性能取决于所含高分子化合物的性质,各种不同添加剂的作用在于更好地发挥、保持、改进高分子化合物的性能,满足不同的要求,用在更多的方面。 无机非金属材料(inorganic nonmetallic materials)是以某些元素的氧化物、碳化物、氮

新型无机非金属材料有哪些

新型无机非金属材料有哪些 新材料全球交易网 新型无机非金属材料有哪些?“新材料全球交易网”收集整理最全新型无机非金属材料知识点。更多增值服务,请关注“新材料全球交易网”。 一、重要概念 1、新型无机非金属材料 (1)是除有机高分子材料和金属材料以外的所有材料的统称。 (2)包括以某些元素的氧化物、碳化物、氮化物、卤素化合物、硼化物以及硅酸盐、铝酸盐、磷酸盐、硼酸盐等物质组成的材料。 2、陶瓷 (1)从制备上开看,陶瓷是由粉状原料成型后在高温作用下硬化而形成的制品。 (2)从组分上来看,陶瓷是多晶、多相(晶相、玻璃相和气相)的聚集体。 3、玻璃 (1)狭义:熔融物在冷却过程中不发生结晶的无机非金属物质。 (2)一般:若某种材料显示出典型的经典玻璃所具有的各种特征性质,则不管其组成如何都可称为玻璃(具有玻璃转变温度 Tg)。 玻璃转变温度:玻璃态物质在玻璃态和高弹态之间相互转化的温度。 具有Tg的非晶态新型无机非金属材料都是玻璃。 4、水泥 凡细磨成粉末状,加入适量水后,可成为塑性浆体,能在空气或水中硬化,并能将砂、石、钢筋等材料牢固地胶结在一起的水硬性胶凝材料,通称为水泥。 5、耐火材料 耐火度不低于1580℃的新型无机非金属材料 6、复合材料 由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观(微观)上组成具有新性能的材料。 通过复合效应获得原组分所不具备的性能。可以通过材料设计使各组分的性能互相补充并彼此关联,从而获得更优秀的性能。 二、陶瓷知识点 1、陶瓷制备的工艺步骤 原材料的制备→坯料的成型→坯料的干燥→制品的烧成或烧结 2、陶瓷的天然原料 (1)可塑性原料:黏土质陶瓷成瓷的基础(高岭石、伊利石、蒙脱石) (2)弱塑性原料:叶蜡石、滑石 (3)非塑性原料:减塑剂——石英;助熔剂——长石 3、坯料的成型的目的

无机非金属材料论文

无机非金属材料的研究与应用前景 摘要 无机非金属材料(inorganic nonmetallic materials)是以某些元素的氧化物、碳化物、氮化物、卤素化合物、硼化物以及硅酸盐、铝酸盐、磷酸盐、硼酸盐等物质组成的材料。是除有机高分子材料和金属材料以外的所有材料的统称。无机非金属材料的提法是20世纪40 年代以后,随着现代科学技术的发展从传统的硅酸盐材料演变而来的。无机非金属材料是与有机高分子材料和金属材料并列的三大材料之一。在材料学飞速发展的今天,无机非金属材料有这广阔的应用前景和良好的就业形势。 关键字无机非金属,材料,方向,前景,智能 引言 新材料涉及的领域众多,无机非金属新材料领域是其重要的一个组成部分。“十二五”期间,我国无机非金属新材料应,围绕功能材料确定发展重点无机非金属材料包括水泥、玻璃、陶瓷、耐火材料、人工晶体和半导体材料等,下面就其无机非金属材料的研究与应用前景进行简单介绍。 一、无机非金属材料的特点及应用 无机非金属材料(inorganic nonmetallic materials)是以某些元素的氧化物、碳化物、氮化物、卤素化合物、硼化物以及硅酸盐、铝酸盐、磷酸盐、硼酸盐等物质组成的材料。是除有机高分子材料和金属材料以外的所有材料的统称。无机非金属材料的提法是20世纪40年代以后随着现代科学技术的发展从传统的硅酸盐材料演变而来的。无机非金属材料是与有机高分子材料和金属材料并列的三大材料之一。 在晶体结构上,无机非金属的晶体结构远比金属复杂,并且没有自由的电子。具有比金属键和纯共价键更强的离子键和混合键。这种化学键所特有的高键能、高键强赋予这一大类材料以高熔点、高硬度、耐腐蚀、耐磨损、高强度和良好的抗氧化性等基本属性,以及宽广的导电性、隔热性、透光性及良好的铁电性、铁磁性和压电性。 无机非金属材料品种和名目极其繁多,用途各异,因此,还没有一个统一而完善的分类方法。通常把它们分为普通的(传统的)和先进的(新型的)无机非金属材料两大类。 普通无机非金属材料的特点是:耐压强度高、硬度大、耐高温、抗腐蚀。此外,水泥在胶凝性能上,玻璃在光学性能上,陶瓷在耐蚀、介电性能上,耐火材料在防热隔热性能上都有其优异的特性,为金属材料和高分子材料所不及。但与金属材料相比,它抗断强度低、缺少延展性,属于脆性材料。与高分子材料相比,密度较大,制造工艺较复杂。特种无机非金属材料的特点是:①各具特色。例如:高温氧化物等的高温抗氧化特性;氧化铝、氧化铍陶瓷的高频绝缘特性;铁氧体的磁学性质;光导纤维的光传输性质;金刚石、立方氮化硼的超硬性质;导体材

