曝气器设计

曝气器设计
曝气器设计

XX建设标准化协会标准

鼓风曝气系统设计规程Design standard of aeration blowing system

CECS 97 : 97

主编单位:XX建筑工程学院

审查单位:XX建设标准化协会工业给水排水委员会批准日期:1997年12月30日

前言

现标准《鼓风曝气系统设计规程》CECS 97 :97为XX建设标准化协会标准,推荐给有关单位使用。在使用过程中,请将意见及有关资料寄交XX和平街北口中国XX工程公司XX建设标准化协会工业给水排水委员会(邮编:100029),以便修订时参考。

本规程主编单位:XX建筑工程学院

主要起草人:XX、XX

XX建设标准化协会

1997年12月30日

1 总则

1.0.1 为使生物处理曝气系统设计满足工程建设需要,特制定本规程。

1.0.2 本规程包括曝气器、供风管道、风机的选型及机房设计。

1.0.3 本规程适用于新建、扩建、改建的城市污水处理工程或工业污水处理工

程中的生物处理鼓风曝气系统的设计计算。

1.0.4 鼓风曝气系统设计除按本规程执行外,尚应符合现行有关的国家标准的规

定。

2 术语

2.0.1 曝气器aerator

用于水中充氧兼搅拌的基本器具或设备。

2.0.2 微孔曝气器fine bubble aerator

空气通过多孔介质,在水中产生气泡直径小于3mm的高效曝气器。

2.0.3 中大气泡曝气器middle and large air bubble aerator

空气通过曝气器在水中产生气泡直径大于3mm以上的曝气器。

2.0.4 可张中、微孔曝气器openable middle and fine bubble aerator

空气通过具有弹性材质的微孔曝气器或软管时,其上孔缝张开,停止供气时孔缝闭合的一种曝气器。

2.0.5 双环伞型曝气器double rings umbrella aerator

一种具有双环类似伞状的,在水中产生中大气泡的曝气器。

2.0.6 曝气器标准状态充氧性能oxygenc transfer performance

指单个曝气器在大气压力为0.1Mpa、水温为20℃时,对清水的充氧性能。

2.0.7 鼓风曝气系统aeration blowing system

指由风机、管路、曝气器、除尘器为主组成的系统。

3 鼓风曝气器

3.1 一般规定

3.1.1 根据污水性质、环境要求、管理水平、经济核算,工程设计中可选用鼓

风曝气、机械表面曝气、射流曝气等方式,一般宜选用鼓风曝气式。

3.1.2 选用鼓风曝气系统时曝气器应符合下列要求:

1、在某一特定曝气条件下,既能满足曝气池污水需氧要求,又能达到混

合搅拌,池内无沉淀的要求;

2、曝气器既要有较高充氧性能,又应有较强混合搅拌能力。同时还应有

不易堵塞、耐腐蚀、坚固、布气均匀、操作管理及维修简便,成本低、

阻力小和寿命长等性能;

3、选用曝气器所组成的鼓风曝气系统,从整体上应具有节约能量、组成

简单、安装及维修管理方便,易于排除故障等优点。

3.1.3 鼓风曝气器分为微孔曝气器及中大气泡曝气器。大、中型城市污水处理

厂宜选用微孔曝气器,接触曝气器氧化法宜选用中大气泡曝气器。

3.1.4 工程中选用的曝气器,应有该曝气器在不同服务面积、不同风量、不同

曝气水深时标准状态下的充氧性能曲线及底部流速曲线。

3.1.5 鼓风曝气器可满池布置,也可在池侧布置。推流式曝气池的曝气器宜沿

池长方向渐减布置。

3.2 微孔曝气器

3.2.1 工程中常用微孔曝气器有:

1、可张中、微孔曝气器;

2、平板式微孔曝气器;

3、钟罩式微孔曝气器;

4、聚乙烯棒状微孔曝气器。

3.2.2 可张中、微孔曝气器技术性能应符合《污水处理用可张中、微孔曝气器》

CJ/T3015.4-96的要求,其充氧性能见附录A.0.1。

3.2.3 钟罩式、平板式微孔曝气器的技术性能应符合《污水处理用微孔曝气器》

CJ/T3015.1-93 的要求,其充氧性能见附录A.0.2。

3.2.4 在不连续曝气的污水生物处理中,当使用微孔曝气器时,应采用可张中、

微孔曝气器。

3.3 中大气泡曝气器

3.3.1 工程中常用的中大气泡曝气器有:

1、双环伞型曝气器;

2、穿孔散流曝气器;

3、网状膜中微孔曝气器;

4、固定螺旋曝气器;

5、动态曝气器;

6、盆型曝气器;

7、穿孔管曝气器。

3.3.2 双环伞型曝气器技术性能应符合《双环伞型曝气器》CJ/T3015.3-95 的

要求,其充氧性能见附录A.0.3,选用中大气泡曝气器时,宜选用双伞型曝气器。

3.3.3 选用固定螺旋曝气器时,曝气池水深不宜小于

4.0m,曝气池底部流速不

宜小于0.5m/s。

3.3.4 选用盆型曝气器时,曝气器启动阻力约为0.01Mpa,运行阻力约为

0.005Mpa。

3.3.5 选用穿孔管曝气器时,应根据污水性能确定孔径。一般宜为3-10mm。

3.4 曝气器数量计算

3.4.1 曝气池容积计算

曝气池容积可按下列方法之一计算:

1、按室外排水设计规范公式计算

详见《室外排水设计规范》GBJ14-87 第6.6.2条及第6.6.3条。

2、按下述公式计算 1) 污泥负荷

F W =K · L e (3.4.1-1) 2) 曝气池容积

w

w e i N F L L Q V ??-??=

1000)

(24 (3.4.1-2)

式中 F W – 曝气池的五日生物需氧量污泥负荷(kgBOD 5/kgMLSS ·d ); K -- BOD 5降解常数由试验确定(l/d ); L e – 曝气池出水五日生物需氧量(mg/L );

Q -- 曝气池的设计流量(m 3

/h );

L i -- 曝气池进水五日生物需氧量(mg/L ); V -- 曝气池的容积(m 3);

N W – 曝气池内混合液悬浮固体平均浓度(g/l )。 3.4.2 曝气池面积按下式计算

H

V

F = (3.4.2-1)

式中 F – 曝气池面积(m 2); H – 曝气池水深(h );

V – 由3.4.1算得的曝气池容积(m 3)。 3.4.3 曝气池污水需氧量应按下列方法之一计算: 1、按室外排水设计规范公式计算

详见《室外排水设计规范》GBJ14-87 第6.7.2条。 2、按下述公式计算 O 2=24·Q ·(L i -L e )·a ’ + V ·N W ·b ’ (3.4.3-1) 式中 O 2 – 曝气池污水需氧量(kgO2/d );

a ’ -- BOD5降解需氧量(kgO2/kgBOD5);

b ’ -- 活性污泥内源呼吸耗氧量(kgO2/kgMLSS ·d ); a’、b’ 宜通过试验确定,也可参照附录B.0.1。 3.4.4 曝气池标准状态下污水需氧量按下式计算 )

(024.1)(20

20

2t T s T s c C C P C O O -??????=

-ρβα (3.4.4-1) 式中 O C – 标准状态下曝气池污水需氧量(kgO 2/d ); O 2 – 由3.4.3算得的曝气池污水需氧量(kgO 2/d ); C S20-- 20 C 蒸馏水饱和溶解氧值9.17〈mgO 2/L 〉; α – 曝气设备在污水与清水中氧总转移系数之比值; β – 污水与清水中饱和溶解氧浓度之比值;

α、β值通过试验确定,也可参照附录B.0.2选用; 1.024—温度修正系数;

T – 曝气池内水温,应按夏季温度考虑( C );

C S (T )-- 水温T C 时蒸馏水中饱和溶解氧值(mg O 2/L 〉; Ct – 曝气池正常运行中应维持的溶解氧浓度值(mg O 2/L 〉; ρ – 不同地区气压修正系数

Pa

Pa 510013.1)

?=

所在地区实际气压(ρ (3.4.4-2)

P – 压力修正系数,按下式计算

42

206.0t b O

P P +=

(3.4.4-3) 式中 P b – 空气释放点处绝对压力,按下式计算

100

H

P P a b +=(Mpa ); (3.4.4-4)

式中 P a – 当地大气压力(Mpa );

H – 曝气池空气释放点距水面高度(m );

O t – 空气逸出池面时气体中氧的百分数,按下式计算。 )

1(2179100

)1(21εε-?+?-?=

t O (3.4.4-5)

式中 ε – 曝气池氧的利用率,以%计。

(由附录A.0.1,A.0.2,A.0.3中查得)。 3.4.5 风机总供风量按下式计算

ε

?=28.0c

O Q (3.4.5-1)

式中 Q – 风机总供风量(m 3/d );

