优先矩阵转化为优先函数

优先矩阵转化为优先函数
优先矩阵转化为优先函数

一种方便地求算符优先函数的方法——迭代法

若已知运算符之间的优先关系,可按如下步骤构造优先函数:

1、对每个运算符a(包括#在内)令f(a)=g(a)=1

2、如果a?b且f(a)<=g(b)令f(a)=g(b)+1

3、如果a?b且f(a)>=g(b)令g(b)= f(a)+1

4、如果a?b而f(a) ≠g(b),令min{f(a),g(b)}=max{f(a),g(b)}

5、重复2~4,直到过程收敛。如果重复过程中有一个值大于2n,则

表明不存在算符优先函数。

代码为:

#include

#include

#define MaxSize 100

#define MaxOp 9

struct

{

char ch; //运算符

int pri; //优先级

}

lpri[]={{'+',1},{'-',1},{'*',1},{'/',1},{'(',1},{')',1},{'#',1}},

rpri[]={{'+',1},{'-',1},{'*',1},{'/',1},{'(',1},{')',1},{'#',1}};

int f(char op) //求左运算符op的优先级

{

int i;

for (i=0;i

if (lpri[i].ch==op) return lpri[i].pri;

}

int g(char op) //求右运算符op的优先级

{

int i;

for (i=0;i

if (rpri[i].ch==op) return rpri[i].pri;

}

/*int InOp(char ch) //判断ch是否为运算符

{

if (ch=='(' || ch==')' || ch=='+' || ch=='-' || ch=='*' || ch=='/'||ch=='#') return 1;

else

return 0;

char Precede(char c1,char c2)

{

int i=0,j=0;

static char array[49]={

'>', '>', '<', '<', '<', '>', '>',

'>', '>', '<', '<', '<', '>', '>',

'>', '>', '>', '>', '<', '>', '>',

'>', '>', '>', '>', '<', '>', '>',

'<', '<', '<', '<', '<', '=', '!',

'>', '>', '>', '>', '!', '>', '>',

'<', '<', '<', '<', '<', '!', '='};

switch(c1) /* i为下面array的横标*/

{

case '+' : i=0;break;

case '-' : i=1;break;

case '*' : i=2;break;

case '/' : i=3;break;

case '(' : i=4;break;

case ')' : i=5;break;

case '#' : i=6;break;

}

switch(c2) /* j为下面array的纵标*/

{

case '+' : j=0;break;

case '-' : j=1;break;

case '*' : j=2;break;

case '/' : j=3;break;

case '(' : j=4;break;

case ')' : j=5;break;

case '#' : j=6;break;

}

return (array[7*i+j]); /* 返回运算符*/

}

void main()

int i,j,k=1;

while(k!=0)

{

k=0;

for(i=0;i<7;i++)

{

for(j=0;j<7;j++)

{

if(Precede(lpri[i].ch,rpri[j].ch)=='>'&&f(lpri[i].ch)<=g(rpri[j].ch))

{ lpri[i].pri=rpri[j].pri+1;k=1;}

else if(Precede(lpri[i].ch,rpri[j].ch)=='<'&&f(lpri[i].ch)>=g(rpri[j].ch))

{ rpri[j].pri=lpri[i].pri+1;k=1;}

}

}

}

printf(" ");

for(i=0;i<7;i++)

printf("%3c",lpri[i].ch);

printf("\n");

printf("入栈优先函数f:");

for(i=0;i<7;i++)

printf("%3d",lpri[i].pri);

printf("\n");

printf("比较优先函数g:");

for(i=0;i<7;i++)

printf("%3d",rpri[i].pri);

printf("\n");

}

(完整版)复变函数与积分变换习题答案

一、将下列复数用代数式、三角式、指数式表示出来。 (1) i 解:2 cos sin 2 2 i i e i ππ π ==+ (2) -1 解:1cos sin i e i πππ-==+ (3) 1+ 解:()/3122cos /3sin /3i e i πππ+==+ (4) 1cos sin i αα-+ 解: 2221cos sin 2sin 2sin cos 2sin (sin cos )2 2 2 2 22 2sin cos()sin()2sin 222222 i i i i i e παα α α α α α αααπαπαα?? - ??? -+=+=+? ?=-+-= ??? (5) 3z 解:()3333cos3sin3i z r e r i θθθ==+ (6) 1i e + 解:()1cos1sin1i i e ee e i +==+ (7) 11i i -+ 解:3/411cos3/4sin 3/411i i i i e i i i πππ--==-==+++ 二、计算下列数值 (1) 解: 1ar 21ar 21ar 2 b i ctg k a b i ctg a b i ctg a π?? + ??? = =??=??? (2) 解:6 2263634632 22i k i i i i e i e e e i πππππππ?? ??++ ? ??? ????+ ????=+????====-+? ??=-?