第四节 无机非金属材料的结构

首页 >> 网络课程 >> 第二章 >> 第四节 绪论 第一章第一章 工程材料的分工程材料的分类类及性能 第二章第二章 材料的材料的结结构 第三章第三章 材料制材料制备备的基本知的基本知识识 第四章第四章 二元相二元相图图及应用 第五章第五章 材料的材料的变变形 第六章第六章 钢的热处热处理理 第七章第七章 工业用钢 第八章第八章 铸铁 第九章第九章 有色金有色金属属及其合金 第十章第十章 常用非金常用非金属属材料 第十一章第十一章 工程材料的工程材料的选选用 第四节 无机非金属材料的结构 一、陶瓷材料的结构特点 对工程师来说,陶瓷包括种类繁多的物质,例如玻璃、砖、石头、混凝土、磨料、搪瓷、介 磁性材料、高温耐火材料和许多其它材料。所有这些材料的共同特征是:它们是金属和非金 合物由离子键和共价键结合在一起。陶瓷材料的显微组织由晶体相、玻璃相和气相组成,而且很大,分布也不够均匀。 与金属相比,陶瓷相的晶体结构比较复杂。由于这种复杂性以及其原子结合键强度较大,所以 例如,正常冷却速率的玻璃没有充分时间使其重排为复杂的晶体结构,所以它在室温下可长 二、陶瓷晶体 1. AX型陶瓷晶体 AX型陶瓷晶体是最简单的陶瓷化合物,它们具有数量相等的金属原子和非金属原子。它们可以 如MgO,其中两个电子从金属原子转移到非金属原子,而形成阳离子(Mg3+)和阴离子(O2-)是共价型,价电子在很大程度上是共用的。硫化锌(ZnS)是这类化合物的一个例子。 AX化合物的特征是:A原子只被作为直接邻居的X原子所配位,且X原子也只有A原子作为第一或离子是高度有序的,在形成AX 化合物时,有三种主要的方法能使两种原子数目相等,且有如 位。属于这类结构的有: (1)CsCl型 这种化合物的结构见图2-25。A原子(或离子)位于8个X原子的中心,X原子(或离子)也处但应该注意的是,这种结构并不是体心立方的。确切的说,它是简单立方的,它相当于把简单 子晶格相对平移a/2,到达彼此的中心位置而形成。 重庆大学精品课程-工程材料

无机非金属材料论文非金属材料论文

无机非金属材料论文非金属材料论文: 无机非金属材料工程技术专业学生就业形势分析 摘要:文章论述了无机非金属材料工程技术专业与地方社会经济发展的联系,并对该专业学生实习与就业基地建设状况加以介绍,通过分析该专业学生就业形势和就业前景,为指导学生今后就业指明方向。 关键词:无机非金属材料工程技术专业;学生就业;形势分析 中图分类号:G414.1 文献标志码:A文章编号:1002—2589(2009)08—0176—02 无机非金属材料工程技术专业原名为硅酸盐材料技术,为全国高职高专指导性专业目录内三年制专科专业,对应本科专业为无机非金属材料工程。我院2004年7月申报该专业,2005年秋季开始招生。通过充分的调研,我院制定了切实可行的教学计划,优化课程设置,精心组织教学,积极探究教学改革,尤其是加强实践教学,走产、学、研相结合和校企联合办学之路。 一、专业发展前景及与地区经济发展的联系 1.无机非金属材料涉及范围极其广泛,玻璃、水泥、陶瓷和耐火材料是硅酸盐材料最主要的形式,其中水泥制品业目前已成为全球第二大制品业,玻璃更是我市的三大支柱产业之一。安徽省是建材大

省,有“华光”、“华益”、“海螺”、“巢东”、“珍珠”、“德力”等众多知名玻璃和水泥企业,陶瓷、涂料等建材产量也很大。蚌埠市及周边地区矿产资源丰富,仅与我市相距20千米的凤阳县境内,已探明的石英石、石灰石的储量均为100亿吨,其品位和储量位居华东之首。 我们在中国凯盛国际工程公司蚌埠玻璃工业设计研究院、华光玻璃建材集团、安徽省蚌埠华益导电膜玻璃有限公司、海螺水泥集团蚌埠分厂及临近的凤阳县、宿州市、淮南市的建材企业以及有关行政职能部门调研都得到相似信息,他们对掌握一定专业知识,具有较强操作能力的无机非金属材料技术人才,均有相当大的需求。 2.良好的产业基础、丰富的优质石英砂资源、便捷通畅的交通运输条件,为蚌埠市玻璃产业的快速健康发展创造了先决条件。经过多年的发展,蚌埠市玻璃产业无论在产业规模上还是产品质量上都得到了较大提升,目前形成了以华光集团为龙头的独具特色的玻璃工业体系,已成为3大支柱产业之一。我市现有规模以上玻璃企业11家,2004年资产总额达17亿元,实现销售收入突破7亿元。 从2004年6月起,蚌埠玻璃工业设计研究院受市发展和计划委员会委托,着手编制《蚌埠市玻璃产业发展规划》,2004年12月初编制完成。玻璃产业发展规划共包含50个项目,总投资119.7亿元,项目建成后,可新增销售收入136亿元,利税约42.6亿元。