0.28 – 标准状态(0.1Mpa ,20 C )下每立方米空气中含氧量 (kgO 2/m 3); O

c 、ε—见3.4.4。 3.4.6 曝气器数量计算

曝气器所需数量,应从供氧、服务面积两方面计算。

1、 按供氧能力计算曝气器数量

c

c

c q O h ?=

24 (3.4.6-1) 式中 h 1 — 按供氧能力所需曝气器个数(个);

O c – 由式(3.4.4-1)所得曝气器污水标准状态下生物处理需氧量 (kgO 2/d );

q c – 曝气器标准状态下,与曝气器工作条件接近时的供氧能力 (kgO 2/h ·个 );

(见附录A.0.1,A.0.3,A.0.3)

2、 按服务面积计算曝气器数量

f

F

h =

2 (3.4.7-1) 式中 h 2 – 按服务面积所需曝气器个数(个); F – 由式(3.4.2-1)所得曝气器面积(m 2); f – 单个曝气器服务面积(m 2); (见附录A.0.1,A.0.3,A.0.3)

当算得h1与h2二者相差较大时,应经调整f或qc重复上述计算,直至二者接近时为止。

3.5 曝气搅拌能力验算

3.5.1 为满足曝气池混合搅拌需要,曝气还应符合下列条件之一:

1、污水生物处理供风量立方米污水还不应小于3m3;

2、曝气池底部水流速不应小于0.25m/s。

4 供风管道及计算

4.1 供风管道一般规定

4.1.1 供风管道系指风机出口至曝气器的管道。设计中应尽可能减小管道局部

阻力损失,并使各曝气器处压力相等或接近。

4.1.2 大中型处理厂曝气池供风总干管应从鼓风机房引出两条供气管或采用环

状布置、或总干管上设气体分配罐,一组池设置一供风干管。

4.1.3 供风管路宜采用钢管,并应考虑温度补偿措施和管道防腐处理。

4.1.4 供风干管上应设置适量的伸缩节和固定支架。

4.1.5 供风管道应在最低点设置排除水份或油份的放泄口。

4.1.6 供风管道应设置排入大气的放风口,并应采取消声措施。

4.1.7 供风支、干管上应装有真空破坏阀,立管管顶应高出水面0.5m以上,管

路上所装阀门应设在水面之上。

4.2 微孔曝气器供风管路

4.2.1 水面以上供风干、支管可采用UPVC-FRP复合管(加强聚氯乙烯+2mm

玻璃布)或FRP管、钢管。水下供风支管也可采用加强聚氯乙烯UPVC 管。

4.2.2 供风管道为钢管时,必须对管道内进行严格防腐处理,管道外也宜做防

腐处理。管内防腐可采用厚δ=150μ的铝合金热喷涂或其它方法。

4.2.3 布气支管允许水平高度误差值±10mm。

4.2.4 微孔曝气器底盘与布气支管连接后,底盘平面与管轴线水平误差不应大

于5mm。

4.2.5 微孔曝气器固定支架应可调。调整后同一曝气池内曝气器盘面标高最大

误差不应大于5mm,两曝气池之间的曝气器盘面标高,最大误差不应大于10mm或按设计要求。

4.2.6 供风支管的间距应通过计算确定,但不宜小于0.5m。

4.2.7 为便于检修和更换曝气头,也可采用可提式微孔曝气器装置。

4.2.8 曝气支管末端应有排除气、水混合物之立管,管端伸出水面,管径不宜

小于5mm,支管与立管连接处孔洞直径以3-5mm为宜,管上设有阀门。

4.2.9 微孔曝气器的固定支架,应有足够的锚固力,与池底板进行锚固应考虑

所受浮力。

4.2.10 微孔曝气器安装前,应将供风干管、支管等所有管道吹扫干净。

4.2.11 可张中、微孔曝气软管的安装,应按《污水处理用可张中、微孔曝气器》

CJ/T3415.4-96规定和产品技术要求进行。

4.3 中大气泡曝气器供风管路

4.3.1 每组曝气池的供风干管宜为环状布置。

4.3.2 池底供风支管应与池宽平行布置,曝气器可固定在支管上或悬吊于支管

下,或在供风支管两侧。固定螺旋曝气器应与池底固定。每根支管所带曝气器不宜太多,以不超过5个为宜。

4.3.3 供风立管应与池壁预埋件固定,供风支管应与池底预埋件固定。

4.4 供风管路计算

供风管路计算,可参照《给水排水设计手册》第五册。

5 风机与机房

5.1 风机

5.1.1 国内目前常用风机

1 罗茨鼓风机

1)TS系列低噪声罗茨鼓风机

2)R系列罗茨鼓风机

3)L系列罗茨鼓风机

2 离心鼓风机

1)高速单级污水处理离心鼓风机

2)C系列污水处理离心鼓风机

5.1.2 鼓风机应选用高效、节能、使用方便、运行安全,噪声低、易维护管理

的机型,可选用离心式单级鼓风机。小规模污水处理厂中,也可选用罗茨鼓风机。

5.1.3 罗茨风机宜选用TS系列低噪声风机和R系列罗茨鼓风机。

5.1.4 罗茨风机宜选用同一型号,当风量变化较大时,应考虑风机大小搭配,

但型号不宜过多。

5.1.5 鼓风机的进气温度应小于40 C。气体中固体微粒含量,罗茨风机不应大

于100mg/m3,离心式鼓风机不应大于10mg/m3。微粒最大尺寸不应大于鼓风机气缸内各相对运动部件的最小工作间隙之半。但超过上述规定时应对进入鼓风机的空气进行除尘。

5.1.6 选用离心式鼓风机时,应详细核算各种工况条件下风机的工作点,尤其

是在冬季,不得接近风机的喘振区和使电机超载,还应考虑送风压力和空气温度的变化。

5.1.7 选用罗茨风机时,应设置风量调节装置。

5.1.8 鼓风机的设置台数,应根据总供风量,所需风压,选用风机单机性能曲

线及气温、污水量和负荷变化等综合确定。

5.1.9 风机总供风量,应按第(3.4.5-1)式计算,配置的风机其总容量(不包

括备用风机),不得小于设计所需风量的95%。

5.1. 10 风机的风压应按下式计算

H = h1+h2+h3+h4+Δh (5.1.10-1)

式中H –风机所需风压(Mpa);

h1–供风管道沿程阻力(Mpa);

h2–供风管道局部阻力(Mpa);

h3–曝气器空气释放点以上水静压(Mpa);

h4–曝气器阻力(Mpa);

Δh –富余水头Δh = 0.003-0.005(Mpa)。

其中:微孔曝气器h4≤0.004-0.005 (Mpa)

可张中、微孔曝气器h4≤0.003-0.0035(Mpa)

盆型中大气泡曝气器h4≤0.005-0.01 (Mpa)

其它中大气泡曝气器阻力可忽略不计。

5.1.11 备用风机可用33%-100%的备用率计算。大型污水处理厂宜选用低备用

率,小型污水处理厂宜选用高备用率。或者按工作鼓风机台数设置,小

于等于3台是,应设1台备用鼓风机,大于等于4台时,应设2台备用鼓风机。

5.2 空气除尘

5.2.1 用作鼓风曝气系统空气除尘的设施,按其空气净化标准分为粗效(中效)、

高效两类。

5.2.2 应根据鼓风机产品本身和曝气器的要求,设置空气除尘设施。

5.2.3 对于钟罩、平板式等微孔曝气器,必须进行空气除尘。宜采用粗效—高

效顺序联合除尘,除尘后空气中固体微粒含量应小于15mg/1000m3。

5.2.4 选用静电除尘器时宜按下述数据进行设计:

1 压力损失小于0.001(Mpa);

2 通过设备的风速V< 2.0 (m/s);

3 去除固体微粒粒径d≥1μm气溶胶的去除率宜达90%-95%以上。

5.2.5 选用静电除尘器时,设计中还应设置上、下水管路及冲洗水预热和加压

设施,同时还应设置隔离网与具有联锁功能的安全门等防范措施。

5.2.6 对于其它曝气器的鼓风曝气系统,可采用粗效除尘器。

5.3 鼓风机房

5.3.1 污水处理厂采用鼓风曝气系统时,宜设置单独的风机房。也可根据情况

设置敞开式风机站,或采用密闭隔音结构风机房。机房宜布置在曝气池附近。

5.3.2 风机房内外的噪声,应符合《工业企业噪声控制设计规范》GBJ87-85的

规定。

5.3.3 机房内可设有值班室、配电室、工具室,对单级离心鼓风机房应设有冷

却或风冷却系统。

5.3.4 机房内值班室宜有单独出入口,宜用双层玻璃,并应有良好的隔声措施。

机房顶板及内墙应采用吸声效果较好的材料贴面。

5.3.5 机房内值班室应有必要的通讯手段和机房内主要设备工况的指示或报警

装置。当机房内不设值班室时,机房主要设备工况的指示或报警装置均应引进总值班室。

5.3.6 机房内应有排除积水的设施和承接风管最低点油、水排泄物的设施。

5.3.7 风机房内主要机组的布置和通道宽度应符合《室外排水设计规范》

GBJ14-87第4.3.4条要求。

5.3.8 风机房内起重设备,应根据风机最重部件或电动机的重量,按下列规定

选用:

1 起重量小于0.5 t的可采用固定吊钩或移动吊架;

2 起重量在0.5-1.0 t时,可采用手动单梁起重设备;

3 起重量在1.0-3.0 t时,可采用手动或电动单梁起重设备;

4 起重量在3.0 t以上时,可采用手动或电动单梁起重设备;

5 起吊高度大,吊运距离长或起吊次数多的风机房可适当提高起吊的机械

化水平。

5.3.9 需要在机房内检修设备时,应留有维修场所,起面积应根据最大设备或

部件的外形尺寸确定,并在周围设宽度不小于0.7m的通道和必要的隔音设施。

5.3.10 机房高度应遵守下列规定:

1 无吊车起重设备时,室内地面以上有效高度应不小于3.0m;

2 有吊车起重设备时,应保证吊起物体底部与所越过的物体的顶部有不

小于0.5m的净空。

3 有高压配电设备的房屋高度应根据电气设备外形尺寸及电器要求确

定。

5.3.11 设计机房进、出风管道时,应尽量平直,减少各种局部阻力损失。

5.3.12 风机房进风系统宜采用吸风塔和风道组合形式,进风塔顶部端宜设置耐

用的铝合金百叶窗。风道中中设置空气除尘器。在进风塔和风道折点处应设置空气整流板。

5.3.13 进风管道宜带有能自动启闭的安全门。除尘后的空气所经过的风道应进

行防尘处理。在地下水位较高或高温高湿地区,风道内壁应做防潮处理。

5.3.14 风机应有独立基础,并按最大荷载设计。风机与基础间应设隔振垫。5.3.15 机房内风机进、出风管宜敷设在地沟内,若在地面敷设时,应根据需要

设置跨越设施;若架空敷设时,不应跨越电器设备和阻碍通道,通行处架空管管底距地面不宜小于2.0m,且管道应做托架。

5.3.16 机房规模较大时,宜将风机和管道分上、下两层设置。上层安装机组,

下层安装进、出风管及旁通回流管。此时可取消进、出风管上的消音器。

5.3.17 风机与进、出风管间应装置避震喉,机房内进、出风管路与风机进、出

风管连接出,应设置弹性接头和必要的管支架。

5.3.18 离心式风机进风管路上,应设手动阀门,正常运行时处于常开状态。5.3.19 罗茨风机应按产品设置供机组启闭使用的旁通回流管路,其管径比出风

管管径小一号。

5.3.20 每台风机出风管道和旁通回流管道上宜设电动阀门及逆止阀,电动阀门

宜选用V型球阀或对夹式电动碟阀,逆止阀宜选用蝶式止回阀。

5.3.21 机房外供风管道宜埋地敷设,若在地面上宜包扎隔音材料。

5.3.22 机房内或外应设有风量、风压、风温等一次、二次仪表,供风管路上风

量仪宜用涡街式流量计。

5.3.23 鼓风机房空气管路设计应满足试车及允许范围内的风量、风压调节要

求。

5.3.24 应按机房操作人员配置必要的个人防护用具。

附录A 几种曝气器充氧性能

A.0.1 可张中、微孔曝气器

A.0.2 钟罩式微孔曝气器

(l/min)

0.149

图A.0.2-1 q c–q - f关系曲线q=1m3/h q=2m3/h

图A.0.2-2 ε- q - f 关系曲线

图A.0.2-3 E - q - f 关系曲线

A.0.3 双环伞型曝气器

图A.0.3-1 q c – q - f 关系曲线

图A.0.3-2 ε – q - f 关系曲线

图A.0.3-3 E –q - f关系曲线

图A.0.3 - 4 q c–q - f关系曲线

图A.0.3 - 5 ε–q - f关系曲线

图A.0.3 - 6 E –q - f关系曲线附录B 几种污水生物处理的a’、b’、α、β

B.0.1

B.0.2 几种污水充氧性能修正系数α、β值

附录C 用词和用词说明

C.0.1 为便于在执行本规范条文时区别对待,对要求严格程度不同的用词说明

如下:

1 表示很严格,非这样做不可的用词

正面词采用“必须”,反面词采用“严禁”。

2 表示严格,在正常情况下均应这样做的用词

正面词采用“应”,反面词采用“不应”或“不得”。

3 表示允许稍有选择,有条件许可时首先应这样做的用词

正面词采用“宜”,反面词采用“不宜”。

4 表示有选择,在一定条件下可以这样做的,采用“可”。

C.0.2 条文中指定应按其他有关标准执行的写法为:“应符合·的规定”或“应

按·执行”。

射流曝气器调研报告

射流曝气器 一射流曝气技术简介 1.射流器的结构 射流曝气系统的核心设备是射流器。射流器是利用射流紊动扩散作用来传递能量和质量的流体机械和混合反应设备,它由喷嘴、吸气室、喉管及扩散管等部件构成。图1是一个典型的单喷嘴射流器结构,也是废水生化处理中常用的曝气用射流器。 2.射流曝气的基本原理 射流器采用文丘里喷嘴,工作水泵出水通过射流器的喷嘴,随着喷嘴直径变小,液体以极高的速度从喷嘴喷射出来,高速流动的液体穿过吸气室进入喉管,在喉管形成局部真空,通过导气管吸入(或压入)的大量空气进人喉管后,在喷水压力的作用下被分割成大量微小的气泡,与水形成混合体。气液混合体通过扩散管向外排出,其速度减慢,压力增强,形成强力喷射流,对废水搅拌充氧。气泡经多次切割,喷射扰动后,变成无数的细小气泡,其表面积很大,使空气中的氧更易快速溶解于水中。由于气泡直径小,上升速度缓慢,从而延长了大气中氧气溶解于水的时间,促使废水和氧气充分混合接触,氧化废水中的还原性物质,杀灭大部分还原菌和其它一些厌氧菌,进而达到处理废水的目的。 3.射流曝气技术的主要性能特点 射流曝气法的优点: (1)射流曝气器混合搅拌作用强,具有较高的的充氧能力、氧利用率和氧动力转移效率。 (2)构造简单、工作可靠、运转灵活、便于调节、不易堵塞、易维修管理。 (3)当采用自吸式射流曝气器时,可取消鼓风机,消除噪音污染。 (4)在射流曝气器喉管内,由于射流的紊动及能量交换作用,形成了剧烈的混掺现象,不仅在瞬间(10-2s)完成氧从气相向液相中的转移,而且射流曝气的工作水流是进水和回流污泥的混合液或曝气池混合液,因此在混合液内迅速地进行着泥(微生物)一水(有机物)一气(溶解氧)三者间的传质与生化反应,这是一个在特定条件下发生的快速生物反应与三相间传质的综合过程。 (5)提高了污泥的活性,基质降解常数较其它活性污泥法高。

曝气器设计

XX建设标准化协会标准 鼓风曝气系统设计规程Design standard of aeration blowing system CECS 97 : 97 主编单位:XX建筑工程学院 审查单位:XX建设标准化协会工业给水排水委员会批准日期:1997年12月30日

前言 现标准《鼓风曝气系统设计规程》CECS 97 :97为XX建设标准化协会标准,推荐给有关单位使用。在使用过程中,请将意见及有关资料寄交XX和平街北口中国XX工程公司XX建设标准化协会工业给水排水委员会(邮编:100029),以便修订时参考。 本规程主编单位:XX建筑工程学院 主要起草人:XX、XX XX建设标准化协会 1997年12月30日

