考点10 基本不等式(教师版) 备战2021年新高考数学微专题补充考点精练

考点10 基本不等式(教师版)  备战2021年新高考数学微专题补充考点精练
考点10 基本不等式(教师版)  备战2021年新高考数学微专题补充考点精练

考点10 基本不等式

1、掌握基本不等式2

b

a a

b +≤

。 2、能用基本不等式证明简单不等式。 3、能用基本不等式求最值问题。

基本不等式是江苏数学考纲要求的c 级要求,是江苏高考试卷重点考查的模块之一,在全国各地也经常考查到。基本不等式是求函数最值得一种重要的方式,纵观近五年江苏高考不难发现基本不等式经常与三角函数、直线和圆等结合求函数的最值。在高考中属于中档题或者难题·因此在复习中要引起学生的重视。

在学习中,要掌握运用基本不等式求函数的最值,要注意以下几点: ①掌握基本不等式满足的条件:一正、二定、三相等。

②掌握基本不等式的一些常见变形,最终都要化成 d bx

c

ax ++的形式。

③掌握基本不等式的一些常见题型和方法技巧,如三元变二元,二元变一元。以及双换元等。在多次运用基本不等式的时一定要保证等号成立的条件。

1、【2020年山东卷】.已知a >0,b >0,且a +b =1,则( ) A. 2

2

1

2

a b +≥

B. 122

a b ->

C. 22log log 2a b +≥-

D.

【答案】ABD

【解析】对于A ,()

2

2

2

2

2

1221a b a a a a +=+-=-+2

1211222a ?

???+ ?

≥-=,

当且仅当1

2

a b ==

时,等号成立,故A 正确; 对于B ,211a b a -=->-,所以1

1222

a b -->=,故B 正确;

对于C ,2

222221log log log log log 224a b a b ab +??+=≤==- ?

??

, 当且仅当1

2a b ==时,等号成立,故C 不正确;

对于D ,因为

2

112a b =+≤++=,

≤,当且仅当1

2

a b ==

时,等号成立,故D 正确; 故选:ABD

2、【2020年江苏卷】已知22451(,)x y y x y R +=∈,则2

2x y +的最小值是_______.

【答案】

4

5

【解析】∵224

51x y y +=

∴0y ≠且4

2

2

15y x y -=

∴422

2

2

221144+5555y y x y y y y -+=+=≥,当且仅当221455y y =,即2231,102x y ==时取等号. ∴2

2x

y +的最小值为

45

. 故答案为:

4

5

. 3、【2020年天津卷】.已知0,0a b >>,且1ab =,则

118

22a b a b

+++的最小值为_________. 【答案】4 【解析】

0,0,0a b a b >>∴+>,1ab =,11882222ab ab a b a b a b a b

++=++++

88

2422a b a b a b a b

++=

+≥?=++,当且仅当a b +=4时取等号, 结合1ab =,解得23,23a b =-=+,或23,23a b =+=-时,等号成立. 故答案为:4

4、【2019年高考天津卷理数】设0,0,25x y x y >>+=,则

xy

的最小值为__________.

【答案】43

【解析】方法一:

(1)(21)221266

2x y xy y x xy xy xy xy xy xy

++++++===+. 因为0,0,25x y x y >>+=, 所以2522x y x y +=≥?, 即5252,028xy xy ≤

<≤,当且仅当5

22

x y ==时取等号成立. 又因为66

22243xy xy xy xy +≥?=,当且仅当62xy xy =,即=3xy 时取等号,结合

258

xy ≤可知,xy 可以取到3,故(1)(21)x y xy ++的最小值为43.

方法二:

0,0,25,x y x y >>+=

0,

xy ∴>2212=43xy xy xy xy xy

===+≥. 当且仅当3xy =时等号成立,

故xy

的最小值为43.

5、【2018年高考天津卷理数】已知,a b ∈R ,且360a b -+=,则1

28a

b

+

的最小值为 . 【答案】 【解析】由

可知

,且

因为对于任意x ,恒成立,结合基本不等式的结论可得:

.当且仅当

,即

时等号成立.

综上可得的最小值为.

6、【2018年高考江苏卷】在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=?,ABC ∠的平分线

交AC 于点D ,且1BD =,则4a c +的最小值为___________. 【答案】9

【解析】由题意可知,

,由角平分线性质和三角形面积公式得,化简得

因此

当且仅当时取等号,则的最小值为.

7、【2017年高考天津卷理数】若,a b ∈R ,0ab >,则4441a b ab

++的最小值为___________.

【答案】4

【解析】4422414111

444a b a b ab ab ab ab ab ab

+++≥=+≥?=,

(前一个等号成立的条件是222a b =,后一个等号成立的条件是12ab =

,两个等号可以同时成立,当且仅当2222

24

a b ==时取等号). 【名师点睛】利用均值不等式求最值时要灵活运用以下两个公式:①2

2

,,2a b a b ab ∈+≥R ,当且仅当a b =时取等号;②,a b +

∈R ,2a b ab +≥,当且仅当a b =时取等号.解题时要注意公式的适用条件、等号成立的条件,同时求最值时注意“1的妙用”.

8、【2017年高考江苏卷】某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存

储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是___________. 【答案】30

【解析】总费用为600900464()42900240x x x x +?=+≥?=,当且仅当900x x

=,即30x =时等号成立.

题型一 运用基本不等式求函数最值

1、(2020届山东省泰安市高三上期末)若(

)3log 21a b +=+2+a b 的最小值为( )

A .6

B .8

3

C .3

D .

163

【答案】C

【解析】∵(

)3log 21a b +=+

∴()33log 21log a b ab +=+()3log 3ab =, ∴23a b ab +=,且0a >,0b >, ∴

12

3a b

+=, ∴()112223a b a b a b ??+=

++ ???122143b a a b ??=+++ ???5233b a a b ??

=++ ???

5233≥

+?3=, 当且仅当

b a

a b =且123a b

+=即1a b ==时,等号成立; 故选:C .

2、(2020届山东省济宁市高三上期末)已知奇函数()f x 在R 上单调,若正实数,a b 满足

()()490f a f b +-=,则

11

a b

+的最小值是( ) A .1 B .

92

C .9

D .18

【答案】A

【解析】奇函数()f x 在R 上单调,()()490f a f b +-=,则()()()499f a f b f b =--=- 故49a b =-即49a b +=

()()

11111141

452451999b a a b a b a b a b ????+=++=++≥+= ? ?????

4b a a b =即3

,32

a b ==时等号成立 故选:A

3、(2020届山东省枣庄市高三上学期统考)如图,在△ABC 中,点,D E 是线段BC 上两个动点,且AD AE +

x AB y AC =+,则14

x y

+的最小值为( )

A .

32

B .2

C .

52

D .