材料概论

第二章 1 普通的混凝土中有几种相?请分别写出各种相的名称。若在其中加入钢筋,则钢筋起到什么作用?此时又有几种相? 答:3相;砂子、碎石、水泥浆;增强作用;4。 2 比较晶体与非晶体的结构特性,了解晶体的结构不完整性有哪些类型?并区分三大材料的结构类型与比较其各自的特点。 答:晶体结构的基本特征是原子或分子在三维空间呈周期性的规则而有序地排列,即存在长程的几何有序。 结构的不完整性:实际上,极大多数晶体都有大量的与理想原子排列的轻度偏离存在,依据其几何形状而分为点缺陷、线缺陷和面缺陷。 金属材料的结构:一般都是晶体。金属键无方向性,晶体结构具有最致密的堆积方式。体心立方、面心立方和紧密堆积六方结构,金刚石结构。 无机非金属材料的结构:金刚石型结构;硅酸盐结构; 玻璃结构; 团簇及纳米材料 高分子材料的结构包括高分子链的结构及聚集态结构 各自的特点: 3 高分子材料其聚集态结构可分为:晶态和非晶态(无定形)两种,与普通的晶态和非晶态结构比较有什么特点? 答:晶态有序程度远小于小分子晶态,但非晶态的有序程度大于小分子物质液态。 4 如何区分本征半导体与非本征半导体材料? 答:本征半导体:材料的电导率取决于电子-空穴对的数量和温度的材料。 非本征半导体:通过加入杂质即掺杂剂而制备的半导体,杂质的多少决定了电荷载流子 的数量。

5 极大多数晶体实际上都存在有种种与理想原子排列的轻度偏离,依据结构不完整性的几何形状可分为哪几种缺陷类型?按溶质原子在溶剂晶格中的位置不同,固溶体可分成哪几种类型? 答:依据其几何形状而分为点缺陷、线缺陷和面缺陷。 按溶质原子在溶剂晶格中的位置不同,固溶体可分成: 置换型固溶体(或称取代型):溶剂A晶格中的原子被溶质B的原子取代所形成的固溶体。原子A同B的大小要大致相同。 填隙型固溶体(也称间隙型):在溶剂A的晶格间隙内有溶质B的原子填入(溶入)所形成的固溶体。B原子必须是充分小的,如C和N等是典型的溶质原子。 6 比较热塑性高分子材料和热固性高分子材料的结构特点,并说明由于结构的不同对其性能的影响。 答:线型结构的高分子化合物:在适当的溶剂中可溶胀or溶解,升高温度时则软化、流动,∴易加工,可反复加工使用,并具有良好的弹性和塑性。(热塑性) 交联网状结构高分子:性能特点:较好的耐热性、难溶剂性、尺寸稳定性和机械强度,但弹性、塑性低,脆性大。∴不能进行塑性加工,成型加工只能在网状结构形成前进行,材料不能反复加工使用。(热固性) 7 聚二甲基硅氧烷的结构式为?其柔顺性怎么样? 答:非常好 8 何为材料的力学强度?影响力学强度的主要因素有哪些?按作用力的方式不同,材料的力学强度可分为哪几种强度? 答:材料在载荷作用下抵抗明显的塑性变形或破坏的最大能力。 通常材料中缺陷越少、分子间键合强度越大,材料的强度也越高。 按作用力的方式不同,可分为:拉伸强度;压缩强度;弯曲强度;冲击强度;疲劳强度等。 9 区分高分子材料的大分子之间的相互作用中的主价力和次主价力,比较两者对其性能的影响。 答:大分子链中原子间、链节间的相互作用是强大的共价键这种结合力称为主价力,大小取决于链的化学组成→键长和键能。对性能,特别是熔点、强度等有重要影响。 大分子之间的结合力是范德华力和氢键,称为次价力,比主价力小得多(只有主价力1-10%),但对高分子化合物的性能影响很大。如乙烯呈气态,而聚乙烯呈固态并有相当强度,∵后者的分子间力较前者大得多。 10 按电阻率的大小,可将材料分成哪几类?何谓超导性? 答:按电阻率的大小,可将材料分:超导体;导体;半导体;绝缘体。 超导性:一旦T< Tc(超导体临界T)时,电阻率就跃变为零。Tc依赖于作用于导体的磁场强度。

无机非金属材料总结(完整版)