1 总则 1.0.1 为使生物处理曝气系统设计满足工程建设需要,特制定本规程。 1.0.2 本规程包括曝气器、供风管道、风机的选型及机房设计。 1.0.3 本规程适用于新建、扩建、改建的城市污水处理工程或工业污水处理工 程中的生物处理鼓风曝气系统的设计计算。 1.0.4 鼓风曝气系统设计除按本规程执行外,尚应符合现行有关的国家标准的规 定。 2 术语 2.0.1 曝气器aerator 用于水中充氧兼搅拌的基本器具或设备。 2.0.2 微孔曝气器fine bubble aerator 空气通过多孔介质,在水中产生气泡直径小于3mm的高效曝气器。 2.0.3 中大气泡曝气器middle and large air bubble aerator 空气通过曝气器在水中产生气泡直径大于3mm以上的曝气器。 2.0.4 可张中、微孔曝气器openable middle and fine bubble aerator 空气通过具有弹性材质的微孔曝气器或软管时,其上孔缝张开,停止供气时孔缝闭合的一种曝气器。 2.0.5 双环伞型曝气器double rings umbrella aerator 一种具有双环类似伞状的,在水中产生中大气泡的曝气器。 2.0.6 曝气器标准状态充氧性能oxygenc transfer performance 指单个曝气器在大气压力为0.1Mpa、水温为20℃时,对清水的充氧性能。 2.0.7 鼓风曝气系统aeration blowing system 指由风机、管路、曝气器、除尘器为主组成的系统。 3 鼓风曝气器 3.1 一般规定 3.1.1 根据污水性质、环境要求、管理水平、经济核算,工程设计中可选用鼓 风曝气、机械表面曝气、射流曝气等方式,一般宜选用鼓风曝气式。 3.1.2 选用鼓风曝气系统时曝气器应符合下列要求: 1、在某一特定曝气条件下,既能满足曝气池污水需氧要求,又能达到混 合搅拌,池内无沉淀的要求; 2、曝气器既要有较高充氧性能,又应有较强混合搅拌能力。同时还应有 不易堵塞、耐腐蚀、坚固、布气均匀、操作管理及维修简便,成本低、 阻力小和寿命长等性能; 3、选用曝气器所组成的鼓风曝气系统,从整体上应具有节约能量、组成 简单、安装及维修管理方便,易于排除故障等优点。 3.1.3 鼓风曝气器分为微孔曝气器及中大气泡曝气器。大、中型城市污水处理

膜生物反应器设计方案及详细参数介绍讲解

膜生物反应器(MBR)介绍及设计应用 (内部资料) 北京碧水源科技发展有限公司 https://www.360docs.net/doc/2314867685.html,

目录 1膜生物反应器(MBR)介绍 (1) 1.1原理 (1) 1.2工艺特点 (1) 2设计 (3) 2.1设计进水水质 (3) 2.2设计出水水质 (3) 2.3优质杂排水→城市杂用水(中水) (3) 2.3.1工艺流程 (3) 2.3.2设计说明 (4) 2.4生活污水→二级出水 (5) 2.4.1工艺流程 (5) 2.4.2设计说明 (6) 2.5生活污水→国家一级A标准 (9) 2.5.1工艺流程 (9) 2.5.2设计说明 (9)

1膜生物反应器(MBR)介绍 1.1原理 膜生物反应器(Membrane Bio-Reactor)简称MBR,是二十世纪末发展起来的新技术。它是膜分离技术和生物技术的有机结合。它不同于活性污泥法,不使用沉淀池进行固液分离,而是使用微滤膜分离技术取代传统活性污泥法的沉淀池和常规过滤单元,使水力停留时间(HRT)和泥龄(STR)完全分离。因此具有高效固液分离性能,同时利用膜的特性,使活性污泥不随出水流失,在生化池中形成8000-12000 mg/L超高浓度的活性污泥浓度,使污染物分解彻底,因此出水水质良好、稳定,出水细菌、悬浮物和浊度接近于零,并可截留粪大肠菌等生物性污染物,处理后出水可直接回用。 图1 膜生物反应器工作原理简图 1.2工艺特点 (1)出水水质优良、稳定。高效的固液分离将废水中的悬浮物质、胶体物质、生物单元流失的微生物菌群与已净化的水分开,不须经三级处理即直接可回用。具有较高的水质安全性。

射流曝气技术简介

射流曝气技术简介 1. 1射流器的结构 射流曝气系统的核心设备是射流器。射流器是利用射流紊动扩散作用来传递能量和质量的流体机械和混合反应设备, 它由喷嘴、吸气室、喉管及扩散管等部件构成[ 2 ] 。图1 是一个典型的单喷嘴射流器结构,也是废水生化处理中常用的曝气用射流器。 图1射流器结构 1. 喷嘴; 2. 吸气室; 3. 喉管; 4. 扩散管; 5. 尾管 1. 2射流曝气的基本原理 射流器采用文丘里喷嘴, 工作水泵出水通过射流器的喷嘴,随着喷嘴直径变小,液体以极高的速度从喷嘴喷射出来,高速流动的液体穿过吸气室进入喉管,在喉管形成局部真空,通过导气管吸入(或压入)的大量空气进入喉管后, 在喷水压力的作用下被分割成大量微小的气泡, 与水形成混合体。气液混合体通过扩散管向外排出, 其速度减慢, 压力增强,形成强力喷射流,对废水搅拌充氧。气泡经多次切割,喷射扰动后, 变成无数的细小气泡, 其表面积很大,使空气中的氧更易快速溶解于水中。由于气泡直径小,上升速度缓慢,从而延长了大气中氧气溶解于水的时间,促使废水和氧气充分混合接触,氧化废水中的还原性物质,杀灭大部分还原菌和其它一些厌氧菌,进而达到处理废水的目的[ 3 ] 。 1. 3废水生物处理中射流曝气的独特作用 射流曝气作为一种曝气充氧方法, 它的作用不仅仅是作为一种气泡扩散充氧装置(如鼓风曝气中的各种空气扩散装置) , 也不能单纯看作是一种机械曝气设备,而是介于两者之间,利用气泡扩散和水力剪切两个作用达到曝气和混合的目的[ 4 ] 。实际上,在活性污泥法废水处理系统中,由于通常采用废水与活性污泥的混合物作为工作介质, 当吸入(或压入)空气后在射流器的喉管内发生相当剧烈的混合作用。这一混合作用一方面进行着气- 液- 固(活性污泥) 之间的紊动扩散与能量交换及气-液- 固三相间的转移过程, 还有更加突出的是发生在被高速剧烈紊动“切割”得非常细微的气泡、活性污泥的微小颗粒以及废水(液相)中有机物这三者之间的生物学上的作用。因此, 要评价射流曝气用于活性污泥法的作用,如果仅仅作为曝气充氧装置来理解就没有充分反映这一综合过程的全部机理。 这一综合过程的机理应当理解为在活性污泥微生物存在的条件下,发生在射流器喉管部分的高速紊动过程中的生物学特性与三相间物理力学特性的综合过程。气体经高速水流吸入后经喉管压缩,气、液相剧烈混合,此时气泡刚形成, 吸氧率高; 气泡进一步在管道中受剧烈揽动,粉碎成细微气泡, 使气、液接触面积增大,也提高吸氧率。尤其是当工作介质为废水与活性污泥混合物时, 喉管的紊动搅拌作用不只限于微小气泡对废水的充氧作用, 同时还发生气- 固、液- 固间等多方面的作用,特别是当活性污泥被“切割”成非常细小的颗粒,无疑将大大增加活性污泥的表面更新率与吸附表面积,从而使活性污泥的细小絮状体能与气泡中的氧及废水中的有机物有充分的接触吸附作用, 使吸附能力大大提高。这是其它类型曝气设备所不能达到的[ 4 ] 。 1. 4射流曝气技术的主要性能特点

活性污泥法中曝气池的设计

活性污泥法中曝气池的设计 参考资料:https://www.360docs.net/doc/2314867685.html,/esite/detail10000633.htm 活性污泥(activated sludge)可分为好氧活性污泥和厌氧颗粒活性污泥,不论是哪一种,活性污泥都是由各种微生物、有机物和无机物胶体、悬浮物构成的结构复杂的肉眼可见的绒絮状微生物共生体。这样的共生体有很强的吸附能力和降解能力,可以吸附和降解很多的污染物,可以达到处理和净化污水的目的。 曝气池的型式与构造 1、曝气池的类型 ①根据混合液在曝气池内的流态,可分为推流式、完全混合式和循环混合式三种; ②根据曝气方式,可分为鼓风曝气池、机械曝气池以及二者联合使用的机械 ③根据曝气池的形状,可分为长方廊道形、圆形、方形以及环状跑道形等四种; ④根据曝气池与二沉池之间的关系,可分为合建式(即曝气沉淀池)和分建式两种。 2、曝气池的流态 ①推流式曝气池 ②完全混合式曝气池 ③循环混合式曝气池:氧化沟 3、曝气池的构造 曝气池在构造上应满足曝气充氧、混合的要求,因此,曝气池的构造首先取决于曝气方式和所采用的曝气装置,如进口曝气管的铺设。 在活性污泥法中,曝气的作用主要有:①充氧:向活性污泥中的微生物提供溶解氧,满足其在生长和代谢过程中所需的氧量。②搅动混合:使活性污泥在曝气池内处于悬浮状态,与废水充分接触。 进行活性污泥系统的工艺计算和设计时,首先应比较充分地掌握与废水、污泥有关的原始资料并确定设计的基础数据,主要有:①废水的水量、水质及其变化规律;②对处理后出水的水质要求;③对处理中产生的污泥的处理要求;④污泥负荷率与BOD5的去除率;⑤混合液浓度与污泥回流比。¾¾以上属于设计所需的基础数据。对生活污水和城市污水以及与其类似的工业废水,已有一套成熟和完整的设计数据和规范,一般可以直接应用;对于一些性质与生活污水相差较大的工业废水或城市废水,一般需要通过试验来确定有关的设计参数。 工艺计算与设计的主要内容 活性污泥系统由曝气池、二次沉淀池及污泥回流设备等组成。其工艺计算与设计主要包