(3) i i 解:( )2222i i k k i i e e ππππ???? +-+ ? ??? ?? == (4) 解:( ) 1/2222i i k k e e ππππ???? ++ ? ??? ?? == (5) cos5α 解:由于:()()5 5 2cos5i i e e ααα-+=, 而: ()()()() ()()()() 5 5 5 55 5 5 5 55 cos sin cos sin cos sin cos sin n n i n n n n i n n e i C i e i C i αααααααααα-=--==+==-=-∑∑ 所以: ()()()()()()()()()()() 5555055550 4 3 2 5 3 543251cos5cos sin cos sin 21 cos sin 112 5cos sin cos sin cos 5cos sin 10cos sin cos n n n n n n n n n n n C i i C i i C i ααααααααααααααααα --=--=?? =+-????=+-??=++=-+∑∑ (6) sin5α 解:由于:()() 5 5 2sin 5i i e e ααα--=, 所以: ()()()()()()()()()()() () 5555055550 5234 245552341sin 5cos sin cos sin 21 cos sin 1121 sin cos sin sin cos sin 10cos sin 5sin cos n n n n n n n n n n n C i i i C i i i C i C i i ααααααααααααααααα --=--=?? =--? ??? =--??=++=-+∑∑ (7) cos cos2cos n ααα+++L L 解:

复变函数与积分变换公式

复变函数复习提纲 (一)复数的概念 1.复数的概念:z = X ? iy , X, y 是实数,x = Rez,y=lmz.r=_i. 中的幅角。 3)arg Z与arctan~y之间的关系如下: X y 当X 0, arg Z= arctan 丄; X y y -0,arg Z= arctan 二 ! X y y :: O,arg Z= arctan -二 J X 4)三角表示:Z = Z(COS8 +isin0 ),其中日=argz;注:中间一定是“ +”号。 5)指数表示:Z = ZeF,其中V - arg z。 (二)复数的运算 1.加减法:若Z I=X I iy1, z2=X2 iy2,贝廿z1二z2= x1二x2i y1- y2 2.乘除法: 1)若z1 = x1 iy1, Z2 =X2 iy2,贝U 狂h[N×2 一y$2 i x2% x1y2 ; 乙_ X1+ i y_ (x1 十 i 和X—i y_ XX y*y y x;。X Z2 X2+ i% (对讪-X )i2y 2+2X222+ 2X22 2)若Z I=Iz I e i^,z2 =∣z2 e iθ ,则 Z1Z2 = ZIll Z2 e i(t1也; 3.乘幕与方根 1)若Z= Z(COS J isin * n (CoS n i Sinn )= n e i"。 2)幅角:在Z=O时,矢量与X轴正向的夹角, 记为Arg Z (多值函数);主值arg Z 是位于(-理,二]注:两个复数不能比较大小 2.复数的表示

2)若 Z = IZ(COSB+isinT)=∣ze i ^,则 (三)复变函数 1?复变函 数: w = f z ,在几何上可以看作把 Z 平面上的一个点集 D 变到W 平面上的一个点集 G 的映射 . 2 ?复初等函数 1)指数函数:e z =e x cosy isiny ,在Z 平面处处可导,处处解析;且 注:e z 是以2二i 为周期的周期函数。(注意与实函数不同) 3)对数函数: LnZ=In z+i (argz + 2kιι) (k=0,±1,±2八)(多值函数); 主值:In Z = Inz+iargz 。(单值函数) ?1 LnZ 的每一个主值分支In z 在除去原点及负实轴的 Z 平面内处处解析,且 Inz Z 注:负复数也有对数存在。 (与实函数不同) 3)乘幕与幕函数:a — e bLna (a = 0) ; Z b = e bLnZ (Zn 0) 注:在除去原点及负实轴的 Z 平面内处处解析,且 Z S -bz b j 。 Sin z,cos Z 在 Z 平面内解析,且 Sinz = cosz, CoSZ=-Sinz 注:有界性Sin z 兰1, cosz ≤1不再成立;(与实函数不同) Z ■ Z Z ■ Z ,,,, e -e e +e 4) 双曲函数 ShZ ,chz = 2 2 ShZ 奇函数,ChZ 是偶函数。ShZ I ChZ 在Z 平面内解析,且 ShZ =chz, ChZ i - ShZ O (四)解析函数的概念 1 ?复变函数的导数 1)点可导: f r fZ0;fZ 0 2)区域可导:f Z 在区域内点点可导。 2 ?解析函数的概念 1 f 日 +2kπ ..日 +2kπ ) Z n I cos ----------- 十 ISi n -------- I n n (k =0,12…n -1)(有n 个相异的值) 4)三角函数: iz -iz e -e Sin Z = 2i iz JZ . e +e , sin z , ,cos z ,tgz ,ctgz 2 cos z cosz Sin Z