第一章 1. 粘土的定义:是一种颜色多样,细分散的多种含水铝硅酸盐矿物的混合体。 粘土是自然界中硅酸盐岩石(主要是长石)经过长期风化作用而形成的一种疏松的或呈胶状致密的土状或致密块状矿物,是多种微细矿物和杂质的混合体。 2. 粘土的成因:各种富含硅酸盐矿物的岩石经风化,水解,热液蚀变等作用可变为粘土。一次粘土(原生粘土)风化残积型:母岩风化后残留在原地所形成的粘土。(深层的岩浆岩(花岗岩、伟晶岩、长石岩)在原产地风化后即残留在原地,多成为优质高岭土的矿床,一般称为一次粘土)。 二次粘土(次生粘土)沉积型:风化了的粘土矿物借雨水或风力的迁移作用搬离母岩后,在低洼地方沉积而成的矿床,成为二次粘土。 一次粘土与二次粘土的区别: 分类化学组成耐火度成型性 一次粘土较纯较高塑性低 二次粘土杂质含量高较低塑性高 3. 高岭土、蒙脱土的结构特点: 高岭土晶体结构式:Al4[Si4O10](OH)8,1:1型层状结构硅酸盐,Si-O四面体层和Al-(O,OH)八面体层通过共用氧原子联系成双层结构,构成结构单元层。层间以氢键相连,结合力较小,所以晶体解理完全并缺乏膨胀性。 蒙脱土(叶蜡石)是2:1型层状结构,两端[SiO4]四面体,中间夹一个[AlO6]八面体,构成单元层。单元层间靠氧相连,结合力较小,水分子及其它极性分子易进入晶层中间形成层间水,层间水的数量是可变的。 4. 粘土的工艺特性:可塑性、结合性、离子交换性、触变性、收缩、烧结性。 1)可塑性:粘土—水系统形成泥团,在外力作用下泥团发生变形,形变过程中坯泥不开裂, 外力解除后,能维持形变,不因自重和振动再发生形变,这种现象称为可塑性。 表示方法:可塑性指数、可塑性指标 可塑性指数(w):W=W2-W1W降低——泥浆触变厚化度大,渗水性强,便于压滤榨泥。 W1塑限:粘土或(坯料)由粉末状态进入塑性状态时的含水量。 W2液限:粘土或(坯料)由粉末状态进入流动状态时的含水量。 塑限反映粘土被水润湿后,形成水化膜,使粘土颗粒能相对滑动而出现可塑性的含水量。 塑限高,表明粘土颗粒的水化膜厚,工作水分高,但干燥收缩也大。 液限反映粘土颗粒与水分子亲和力的大小。W2上升表明颗粒很细,在水中分散度大,不易干燥,湿坯强度低。 可塑性指标:在工作水分下,粘土(或坯料)受外力作用最初出现裂纹时应力与应变的乘积,也可以以这时的相应含水率表示。 反应粘土的成型性能:应力大,应变小——挤坯成型;应力小,应变大——旋坯成型根据粘土可塑指数或可塑指标分类: i.强塑性粘土:指数>15或指标>3.6 ii.中塑性粘土:指数7~15,指标2.5~3.6 iii.弱塑性粘土:指数l~7,指标<2.5 iv.非塑性粘土:指数<1。 2)结合性:粘土的结合性是指粘土能够结合非塑性原料而形成良好的可塑泥团,并且有一

无机非金属材料论文

无机非金属材料的研究进展及应用 刘康河北联合大学材料科学与工程学院 09材一 学号:200908010116 摘要:起初,无机非金属材料只包含传统的陶瓷、玻璃、水泥和耐火材料,随着科学和技术的发展,又将半导体、先进陶瓷结构、功能陶瓷、新型功能玻璃、人工晶体等纳入无机非金属材料领域。无机非金属材料的高硬度、低密度、耐高温、耐腐蚀、耐磨和优异的环保性能以及特殊的光声、电等性能,在航空航天、兵器、舰船等国防领域得到了越来越多的应用,如陶瓷基复合材料、结构陶瓷、特种功能陶瓷、人工晶体等已成为武器装备中不可或缺的关键材料。本文着重介绍了无机材料的研究进展和应用。并介绍了存在的问题以及解决方法。关键词:无机非金属材料、水泥、陶瓷、玻璃、其他材料 The research progress and use of inorganic non-metallic materials Abstract:At first, the traditional inorganic non-metallic materials only contain ceramics, glass, cement and refractories, as science and technology, in turn semiconductors, advanced structural ceramics, functional ceramics,new functional glass, new features, intraocular lens into the inorganic non-metallic materials area. Inorganic non-metallic materials of high hardness, low density, high temperature, corrosion, wear and excellent environmental performance, as well as special light acoustic, electric and other properties, in aerospace, weapons, ships, and defense fields has been increasing many applications such as ceramic matrix composites, structural ceramics, special functional ceramics, artificial crystals have become an indispensable key weapons material. This article focuses on the progress of inorganic materials and applications. And describes the problems and solutions. Key words: Inorganic non-metallic materials , ceramics ,glass,cement 引言:传统无机非金属材料,新型无机非金属材料和无机非金属基复合材料组成了庞大的无机非金属材料体系。其中以硅酸盐为基础的陶瓷、玻璃和水泥已经形成相当规模的产业,被广泛应用于工业、农业、国防和人们的生产生活中,成为国民经济的支柱产业之一。新型无机非金属材料因具有耐高温、耐腐蚀、高强度、多功能等多种优越性能,其中一些已在各个工业部门以及近几十年发展起来的空间技术、电子技术、激光技术、光电子技术、红外技术发展方面发挥了重要作用。因此,无机非金属材料的发展必将大大的促进现代科学技术的进步和人类文明程度的提高。本文将主要介绍:无机非金属材料的分匪类,无机非金属材料的地位(在材料中的地位、在国民经济中的地位),无机非金属材料的发展过程,无机非金属材料的应用,无机非金属材料企业的岗位设置,无机非金属材料的发展趋势以及无机非金属材料发展中遇到的问题。 一、二无机非金属材料的分类和地位材料一般分为无机材料和有机材料,无机材料中除金属以外的材料都是无机非金属材料。最早,无机非金属材料只包含传统的陶瓷、玻璃、水泥和耐火材料,随着科学和技术的发展,又将半导体、先进结构陶瓷、功能陶瓷、新型功能玻璃、人工晶体、非晶态材料、碳素材料等都纳入到无机非金属材料领域中。 无机非金属材料品种繁多,新材料层出不穷,在国民经济和国防建设中的应用极其广泛。由于无机非金属材料学科具有多学科交