污水处理第一次设计审查意见

水处理基础设计审查意见 一、预处理 1、前端主装置工艺是添加二氧化氯、磷酸或硫酸需要确定,它对污染量的变化影响较大,对后续的工艺影响较大;待添加物和量确定后考虑相关工艺的调整。 2、原水缓冲池没有设置搅拌,混合效果不好,没有缓冲效果,应考虑增加搅拌,避免砂子沉降影响。 3、沉砂池的潜污泵考虑温度的影响;池子没有污泥泵,人工清砂劳动强度较大,应考虑机械自动清砂。 4、沉砂池如果放在缓冲池之前,可缓解缓冲池的混合问题。 5、考虑预酸化阶段的除臭。 二、厌氧处理 1、高温发酵罐有效水深是18米,与图上标示的高度不对应。 2、发酵罐有效水深是18米,喷射搅拌能否搅拌到底和均匀,核实喷射泵的扬程和压力,应比较喷射搅拌和机械搅拌的效果和能耗,选择搅拌方式。 3、进料泵停用时间达21小时,应考虑布水喷咀堵塞的风险。 4、SS设计值与实际值有偏差,应按业主提供的参数进行设计。 5、高温厌氧罐内SS难于沉降,发酵过程会有部分总氮分解析出,增加氨氮浓度,应核实高温厌氧出水的SS和氨氮浓度,避免影响后续工艺的选择。

6、高温厌氧的污泥负荷不明确,应明确该项数据,如达不到足够的污泥浓度,应考虑污泥回流,保障罐内污泥浓度。考虑停罐排砂时如何保障罐内污泥浓度。 7、核实好氧污泥产生量、回流量及去向。 8、明确斜筛的清洗周期和清洗方法,考虑人工清洗的职业健康,考虑除臭。设计斜筛网眼会否堵塞,影响分离效果,核实实际使用情况能否达到设计效果。 9、核实一级厌氧出水气浮在不加药情况下能否达到设计效果。 10、核实两级厌氧前后的SS、COD比例的匹配情况。 11、一级厌氧后换热器的冷量不足够,如果业主不能提供足够的冷量,应考虑增加降温设施。 12、UASB上升流速较低,SS在污泥床累积会影响颗粒污泥的生长,甚至死亡,应明确颗粒污泥的补充周期和补充量,明确市场来源,并将颗粒污泥采购成本计入总体运行成本。 13、业主应再次核实原水污染物指标,设计单位核实厌氧段COD去除率(95%),厌氧污泥产生量理论值与设计值差距较大,核实SS去除率,核实污泥产生量。 14、核实一级厌氧后固液分离添加的辅料的金属离子对下级厌氧的影响。 三、好氧处理 1、核实好氧曝气头数量。 2、现行酒精行业总N的排放标准为20毫克\升,核实处理后总N能

射流曝气说明书

宜兴市荣盛达环保有限公司位于风景秀丽的太湖之滨、世界闻名的陶都——宜兴市。公司专业从事水处理环保设备的制造、安装、调试和运行管理,致力于环保领域新工艺、新产品、新材料的开发、设计与应用。公司创立于1995年05月,前身为宜兴市盛达环保成套设备厂(1979年)和宜兴市荣盛达环保成套设备有限公司(1987年) 。公司在天津、重庆、广州、南京、西安、厦门、九江、株州等地设立了11处办事机构,并于2002年在上海成立上海荣盛达环保工程有限公司,从而初步实现了公司的规模化经营和跳跃式发展。 公司占地约36000m2(总部20000m2),建筑面积4700m2(总部3000m2)。公司拥有标准化厂房3座,配套了先进、完善的加工、检测设备。目前在职员工123名,中专以上学历的占67.65%,本科以上学历的有27名。高级工程师3名(另有7名外聘),工程师19名,助工5名,管理人员34名,技术工人42名,销售人员27人。经过20多年的艰苦奋斗,公司总资产已从30万元积累至2004年的2886万。公司成立至今已累计上缴国家利税4500多万元,从而确立了在宜兴地区的明星企业地位。 在全体员工共同努力下,公司于1999年11月首次通过ISO9002质量体系认证,2002年4月通过ISO9001。公司产品函盖水处理各领域,主要有三十多个品种三百多种规格,TWZ综合污水处理装置、QF气浮净化设备、QCS上流式厌氧污泥床等设备和装置在1995年通过江苏省科委技术鉴定,1998年成为江苏省环境保护推荐产品,1999年获得国家环保认定证书,最新研制的具有国际领先水平的DJAM型碟式射流曝气器于2004年4月通过国家环保总局科技标准司的科技成果鉴定和新产品鉴定,2005年获得国家重点新产品称号。公司还于2001年获得江苏省环境保护设施运行资质证书。 公司的质量方针是:科学管理、优质高效、不断改进、满足顾客! 质量目标是:产品一次合格率大于95%,今后三年每年递增1%;顾客意见处理率100%,处理满意率力争100%! 公司一贯以高标准、严要求组织设计、生产、安装和服务,今后仍将严格按照ISO9001质量管理体系的要求进行设备的设计、制作和服务,为用户提供质量上乘、性能可靠、服务完善、价格便宜的产品。

TL旋流曝气器介绍

TL型旋流曝气器介绍 TL型旋流曝气器是由日本京都大学环境研究所与日本铃木株式会社联合研发的应用于好氧生化段的曝气充氧搅拌装置。 国内权威机构——建设部给水排水设备产品质量监督检验中心提供的检测报告数据:氧利用率21.937%,理论动力效率 (kg/kw*h)5.958,属于世界领先的高效曝气产品。产品问世15年以来,500多项污水工程应用案例表明:设备耐用15年以上,至今没有损坏、更换记录;节能效果显著,比原微孔、射流等曝气器产品节省电费30%、污泥减量20%以上。

TL型旋流曝气器具有高效节能(极高的氧利用率、压损极小)、不堵塞、使用寿命长、无需维护、减少剩余污泥量、减少臭味产生及安装简单(带水安装)等诸多优点。广泛应用于国内外的市政、造纸、印染、化工、食品、机械加工、制药及其它废水处理行业,是目前替代传统充氧曝气方式的最佳选择;配合使用流动填料及环境微生物制剂,将取得更优异的处理效果。目前主要有三种型号:TL-450,TL-750和TL-900。 曝气器参数如下:

旋流曝气器的原理是利用翼型和针型叶片的粉碎作用,形成气液混合物的提升、搅拌和充分混合;该曝气器包括进气管、多层切割器、筒体等。在工作过程中,气体从底部进入,由于气体作用,混合液在筒内、外循环流动,气液上升过程中,在筒内部产生多次切割,形成直径2mm左右小气泡。气液充分混合及不断循环对流,增强了氧传递速率和利用率。 旋流曝气器的产品优点主要有: (1)不堵塞、不结垢、不衰减; 旋流微泡曝气器采用独特的构造原理,使气体和液体在内部进行强力回旋运动产生自净作用,排除了造成堵塞和结垢的一切因素,可按照实际需求进行间歇运行。在高盐度废水中使用,也能够应付自如。(2)氧利用率高、曝气无死角; 服务面积S=[(h-L-h’)×tan15°+r]2×π h:有效水深,m;

曝气池设计

曝气池设计计算..

第二部分:生化装置设计计算书 说明: 本装置污水原水为石油炼制污水、生活污水,要求脱氮。污水处理时经隔油、LPC除油、再进行生化处理,采用活性污泥工艺。根据处 曝气池设计计算备注 一、工艺计算(采用污泥负荷法计 算) 理要求选用前置反硝工艺——缺氧(A)、一级好氧(O1)、二级好氧(O2)三级串联方式,不设初沉池。 本设计的主要内容是一级好氧装置的曝气池、二沉池及污泥回流系统。 曝气池设计计算部分

曝气池设计计算部分 1.处理效率E %100%100?=?= La Lr La Lt La E - 式中 La ——进水BOD 5浓度,kg/m 3, La=0.2kg/m 3 Lt ——出水BOD 5 浓度,kg/m 3,Lt =0.02kg/m 3 Lr ——去除的BOD 5浓度,kg/m 3 Lr=0.2-0.02=0.18kg/m 3 %90%1002 .002.02.0=?-=E 2.污水负荷N S 的确定 选取N S =0.3 kgBOD 5/kgMLVSS ·d 3.污泥浓度的确定 (1)混合液污泥浓度(混合液悬浮物浓度)X (MLSS) ()SVI 110 3 R r R X +?= 式中 SVI ——污泥指数。根据N S 魏先勋 305页 BOD 去除率 E = 90% N S =0.3 三 废 523页