Matlab常用函数数组及矩阵的基本运算

实验一 Matlab 常用函数、数组及矩阵的基本运算 一、 实验目的 1. 了解Matlab7.0软件工作界面结构和基本操作; 2. 掌握矩阵的表示方法及Matlab 常用函数; 3. 掌握数组及矩阵的基本运算. 二、 实验内容 1. 了解命令窗口(command widow)和变量空间(workspace)的作用,掌握清 除命令窗口(clc )和变量空间(clear)的方法.掌握查询函数(help)的方法. 2. 掌握保存和加载变量的方法. 加载变量:load 变量名. 3. 掌握掌握矩阵的表示方法: 给a,b,c 赋如下数据: ]6,46,23,4,2,6,3,8,0,1[,356838241248 7,278744125431-=??????????--=??????????=c b a 4. 求a+b,a*b,a.*b,a/b,a./b,a^2,a.^2的结果. 5. 将str1=electronic; str2 = information; str3 = engineering; 三个字符串连接 在一起成str = electronic information engineering. 6. 求矩阵a 的逆矩阵a -1,行列式计算。 (inv(a),det(a)) 三、 实验要求 1.上机操作,熟练掌握清除命令窗口和变量空间的方法、查询变量的方法、加载变量的方法。 2.第2道题请写出步骤。 3.对实验内容中第3-6项,写出指令,上机运行. 记录运行结果(数据)。 4.写出实验报告。 四、 实验结果 2. 用save 函数,可以将工作空间的变量保存成txt 文件或mat 文件等. 比如: save peng.mat p j 就是将工作空间中的p 和j 变量保存在peng.mat 中. 用load 函数,可以将数据读入到matlab 的工作空间中. 比如:load peng.mat 就是将peng.mat 中的所有变量读入matlab 工作空间中。

复变函数与积分变换 复旦大学出版社 习题六答案

习题六 1. 求映射1w z = 下,下列曲线的像. (1) 22x y ax += (0a ≠,为实数) 解:2 2 2 2 11i=+i i x y w u v z x y x y x y == = - +++ 2 2 1x x u x y ax a = == +, 所以1w z = 将22x y ax +=映成直线1u a =. (2) .y kx =(k 为实数) 解: 2 2 2 2 1i x y w z x y x y = =- ++ 2 22 2 2 2 x y kx u v x y x y x y = =- =- +++ v ku =- 故1w z = 将y kx =映成直线v ku =-. 2. 下列区域在指定的映射下映成什么? (1)Im()0, (1i)z w z >=+; 解: (1i)(i )()i(+)w x y x y x y =+?+=-+ ,. 20.u x y v x y u v y =-=+-=-< 所以Im()Re()w w >. 故(1i)w z =+?将Im()0,z >映成Im()Re()w w >. (2) Re(z )>0. 00, 00. Im(w )>0. 若w =u +i v , 则 2 2 2 2 ,u v y x u v u v = = ++ 因为0 + 故i w z = 将Re(z )>0, 00,Im(w )>0, 12 12 w > (以(12 ,0)为圆心、12 为半径的圆) 3. 求w =z 2在z =i 处的伸缩率和旋转角,问w =z 2将经过点z =i 且平行于实轴正向的曲线的切线方向映成w 平面上哪一个方向?并作图.

Excel 矩阵运算及引用

利用Excel中函数进行矩阵运算实验 一、实验目的与要求 了解Excel的函数应用并能够利用Excel进行常用的矩阵运算。掌握以Excel 中的几个主要矩阵运算函数的功能,即 MDETERM:用于计算矩阵行列式的值; MINVERSE:用于求解某个可逆矩阵的逆矩阵; MMULT:用于计算两个矩阵的乘积,进行两个矩阵的乘法时必须确保第一个乘积矩阵的列等于第二个乘积矩阵的行; TRANSPOSE:用来求解矩阵的转置或用于Excel中行列的互换。 二、实验内容及步骤 1.矩阵的数乘 用一个数乘以一个矩阵,必须将该数与矩阵的每一个元素相乘。将单元格B3中的数字乘以矩阵A,只需在单元格B10中输入公式“=$B$3*B5”(注意:单元格B3必须采用绝对引用,及固定单元格),然后将其复制到B10:D12区域(利用自拖功能也可以实现),最终结果见下表: 矩阵的数乘 2.矩阵的加法 具有相同行列的两个矩阵才能相加。要进行矩阵的加法,只需将两个矩阵相