无机非金属材料概论

授课教师命题教师或命题负责人签字付玉彬 年月日 院系负责人签 字年月日 共3页第2页

中国海洋大学2007-2008学年第2学期期末考试试卷

材料科学与工程院《无机非金属材料概论》课程试题(A卷) 共3页第3页 四.名词解释(每题2分,共12分) 1,材料硬度;答:用来表示固体材料软硬程度的力学性能指标,表示材料表面局部区域抵抗压缩和断裂的能力。 2,高温蠕变性;答:无机非金属材料在常温下呈脆性,但在高温下承受小于其极限强度的某一恒定荷重时,会产生塑性变形。变形量随时间增长而逐渐增加,甚至会使材料破坏,此即高温蠕变。 3,耐火度;答:材料在高温下达到特定软化程度时的温度。 4,热震稳定性(热稳定性);答:指材料承受温度的急剧变化活在一定温度范围内冷热交替变化而不致破坏的能力。 5,水玻璃的模数;答:分子式中二氧化硅与氧化钠活氧化钾摩尔数的比值 6,混练;答:是两种以上不均匀物料的成分与颗粒度均匀化,促进颗粒接触和塑化的操作过程。 五.简答与例举题(每题3分,共18分) 1,简要比较玻璃态结构的微晶学说和不规则网络学说,并概括其结构特点。 答微晶学说认为,玻璃是由无数微晶体组成,晶子是具有变形晶格的有序排列区域,分布在无定形介质中,从“晶子”到无定形部分是逐渐过度的,两者无明显界限。 它强调玻璃的微观不均匀性、不连续性和有序性;不规则网络学说则认为,玻璃是由硅氧四面体为结构单元的三度空间网络所组成,,但其排序不像晶体那样有序,而是完全无规则的,缺乏对称性与周期性的重复,它主要强调玻璃结构的连续性、无序性和均匀性。 2,简述多晶材料中玻璃相的作用和分布形式。 作用:1,填充气孔与空隙,把多晶材料内松散的晶粒结合在一起,降低烧成温度, 3, 举例说明如何克服无机非金属材料的脆性,改善韧性,提高强度。

无机非金属材料的现状与前景

无机非金属材料的现状与前景 【摘要】无机非金属材料是以某些元素的氧化物、碳化物、氮化物、卤素化合物、硼化物以及硅酸盐、铝酸盐、磷酸盐、硼酸盐等物质组成的材料。是除有机高分子材料和金属材料以外的所有材料的统称。在材料学飞速发展的今天,无机非金属材料有这广阔的应用前景和良好的就业形势。 【关键字】无机非金属材料方向前景智能 1. 无机非金属材料的特点及应用 无机非金属材料(inorganic nonmetallic materials)是以某些元素的氧化物、碳化物、氮化物、卤素化合物、硼化物以及硅酸盐、铝酸盐、磷酸盐、硼酸盐等物质组成的材料。是除有机高分子材料和金属材料以外的所有材料的统称。无机非金属材料的提法是20世纪40年代以后,随着现代科学技术的发展从传统的硅酸盐材料演变而来的。无机非金属材料是与有机高分子材料和金属材料并列的三大材料之一。 在晶体结构上,无机非金属的晶体结构远比金属复杂,并且没有自由的电子。具有比金属键和纯共价键更强的离子键和混合键。这种化学键所特有的高键能、高键强赋予这一大类材料以高熔点、高硬度、耐腐蚀、耐磨损、高强度和良好的抗氧化性等基本属性,以及宽广的导电性、隔热性、透光性及良好的铁电性、铁磁性和压电性。 无机非金属材料品种和名目极其繁多,用途各异,因此,还没有一个统一而完善的分类方法。通常把它们分为普通的(传统的)和先进的(新型的)无机非金属材料两大类。 普通无机非金属材料的特点是:耐压强度高、硬度大、耐高温、抗腐蚀。此外,水泥在胶凝性能上,玻璃在光学性能上,陶瓷在耐蚀、介电性能上,耐火材料在防热隔热性能上都有其优异的特性,为金属材料和高分子材料所不及。但与金属材料相比,它抗断强度低、缺少延展性,属于脆性材料。与高分子材料相比,密度较大,制造工艺较复杂。