值,取SVI=120 r——二沉池中污泥综合 指数,取r=1.2 R——污泥回流比。取 R=50% 曝气池设计计算备注 曝气池设计计算部分

曝气池设计计算部分 () 3 .35.01120102.15.03=+???=X kg/m 3 (2)混合液挥发性悬浮物浓度X ' (MLVSS) X '=f X 式中 f ——系数,MLVSS/MLSS , 取f =0.7 X '=0.7×3.3=2.3 kg/m 3 (3)污泥回流浓度Xr 3 33 kg/m 102.1120 10 10=?=?=r SVI Xr 4.核算污泥回流比R ()R R X Xr += 1 R R )1(3.310+?= R =49%,取50% 5.容积负荷Nv Nv =X 'Ns =2.3×0.3=0.69 X = 3.3kg/ m 3 魏先勋 305页 X ' =3.3kg /m 3 高俊发 137页 Xr =10 kg/m 3

城市污水处理厂设计讲解学习

城市污水处理厂设计 城市污水处理厂设计是一个综合性极强的系统工程,涉及的学科多,相关部门多,其中任何一个环节不合理都会给工程设计带来影响和造成不同程度的损失。污水处理厂设计,直接关系到建设费用和运行费用的多少、处理效果的好坏、占地面积的大小、管理上的方便与否等关键问题。因此,在进行污水处理厂设计时,必须做好方案的比较,以确定最佳方案。 一、城市污水处理厂设计 (一)基本条件 1处理规模:处理规模的确定主要与下列因素有关: 城市人口 包括常住人口和流动人口。通常是根据城市总体规划近、远期及远景人口预测来确定的。当城市总体规划编制年限较早,尚未修编或修编中,需对现状人口核实并进行合理的分析和预测。同时,确定人口时,要特别注意旅游城市在旅游旺季出现人口峰值的特点及对城市水量变化系统的影响。 城市性质及经济水平 城市所在地域、自然条件、经济发达程度、人民生活习惯及住房条件不同,城市居民用水量标准不同,因而城市污水量亦不同。 城市排水体制 城市排水体制分为分流制和合流制。一般新建城市、扩建新区、新建开发区及经济条件较好的城市宜采用分流制;一些大中型城市中已建成的旧城区由于历史原因,一般为合流制,可改造成截流式合流制。根据城市具体情况,同一城市的不同地区可采用不同的排水体制。 城市排水体制的选择直接影响污水量规模,当采用分流制时,设计污水量全部为城市污水(包括生活污水和工业废水等),当采用截流式合流制和分流制组合系统时,必须考虑截流式合流系统中排入的雨水量,该雨水量与设计截流倍数有关,应进行科学分析后合理确定。 工业废水量 由于城市结构各异,工业类型和工业比重不同,因而,工业废水量及水质量不相同。 根据“城市污水处理工程项目建设标准”,工业废水经工厂内自行处理,达到“污水排入城市下水道水质标准”(CJ3082-1999)后,优先考虑纳入城市污水收集系统,与城市生活污水合并处理。因此,工业废水量是城市污水处理厂确定处理规模的重要组成部分,必须对其废水量进行充分调查研究,合理确定工业废水量。 污水管网完善程度污水管网完善程度对城市污水处理厂设计规模确定十分重要。管网的作用主要是承担城市污

曝气池设计计算

曝气池设计计算

第二部分:生化装置设计计算书 说明: 本装置污水原水为石油炼制污水、生活污水,要求脱氮。污水处理时经隔油、LPC除油、再进行生化处理,采用活性污泥工艺。根据处 曝气池设计计算备注 一、工艺计算(采用污泥负荷法计 算) 理要求选用前置反硝工艺——缺氧(A)、一级好氧(O1)、二级好氧(O2)三级串联方式,不设初沉池。 本设计的主要内容是一级好氧装置的曝气池、二沉池及污泥回流系统。 曝气池设计计算部分

曝气池设计计算部分 1.处理效率E %100%100?=?= La Lr La Lt La E - 式中 La ——进水BOD 5浓度,kg/m 3, La=0.2kg/m 3 Lt ——出水BOD 5 浓度,kg/m 3,Lt =0.02kg/m 3 Lr ——去除的BOD 5浓度,kg/m 3 Lr=0.2-0.02=0.18kg/m 3 %90%1002 .002.02.0=?-=E 2.污水负荷N S 的确定 选取N S =0.3 kgBOD 5/kgMLVSS ·d 3.污泥浓度的确定 (1)混合液污泥浓度(混合液悬浮物浓度)X (MLSS) ()SVI 110 3 R r R X +?= 式中 SVI ——污泥指数。根据N S 魏先勋 305页 BOD 去除率 E = 90% N S =0.3 三 废 523页

值,取SVI=120 r——二沉池中污泥综合 指数,取r=1.2 R——污泥回流比。取 R=50% 曝气池设计计算备注 曝气池设计计算部分

曝气池设计计算部分 () 3 .35.01120102.15.03=+???=X kg/m 3 (2)混合液挥发性悬浮物浓度X ' (MLVSS) X '=f X 式中 f ——系数,MLVSS/MLSS , 取f =0.7 X '=0.7×3.3=2.3 kg/m 3 (3)污泥回流浓度Xr 3 33 kg/m 102.1120 10 10=?=?=r SVI Xr 4.核算污泥回流比R ()R R X Xr += 1 R R )1(3.310+?= R =49%,取50% 5.容积负荷Nv Nv =X 'Ns =2.3×0.3=0.69 X = 3.3kg/ m 3 魏先勋 305页 X ' =3.3kg /m 3 高俊发 137页 Xr =10 kg/m 3

曝气池设计

某居住区人口10000人,每人每日平均排污水量300L。每人每日排出BOD5量60g,SS为75g。 则此区的日平均污水量为3000m3/d 即125m3/h 0.035m3/s 污水的BOD5浓度=60/300=200mg/L 污水的SS浓度=75/300=250(mg/L) (3)采用推流式曝气池,曝气池BOD负荷按下式计算:根据书本表12-1,取污泥负荷0.3kgBOD5/(kgMLSS·d) SVI=353Ls0.983=108 取X=2000mg/L,则回流比r为: 代入数据约为0.28 回流污泥量: Qr=r×Q=3000×0.28=840m3/d 回流污泥浓度: Xr=10^6/108=9259.3mg/l

(4)曝气池容积计算: V=3000×150/(0.3×2000) =750m3 曝气池有效水深取3m ,则曝气池表面积为: F=750/3=250m 2 宽取3.5m ,则池长L =250/3.5=71.4(m)。采用4廊道,则每廊道长=71.4/4=17.9(m)。所以,曝气池尺寸为: 17.9×(3.5)×3=187.9(m 3),共三个为750 m 3。 (5)曝气时间 对原废水: T=V/Q=750/3000=0.25(d )=6h 对混合液: T1=750/(3000+840)=0.195d=4.7h (6)污泥量 二沉池去除的SS 量为: 3000×250×(1—0.3)×0.8×10-3=420(kg/d ) 曝气池因去除BOD5而增殖的污泥量根据下式计算: Y r d X QS k VX ?=-

取Y=0.73,kd =0.075,MLVSS /MLSS =0.8,则 : =0.73×3000×(200*0.75*0.9)×10-3—0.075×750×2000×0.8×10^-3 =295.6 -90=205.6(kg /d) 污泥最大增量为:420+205.6=625.6(kg /d) 由于回流污泥浓度Xr =9259mg /L ,则产生污泥体积为: 625.6/9259*1000=67.6m3/d (7)曝气系统平均需氧量 平均需氧量按下式计算: 取a ’=0.5,b ’=0.12,则: =0.5×3000×0.135+0.12×750×2×0.8=346.5(kg/d )=14.4(kg/h ) 设计参数: ①穿孔管距池底0.3m(淹没水深2.7 m); ②工作水温20℃,Cs =9.2mg /L ; Y r d X QS k VX ?=-''2r O aQS bVX =+

城镇污水推流式曝气池处理工程设计

第一章设计概论 1.1 设计依据和任务 (1)原始依据 设计题目: 6万m3/d城镇污水推流式曝气池处理工程设计 设计基础资料: 原始数据: Q=60000m3/d 进水水质: BOD5=140mg/l COD=200mg/l SS=200mg/l NH3-N=30mg/l 出水水质:BOD5<20mg/l COD<60mg/l SS<20mg/l NH3-N<15mg/l (2.2 工艺流程的选择 本项目污水处理的特点为:①污水以有机污染为主,BOD/COD =0.75,可生化性较好,重金属及其他难以生物降解的有毒有害污染物一般不超标;②污水中主要污染物指标BOD、COD、SS值为典型城市污水值。 针对以上特点,以及出水要求,现有城市污水处理技术的特点,以采用生化处理最 -N出水浓度排放为经济。由于将来可能要求出水回用,处理工艺尚应硝化,考虑到NH 3 要求较低,不必完全脱氮。根据国内外已运行的中、小型污水处理厂的调查,要达到确定的治理目标,可采用“A2/O活性污泥法”。 具体工艺流程:

第三章 工艺流程设计计算 3.1 设计流量的计算 平均流量:a Q =60000t/d ≈60000m 3/d=2500 m 3/h=0.694 m 3/s 总变化系数:Z K = 0.11 Qa 7 .2 (a Q -平均流量,L/s) 0.112.7 0.6941.31 = = ∴设计流量max Q : max Z a Q K Q =?=1.31×60000=78600 m 3/d=3275 m 3/h=0.9097 m 3/s 3.2 设备设计计算 3.2.1 格栅 格栅是由一组平行的金属栅条或筛网制成,安装在污水渠道上、泵房集水井的进口处或污水处理厂的端部,用以截留较大的悬浮物或漂浮物。一般情况下,分粗细两道格栅。 格栅型号:链条式机械格栅 设计流量33max 78600/0.9097/Q m d m s == 栅前流速10.7/v m s =,过栅流速20.9/v m s = 栅前部分长度0.5m ,格栅倾角60α=?,单位栅渣量330.07m m 3栅渣/10污水 (1) 确定栅前水深 1B 1.61m == 则1 0.822 B h m = =

10万吨污水处理厂计算说明书(氧化沟法)

2.1中格栅 格栅是由一组平行的金属栅条或筛网制成,安装在污水渠道、泵房集水井的进口处或污水处理厂的端部,用以截留较大的悬浮物或漂浮物,如纤维、碎皮、毛发、果皮、蔬菜、塑料制品等,以便减轻后续处理构筑物的处理负荷,并使之正常进行。被截留的物质称为栅渣。 设计中格栅的选择主要是决定栅条断面、栅条间隙、栅渣清除方式等。 格栅断面有圆形、矩形、正方形、半圆形等。圆形水力条件好,但刚度差,故一般多采用矩形断面。格栅按照栅条形式分为直棒式格栅、弧形格栅、辐流式格栅、转筒式格栅、活动格栅等;按照格栅栅条间距分为粗格栅和细格栅(1.5~10mm);按照格栅除渣方式分为人工除渣格栅和机械除渣格栅,目前,污水处理厂大多都采用机械格栅;按照安装方式分为单独设置的格栅和与水泵池合建一处的格栅。 表2-1生活污水量总变化系数K Z值 平均日流量(L/S) 5 15 40 70 100 200 500 ≥1000 K Z 2.3 2.0 1.8 1.7 1.6 1.5 1.4 1.3 主要设计参数: 日平均污水量Q为100000m3/d,总变化系数K Z值为1.3 则设计流量(最大流量):Q max=1.33100000=130000(m3/d ), 即Q max=1.50(m3/s ) 2.1.1 设计参数 栅条宽度S:10 mm (迎水面为半圆的矩形) 栅条间隙宽度b:20 mm (16—25mm,机械清除) 过栅流速v:0.8 m/s (0.6—1.0 m/s) 栅前渠道流速v1:0.9 m/s(0.4—0.9 m/s) 栅前渠道水深h:0.7 m 格栅倾角 :60°(60°—70°)

浅谈曝气池的设计与设备选择

20世纪后期,我国许多城市饱尝了供水不足和水质污染的双重苦果;21世纪初期,更多的城市将面临水危机的严峻挑战。为此,各界人士纷纷建言献策,以寻找化解水危机的“灵丹妙药”,这显然是个跨世纪的难题,因为导致水危机的原因及过程非常复杂,化解水危机便成了一项更加复杂的系统工程。目前我们主要从两个方面着手处理水污染和供水不足的问题:一是加强保护现有的淡水资源,进行节水工程改建项目,将使用水的量控制在最小化,大力发展中水回用技术;二是加强污水处理力度,维持越来越紧缺的水资源,这就需要坚强污水处理工艺的设计和研究,强化处理效果。由于一般的物理处理或者化学出理,对于污染物质的降解效果十分有限,并且还经常带来二次污染,因此生化处理方式将是污水处理方式发展的方向,并且由于基本没有二次污染因此值得大力推广。 生化处理中一般采用活性污泥法,其主要的工艺流程包括:预处理——初次沉淀——混合——曝气——二次沉淀,曝气是活性污泥法处理废水的重要环节,曝气在曝气池中完成。因此曝气池的设计在整个生化处理工艺设计中也就占到十分重要的地位。 按照曝气的方式不同,曝气池的分类也各不相同,一般情况下,我们可以分为推流式曝气池和完全混合型曝气池两种,各种不同的曝气方式设计的参数也是不相同的,这主要是根据实际条件来进行相应的调整。曝气设备的选择则是经济效益和运行成本控制的关键。 曝气池的设计计算主要包括:①曝气池容积的计算;②池体设计;③需氧量和供氧量的计算。 (一)曝气池容积的计算 计算曝气区容积,常用的是有机负荷计算法。负荷有两种表示方法,即污泥负荷和容积负荷。一般采用污泥负荷,计算过程如下: (1)确定污泥负荷 污泥负荷一般根据经验值确定,可以参照有关成熟经验中的数值。 表1:部分活性污泥工艺参数和特点

污水处理厂设计方案

第一章绪论 1.1基础资料 风向:多年主导风向为东南风; 水文:降水量多年平均为每年2370mm,蒸发量多年平均为每年 1800mm,地下水水位为地下6~7m 年平均水温:20摄氏度 1. 2水质水量特点 水质特点:COD≤350mg/l,BOD5≤200mg/l,SS≤200mg/l,氨氮≤ 45mg/l,磷≤6mg/l,PH:6-9 水量特点:每人每天平均用水量:120l/d 总人数:150000 每天平均用水量:1.8×107l/d 总变化系数:1.5 每天最大用水量:(1.8×107)×1.5 l/d =2.7×107l/d 1. 3 处理后的出水水质标准:出水水质应符合《城镇污水处理厂污染物排放 标准》一级B标准:COD≤60mg/l,BOD5≤20mg/l,SS≤20mg/l,氨氮≤8mg/l,磷≤1mg/l,PH:6-9 第二章总体设计 2.1设计方案的选择与设计: 污水——粗格栅——集水提升泵房——细格栅——旋流沉沙池 ——CASS——二沉池——消毒池——出水

污泥:污泥浓缩池——脱水 2.2根据原水水质及出水标准: SS的去处率:(200-20)/200×100% =90% BOD5的去处率:出水的BOD5有可生物降解的BOD5和随出水漂走的浮固体所占BOD5 随出水漂走的浮固体所占BOD5的计算: 悬浮固体中可生物降解部分:20×0.65mg/l=13mg/ 可生物降解悬浮固体最终:BOD L=13×1.42mg/l=18.46mg/l 可生物降解悬浮固体BOD L换算为::BOD5=18.46× 0.68mg/l =12.55mg/l 出水中可生物降解的:BOD5=20-12.55mg/l=7.45mg/l 则BOD5的去处率:(200-7.45)/200×100%=96.3% 2.3工艺流程说明 CASS池

污水处理设计常用设计规范

污水处理设计常用设计规范 (1)业主提供的水量、水质等基础资料 (2)《室外给给水设计规范》(GB 50013-2006) (3)《室外给排水设计规范》(GB 50014-2006) (4)《建筑给水排水设计规范》(GB 50015-2003) (5)《污水综合排放标准》(GB 8978-1996) (6)《民用建筑设计通则》(GB 50352-2005) (7)《工业与企业总平面设计规范》(GB 50187-93) (8)《给水排水工程构筑物结构设计规范》(GB 50069-2002) (9)《给水排水工程钢筋混凝土水池结构设计规范》(CECS 138-2002)(10)《混凝土结构设计规范》(GB 50010-2002) (11)《砌体结构设计规范》(GB 50003-2001) (12)《钢结构设计规范》(GB 50017-2003) (13)《建筑结构荷载设计规范》(GB 50009-2001)(2006年版)(14)《建筑地基基础设计规范》(GB 50007-2002) (15)《建筑地基处理技术规范》(JGJ 79-2002) (16)《建筑结构可靠可靠设计统一标准》(GB 50068-2001) (17)《建筑抗震设计规范》(GB 50011-2001) (18)《建筑抗震设计规程》(DGJ 08-9-2003) (19)《构筑物抗震设计规范》(GB/J 50191-93) (20)《室外给水排水和燃气助力工程抗震设计规范》(GB 50032-2003)(21)《建筑设计防火规范》(GB 50016-2006) (22)《建筑内部装修设计防火规范》(GB 50222-95)(2001年版)(23)《采暖通风与空调调节设计规范》(GB 50019-2003) (24)《工业企业设计卫生标准》(GB/Z 1-2002) (25)《工业企业噪声控制设计规范》(GB/J 140-90) (26)《民用建筑电气设计规范》(JGJ 16-2008) (27)《供配电系统设计规范》(GB 50052-95)

碧普射流曝气样本(2016)

碧普(北京)环保技术有限公司BLUEPRO (Beijing) Environmental Technology Co., Ltd. Bp射流曝气系统 bp Jet Aeration Systems

