换热器结构设计及强度计算说明书

换热器结构设计及强度计算说明书
换热器结构设计及强度计算说明书

摘要

本次设计的题目为汽提塔冷凝器。汽提塔冷凝器是换热器的一种应用,这里我设计成浮头式换热器。浮头式换热器是管壳式换热器系列中的一种,它的特点是两端管板只有一端与外壳固定死,另一端可相对壳体滑移,称为浮头。浮头式换热器由于管束的膨胀不受壳体的约束,因此不会因管束之间的差胀而产生温差热应力,另外浮头式换热器的优点还在于拆卸方便,易清洗。在化工工业中应用非常广泛。本文对浮头式换热器进行了整体的设计,按照设计要求,在结构的选取上,采用了1-2型,即壳侧一程,管侧两程。首先,通过换热计算确定换热面积与管子的根数初步选定结构。然后按照设计的要求以及一系列国际标准进行结构设计,之后对各部分进行校核。

本次毕业设计任务是流量为3500kg/h,浮头式换热器的机械设计,工作压力管程为0.43MPa、壳程为0.042MPa,工作温度管程为61℃、壳程为80℃。

通过本次毕业设计,我熟悉了浮头式换热器的工艺流程,掌握了浮头式换热器的结构及计算方法,了解了浮头式化热器的制造要求及安装过程。但是,限于经验不足和水平有限,一定存在缺点甚至错误之处,敬请老师批评指正。

关键词:换热器;浮头式;管程;壳程

Abstract

The topic of my study is the design of . is one of applications heat exchanger.In here, my design is the floating head heat exchanger. The floating head heat exchanger is a special type of tube and shell heat exchanger. It is special for its floating head. One of its tube sheet is fixed,while another can float in the shell,so called floating head. As the tubes can expand without the restriction of the shell,it can avoid thermal stress. Another advantage is that it can be dismantled and clean easily . It is widely used in chemical industry. In this study an overall design of the floating head heat exchanger is carried out .According to the demand the type 1-2 is chosen to be the basic type,which has one segment in shell and two segment in tubes. First,heat transfer is calculated to determine the heat exchange surface area and the number of tubes that needed. Then,according to the request and standards,structural of system is well designed. After that,the finite element analysis of the shell is completed.

The graduation design task is 3500kg/h flow of the floating head heat exchanger, the mechanical design, working pressure tube 0.4 3MP, shell, work process of 0.042MP for 61 ℃, the temperature tube for 80 ℃shell cheng. Through the graduation design, I am familiar with the floating head heat exchanger process, mastered the structure of floating head heat exchanger and calculation method of floating head, learned the heat exchanger is manufacturing requirements and installation process. But, due to lack of experience and limited ability, certain shortcomings and even mistakes, please the teacher criticism and corrections.

KEY WORDS:HEAT EXCHANGER;FLOATING HEAD;TUBE-SIDE;SHELL-SIDE

目录

第一章 换热器概述 (1)

1.1 换热器的应用 (1)

1.2 换热器的主要分类 (1)

1.2.1 换热器的分类及特点 (1)

1.2.2 管壳式换热器的分类及特点 (2)

1.3 管壳式换热器特殊结构 (5)

1.4 换热管简介 (5)

第二章 工艺计算 (7)

2.1 设计条件 (7)

2.2换热器传热面积与换热器规格: (8)

2.2.1 流动空间的确定 (8)

2.2.2 初算换热器传热面积'A .......................................................................................... 8 2.2.3 传热管数及管程的确定 ........................................................................................... 9 2.2.4管心距的计算 (9)

2.2.5换热器型号、参数的确定 (9)

2.2.6壳体内径计算 (9)

2.2.7折流板的计算 (10)

2.3换热器核算 (10)

2.3.1传热系数核算 (11)

2.3.2换热器的流体阻力 (13)

2.3.3换热器的选型 (14)

第三章 换热器的结构计算和强度计算 (15)

3.1换热器的壳体设计 (15)

3.2筒体材料及壁厚 (15)

3.3封头的材料及壁厚 (16)

3.4管箱材料的选择及壁厚的计算 (16)

3.5开孔补强计算 (17)

3.6水压试验及壳体强度的校核 (19)

3.7 换热管 (20)

3.7.1 换热管的排列方式 (20)

3.7.2 布管限定圆L D (20)

3.7.3 排管 (21)

3.7.4 换热管束的分程 (21)

3.8 管板设计 (22)

3.8.1 管板与壳体的连接 (22)

3.8.2 管板计算 (22)

3.8.3 管板重量计算 (26)

3.9 折流板 (26)

3.9.1 折流板的型式和尺寸 (26)

3.9.2 折流板排列 (27)

3.9.3 折流板的布置 (27)

3.10拉杆与定距管 (27)

3.10.1 拉杆的结构形式 (27)

3.10.2 拉杆的直径、数量及布置 (27)

3.10.3 定距管 (28)

3.11法兰和垫片 (28)

3.11.1固定端的壳体法兰、管箱法兰与管箱垫片 (28)

3.11.2外头盖侧法兰、外头盖法兰与外头盖垫片、浮头垫片 (30)