同行、列的元素相加,即可得到新的矩阵。如下图,要将矩阵A和B相加,只需在单元格G4中输入公式“=A4+D4”,并将其复制到G4:H8区域(利用自拖功能也可以实现),就可得到最终结果。 矩阵的相加 3.矩阵的转置 对矩阵E进行转置,首先选中打算放置输出结果的整个单元格区域F4:H7,然后选择“插入-函数”,在“查找与引用”或“全部”函数中选择函数“TRANSPOSE”。在“函数参数”的对话框中输入“A4:D6”,同时按住[Ctrl]+[Shift]+[Enter]键,最终得到下列结果。 矩阵转置 也可以利用复制,选择性粘贴中选择转置即可得到上述结果。 4、矩阵相乘 做法一:进行矩阵乘法必须保证第一个乘积矩阵的列等于第二个乘积矩阵的行。首先选中打算放置输出结果的整个单元格区域A9:D10,然后选择“插入-函数”,在“数学与三角”或“全部”函数中选择函数“MMULT”。在“函数参数”的对话框中分别输入第一个数组“A4:C5”和第二个数组“E4:H6”,同时按住[Ctrl]+[Shift]+[Enter]键,最终得到下列结果。

复变函数与积分变换公式

复变函数复习提纲 (一)复数的概念 1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.2 1i =-. 注:两个复数不能比较大小. 2.复数的表示 1 )模:z = 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ- 中的幅角。 3)()arg z 与arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

复变函数与积分变换期末试题(附有答案)

复变函数与积分变换期末试题 一.填空题(每小题3分,共计15分) 1. 2 3 1i -的幅角是( 2,1,0,23±±=+-k k ππ);2. )1(i Ln +-的主值是 ( i 4 32ln 21π + );3. 211)(z z f +=,=)0() 5(f ( 0 ),4.0=z 是 4sin z z z -的( 一级 )极点;5. z z f 1 )(=,=∞]),([Re z f s (-1 ); 二.选择题(每题3分,共15分) 1.解析函数),(),()(y x iv y x u z f +=的导函数为( ); (A ) y x iu u z f +=')(; (B )y x iu u z f -=')(; (C ) y x iv u z f +=')(; (D )x y iv u z f +=')(. 2.C 是正向圆周3=z ,如果函数=)(z f ( ),则0d )(=?C z z f . (A ) 23-z ; (B )2)1(3--z z ; (C )2)2()1(3--z z ; (D )2 ) 2(3 -z . 3.如果级数∑∞ =1 n n n z c 在2=z 点收敛,则级数在 (A )2-=z 点条件收敛 ; (B )i z 2=点绝对收敛;

(C )i z +=1点绝对收敛; (D )i z 21+=点一定发散. 4.下列结论正确的是( ) (A )如果函数)(z f 在0z 点可导,则)(z f 在0z 点一定解析; (B) 如果)(z f 在C 所围成的区域内解析,则 0)(=? C dz z f (C )如果 0)(=? C dz z f ,则函数)(z f 在C 所围成的区域内一定解析; (D )函数 ),(),()(y x iv y x u z f +=在区域内解析的充分必要条件是 ),(y x u 、),(y x v 在该区域内均为调和函数. 5.下列结论不正确的是( ). (A) 的可去奇点;为z 1 sin ∞(B) 的本性奇点;为z sin ∞ (C) ;1sin 1 的孤立奇点为 z ∞(D) .sin 1的孤立奇点为z ∞ 三.按要求完成下列各题(每小题10分,共40分) (1).设)()(2 2 2 2 y dxy cx i by axy x z f +++++=是解析函数,求 .,,,d c b a 解:因为)(z f 解析,由C-R 条件

复变函数与积分变换重要知识点归纳

复变函数与积分变换重 要知识点归纳 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

复变函数复习重点 (一)复数的概念 1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:一般两个复数不比较大小,但其模(为实数)有大小. 2.复数的表示 1 )模:z = 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。 3)()arg z 与arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

复变函数与积分变换重要知识点归纳

复变函数与积分变换重要知 识点归纳 标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

复变函数复习重点 (一)复数的概念 1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:一般两个复数不比较大小,但其模(为实数)有大小. 2.复数的表示 1 )模:z = 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。 3)()arg z 与arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