公司简介 碧普(北京)环保技术有限公司是一家专业射流曝气供应商,秉承欧美先进技术和服务理念,得益于长期客户服务对客户需求的悉心洞察,立足于国内市场,致力于为工业污水处理提供射流曝气系统的设计、生产、安装和启动等专业化服务。 公司团队核心成员有近10年国外射流曝气从业经验,在切实掌握国外先进技术并践行对质量不懈 追求的基础上,加入了本地化的优势,以期更好地满足客户对技术、质量、成本和服务的综合需求。射流曝气产品在技术、质量、成本和服务上具有综合最大优势和竞争力,是我们的立身之本,和 孜孜不倦的追求。

产品简介 射流曝气起源于国外,最早是为克服传统曝气方式效率低故障率高而诞生,目前在国内外均有采用,其材料上有不锈钢材质、铸铁材质、塑料材质、FRP材质等,形式上有文丘里管式、自吸式(无鼓风机)、主歧管式、圆盘 辐射式。bp射流曝气系统为FRP材质主歧管型低压供风式。自吸式效率很低工程上已经少有采用,低压供风式 则是经理论研究和长期的实践证明效率最佳的形式;文丘里管式属于一种通用型工业混合管件,bp射流曝气是 针对污水曝气专门研发设计的专业设备。材质方面,金属材质在耐腐蚀性和疲劳损坏方面不如FRP,塑料材质 在强度和耐老化性方面逊于FRP。bp射流曝气喷嘴等关键部件经特殊工艺强化处理,具有超凡的耐磨性和使用 寿命。我们对从设计开始到启动的各个环节实行全面的质量控制,以保证为客户提供性能优良、质量过硬的产品。实践证明射流曝气系统在降低生化处理成本方面有显著的优势。 用途 主要用于好氧池供氧。广泛地应用于皮革、制浆造纸、化工、医药、石化及食品加工等领域的污水处理,如各种活性污泥法、氧化沟、氧化塘或SBR;以及市政污水处理及污泥好氧消化;并且可通过控制供风量实现脱氮、硝化的作用。 也可用于混合搅拌。如均质池、调节池、选择池、快混池、胶羽池、中和池、化学氧化池、消毒池、污泥贮存槽、脱氮池、化学反应池,以及气提系统及热交换系统等搅拌。

排水工程 课程设计 说明书 计算书

《排水工程》课程设计 设计说明书、计算书 目录 第一部分设计说明书1.工程概况 1.1 城市概况 1.2自然条件 1.3 工程规模 1.4 设计水质 2.设计原则和依据 2.1 设计原则 2.2 设计依据 3.设计方案 3.1 工艺方案比较与选择 3.2 设计工艺流程 4.主要处理单元及设备 4.1 集水井 4.2 沉砂池 4.3 初沉池 4.4 生物反应池(A2/O) 4.5 二沉池 4.6 消毒池

4.7 出水泵房 5.问题与建议 第二部分设计计算书1.主要设计参数 2.单元计算 2.1 集水井(机械格栅及水泵) 2.2 沉砂池 2.3 初沉池 2.4 生物反应池 2.5 二沉池 2.6 消毒池 2.7 需氧量计算及鼓风机选择 2.8 出水泵房 3.工艺高程水力计算

第一部分设计说明书 1.工程概况 1.1 城市概况 江南某城市位于长江冲积平原,污水收集范围包括主城区大部分、城西镇工业小区、北苑工业小区地块、经济开发区期地块、江东居住区及国际商贸部分地块、义亭特色工业小区及镇区等地块,总建设用地为133Km2 ,该市排水系统采用完全分流制体制,经过多年的开发建设,逐步形成了住城区的污水系统,并已初具规模,现有城区排水管道40530m。 1.2自然条件 该市地形由南向北略有坡度,平均坡度为0.5‰,地面平整,海拔高度为黄海绝对标高3.9~5.2m,地坪平均绝对标高为4.80m(黄海高程)。属长江冲击粉质砂土区,承载强度7~11t/m2 ,地震设防强度6度。全年最高气温40℃,最低-10℃。夏季主导风向为东南风。极限冻土深度为17cm。污水处理长出水排入污水处理厂西侧,距厂边界150m的随塘河中,随塘河的最高水位4.60m,最低水位1.80m,常年平均水位3.00m。 1.3 工程规模 污水处理规模 12.0万m3/d; 污泥处理要求:初沉污泥和二沉池剩余污泥经浓缩脱水后外运处置。 (GB18918-2002)一级标准的B标准。 2.设计原则和依据 2.1 设计原则

射流器

射流曝气器一般由喷嘴、吸入室、混入室三个部分组成,这是一个典型的单喷嘴构造,也是污水生化处理常用的曝气用射流器。 射流曝气器结构参数的影响 1、喷嘴形状。喷嘴形状有多种,如圆薄壁孔板形、流线形、圆锥形收缩及多孔喷嘴等。其中以流线形喷嘴效率最好,但因其加工困难,所以不如圆锥形喷嘴使用范围广泛。圆薄壁孔板形喷嘴的射流紧密段较短,射流具有较高的破裂率,所以其喉嘴距较短。由于喷嘴口径的尺寸对射流器的影响很敏感,因此要考虑防锈问题,一般喷嘴的材料常用不锈钢、铜或者其它材料进行镀铬处理。 2、喷嘴收缩角(对圆锥形收缩喷嘴而言)或喷嘴直径。由于射流器的工作介质为污水或污水与活性污泥的混合物,从防止喷口堵塞方面来考虑,喷口直径不宜太小,但从射流器在整个曝气池中曝气与气液的均匀性以及在操作运转的灵活性等方面考虑,喷口直径也不宜过大。一般直径为25mm左右为宜。 3、吸气室。它是喷嘴和喉管共同的固定基础,进气管与之相连。吸气室一般为圆筒状,气体截面积为喷嘴出口面积的6~10倍。根据吸入流体与工作液体的流动方向可把吸气管设计成与工作液体平行或斜交(垂直)两种。一般认为吸入气体的进入方向和工作水的进入方向之夹角以40~60°为好,夹角线与喷嘴管轴线交点宜在喷嘴之前,这样可防止进气直径冲击入射水。 4、喉管进口段。它把吸气室与喉管连接起来。为了减少被吸入气体的能量损失,一般采用收缩圆锥形或光滑曲线形,其收缩角在13~120°之间。当喉管喷嘴面积比m(m指喉管截面与喷口截面之比)小时,收缩角取小值;喉管喷嘴面积比m大时,收缩角取大值。也有人认为收缩角宜在30~60°之间。 5、喉嘴距,即喷嘴出口断面到喉管入口断面之间的距离。这段距离对射流器充氧效果来说是不利的,故要求做得越短越好。它一般在(0.5~2)d喷嘴的范围内。当喉管较短时,适当增大喉嘴距,可以防止射流穿透喉管而不起混合作用。 6、喉管长径比(L/D)及喉管喷嘴面积比(m)。用射流器来曝气,喉管是一个关键部件。由于引射介质为空气,按照曝气充氧的要求,一方面希望气泡被“切割”越小越好,这就要求工作介质与引射介质之间要进行剧烈的紊动混合作用。喉管的适当长度及大小(一般用喉管截面与喷口截面之比m来表示),对加强氧的转移作用以及为充分发挥活性污泥的生物学特性具有重要作用。另一方面也希望能抽吸更多的气体,以满足废水生物处理的供氧要求,前者要求混合管的直径偏小为佳,而后者要求偏大为好,两者之间的要求看似矛盾,但从氧的转移及动力消耗这两方面来考虑,两者之间又存在着一个最佳值,因为自吸充氧,混合管直径要求不宜过大,否则高速射流在混合管部分不起紊动混合作用,而同时混合管的长度也不宜过小,否则射流会直接穿透混合管而不起混合、掺混作用。 喉管的长度不但影响其本身的工作,而且影响在它后面的扩散管的工作:喉管越长,其中的摩擦损失越大,出口处速度分布越均匀,扩散管中的损失就越小:喉管越短,其中的摩擦损失越小,它的出口处速度越不均匀,它后面的扩散管中的损失就越大;为了减少摩擦损失和扩散损失,这样就存在一个最优长度的问题。根据长径比的大小,射流器可分为短喉管和长喉管两种。短喉管的长径比L/D一般在4~10之间,长喉管的长径比与喉管面积比m有关,其长径比大小一般在60以上。研究结果表明,短喉管最佳长径比在4~8之间,也有人认为此值应更大,在8~15之间,北京建筑工程学院李燕城实验结果认为 L/D=(90~120),当然这已属于长喉管范围了。 对于面积比m,北京建筑工程学院李燕城通过实验得出如下经验公式: m=7.16~0.148d(4) 式中:d—喷嘴直径,在此经验公式中d=(14~30)mm。

相关文档
最新文档