92

【答案】D

【解析】如图可知x ,y 均为正,设=m ,AD AB nAC AE AB AC λμ+=+,

:,,,B D E C 共线, 1,1m n λμ∴+=+=,

()()AD AE xAB y AC m AB n AC λμ+=+=+++,

则2x y m n λμ+=+++=,

1411414149()5(52)2222

y x y x x y x y x y x y x y ????∴+=++=++≥+?= ? ?????, 则

14x y +的最小值为9

2

,故选D. 4、(2020·浙江镇海中学高三3月模拟)设 a R ∈,则“0a >”是“222a a

+≥的( )

A .充分而不必要条件

B .必要而不充分条件

C .充要条件

D .既不充分也不必要条件

【答案】C

【解析】由0a >得,2a a +≥=,所以是充分条件;

由2

a a

+

≥0a >,所以是必要条件,

故“0a >”是“2

a a

+≥的充要条件.答案选C .

5、(2020届浙江省高中发展共同体高三上期末)设实数a 、b 满足0b >,且2a b +=.则1

8a a b

+的最小值是( ) A .98

B .

916

C .

716

D .

14

【答案】C

【解析】由题意可知,0a ≠.

当0a >时,

111981616161616

a a

b a b a a b a b a b ++=+=++≥+=, 当且仅当

16b a a b

=且2a b +=,即25a =,8

5b =时取等号,

当0a <时,1117

81616161616

a a

b a b a a b a b a b +????+=--=-+-+-≥-+= ? ?????, 当且仅当

16b a

a b

=且2a b +=时取等号, 综上可得,18a a b +的最小值716

. 故选:C.

6、(2020届浙江省宁波市余姚中学高考模拟)若正实数x ,y 满足ln(2)ln ln x y x y +=+,则2x y +取最小值时,x =( ) A .5 B .3

C .2

D .1

【答案】B 【解析】

∵ln(2)ln ln ln x y x y xy +=+=;

∴2x y xy +=,且0x >,0y >;

21

1x y

+=;

2122(2)()4x x y x y x y y +=++=++215549y x +≥+=+=, 当且仅当22x y

y x

=,即3x y ==时取等号. 故选:B .

7、(2020届北京市中国人民大学附属中学高三上学期期中模拟统练(七)数学试题) 已知0a >,0b >,且1a b -=,则1

2a b

+的最小值为_____.

【答案】2

【解析】

0a >,0b >,由1a b -=得1a b =+,1122222a b b b ∴+

=++≥+=+

当且仅当2

b =

时,等号成立,因此,12a b +的最小值为2.

故答案为:2.

8、(2020届北京市陈经纶学校高三上学期数0月份月考试卷)已知0,0x y >>,且2520x y +=.则xy 的最大值是_________. 【答案】10

【解析】252020x y +=≥?≤当且仅当25x y =,即5,2x y ==时,等号成立 则10xy

≤,即xy 的最大值是10

故答案为:10

9、(2020

x =______. 【答案】4

112915

=+--=

1

=4x =时,等号成立. 故答案为:4

10、(2020届山东省枣庄市高三上学期统考)函数2245

()(1)1

x x f x x x -+=>-的最小值是__________.

【答案】

【解析】由于1x >,故10x ->,故()()3211f x x x =-+

≥=-

()321

1x x -=

-,即1x =+

故填:11、(2020·全国高三专题练习(理))已知圆()()2

2

212x y -+-=关于直线()10,0ax by a b +=>>对称,

21

a b

+的最小值为__________. 【答案】9

【解析】由题意可知直线过圆心,即21a b +=

()2121222559b a a b a b a b a b ??+=++=++≥+= ??? 当且仅当

22a b

b a

=时,又()0,0a b >> 即a b =时等号成立, 故

21

a b

+的最小值为9. 故答案为:9

12、(2020届江苏省七市第二次调研考试)若1x >,则91211

x x x +++-的最小值是______. 【答案】8 【解析】

1x >,91211x x x ∴+

+=+-91

1162811x x x x +++-+≥+=+-,当且仅当911

x x +=+且

111

x x -=

-,即2x =时,等号成立.2x ∴=时,91

211x x x +++-取得最小值8. 故答案为:8

13、(2020届江苏南通市高三基地学校第一次大联考数学试题)已知,x y 为正实数,则292y x

x x y

++的最小值为______.

【答案】4. 【解析】解:令

0y

t x

=>,

()2999222444222y x t t x x y t t +=+=++-≥=+++,

当且仅当()9222t t +=

+,即22

y t x ==-时,等号成立,

故答案为:4.

14、(2019常州期末) 已知正数x ,y 满足x +y x =1,则1x +x

y 的最小值为________.

【答案】4

解法1(直接消元) 由x +y x =1得y =x -x 2,故1x +x y =1x +x x -x 2

=1x +11-x =1x (1-x )≥1

? ????x +1-x 22=4,

当且仅当x =1-x ,即x =12时取“=”.故1x +x

y 的最小值为4.

解法2(直接消元) 由x +y x =1得y x =1-x ,故1x +x y =1x +1

1-x ,以下同解法1.

解法3(消元,分离常数凑定值) 同解法1,2得1x +x y =1x +11-x =1-x +x x +1-x +x 1-x =2+1-x x +x

1-x ≥4,当且仅当1-x x =x 1-x ,即x =12时取“=”.故1x +x

y 的最小值为4.

解法4(“1”的代换) 因为x +y x =1,所以1x +x y =? ????1x +x y ? ????x +y x =2+y x 2

+x 2

y ≥4,

当且仅当y x 2

=x

2

y ,即?????x =1

2,y =14

时取“=”.故1x +x

y 的最小值为4.

15、(2019镇江期末)已知x >0,y >0,x +y =1x +4

y ,则x +y 的最小值为________. 【答案】3

思路分析 本题既可用权方和不等式也可运用“1”的代换求解.

解法1 因为x>0,y>0,所以x +y =12x +22y ≥(1+2)2

x +y ,得x +y ≥3,当且仅当x =1,y =2时取等号.

解法2 x +y =(x +y )2

=(x +y )? ????

1x +4y =

5+y x +4x y ≥5+24=3,当且仅当y x =4x

y ,即x

=1,y =2时取等号.

16、(2019苏北三市期末) 已知a>0,b>0,且a +3b =1b -1

a ,则

b 的最大值为________. 【答案】. 1

3

【解析】由a +3b =1b -1a ,得1b -3b =a +1a .又a>0,所以1b -3b =a +1a ≥2(当且仅当a =1时取等号),即1

b -

3b ≥2,又b>0,解得0

3,所以b 的最大值为13.

题型二 运用基本不等式处理多元问题

1、(江苏省南通市2019-2020学年高三上学期期初)已知a ,b ,c 均为正数,且abc =4(a +b ),则a +b +c 的最小值为_______. 【答案】8 【解析】

()4abc a b =+,()4a b c ab

+∴=

()

444448a b a b c a b a b ab

b a +++=++=++

+≥=+= 2、(2020·浙江温州中学高三3月月考)已知正实数,,0x y z >,则12max ,

max ,A x y y x ????