信号的傅里叶变换及其性质(复变函数与积分变换课程论文)

复变函数与积分变换 课程论文 题目信号的傅里叶变换及其性质任课老师王学顺 学院班级工学院自动化xxx 姓名学号Xxx xxxxxxxxx 时间2013年12月4日

信号的傅里叶变换及其性质 xxx (北京xx大学,自动化xxx,xxxxxxxxxx) 摘要:傅里叶变换的概念是针对非周期信号引入的,但周期信号也存在傅里叶变换,本文指出求解周期信号的傅里叶变换有三种方法:一是在一个周期内积分求傅里叶系数,二是利用对应的单脉冲信号频谱与傅里叶系数的关系求,三是利用傅里叶变换的时移性求。本文讨论了不同方法所求周期信号傅里叶变换结果之间的内在联系,进一步揭示出信号的时域与频域的对称特性。 关键词:周期信号,傅里叶变换,傅里叶系数,对称性,级数 引言 信号傅里叶变换是信号与系统中非常重要的一部分,它在数学许多分支、物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用,也是解决实际问题的强有力的工具,它的理论和方法在数学、自然科学和工程技术中有着广泛的应用。周期信号傅里叶变换是一系列冲激,其冲激强度与傅里叶系数有关。如果傅里叶系数不容易求解,可从对应的单脉冲信号的频谱求得。本文分析了周期信号从不同角度所得傅里叶变换结果的内在联系及其性质。 1.傅立叶变换概念 傅里叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅里叶变换用正弦波作为信号的成分。 1.1定义 f(t)是t的函数,如果t满足狄里赫莱条件:具有有限个间断点;具有有限个极值点;绝对可积。则有下图①式成立。称为积分运算f(t)的傅里叶变换, ②式的积分运算叫做F(ω)的傅里叶逆变换。F(ω)叫做f(t)的像函数,f(t)叫做 F(ω)的像原函数。F(ω)是f(t)的像。f(t)是F(ω)原像。 ①傅里叶变换

中科院矩阵分析_第二章

第 2 章范数理论及其应用 2.1向量范数及I p范数 定义:如果V 是数域K 上的线性空间,且对于 V的任一向量x,对应一个实数值ixil,它满足以下三个条件: 1)非负性:||x|| 0,且||x||=0 x=0; 2)齐次性:iikxii=iki iixii,k K; 3)三角不等式:||x+y|| ||x||+||y||. 则称||x|为V上向量x的范数,简称为向量范数。 可以看出范数||||为将V映射为非负数的函数。注意:2)中|k|当K为实数时为绝对值, 当K 为复数域时为复数的模。 虽然向量范数是定义在一般的线性空间上的,但是由于前面的讨论,我们知道任何n 维线性空间在一个基下都代数同构于常用的n维复(或实)列向量空间, 因此下面我们仅仅讨论n 维复(或实)列向量空间就足够了下面讨论如下:1?设||||为线性空间V n的范数,任取它的一个 基X i,X2,…,X n,则对于任意向量X,它可以表示为 x= 1X1+ 2X2+ …+ n X n 其中,(1, 2,…,n)T为X的坐标。 由此定义C n(或R n)中的范数如下: || ||C = () = || 1X1+ 2X2+ …+ n X n|| 则容易验证|| ||C确实为C n中的范数. 2?反之,若|| |C为C n中的范数,定义V n的范数如下:||X||= (X)=|| ||c 其中X= 1X1+ 2X2+ …+ n X n。 则容易验证(X)确实为V n的范数。 这个例子充分说明了一般线性空间的范数和n维 复(或实)列向量空间的范数之间的关系。这也是为我们只讨论n 维复(或实)列向量空间的范数的理由. 范数首先是一个函数,它将线性空间的任意向量映射为非负实数。 范数与函数 性质 1. 范数是凸函数, 即|| (1 )X+ y|| (1 )||X||+ ||y|| 其中0