济南大学无机非金属材料工艺性能与测试期末复习重点.doc

材料工艺性能与实验期末复习重点 1.火山灰反应:材料木身不只备水硬性,但是在碱性条件下,其水硬性能够被激发,发生 水化反应产生强度。 2.当硅酸盐水泥混凝土建筑工程遇到硫酸盐侵蚀的条件,应如何调整? 答:⑴减少熟料中的GA的含量; ⑵增加活性混合才掺量,减少水化产物中03(014)2的含量; ⑶增加水泥细度,提高水泥混凝土的致密度; ⑷使用抗硫酸盐水泥或硫铝酸盐水泥。 3.水泥的三个率值:石灰石饱和系数、硅率、铝率。 IM铝率乂称铁率,其数学表达式为:IM = Al2O3/Fe2O3铝率表示熟料中氧化铝与氧化铁含量的质量比,也表示熟料熔剂矿物中铝酸三钙与铁铝酸四钙的比例。 硅率表示熟料中氧化硅含量氧化铝、氧化铁之和的质量比。(表示熟料中硅酸盐矿物 与熔剂矿物的比例。)SM=———— ^2°3 + Fe2°3 K H =CaO-' 65Al:O r035Fe A石灰饱和系数KH是熟料中全部氧化硅生成硅酸钙 2.8S Z O2 (C3S + C25 )所需的氧化钙量与全部二氧化硅理论上全部生成硅酸三钙所需的氧化钙含量的比值。(即KH表熟料中二氧化硅被氧化钙饱和形成硅酸三钙的程度. 4.碳酸钙滴定值的测定意义及测定原理: (1)测定原理:水泥生料中所有的碳酸盐(包括碳酸钙、碳酸镁)均能与标准盐酸溶液作用,生成相应的盐与碳酸(又分解为(:02与1420),然后用NaOH标准溶液滴定过剩的盐酸, 根据消耗XaOH标准溶液的体积毫升数与浓度、计算生料中的碳酸钙的滴定值。 ⑵测定意义:①水泥生料的主耍成分是石灰石,提供所需的CaO量,以确保熟料中形成足够 的C3S;②控制生料中CaO含量,亦即控制KH;③控制生料成分的均匀性;④是对生料质量控 制的主要项目之一,可以很好地控制水泥的连续化生产。。 5.游离氧化钙:游离氧化钙是指熟料中没有以化合状态存在而是以游离状态存在的氧化钙,又称游离石灰(f-CaO)o 6.为什么过量的游离氧化钙会引起水泥安定性不良? 答:游离氧化钙水化很慢,在水泥浆体硬化后体积继续膨胀,造成硬化水泥局部膨胀应力。因而若游离氧化钙过量,会使水泥的强度下降,造成水泥的安定性不良。 7.为什么过量的游离三氧化硫会引起水泥的安定性不良? 答:水泥熟料在粉磨过程中,必须加入适量的石膏起到缓凝作用,石膏和C3A反应生成钙矶石,包裹在C3A表面,阻止了快速水化和闪凝,AFt (钙矾石)形成需要大量结晶水, 如果水泥中含有过量的S03,水化后会有该反应,在硬化后的水泥中产生针棒状的Aft 晶体, 造成水泥体积膨胀,从而造成水泥安定性不良。

无机非金属论文

无机非金属材料期末论文

建筑玻璃 吴佳隆 (14级新能源1班学号1405201030) 摘要: 2 1世纪是建筑玻璃高度发展的时期,同时也是高质变的时期,它不再是简单的钢化、夹胶、中空玻璃。下面我将举例阐述其在建筑中的应用或使用的基本要求及选用原则及建筑玻璃的生产、运输、储存等的知识和技术 玻璃的通透及化学稳定性非常好,是建筑物的主要材料之一,但由于它脆性高,易碎,故很难满足某些建筑物特殊功能上的需求。不过,它可通过与其它材料进行复合而达到特殊功能的需求,比如防弹、防爆、防盗、防飓风、抗压、隔音、变色、调光等功能的需求。这样既能利用玻璃的通透性特点,也能达到建筑玻璃特殊功能的需求。由于这些新材料的应用,给玻璃赋予了更神奇的特性。如:S G P 膜的防爆玻璃、防弹玻璃、调光玻璃、S G X 的装饰玻璃、太阳能玻璃等等。 关键词:低辐射中空玻璃透明钢化建筑玻璃 P V B 夹层玻璃保温玻璃 O c e a n G r e y 新型玻璃夹层夹层玻璃中空玻璃镀膜玻璃 低辐射中空玻璃 目前,国际上公认最为节能的玻璃就是低辐射中空玻璃。使用这种玻璃,夏季可以大大减少空调的启动时间。我们发现,在炎热的夏季,如果使用普通单层玻璃,大约半个小时就要重新启动空调,否则室内会酷热难当。而使用新型节能玻璃后,室内的温度可以长期保持舒适的温度,时问可以达到3 个小时左右,在夏季的夜晚,由于外界气温是缓慢下降的,所以保温的时间可以更长,基本上可以一觉睡到天亮,也不用再开空调,从而降低了“空调病”发生的可能性,也使得空调的开启时间大大缩短,既节省能源,又延长了空调的使用寿命。 透明钢化建筑玻璃 透明钢化建筑玻璃集防火、耐冲击、防紫外线等多功能为一体.据介绍,它是采用多层复合工艺,在两层玻璃之问夹入夹层硅酸、透明防火涂料层、可有效遮断紫外线且能透过可见光线的透明聚酯薄膜和导电性真空镀膜层而制成。按需要可再设置液晶感湿涂料层。与原防火玻璃相比,该产品不会损害透明度;透过玻璃板与防火涂料层的复合,可调节耐热性;遭遇火灾时,火焰热接触防火涂料层,涂料形成气绝层,阻止火焰,发挥耐热防火作用;多层复合具有钢化增强作用,缓和并抗冲击,防止

高一化学人教版必修第二册 第五章 第三节 无机非金属材料

无机非金属材料 核心知识点一: 一、硅酸盐材料 硅酸盐是由盐、氧和金属组成的化合物的总称,在自然界分布极广。硅酸盐是一大类结构复杂的固态物质,大多不溶于水,化学性质很稳定。 1. 硅酸 (1)物理性质 不溶于水、无色透明、胶状(硅胶)。 硅胶多孔,吸附水分能力强,常用作实验室和袋装食品、瓶装药品等的干燥剂,也可以用催化剂的载体。 (2)化学性质 ①弱酸性:所以在与碱反应时只能与强碱反应