=+????????

的最小值

为______;123max ,

max ,max ,B x y z y z x ??????

=++????????????

的最小值为______.

【答案】 【解析】

(1)若12,x y y x ≥

≥时,即12xy ≤≤时,2

A x x

=+≥1x y ==时可取等号,

若12

,x y y x

>

>时,即2xy >时,A x y =+≥>, 若12,x y y x >>时,即01xy <<时,由01xy <<知22xy

>,

所以12A y x =

+≥>

综上可知A 的最小值为

()

2

当3z x

≥时,25B x z z z

z

≥++≥+≥,当z x y ==

=

时可取等号;

当3z x ≤

时,32325333x x B x x x z x x ≥++≥++=+≥z x y ===

时可取等号;

综上所述,B ≥z x y ===

时可取等号;

故答案为:

3、(2019南京、盐城一模)若正实数a ,b ,c 满足ab =a +2b ,abc =a +2b +c ,则c 的最大值为________.

【答案】 8

7

思路分析1 注意到求c 的最大值,所以将参数c 进行分离,为此,可以利用abc =a +2b +c 进行分离得c =a +2b ab -1=a +2b a +2b -1=1+1

a +2

b -1,从而将问题转化为求a +2b 的最小值;

思路分析2 结合abc =a +2b +c 与ab =a +2b 化简得abc =ab +c 来进行分离得c =

ab ab -1=1+1

ab -1,进而求ab 的最小值.

思路分析3 由于所求解的c 与a ,b 有关,而a ,b 不对称,因此,将2b 看作一个整体,则它与a 就是对称的,根据对称原理可以猜想得到问题的答案.

解法1 由abc =a +2b +c 得,c =a +2b ab -1=a +2b a +2b -1=1+1a +2b -1,由ab =a +2b 得,1b +2

a =1,所以a +2

b =(a +2b)? ????

1b +2a =4+a b +4b a ≥4+2

a b ·4b a =4+4=8,故c ≤8

7.

解法2 因为abc =a +2b +c ,ab =a +2b ,所以abc =ab +c ,故c =ab ab -1=1+1

ab -1,由ab =a +2b 利用基本不等式得ab ≥22ab ,故ab ≥8,当且仅当a =4,b =2时等号成立,故c =1+1ab -1≤1+1

8-1=

87.

解法3(对等性猜测) 因为已知条件可以改写为“12·a ·2b =a +2b ,1

2·a ·2b ·c =a +2b +c ”,故a 与2b 对等,不妨设a =2b ,解得a =2b =4,c =87,故c 的最大值为87.

4、(2019苏州三市、苏北四市二调)已知关于x 的不等式ax 2+bx +c>0(a ,b ,c ∈R )的解集为{x |3

则c 2+5

a +

b 的最小值为________.

【答案】. 4 5

【解析】思路分析 先根据一元二次不等式的解集,确定a<0,以及a ,b ,c 的关系,再将所求c 2

+5

a +

b 运用消元法,统一成单变量a 的函数问题,运用基本不等式求最值.

依题意得a<0,且3和4是方程ax 2

+bx +c =0的两根,即?

????-b

a =7,c a =12,

则?????

b =-7a ,

c =12a ,

所以c 2+5a +b =144a 2+5a -7a =144a 2+5-6a =(-24a)+? ????

5-6a ≥2(-24a )·? ????5-6a =45,当且仅当144a

2=5,即a =-5

12时取等号,所以所求最小值为4 5.

题型三 运用基本不等式求函数含参的问题

1、(2020届山东省滨州市三校高三上学期联考)已知0a >,0b >,若不等式41m

a b a b

+≥+恒成立,则m 的最大值为( ) A .10 B .12

C .16

D .9

【答案】D 【解析】

由已知0a >,0b >,若不等式41m a b a b

+≥+恒成立, 所以41()m a b a b ??

≤++

??

?恒成立, 转化成求41()y a b a b ??

=++

??

?的最小值,

414()559b a y a b a b a b ??

=++=++≥+= ???

,所以9m ≤.

故选:D .

2、(2019扬州期末) 已知正实数x ,y 满足x +4y -xy =0,若x +y ≥m 恒成立,则实数m 的取值范围为

_________.

【答案】. (-∞,9] m ≤x +y 恒成立,m ≤(x +y)min .

解法1(消元法) 由x +4y -xy =0,得y =x x -4,因为x ,y 是正实数,所以y>0,x>4,则x +y =x +x

x -4=x +x -4+4x -4=x +4x -4+1=(x -4)+4

x -4+5≥2(x -4)·4

x -4+5=9,当且仅当x =6时,等号成

立,即x +y 的最小值是9,故m ≤9.

解法2(“1”的代换) 因为x ,y 是正实数,由x +4y -xy =0,得4x +1y =1,x +y =(x +y)·? ????4x +1y =4y

x +x

y +5≥2

4y x ·x

y +5=9,当且仅当x =6,y =3时,等号成立,即x +y 的最小值是9,故m ≤9.

解法3(函数法) 令t =x +y ,则y =t -x ,代入x +4y -xy =0,得x 2-(3+t)x +4t =0.Δ=(t +3)2

-16t =t 2

-10t +q ≥0,得t ≤1或t ≥9.又y =x

x -4>0,且x>0,则x>4,故t>4,从而t ≥9.所以m ≤9.

3、(2018南京、盐城一模)若不等式k sin 2

B +sin A sin C>19sin B sin

C 对任意△ABC 都成立,则实数k 的最小值为________.

【答案】100

思路分析本题首先用正弦定理将三角函数转化为边,然后再利用三角形中的边的不等关系,消元后转化为二元问题研究.二元问题的最值问题,可以用基本不等式来处理.

解法1(函数的最值) 因为k sin 2B +sin A sin C>19sin B sin C ,所以由正弦定理可得kb 2+ac>19bc ,即k>19bc -ac b 2

.因为△ABC 为任意三角形,所以a>|b -c|,即19bc -ac b 2<19bc -|b -c|c

b 2

= ?????? ????c b 2+18? ????c b ,

0

b ≤1,-? ????

c b 2+20? ????

c b ,

c b >1.

当01时,-? ????c b 2+20? ????

c b ≤100,即

19bc -|b -c|c

b 2

的最大值为100,所以k ≥100,即实数k 的最小值为100. 解法2(基本不等式) 因为k sin 2B +sin A sin C>19sin B sin C ,所以由正弦定理可得kb 2+ac>19bc ,即

k>19bc -ac b 2.又19bc -ac b 2

=c b ? ????19-a b .因为c

??? ????1+a b +? ?

???19-a b 24

=100(要求最大值,19-a b 至少大于0).当且仅当1+a b =19-a b ,即a

b =9时取等号.