复变函数与积分变换 学习笔记

第二章解析函数 一、复变函数的导数及微分 1、导数的定义 2、可导与连续 3、求导法则 实变函数的求导法则可以不加更改地推广到复变函数中来 4、微分的概念 与一元实变函数的微分概念完全一致 二、解析函数的概念 1、解析函数的定义 如果函数f(z)在z0及z0的邻域内处处可导,那么称f(z)在z0解析。 如果函数f(z)在区域D内每一点解析,则称f(z)在区域D内解析。或称f(z)是区域D 内的一个解析函数(全纯函数或正则函数) 2、奇点的定义 如果函数f(z)在z0不解析,那么称z0为f(z)的奇点。 根据定义可知,函数在区域内解析和区域内可导是等价的。但是,函数在一点处解析和一点处可导是不等价的,即在一点处可导,不一定在该点处解析。 函数在一点处解析比在该点处可导的要求高得多。 定理 (1)在区域D内解析的两个函数f(z)和g(z)的和、差、积、商(除去分母为零的点)在D内解析。 (2)设函数h=g(z)在z平面上的区域D内解析,函数w=f(h)在h平面上的区域G内解析。如果对于D内的每个点z,函数g(z)的对应值h都属于G,那么复合函数w=f|g(z)|在D内解析。 根据定理可知: (1)所有多项式在复平面内是处处解析的。 (2)任何一个有理分式函数P(z)/Q(z)在不含分母为零的点的区域内是解析的,使分母为零的点是它的奇点。 注意:复变函数的导数定义与一元实变函数的导数定义在形式上是完全一样的,它们的求导公式与求导法则也一样,然而复变函数极限存在要求与z趋于零的方式无关,这表明它在一点可导的条件比实变函数严格得多。 第二节、函数解析的充要条件 一、主要定理 定理一:设函数f(z)=u(x,y)+iv(x,y)定义在区域D内,则f(z)在D内一点z=x+yi 可导的充要条件是:u(x,y)与v(x,y)在点(x,y)可微,并在该点满足柯西-黎曼方 程:=,=。 根据定理一,可得函数f(z)=u(x,y)+iv(x,y)在点z=x+yi处的导数公式:f'(z)=+=+。 定理二:函数f(z)=u(x,y)+iv(x,y)在其定义域D内解析的充要条件是:u(x,y)与v(x,y)在D内可微,并满足柯西-黎曼方程。

复变函数与积分变换重要学习知识重点归纳

复变函数复习重点 (一)复数的概念 1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:一般两个复数不比较大小,但其模(为实数)有大小. 2.复数的表示 1 )模:z = 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。 3)()arg z 与arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

傅里叶变换的由来及复数下的傅里叶变换公式证明

1、考虑到一个函数可以展开成一个多项式的和,可惜多项式并不能直观的表示周期函数, 由于正余弦函数是周期函数,可以考虑任意一个周期函数能否表示成为一系列正余弦函 数的和。假设可以,不失一般性,于是得到: /(!2 如+ 工A a sin(mvt + 各), Fl = 1 2、将后面的正弦函数展开: sin( ncvt + 竹)=A rt sin % cos + cos

那么如何求出a n,如果让原函数乘以cos(nx)再进行积分。 /(工)ms 利用三角函数的正交性,可以得到: /(rtrdj- 再用sin(nx)乘,再进行积分就会得到b n, 4 =丄[/(nxdjr (- 1,3 .…)” J ■*■ fir 于是乎得到了一个任意函数展开成为正余弦函数的通用表达式,同时为什么会出现 A o/2而不是直接的A o的原因也很明朗:就是让整个表达式更具有通用性,体现一种简洁的美。 通过了以上的证明过程,应该很容易记住傅里叶变换的公式。 到此为止,作为一个工程人员不用再去考虑了,可是作为每一个数学家他们想的很多, 他们需要知道右侧的展开式为什么收敛于原函数,这个好难,有个叫Dirichlet 的家伙证明出如下结论: 定理f收敏宦理■狱利克需(DiMh冶)充分条件)设/Cr)Jg周期为2削的周期苗数,如果它満足: (1}在一个周期内连续或只有有限个第一类间斷点* (2)在一个周期内至务只有有限个曲值点. 则"工〉的傅里叶飯数收歟,井且 当工是的连嫌点时.级数收敕于 当丁S/(.r)的闾新点时?级數收飯于 i[ /(X ) + f(jt * )]- 有兴趣的可以继续找书看,可惜我有兴趣没时间??… 至此以2n为周期的傅里叶变换证明完毕,只不过我们经常遇到的周期函数我想应该 不会这么凑巧是2n,于是乎任意的一个周期函数如何知道其傅里叶变换呢,数学向来 都是一个很具有条理性的东西,任意周期的函数的傅里叶变换肯定也是建立在2n周期 函数的基础之上的。 也就是说如何让一个以21为周期的函数变成一个以2 n为周期的函数,于是乎可以使