H2SiO3 + 2NaOH=Na2SiO3 + H2O H2SiO3 + 2OH-=SiO32-+ 2H2O 比碳酸酸性弱:Na2SiO3+CO2+H2O=Na2CO3+ H2SiO3 ②硅酸的热稳定性较弱,受热易分解为SiO2和水:H2SiO3H2O+SiO2 (3)制备方法 由于SiO2不溶于水,所以硅酸只能用间接的方法制取,一般用可溶性硅酸盐+酸制得。 Na2SiO3 + 2HCl=2NaCl + H2SiO3 ↓ SiO32-+ 2H+=H2SiO3 ↓ 【注意】①硅酸不溶于水,不能用SiO2与水反应制取硅酸 ②硅酸的酸性比碳酸的酸性还弱,所以往可溶性硅酸盐溶液中通入CO2也可以制取硅酸: Na2SiO3+CO2+H2O=Na2CO3+H2SiO3 ↓ SiO32-+CO2+H2O=CO32-+H2SiO3 ↓ ③如前所述, SiO2+Na2CO3Na2SiO3+CO2↑,该反应在高温条件下进行,有利于CO2从体系中挥发出来,而SiO2为高熔点固体,不能挥发,所以反应可以进行,符合难挥发性酸酐制取易挥发性酸酐的原理;而上述反应“Na2SiO3+CO2+H2O=Na2CO3+ H2SiO3↓”可以进行,是因为该反应是在溶液中进行的,符合复分解反应的原理,两者反应原理不矛盾【想一想】碳酸和硅酸的酸性比较 2. 硅酸钠 (1)物理性质:最简单的硅酸盐是硅酸钠(Na2SiO3),可溶于水,其水溶液俗称水玻璃,是制备硅胶和木材防火剂等的原料。 【注意】①硅酸钠溶液可用玻璃瓶盛装,但是不能用玻璃塞,应用橡胶塞或木塞。 ②玻璃中含有二氧化硅,盛放氢氟酸不用玻璃瓶而用塑料瓶。 (2)化学性质

无机非金属材料性能

无机材料光学性能 1、折射率定义,影响因素 介质对光的折射性质 光在真空和材料中的速度之比即为材料的绝对折射率。介质材料的折射率一般为大于1的正数。折射实质:介质密度不同 光通过时速度不懂 折射率的影响因素(1)构成材料元素的离子半径(离子半径+ 介电系数+ 折射率+)(2)材料的结构、晶型、非晶态(3)材料的内应力(4)同质异构体 温度+折射率- 2、散射本质:光波遇到不均匀结构产生次级波,与主波方向不一致,与主波合成出现干涉现象,使光偏离原来的方向,引起散射。 8、影响材料透光性的原因。影响材料散射的原因?晶体双折射对散射的影响? 吸收系数:材料的性质相关。反射系数:相对折射率、表面粗糙度相关 散射系数: 影响透光性的主要因素。影响材料散射的原因: (1)材料的宏观及显微缺陷:材料中的缺陷与主晶相不同,于是与主晶相具有相对折射率,此值越大,反射系数越大,散射因子也越大,散射系数变大。 (2)晶粒排列方向的影响:各向异性体,存在双折射。多晶无机材料,相邻晶粒之间的结晶取向不同,晶粒之间会产生折射率的差别,引起晶界处的反射与散射损失。影响多晶无机材料透光率的主要因素就是晶体的双折射率。 左晶粒的寻常光折射率n0与右晶粒的非寻常光折射率ne 两个晶粒相对折射率相同, n0/n0=1,无反射损失; n0/ne =1,S=0,K=0;n0/ne >1,S 、K 都较大(S 吸收系数K 散射因子) 应用:α-Al2O3晶体的n0=1.76,ne =1.768,若相邻晶粒的取向互相垂直,晶界面的反射系数为:m=(n0/ne-1)^2/(no/ne+1)^2 材料厚2mm ,晶粒平均直径为10μm ,理论晶界为200个,由于晶界的反射损失,剩余光强: 反射损失小 d >>λ时,S=3KV/4R, n 21=n0/ne =1.768/1.76≈1,K ≈0,S ≈0,折射损失小 (3)气孔引起的散射损失:所以气孔引起的反射、散射损失比杂质、不等向晶粒排列等因素引起的损失大。气孔引起的散射损失与气孔的直径有关。 应用:改善烧结工艺(热等静压烧结、热压烧结),使气孔直径减小到0.01μm (小于可见光波长的1/3),气孔的含量0.63%, Al2O3陶瓷透光: 材料厚3mm : 9、材料吸收带边/带隙宽度的计算,光吸收的一般律及光散射的一般规律、公式计算? 材料厚度计算: α 取决于材料的性质和光的波长。 1. 一入射光以较小的入射角i 和折射角r 通过一透明玻璃板,若玻璃对光的衰减可忽略不计,试证明:透过后的光强为(1-m)2、 W ,W ′,W ′′分别为单位间内通过单位面积的入射光、反射光和折射光的能量流。 反射系数m = W ′/W 透射系数T :W ′′/W=1-m=1- W ′/W 621014.51760.1/768.11760.1/768.1-?=??? ??+-=m 0 2000%897.99)1(I m I =-())(0032.0276.1176.1106.00063.0)10005.0(322132122243334222434---=??? ? ??+-????=???? ??+-=mm n n V R S πλπ0 030032.00%99.099.0I I e I I ===?-