高考数学真题分类汇编专题不等式理科及答案

专题七 不等式 1.【2015高考四川,理9】如果函数()()()()21 281002 f x m x n x m n = -+-+≥≥, 在区间122?????? ,上单调递减,则mn 的最大值为( ) (A )16 (B )18 (C )25 (D )812 【答案】B 【解析】 2m ≠时,抛物线的对称轴为82n x m -=--.据题意,当2m >时,8 22 n m --≥-即212m n +≤ .26,182 m n mn +≤ ≤∴≤Q .由2m n =且212m n +=得3,6m n ==.当2m <时,抛物线开口向下,据题意得,81 22 n m -- ≤-即218m n +≤ .281 9,22 n m mn +≤ ≤∴≤Q .由2n m =且218m n +=得92m =>,故应舍去.要使得mn 取得最大值,应有218m n +=(2,8)m n <>.所以 (182)(1828)816mn n n =-<-??=,所以最大值为18.选B.. 【考点定位】函数与不等式的综合应用. 【名师点睛】首先弄清抛物线的开口方向和对称轴,结合所给单调区间找到m 、n 满足的条件,然后利用基本不等式求解.本题将函数的单调性与基本不等式结合考查,检测了学生综合运用知识解题的能力.在知识的交汇点命题,这是高考的一个方向,这类题往往以中高档题的形式出现. 2.【2015高考北京,理2】若x ,y 满足010x y x y x -?? +??? ≤, ≤,≥,则2z x y =+的最大值为( ) A .0 B .1 C . 3 2 D .2 【答案】D 【解析】如图,先画出可行域,由于2z x y = +,则11 22 y x z =- +,令0Z =,作直线1 2 y x =- ,在可行域中作平行线,得最优解(0,1),此时直线的截距最大,Z 取

(完整版)高中数学不等式归纳讲解

第三章不等式 定义:用不等号将两个解析式连结起来所成的式子。 3-1 不等式的最基本性质 ①对称性:如果x>y,那么y<x;如果y<x,那么x>y; ②传递性:如果x>y,y>z;那么x>z; ③加法性质;如果x>y,而z为任意实数,那么x+z>y +z; ④乘法性质:如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz;(符号法则) 3-2 不等式的同解原理 ①不等式F(x)<G(x)与不等式G(x)>F(x)同解。

②如果不等式F (x ) < G (x )的定义域被解析式H ( x )的定义域所包含,那么不等式 F (x )<G (x )与不等式F (x )+H (x )<G (x )+H (x )同解。 ③如果不等式F (x )<G (x ) 的定义域被解析式H (x )的定义域所包含,并且H (x )>0,那么不等式F(x)<G (x )与不等式H (x )F (x )<H ( x )G (x ) 同解;如果H (x )<0,那么不等式F (x )<G (x )与不等式H (x)F (x )>H (x )G (x )同解。 ④不等式F (x )G (x )>0与不等式 0)x (G 0)x (F >>或0)x (G 0)x (F <<同解 不等式解集表示方式 F(x)>0的解集为x 大于大的或x 小于小的 F(x)<0的解集为x 大于小的或x 小于大的 3-3 重要不等式

3-3-1 均值不等式 1、调和平均数: )a 1...a 1a 1(n H n 21n +++= 2、几何平均数: n 1 n 21n )a ...a a (G = 3、算术平均数: n )a a a (A n 21n +++= 4、平方平均数: n )a ...a a (Q 2n 2221n +++= 这四种平均数满足Hn ≤Gn ≤An ≤Qn a1、a2、… 、an ∈R +,当且仅当a1=a2= … =an 时取“=”号 3-3-1-1均值不等式的变形 (1)对正实数a,b ,有2ab b a 22≥+ (当且仅当a=b 时 取“=”号)

高考数学真题分类汇编专题不等式理科及答案

高考数学真题分类汇编专题不等式理科及答案 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

专题七 不等式 1.【2015高考四川,理9】如果函数()()()()21 281002 f x m x n x m n = -+-+≥≥, 在区间122?? ???? ,上单调递减,则mn 的最大值为( ) (A )16 (B )18 (C )25 (D )812 【答案】B 【解析】 2m ≠时,抛物线的对称轴为82n x m -=- -.据题意,当2m >时,8 22 n m --≥-即212m n +≤.226,182 m n m n mn +?≤ ≤∴≤.由2m n =且212m n +=得3,6m n ==.当2m <时,抛物线开口向下,据题意得,81 22 n m -- ≤-即218m n +≤.281 29,22 n m n m mn +?≤ ≤∴≤.由2n m =且218m n +=得92m =>,故应舍去.要使得mn 取得最大值,应有218m n +=(2,8)m n <>.所以 (182)(1828)816mn n n =-<-??=,所以最大值为18.选B.. 【考点定位】函数与不等式的综合应用. 【名师点睛】首先弄清抛物线的开口方向和对称轴,结合所给单调区间找到m 、n 满足的条件,然后利用基本不等式求解.本题将函数的单调性与基本不等式结合考查,检测了学生综合运用知识解题的能力.在知识的交汇点命题,这是高考的一个方向,这类题往往以中高档题的形式出现. 2.【2015高考北京,理2】若x ,y 满足010x y x y x -?? +??? ≤, ≤,≥,则2z x y =+的最大值为 ( ) A .0 B .1 C .32 D .2 【答案】D

(完整版)高考数学-基本不等式(知识点归纳)

高中数学基本不等式的巧用 一.基本不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2 +12x 2 (2)y =x +1x 解:(1)y =3x 2 +12x 2 ≥2 3x 2 ·12x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x --g 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。

高中数学不等式知识点总结

弹性学制数学讲义 不等式(4课时) ★知识梳理 1、不等式的基本性质 ①(对称性)a b b a >?> ②(传递性),a b b c a c >>?> ③(可加性)a b a c b c >?+>+ (同向可加性)d b c a d c b a +>+?>>, (异向可减性)d b c a d c b a ->-?<>, ④(可积性)bc ac c b a >?>>0, bc ac c b a 0, ⑤(同向正数可乘性)0,0a b c d ac bd >>>>?> (异向正数可除性)0,0a b a b c d c d >>< ⑥(平方法则) 0(,1)n n a b a b n N n >>?>∈>且 ⑦(开方法则)0(,1)n n a b a b n N n >>?>∈>且 ⑧(倒数法则) b a b a b a b a 110;110>?<<> 2、几个重要不等式 ①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22 .2a b ab +≤ ②(基本不等式) 2a b ab +≥ ()a b R +∈,,(当且仅当a b =时取到等号). 变形公式: 2a b a b +≥ 2 .2a b ab +??≤ ??? 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、

三相等”. ③(三个正数的算术—几何平均不等式) 33a b c abc ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号). ④()222a b c ab bc ca a b R ++≥++∈, (当且仅当a b c ==时取到等号). ⑤ 3333(0,0,0)a b c abc a b c ++≥>>> (当且仅当a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号) 0,2b a ab a b <+≤-若则(当仅当a=b 时取等号) ⑦b a n b n a m a m b a b <++<<++<1,(其中000)a b m n >>>>,, 规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>?>?<->当时,或 22. x a x a a x a