复变函数与积分变换重点公式归纳

复变函数与积分变换复习提纲 第一章 复变函数 一、复变数和复变函数 ()()()y x iv y x u z f w ,,+== 二、复变函数的极限与连续 极限 A z f z z =→)(lim 0 连续 )()(lim 00 z f z f z z =→ 第二章 解析函数 一、复变函数),(),()(y x iv y x u z f w +==可导与解析的概念。 二、柯西——黎曼方程 掌握利用C-R 方程?????-==x y y x v u v u 判别复变函数的可导性与解析性。 掌握复变函数的导数: y x y x y y x x v iv iu u v iu y f i iv u x f z f +==-=+-=??=+=??= 1)(' 三、初等函数 重点掌握初等函数的计算和复数方程的求解。 1、幂函数与根式函数 θθθθθin n n n n n e r n i n r i r z w =+=+==)sin (cos )sin (cos 单值函数 n k z i n n e r z w π2arg 1+== (k =0、1、2、…、n-1) n 多值函数 2、指数函数:)sin (cos y i y e e w x z +== 性质:(1)单值.(2)复平面上处处解析,z z e e =)'((3)以i π2为周期 3、对数函数 ππk i z k z i z Lnz w 2ln )2(arg ln +=++== (k=0、±1、±2……) 性质:(1)多值函数,(2)除原点及负实轴处外解析,(3)在单值解析分枝上:k k z z 1 )'(ln = 。 4、三角函数:2cos iz iz e e z -+= i e e z iz iz 2sin --= 性质:(1)单值 (2)复平面上处处解析 (3)周期性 (4)无界 5、反三角函数(了解) 反正弦函数 )1(1 sin 2z iz Ln i z Arc w -+= =

复变函数与积分变换(修订版-复旦大学)课后的习题答案

习题 七 1.证明:如果f (t )满足傅里叶变换的条件,当f (t )为奇函数时,则有 ?+∞ ?=0 d sin )()(ωωωt b t f 其中()?+∞ ?=0 tdt sin π2)(ωωt f b 当 f (t ) 为 偶 函 数 时 , 则 有 ?+∞?=0 cos )()(ωωtd w a t f 其中? +∞ ?=0 2 tdt c f(t))(ωωπ os a 证明: 因为ωωωd G t f t i ?+∞ ∞ -=e )(π21)(其中)(ωG 为f (t )的傅里叶变换 ()()()(cos sin )i t G f t e dt f t t i t dt ωωωω+∞ +∞ --∞-∞ ==?-? ? ()cos ()sin f t tdt i f t tdt ωω+∞ +∞ -∞ -∞ =?-?? ? 当f (t )为奇函数时,t cos f(t)ω?为奇函数,从而 ? +∞ ∞ -=?0tdt cos f(t)ω t sin f(t)ω?为偶函数,从而 ? ?+∞ ∞ -+∞ ?=?0 .sin f(t)2tdt sin f(t)tdt ωω 故.sin f(t)2)(0 tdt i G ωω?-=? +∞ 有 )()(ωωG G -=-为奇数。 ωωωωπ ωωπ ωd t i t G d e G t f t i )sin (cos )(21)(21)(+?= ?= ? ? +∞ ∞ -+∞ ∞ - =0 1()sin d ()sin d 2ππi G i t G t ωωωωωω+∞ +∞ -∞?=??? 所以,当f(t)为奇函数时,有 00 2()b()sin d .b()= ()sin dt.πf t t f t t ωωωωω+∞ +∞ =????其中同理,当f(t)为偶函数时,有 ()()cos d f t a t ωωω+∞ =??.其中 02()()cos π a f t tdt ωω+∞ = ?? 2.在上一题中,设()f t =21, 0, 1 t t t ?

复变函数第七章_傅里叶变换(3)

§7-3 单位脉冲函数及其傅立叶变换 一.δ—型序列和δ—函数 例1. 在电流为零的电路中,从时刻0t 到ε+0t 通入一个单位电量的矩形脉冲。设电流强 度为()0t t -εδ,则有: ()??? ??+><+<<=-ε εε δε00000,0 1t t t t t t t t t 当时间间隔+ →0ε时,函数()0t t -εδ的极限状态就可以看成在瞬时0t 通入单位电量所产生的电流。在电路分析中,称这个极限电流为作用在时刻0t 的单位脉冲电流,称这个极限状 态下的函数()()000 lim t t t t -=-+ →δδεε为单位脉冲函数,即δ—函数,也称为狄拉克(Dirac )函数。00=t 时,δ—函数()t δ更为常见。 说明:δ—函数是一个广义函数,它不能用普通意义的函数定义法(即值的对应关系)来定义,我们可以认为,δ—函数()t δ是某个普通函数序列()t εδ的极限(称为δ—型序列)。 二.δ—函数的积分 我们可以认为δ—函数具有如下两个特征: 1. 0=t 时,δ—函数()∞→t δ,0≠t 时,δ—函数()0=t δ 2. ()t δ在区间()+∞∞-,上的积分表示为: ()()1lim 0==? ?+∞ ∞-→+∞∞-+ dt t dt t εεδδ 由此推出δ—函数的一个重要结果,称为δ—函数的筛选性质: ()()()()()00f dt t f dt t t f ==??+∞ ∞ -+∞ ∞-δδ (7-3-1) ()()()()()000t f dt t t f dt t t t f ==-?? +∞ ∞ -+∞ ∞ -δδ (7-3-1)’ 三.δ—函数的傅氏变换 ()=ωF F ()[]t δ ()10 ====-+∞ ∞ --?t t j t j e dt e t ωωδ 同理我们还可以得: F ()[]0t t -δ ()00 0t j t t t j t j e e dt e t t ωωωδ-=-+∞ ∞--==-=? 即()0 0t j e t t ωδ-?- 需要指出,δ—函数的傅氏变换是一种广义的傅氏变换。