无机非金属材料专业材料概论英语词汇

alloy 合金atomic-scale architecture 原子尺度结构(构造)brittle 脆性的 ceramic 陶瓷composite 复合材料concrete 混凝土conductor? 导体crystalline? 晶态的devitrified 反玻璃化的(晶化的) ductility (可)延(展)性,可锻性electronic and magnetic material? 电子和磁性材料element 元素fiberglass 玻璃钢 glass 玻璃glass-ceramic 玻璃陶瓷/微晶玻璃insulator 绝缘体materials science and engineering 材料科学与工程 materials selection 材料选择metallic 金属的microcircuitry 微电路microscopic-scale architecture 微观尺度结构(构造)noncrystalline 非晶态的nonmetallic 非金属的oxide 氧化物periodic table 周期表plastic 塑性的、塑料polyethylene 聚乙烯polymer 聚合物 property 性能(质)refractory 耐火材料、耐火的semiconductor 半导体silica 石英、二氧化硅silicate 硅酸盐silicon 硅 steel 钢structural material 结构材料wood 木材 Chapter 7 aluminum alloy 铝合金gray iron 灰口铁amorphous metal 无定形金属high-alloy steel 高合金钢austenitic stainless steel 奥氏体不锈钢high-strength low-alloy steel 高强度低合金钢Brinell hardness number 布氏硬度值Hooke’s law 胡克定律carbon steel 碳钢 impact energy 冲击能cast iron 铸铁lead alloy 铅合金Charpy test Charpy试验low-alloy steel 低合金钢 cold working 冷作加工lower yield point 屈服点下限copper alloy 铜合金magnesium alloy 镁合金creep curve 蠕变曲线 malleable iron 可锻铸铁primary stage 第一(初期)阶段martensitic stainless steel 马氏体不锈钢secondary stage 第二阶段 modulus of elasticity 弹性模量tertiary(final)? stage 第三(最后)阶段modulus of rigidity 刚性模量 dislocation climb 位错攀(爬)移nickel alloy 镍合金ductile iron 球墨铸铁nickel-aluminum superalloy 镍铝超合金 ductile-to-brittle transition temperature 韧性-脆性转变温度nonferrous alloy 非铁合金ductility (可)延(展)性,可锻性 plastic deformation 塑性变形elastic deformation 弹性变形Poission’s ratio 泊松比engineering strain 工程应变 precious metal 贵金属engineering stress 工程应力precipitation-hardened stainless steel 沉淀(脱溶)硬化不锈钢fatigue curve 疲劳曲线rapidly solidified alloy 速凝合金/快速固化合金fatigue strength (endurance limit) 疲劳强度(耐久极限)refractory? metal 耐火(高温)金属 ferritic stainless steel 铁素体不锈钢Rockwell hardness 洛氏硬度ferrous alloy 铁基合金shear modulus 剪(切)模量 fracture mechanics 断裂机制shear strain 剪(切)应变fracture toughness 断裂韧性shear stress 剪(切)应力 gage length 标距(长度),计量长度,有效长度solution hardening 固溶强化galvanization 电镀,镀锌steel 钢 strain hardening 应变强化white iron 白铁,白口铁superalloy 超合金wrought alloy 可锻(锻造、轧制)合金tensile strength 拉伸强度yield point 屈服点titanium alloy 钛合金yield strength 屈服强度tool steel 工具钢Young’s modulus 杨氏模量toughness 韧性 zinc alloy 锌合金upper yield point 屈服点上限 Chapter 8 annealing point 退火点linear coefficient of thermal expansion线性热膨胀系数refractory 耐火材料borosilicate glass 硼硅酸盐玻璃expansion 膨胀silicate 硅酸盐brittle fracture 脆性断裂magnetic ceramic 磁性陶瓷silicate glass 硅酸盐玻璃clay 粘土 melting range 熔化(温度)范围soda-lime silica glass 钠钙硅酸盐玻璃color 颜色modulus of rupture 断裂模量softening point 软化点cosine law 余弦定律network former 网络形成体specular reflection 镜面反射creep 蠕变netwrok modifier 网络修饰体/网络外体 static fatigue 静态疲劳crystalline ceramic 晶态陶瓷nonoxide ceramic 非氧化物陶瓷structural clay product 粘土类结构制品 diffuse reflection 漫反射nonsilicate glass 非硅酸盐玻璃surface gloss 表面光泽E-glass 电子玻璃(E玻璃) nonsilicate oxide ceramic 非硅酸盐氧化物陶瓷tempered glass 钢化玻璃electronic ceramic 电子陶瓷nuclear ceramic 核用陶瓷 thermal conductivity 热传导率enamel 搪瓷nucleate 成(形)核thermal shock 热震Fourier’s law 傅立叶定律Opacity 乳浊transformation toughening 相变增韧fracture toughness 断裂韧性optical property 光学性质translucency 半透明 Fresnel’s formula Fresnel公式partially stabilized zirconia ??部分稳定氧化锆transparency 透明glass 玻璃polar diagram 极坐标图viscosity 粘度glass-ceramic 玻璃陶瓷/微晶玻璃pottery 陶器(制造术)viscous deformation 粘性变形 glass transition temperature 玻璃转变温度pure oxide 纯氧化物vitreous silica 无定形二氧化硅/石英玻璃glaze 釉 reflectance 反射(率)whiteware 白瓷Griffith crack model Griffith裂纹模型refractive index 折射率working range 工作(温度)范围intermediate 中间体/中间的

相关文档
最新文档