2020高考理科数学不等式问题的题型与方法

专题三:高考数学不等式问题的题型与方法(理科) 一、考点回顾 1.高考中对不等式的要求是:理解不等式的性质及其证明;掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用;掌握分析法、综合法、比较法证明简单的不等式;掌握简单不等式的解法;理解不等式│a│-│b│≤│a+b│≤│a│+│b│。 2.不等式这部分内容在高考中通过两面考查,一是单方面考查不等式的性质,解法及证明;二是将不等式知识与集合、逻辑、函数、三角函数、数列、解析几何、立体几何、平面向量、导数等知识交汇起来进行考查,深化数学知识间的融汇贯通,从而提高学生数学素质及创新意识. 3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰. 4.证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.比较法的一般步骤是:作差(商)→变形→判断符号(值).5.在近几年全国各省市的高考试卷中,不等式在各种题型中都有出现。在解答题中,不等式与函数、数列与导数相结合,难度比较大,使用导数解决逐渐成为一般方法6.知识网络

其中:指数不等式、对数不等式、无理不等式只要求了解基本形式,不做过高要求. 二、 经典例题剖析 1.有关不等式的性质 此类题经常出现在选择题中,一般与函数的值域,最值与比较大小等常结合在一起 例1.(xx 年江西卷)若a >0,b >0,则不等式-b <1 x 1b D.x <1b -或x >1a 解析:-b <1x 1 a 答案:D 点评:注意不等式b a b a 1 1>? <和适用条件是0>ab 例2.(xx 年北京卷)如果正数a b c d ,,,满足4a b cd +==,那么( ) A.ab c d +≤,且等号成立时a b c d ,,,的取值唯一 B.ab c d +≥,且等号成立时a b c d ,,,的取值唯一 C.ab c d +≤,且等号成立时a b c d ,,,的取值不唯一 D.ab c d +≥,且等号成立时a b c d ,,,的取值不唯一 解析:正数a b c d ,,,满足4a b cd +==,∴ 4=a b +≥,即4ab ≤,当且仅当a =b =2时,“=”成立;又4=2 ( )2 c d cd +≤,∴ c+d ≥4,当且仅当c =d =2时,“=”成立;综上得ab c d +≤,且等号成立时a b c d ,,,的取值都为2 答案:A 点评:本题主要考查基本不等式,命题人从定值这一信息给考生提供了思维,重要不等式可以完成和与积的转化,使得基本不等式运用成为现实。 例3.(xx 年安徽)若对任意∈x R ,不等式x ≥ax 恒成立,则实数a 的取值范围是 (A)a <-1 (B)a ≤1 (C) a <1 (D )a ≥1 解析:若对任意∈x R ,不等式x ≥ax 恒成立,当x ≥0时,x ≥ax ,a ≤1,当x <0时,

高考数学不等式专题

基本不等式专题 一、知识点总结 1、基本不等式原始形式 (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ 2、基本不等式一般形式(均值不等式) 若*,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形 (1)若* ,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则2 2? ? ? ??+≤b a ab 总结:当两个正数的积为定植时,它们的和有最小值; 5、常用结论 (1)若0x >,则1 2x x +≥ (当且仅当1x =时取“=”) (2)若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) (4)若R b a ∈,,则2 )2(222b a b a ab +≤ +≤ (5)若*,R b a ∈,则22111 22b a b a ab b a +≤+≤≤+ (6),、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; (7))(333 3+ ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时, “ =”号成立. (1)若,,,a b c d R ∈,则22222()()()a b c d ac bd ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有: 22222221231123112233()()()a a a b b b a b a b a b ++++≥++

高中数学基本不等式题型总结

专题 基本不等式 【一】基础知识 基本不等式:)0,0a b a b +≥>> (1)基本不等式成立的条件: ; (2)等号成立的条件:当且仅当 时取等号. 2.几个重要的不等式 (1)()24a b ab +≤(),a b R ∈;(2))+0,0a b a b ≥>>; 【二】例题分析 【模块1】“1”的巧妙替换 【例1】已知0,0x y >>,且34x y +=,则41x y +的最小值为 . 【变式1】已知0,0x y >>,且34x y +=,则4x x y +的最小值为 . 【变式2】(2013年天津)设2,0a b b +=>, 则 1||2||a a b +的最小值为 . 【例2】(2012河西)已知正实数,a b 满足 211a b +=,则2a b +的最小值为 . 【变式】已知正实数,a b 满足 211a b +=,则2a b ab ++的最小值为 .

【例3】已知0,0x y >>,且280x y xy +-=,则x y +的最小值为 . 【例4】已知正数,x y 满足21x y +=,则 8x y xy +的最小值为 . 【例5】已知0,0a b >>,若不等式 212m a b a b +≥+总能成立,则实数m 的最大值为 . 【例6】(2013年天津市第二次六校联考)()1,0by a b +=≠与圆221x y +=相交于,A B 两点,O 为坐标原点,且△AOB 为直角三角形,则 2212a b +的最小值为 .

【例7】(2012年南开二模)若直线()2200,0ax by a b -+=>>始终平分圆222410x y x y ++-+=的周长,则 11a b +的最小值为 . 【例8】设12,e e 分别为具有公共焦点12,F F 的椭圆和双曲线的离心率,P 为两曲线的一个公共点,且满足 120PF PF ?=,则2 2214e e +的最小值为 【例9】已知0,0,lg 2lg 4lg 2x y x y >>+=,则11x y +的最小值是( ) A .6 B .5 C .3+ D . 【例10】已知函数()4141 x x f x -=+,若120,0x x >>,且()()121f x f x +=,则()12f x x +的最小值为 .

高中数学不等式综合复习

不等式专题 一.不等式的基本性质 1. 不等式的基本概念 (1) 不等(等)号的定义:.0;0;0b a b a b a b a b a b a ?>- (2) 不等式的分类:绝对不等式;条件不等式;矛盾不等式. (3) 同向不等式与异向不等式. (4) 同解不等式与不等式的同解变形. 2.不等式的基本性质 (1)a b b a (对称性) (2)c a c b b a >?>>,(传递性) (3)c b c a b a +>+?>(加法单调性) (4)d b c a d c b a +>+?>>,(同向不等式相加) (5)d b c a d c b a ->-?<>,(异向不等式相减) (6)bc ac c b a >?>>0,. (7)bc ac c b a 0,(乘法单调性) (8)bd ac d c b a >?>>>>0,0(同向不等式相乘) (9)0,0a b a b c d c d >><(异向不等式相除) 11(10),0a b ab a b >>? <(倒数关系) (11))1,(0>∈>?>>n Z n b a b a n n 且(平方法则) (12))1,(0>∈>?>>n Z n b a b a n n 且(开方法则) 二.一元二次不等式 1.不等式的解法 (1)整式不等式的解法(根轴法). 步骤:正化,求根,标轴,穿线(偶重根打结),定解. 特例① 一元一次不等式ax >b 解的讨论; 一元一次不等式)0(0≠>+a b ax 的解法与解集形式 当0>a 时,a b x - >, 即解集为?????? ->a b x x | 当00(a ≠0)解的讨论.