拉氏变换和傅里叶变换的关系

拉氏变换和傅里叶变换的关系 一、拉氏变换 1、拉氏变换的定义: 如果有一个以时间t 为自变量的实变函数 ()t f ,它的定义域是 0≥t ,,那么()t f 的的拉普拉斯变换定义为 ()()()0e d st F s L f t f t t ∞ -=?????? s 是复变数, ωσj +=s (σ、ω均为实数), ?∞ -0e st 称为拉普拉斯积分; )(s F 是函数 )(t f 的拉普拉斯变换,它是一个复变函数,通常也称 )(s F 为 )(t f 的象函数,而称 )(t f 为 )(s F 的原函数;L 是表示进行拉普拉斯变换的符号。 s 式()表明:拉氏变换是这样一种变换,即在一定条件下,它能把一实数域中的实变函数变换为一个在复数域内与之等价的复变函数 )(s F 。 2、拉氏变换的意义 工程数学中常用的一种积分变换。它是为简化计算而建立的实变量函数和复变量函数间的一种函数变换。对一个实变量函数作拉普拉斯变换,并在复数域中作各种运算,再将运算结果作拉普拉斯反变换来求得实数域中的相应结果,往往比直接在实数域中求出同样的结果在计算上容易得多。拉普拉斯变换的这种运算步骤对于求解线性微分方程尤为有效,它可把微分方程化为容易求解的代数方程来处理,从而使计算简化。在经典控制理论中,对控制系统的分析和综合,都是建立在拉普拉斯变换的基础上的。 在工程学上,拉普拉斯变换的重大意义在于:将一个信号从时域上,转换为复频域(s 域)上来表示;在线性系统,控制自动化上都有广泛的应用 二、傅里叶变换 1、傅里叶变换的定义:

f(t)是t的函数,如果t满足狄里赫莱条件:具有有限个间断点;具有有限个极值点;绝对可积。则有下图①式成立。称为积分运算f(t)的傅立叶变换,②式的积分运算叫做F(ω)的傅立叶逆变换。F(ω)叫做f(t)的像函数,f(t)叫做 F(ω)的像原函数。F(ω)是f(t)的像。f(t)是F(ω)原像。 ① 傅里叶变换 ② 傅里叶逆变换 2、傅里叶变换的意义 傅里叶变换简单通俗理解就是把看似杂乱无章的信号考虑成由一定振幅、相位、频率的基本正弦(余弦)信号组合而成,傅里叶变换的目的就是找出这些基本正弦(余弦)信号中振幅较大(能量较高)信号对应的频率,从而找出杂乱无章的信号中的主要振动频率特点。如减速机故障时,通过傅里叶变换做频谱分析,根据各级齿轮转速、齿数与杂音频谱中振幅大的对比,可以快速判断哪级齿轮损伤。 二、拉氏变换和傅里叶变换的关系 傅里叶变换:的物理意义非常清晰:将通常在时域表示的信号,分解为多个正弦信号的叠加。每个正弦信号用幅度、频率、相位就可以完全表征。傅里叶变换之后的信号通常称为频谱,频谱包括幅度谱和相位谱,分别表示幅度随频率的分布及相位随频率的分布。对一个信号来说,就包含的信息量来讲,时域信号及其相应的傅里叶变换之后的信号是完全一样的。那傅里叶变换有什么作用呢因为有的信号主要在时域表现其特性,如电容充放电的过程;而有的信号则主要在频域表现其特性,如机械的振动,人类的语音等。若信号的特征主要在频域表

相关文档
最新文档