最新高三数学专题精练:不等式

高三数学专题精练:不等式 一、选择题(10小题,每题5分) 1.设x ,y 满足约束条件?? ? ??≥≥≥+-≤--0,002063y x y x y x ,若目标函数z=ax+by (a>0, b>0)的值是最大值为12,则23a b +的最小值为( ). A.625 B.38 C. 3 11 D. 4 2.若不等式组034 34x x y x y ≥??+≥??+≤? 所表示的平面区域被直线4 3 y kx =+分为面积 相等的两部分,则k 的值是(A )73 (B ) 37 (C )43 (D ) 34 3.“”是“ 且”的 A. 必要不充分条件 B. 充分不必要条件 C. 充分必要条件 D. 既不充分也不必要条件 4、若不等式f (x )=2ax x c -->0的解集{}|21x x -<<,则函数y =f (-x )的图象为( ) 5.设,x y 满足24, 1,22,x y x y x y +≥?? -≥??-≤? 则z x y =+ (A )有最小值2,最大值3 (B )有最小值2,无最大值 (C )有最大值3,无最小值 (D )既无最小值,也无最 B

大值 6.已知D 是由不等式组20 30 x y x y -≥?? +≥?,所确定的平面区域,则圆 224x y +=在区域D 内的弧长为 [ ] A 4π B 2 π C 34π D 32π 7.设变量x ,y 满足约束条件:3 123x y x y x y +≥?? -≥-??-≤? .则目标函数z=2x+3y 的最 小值为 (A )6 (B )7 (C )8 (D )23 8.在平面直角坐标系中,若不等式组101010x y x ax y +-≥?? -≤??-+≥? (α为常数)所表示 的平面区域内的面积等于2,则a 的值为 A. -5 B. 1 C. 2 D. 39.不等式对任意x 实数恒成立,则实数a 的取值范围为( ) A . (,1][4,) -∞-+∞ B .(,2][5,)-∞-+∞ C .[1,2] D .(,1][2,)-∞+∞ 10.已知0,0a b >>,则112ab a b ++ ) A .2 B .22 C .4 D .5 二、填空题(5个题,每题4分) 11.若0x >,则2x x +的最小值为. 2313x x a a +--≤-

2017-18全国卷高考真题 数学 不等式选修专题

2017-2018全国卷I -Ⅲ高考真题 数学 不等式选修专题 1.(2017全国卷I,文/理.23)(10分) [选修4—5:不等式选讲](10分) 已知函数f (x )=–x 2+ax +4,g (x )=│x +1│+│x –1│. (1)当a =1时,求不等式f (x )≥g (x )的解集; (2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围. 【答案解析】 解:(1)当1a =时,()24f x x x =-++,是开口向下,对称轴12 x = 的二次函数. ()211121121x x g x x x x x >??=++-=-??-<-?,,≤x ≤,, 当(1,)x ∈+∞时,令242x x x -++= ,解得x =()g x 在()1+∞, 上单调递增,()f x 在()1+∞,上单调递减 ∴此时()()f x g x ≥ 解集为1? ?? . 当[]11x ∈-, 时,()2g x =,()()12f x f -=≥. 当()1x ∈-∞-, 时,()g x 单调递减,()f x 单调递增,且()()112g f -=-=. 综上所述,()()f x g x ≥ 解集1?-??? . (2)依题意得:242x ax -++≥在[]11-, 恒成立. 即220x ax --≤在[]11-, 恒成立. 则只须()()2211201120 a a ?-?-??----??≤≤,解出:11a -≤≤. 故a 取值范围是[]11-, .

2.(2017全国卷Ⅱ,文/理.23)(10分) [选修4-5:不等式选讲](10分) 已知0a >,222ba b +==2.证明: (1)()22()4a b a b ++≥; (2)2a b +≤. 【答案解析】 3.(2017全国卷Ⅱ,文/理.23)(10分) [选修4—5:不等式选讲](10分) 已知函数f (x )=│x +1│–│x –2│. (1)求不等式f (x )≥1的解集; (2)若不等式f (x )≥x 2–x +m 的解集非空,求m 的取值范围. 【答案解析】 解:(1)()|1||2|f x x x =+--可等价为()3,121,123,2--??=--<

(完整版)高中数学不等式习题及详细答案

第三章 不等式 一、选择题 1.已知x ≥2 5 ,则f (x )=4-25+4-2x x x 有( ). A .最大值45 B .最小值4 5 C .最大值1 D .最小值1 2.若x >0,y >0,则221+)(y x +221 +)(x y 的最小值是( ). A .3 B . 2 7 C .4 D . 2 9 3.设a >0,b >0 则下列不等式中不成立的是( ). A .a +b + ab 1≥22 B .(a +b )( a 1+b 1 )≥4 C 22 ≥a +b D . b a ab +2≥ab 4.已知奇函数f (x )在(0,+∞)上是增函数,且f (1)=0,则不等式x x f x f ) ()(--<0 的解集为( ). A .(-1,0)∪(1,+∞) B .(-∞,-1)∪(0,1) C .(-∞,-1)∪(1,+∞) D .(-1,0)∪(0,1) 5.当0<x <2 π时,函数f (x )=x x x 2sin sin 8+2cos +12的最小值为( ). A .2 B .32 C .4 D .34 6.若实数a ,b 满足a +b =2,则3a +3b 的最小值是( ). A .18 B .6 C .23 D .243 7.若不等式组?? ? ??4≤ 34 ≥ 30 ≥ y x y x x ++,所表示的平面区域被直线y =k x +34分为面积相等的两部分,则k 的值是( ). A . 7 3 B . 37 C . 43 D . 34 8.直线x +2y +3=0上的点P 在x -y =1的上方,且P 到直线2x +y -6=0的距离为

高考数学二轮复习专题突破训练一第2讲不等式与线性规划理含2014年高考真题

第2讲 不等式与线性规划 考情解读 1.在高考中主要考查利用不等式的性质进行两数的大小比较、一元二次不等式的解法、基本不等式及线性规划问题.基本不等式主要考查求最值问题,线性规划主要考查直接求最优解和已知最优解求参数的值或取值范围问题.2.多与集合、函数等知识交汇命题,以选择、填空题的形式呈现,属中档题. 1.四类不等式的解法 (1)一元二次不等式的解法 先化为一般形式ax 2 +bx +c >0(a ≠0),再求相应一元二次方程ax 2 +bx +c =0(a ≠0)的根,最后根据相应二次函数图象与x 轴的位置关系,确定一元二次不等式的解集. (2)简单分式不等式的解法 ①变形?f x g x >0(<0)?f (x )g (x )>0(<0); ②变形? f x g x ≥0(≤0)?f (x )g (x )≥0(≤0)且g (x )≠0. (3)简单指数不等式的解法 ①当a >1时,a f (x ) >a g (x ) ?f (x )>g (x ); ②当0a g (x ) ?f (x )1时,log a f (x )>log a g (x )?f (x )>g (x )且f (x )>0,g (x )>0; ②当0log a g (x )?f (x )0,g (x )>0. 2.五个重要不等式 (1)|a |≥0,a 2 ≥0(a ∈R ). (2)a 2 +b 2 ≥2ab (a 、b ∈R ). (3) a +b 2 ≥ab (a >0,b >0). (4)ab ≤(a +b 2)2 (a ,b ∈R ). (5) a 2+ b 22 ≥ a +b 2 ≥ab ≥ 2ab a +b (a >0,b >0). 3.二元一次不等式(组)和简单的线性规划 (1)线性规划问题的有关概念:线性约束条件、线性目标函数、可行域、最优解等.

高考数学专题练习:不等式与线性规划

高考数学专题练习:不等式与线性规划 1。若不等式(-2)n a -3n -1-(-2)n <0对任意正整数n 恒成立,则实数a 的取值范围是( ) A 。? ? ???1,43 B 。? ???? 12,43 C 。? ? ???1,74 D 。? ?? ??12,74 答案 D 解析 当n 为奇数时,要满足2n (1-a )<3n -1恒成立, 即1-a <13× ? ????32n 恒成立,只需1-a <13×? ????321,解得a >1 2; 当n 为偶数时,要满足2n (a -1)<3n -1恒成立, 即a -1<13× ? ????32n 恒成立,只需a -1<13×? ????322,解得a <7 4。 综上,12<a <7 4,故选D 。 2。已知a >0,b >0,且a ≠1,b ≠1,若log a b >1,则( ) A 。(a -1)(b -1)<0 B 。(a -1)(a -b )>0 C 。(b -1)(b -a )<0 D 。(b -1)(b -a )>0 答案 D 解析 取a =2,b =4,则(a -1)(b -1)=3>0,排除A ;则(a -1)(a -b )=-2<0,排除B ;(b -1)(b -a )=6>0,排除C,故选D 。 3。设函数f (x )=??? x 2-4x +6,x ≥0, x +6,x <0,则不等式f (x )>f (1)的解集是( ) A 。(-3,1)∪(3,+∞) B 。(-3,1)∪(2,+∞) C 。(-1,1)∪(3,+∞) D 。(-∞,-3)∪(1,3) 答案 A 解析 f (1)=3。由题意得??? x ≥0,x 2-4x +6>3或??? x <0, x +6>3, 解得-33。 4。 若a ,b ,c 为实数,则下列命题为真命题的是( ) A 。若a >b ,则ac 2>bc 2 B 。若a <b <0,则a 2>ab >b 2

【经典】高三数学基本不等式题型精讲精练

基本不等式 基本不等式知识 1.(1)若R b a ∈,,则ab b a 22 2≥+ (2)若R b a ∈,,则2 22b a ab +≤(当且仅当b a =时取“=”) 2.(1)若*,R b a ∈,则ab b a ≥+2 (2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则2 2??? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x +≤- (当且仅当1x =-时取“=”) 4.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 5.若,,,+∈R c b a a b c c b a 3333≥++, 33abc c b a ≥++(当且仅当c b a ==时取等) 应用一 直接求最值 例1 求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1x (3)(理科)已知+∈R y x ,,且满足232x y =,则x y +的最小值为( ) A .1 B .2 C .6 D .4 (4)已知+∈R c b a ,,且满足132=++c b a ,则c b a 31211++的最小值为 (5)若b a ,是不相等的正数,b a y b a x +=+=,2 ,则y x ,的大小关系是 (6)若,0,0>>b a 且,72=++b a ab 则b a +的最小值是 技巧一 凑项 例1 已知54x <,求函数14245 y x x =-+-的最大值 1.函数y =log 2(x +1x -1 +5)(x >1)的最小值为( ) A .-3 B .3 C .4 D .-4 技巧二 凑系数 例2 当40<

高一数学不等式知识点总结

高一数学不等式知识点总结 一、要点精析 1.比较法比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比 较法(简称为求差法)和商值比较法(简称为求商法)。 (1)差值比较法的理论依据是不等式的基本性质:“a- b≥0a≥b;a-b≤0a≤b”。其一般步骤为:①作差:考察不等式左右 两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进 行变形,或变形为一个常数,或变形为若干个因式的积,或变形为 一个或几个平方的和等等,其中变形是求差法的关键,配方和因式 分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论。 应用范围:当被证的不等式两端是多项式、分式或对数式时一般使 用差值比较法。 (2)商值比较法的理论依据是:“若a,b∈R+, a/b≥1a≥b;a/b≤1a≤b”。其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1的大小关系,就是 判定商大于1或小于1。应用范围:当被证的不等式两端含有幂、 指数式时,一般使用商值比较法。 2.综合法利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从 “已知”看“需知”,逐步推出“结论”。其逻辑关系为:AB1 B2B3…BnB,即从已知A逐步推演不等式成立的必要条件从而得 出结论B。

3.分析法分析法是指从需证的不等式出发,分析这个不等式成立的充分条件,进而转化为判定那个条件是否具备,其特点和思路是“执果索因”,即从“未知”看“需知”,逐步靠拢“已知”。用 分析法证明AB的逻辑关系为:BB1B1B3… BnA,书写的模式是:为了证明命题B成立,只需证明命题B1为真,从而有…,这只需证明B2为真,从而又有…,……这只需证明 A为真,而已知A为真,故B必为真。这种证题模式告诉我们,分 析法证题是步步寻求上一步成立的充分条件。 4.反证法有些不等式的证明,从正面证不好说清楚,可以从正难则反的角度考虑,即要证明不等式A>B,先假设A≤B,由题设及其 它性质,推出矛盾,从而肯定A>B。凡涉及到的证明不等式为否定 命题、惟一性命题或含有“至多”、“至少”、“不存在”、“不 可能”等词语时,可以考虑用反证法。 5.换元法换元法是对一些结构比较复杂,变量较多,变量之间的关系不甚明了的不等式可引入一个或多个变量进行代换,以便简化 原有的结构或实现某种转化与变通,给证明带来新的启迪和方法。 主要有两种换元形式。(1)三角代换法:多用于条件不等式的证明, 当所给条件较复杂,一个变量不易用另一个变量表示,这时可考虑 三角代换,将两个变量都有同一个参数表示。此法如果运用恰当, 可沟通三角与代数的联系,将复杂的代数问题转化为三角问题根据 具体问题,实施的三角代换方法有:①若x2+y2=1,可设x=cosθ, y=sinθ;②若x2+y2≤1,可设x=rcosθ,y=rsinθ(0≤r≤1);③对 于含有的不等式,由于|x|≤1,可设x=cosθ;④若x+y+z=xyz,由tanA+tanB+tanC=tanAtan-BtanC知,可设x=taaA,y=tanB,z=tanC,其中A+B+C=π。(2)增量换元法:在对称式(任意交换两个字母,代 数式不变)和给定字母顺序(如a>b>c等)的不等式,考虑用增量法进 行换元,其目的是通过换元达到减元,使问题化难为易,化繁为简。如a+b=1,可以用a=1-t,b=t或a=1/2+t,b=1/2-t进行换元。 6.放缩法放缩法是要证明不等式A 二、难点突破

高中数学 不等式专题训练

1、(02京皖春1)不等式组???<-<-0 30 122x x x 的解集是( ) A .{x |-1<x <1} B .{x |0<x <3} C .{x |0<x <1} D .{x |-1<x <3} 2、(01河南广东1)不等式 3 1 --x x >0的解集为( ) A .{x |x <1} B .{x |x >3} C .{x |x <1或x >3} D .{x |1+->|22|330x x x x x 的解集是( ) A .{x |0<x <2} B .{x |0<x <2.5} C .{x |0<x <6} D .{x |0<x <3} 5、(95全国理16)不等式( 3 1)8 2 -x >3-2x 的解集是_____。 6、(02全国文5理4)在(0,2π)内,使sin x >cos x 成立的x 取值范围为( ) A .( 4π,2π)∪(π,45π) B .( 4π ,π) C .(4π,4 5π) D .(4π,π)∪(45π,2 3π) 7、解不等式1|55|2<+-x x 8、不等式022>++bx ax 的解集为}3 1 21|{<<- x x ,求a , b 9、解不等式∣∣x +4∣-8∣>2 解:由原不式式得∣x +4∣-8>2或∣x +4∣-8<-2 ∴∣x +4∣>10或∣x +4∣<6 ∴x >6或x <-14或-106或x <-14或-102x 11、解不等式:∣x +3∣+∣2x -4∣>2 12、解不等式2931831>?+-+x x 13、解关于x 的不等式0)1(2>---a a x x 14、a 为何值时,不等式2)1()23(22+-++-x a x a a >0的解为一切实数? 15、(06重庆文15)设0,1a a >≠,函数2 ()log (23)a f x x x =-+有最小值,则不等式log (1)0a x ->的 解集为 。 16、(06重庆理15)设0,1a a >≠,函数2lg(23) ()x x f x a -+=有最大值,则不等式() 2log 570a x x -+>的 解集为 。 17、已知不等式230{|1,}x x t x x m x R -+<<<∈的解集为 (1)求t ,m 的值; (2)若函数4)(2++-=ax x x f 在区间(],1-∞上递增,解关于x 的不等式2 log (32)0a mx x t -++-<.

2018年高考数学—不等式专题

不等式 (必修5P80A3改编)若关于x 的一元二次方程x 2-(m +1)x -m =0有两个不相等的实数根,则m 的取值范围是________. 解析 由题意知Δ=[(m +1)]2+4m >0.即m 2+6m +1>0, 解得m >-3+22或m <-3-2 2. 答案 (-∞,-3-22)∪(-3+22,+∞) (2016·全国Ⅱ卷)若x ,y 满足约束条件???x -y +1≥0, x +y -3≥0,x -3≤0, 则 z =x -2y 的最小值为 ________. 解析 画出可行域,数形结合可知目标函数的最小值在直线x =3与直线x -y +1=0的交点(3,4)处取得,代入目标函数z =x -2y 得到-5. 答案 -5 (2016·全国Ⅲ卷)设x ,y 满足约束条件???2x -y +1≥0, x -2y -1≤0,x ≤1, 则z =2x +3y -5的最小值为_____. 解析 画出不等式组表示的平面区域如图中阴影部分所示.由题意可知, 当直线y =-23x +53+z 3过点A (-1,-1)时,z 取得最小值,即z min =2×(-1)+3×(-1)-5=-10.

(2017·西安检测)已知变量x ,y 满足???2x -y ≤0, x -2y +3≥0,x ≥0, 则z =(2)2x +y 的最大值为________. 解析 作出不等式组所表示的平面区域,如图阴影部分所示.令m =2x +y ,由图象可知当直线y =-2x +m 经过点A 时,直线y =-2x +m 的纵截距最大,此时m 最大,故z 最大.由?????2x -y =0,x -2y +3=0,解得?????x =1,y =2, 即A (1,2).代入目标函数z =(2)2x +y 得,z =(2)2×1+2=4. 答案 4 (2016·北京卷)若x ,y 满足???2x -y ≤0,x +y ≤3,x ≥0, 则2x +y 的最大值为( ) A.0 B.3 C.4 D.5 解析 画出可行域,如图中阴影部分所示, 令z =2x +y ,则y =-2x +z ,当直线y =-2x +z 过点A (1,2)时,z 最大,z max =4. 答案 C (2016·山东卷)若变量x ,y 满足???x +y ≤2, 2x -3y ≤9,x ≥0, 则x 2+y 2的最大值是( )

最新高一数学不等式练习题

高一数学不等式练习题 1、不等式1 1 2x <的解集是( ) A .(,2)-∞ B .(2,)+∞ C .(0,2) D .()0,∞-?(2,)+∞ 2、不等式2 01x x -+≤的解集是( ) A .(1)(12]-∞--,, B .[12]-, C .(1)[2)-∞-+∞,, D .(12]-, 3、已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N =( ) (A ){x |x <-2} (B ){x |x >3} (C ){x |-1<x <2} (D ){x |2<x <3} 4 ) A. D. 5、不等式203x x ->+的解集是( ) (A)(-3,2) (B)(2,+∞) (C) (-∞,-3)∪(2,+∞) (D) (-∞,-2)∪(3,+∞) 6、若不等式210x ax ++≥对一切102x ?? ∈ ???,成立,则a 的最小值为( ) A.0 B.2- C.5 2- D.3- 7、设x 、y 为正数,则有(x+y)(1 x +4 y )的最小值为( ) A .15 B .12 C .9 D .6 8、.若对任意∈x R ,不等式x ≥ax 恒成立,则实数a 的取值范围是( ) (A)a <-1 (B)a ≤1 (C) a <1 (D )a ≥1 9、下面给出的四个点中,位于???>+-<-+01, 01y x y x 表示的平面区域内的点是( ) (A )(0,2) (B)(-2,0) (C)(0,-2) (D)(2,0) 10、已知函数()???≥ -<+-=01 1x x x x x f ,则不等式()()111≤+++x f x x 的解集是( ) (A) {}121|-≤≤-x x (B) { }1|≤x x (C) {}12|-≤x x (D) {}1212|-≤≤--x x

相关文档
最新文档