3.11.3 接管法兰型式与尺寸 (31)

3.12钩圈式浮头 (32)

3.12.1 浮头盖的设计计算 (33)

3.13分程隔板 (38)

3.14鞍座 (38)

3.14.1 支反力计算如下 (38)

3.14.2 鞍座的型号及尺寸 (40)

3.15接管的最小位置 (40)

3.15.1壳程接管位置的最小尺寸 (40)

3.15.2 管箱接管位置的最小尺寸 (41)

附录外文翻译 (45)

参考文献 (55)

第一章换热器概述

过程设备在生产技术领域中的应用十分广泛,是在化工、炼油、轻工、交通、食品、制药、冶金、纺织、城建、海洋工程等传统部门所必需的关键设备,而换热设备则是广泛使用的一种通用的过程设备。在化工厂中,换热设备的投资约占总投资的10%~20%;在炼油厂,约占总投资的35%~40%。

1.1 换热器的应用

在工业生产中,换热器的主要作用是将能量由温度较高的流体传递给温度较低的流体,是流体温度达到工艺流程规定的指标,以满足工艺流程上的需要。此外,换热器也是回收余热、废热特别是低位热能的有效装置。例如,高炉炉气(约1500℃)的余热,通过余热锅炉可生产压力蒸汽,作为供汽、供热等的辅助能源,从而提高热能的总利用率,降低燃料消耗,提高工业生产经济效益。

随着我国工业的不断发展,对能源利用、开发和节约的要求不断提高,因而对换热器的要求也日益加强。换热器的设计、制造、结构改进及传热极力的研究十分活跃,一些新型高效换热器相继面世。

1.2 换热器的主要分类

在工业生产中,由于用途、工作条件和物料特性的不同,出现了不同形式和结构的换热器。

1.2.1 换热器的分类及特点

管按照传热方式的不同,换热器可分为三类:

1.直接接触式换热器

又称混合式换热器,它是利用冷、热流体直接接触与混合的作用进行热量的交换。这类换热器的结构简单、价格便宜,常做成塔状,但仅适用于工艺上允许两种流体混合的场合。

2.蓄热式换热器

在这类换热器中,热量传递是通过格子砖或填料等蓄热体来完成的。首先让热流体通过,把热量积蓄在蓄热体中,然后再让冷流体通过,把热量带走。由于两种流体交变转换输入,因此不可避免地存在着一小部分流体相互掺和的现象,造成流体的“污染”。

蓄热式换热器结构紧凑、价格便宜,单位体积传热面比较大,故较适合用于

气--气热交换的场合。

3.间壁式换热器

这是工业中最为广泛使用的一类换热器。冷、热流体被一固体壁面隔开,通过壁面进行传热。按照传热面的形状与结构特点它又可分为:

管式换热器:如套管式、螺旋管式、管壳式、热管式等;

板面式换热器:如板式、螺旋板式、板壳式等;

扩展表面式换热器:如板翅式、管翅式、强化的传热等。

1.2.2 管壳式换热器的分类及特点

由于设计题目是浮头式换热器的设计,而浮头式又属于管壳式换热器,故特此介绍管壳式换热器的主要类型以及结构特点。

管壳式换热器是目前用得最为广泛的一种换热器,主要是由壳体、传热管束、管板、折流板和管箱等部件组成,其具体结构如下图所示。壳体多为圆筒形,内部放置了由许多管子组成的管束,管子的两端固定在管板上,管子的轴线与壳体的轴线平行。进行换热的冷热两种流体,一种在管内流动,称为管程流体;另一种在管外流动,称为壳程流体。为了增加壳程流体的速度以改善传热,在壳体内安装了折流板。折流板可以提高壳程流体速度,迫使流体按规定路程多次横向通过管束,增强流体湍流程度。

流体每通过管束一次称为一个管程;每通过壳体一次就称为一个壳程,而图1-2-1所示为最简单的单壳程单管程换热器。为提高管内流体速度,可在两端管箱内设置隔板,将全部管子均分为若干组。这样流体每次只通过部分管子,因而在管束中往返多次,这称为多管程;同样。为提高管外流速,也可以在壳体内安装纵向挡板,迫使流体多次通过壳体空间,称为多壳程。多管程与多壳程可以配合使用。

这种换热器的结构不算复杂,造价不高,可选用多种结构材料,管内清洗方便,适应性强,处理量较大,高温高压条件下也能应用,但传热效率、结构的紧凑性、单位传热面的金属消耗量等方面尚有待改善。

由于管内外流体的温度不同,因之换热器的壳体与管束的温度也不同。如果两流体温度相差较大,换热器内将产生很大的热应力,导致管子弯曲、断裂或从管板上拉脱。因此,当管束与壳体温度差超过50℃时,需采取适当补偿措施,以消除或减少热应力。根据所采用的补偿措施,管壳式换热器可以分为以下几种主要类型:

固定管板式换热器:其结构如图1所示。换热器的管端以焊接或胀接的方法固定在两块管板上,而管板则以焊接的方法与壳体相连。与其它型式的管壳式换热器相比,结构简单,当壳体直径相同时,可安排更多的管子,也便于分程,同时制造成本较低。由于不存在弯管部分,管内不易积聚污垢,即使产生污垢也便于清洗。如果管子发生泄漏或损坏,也便于进行堵管或换管,但无法在管子的外表面进行机械清洗,且难以检查,不适宜处理脏的或有腐蚀性的介质。更主要的缺点是当壳体与管子的壁温或材料的线膨胀系数相差较大时,在壳体与管中将产生较大的温差应力,因此为了减少温差应力,通常需在壳体上设置膨胀节,利用膨胀节在外力作用下产生较大变形的能力来降低管束与壳体中的温差应力。

浮头式换热器:其结构如图2所示。管子一端固定在一块固定管板上,管板夹持在壳体法兰与管箱法兰之间,用螺栓连接;管子另一端固定在浮头管板上,浮头管板夹持在用螺柱连接的浮头盖与钩圈之间,形成可在壳体内自由移动的浮头,故当管束与壳体受热伸长时,两者互不牵制,因而不会产生温差应力。浮头部分是由浮头管板,钩圈与浮头端盖组成的可拆联接,因此可以容易抽出管束,故管内管外都能进行清洗,也便于检修。由上述特点可知,浮头式换热器多用于温度波动和温差大的场合,尽管与固定管板式换热器相比其结构更复杂、造价更

高。

U型管式换热器:其结构可参见图3。一束管子被弯制成不同曲率半径的U 型管,其两端固定在同一块管板上,组成管束,从而省去了一块管板与一个管箱。因为管束与壳体是分离的,在受热膨胀时,彼此间不受约束,故消除了温差应力。其结构简单,造价便宜,管束可以在壳体中抽出,管外清洗方便,但管内清洗困难,故最好让不易结垢的物料从管内通过。由于弯管的外侧管壁较薄以及管束的中央部分存在较大的空隙,故U型管换热器具有承压能力差、传热能力不佳的缺点。

双重管式换热器:将一组管子插入另一组相应的管子中而构成的换热器,其结构可以参看图4。管程流体(B流体)从管箱进口管流入,通过内插管到达外套管的底部,然后返回,通过内插管和外套管之间的环形空间,最后从管箱出口管流出。其特点是内插管与外套管之间没有约束,可自由伸缩。因此,它适用于温差很大的两流体换热,但管程流体的阻力较大,设备造价较高。

填料函式换热器:图5为填料函式换热器的结构。管束一端与壳体之间用填料密封,管束的另一端管板与浮头式换热器同样夹持在管箱法兰和壳体法兰之间,用螺栓连接。拆下管箱、填料压盖等有关零件后,可将管束抽出壳体外,便于清洗管间。管束可自由伸缩,具有与浮头式换热器相同的优点。由于减少了壳体大盖,它的结构较浮头式换热器简单,造价也较低,但填料处容易泄漏,工作压力与温度受一定限制,直径也不宜过大。

1.3 管壳式换热器特殊结构

包括有双壳程结构、螺旋折流板、双管板等特殊结构,这些结构将使换热器拥有更高的工作效率。

(1)双壳程结构:在换热器管束中间设置纵向隔板,隔板与壳体内壁用密封片阻挡物流内漏,形成双壳程结构。适用场合:①管程流量大壳程流量小时,采用此结构流速可提高一倍,给热系数提高1~1.2倍;②冷热流体温度交叉时,但壳程换热器需要两台以上才能实现传热,用一台双壳程换热器不仅可以实现传热,而且可以得到较大的传热温差。

(2)螺旋折流板式换热器:螺旋折流板可以防止死区和返混,压降较小。物流通过这种结构换热器时存在明显的径向变化,故不适用于有高热效率要求的场合。

(3)双管板结构:在普通结构的管板处增加一个管板,形成的双管板结构用于收集泄漏介质,防止两程介质混合。

1.4 换热管简介

换热管是管壳式换热器的传热元件,采用高效传热元件是改进换热器传热性能最直接有效的方法。国内已使用的新效的换热管有以下几种:

螺纹管:又称低翅片管,用光管轧制而成,适用于管外热阻为管内热阻1.5倍以上的单相流及渣油、蜡油等粘度大、腐蚀易结垢物料的换热。

(1)T形翅片管:用于管外沸腾时,可有效降低物料泡核点,沸腾给热系数提高1.6~3.3倍,是蒸发器、重沸器的理想用管。

表面多孔管:该管为光管表面形成一层多孔性金属敷层,该敷层上密布的小孔能形成许多汽化中心,强化沸腾传热。

(2)螺旋槽纹管:可强化管内物流间的传热,物料在管内靠近管壁部分流体顺槽旋流,另一部分流体呈轴向涡流,前一种流动有

利于减薄边界层,后一种流动分离边界层并增强流体扰动,传热系数

提高1.3~1.7倍,但阻力降增加1.7~2.5倍。

(3)波纹管:为挤压成型的不锈钢薄壁波纹管,管内、管外都有强化传热的作用,但波纹管换热器承压能力不高,管心距大而排

管少,壳程短而不易控制。

管壳式换热器的应用已经有悠久的历史,而且管壳式换热器被当作一中传统的标准的换热设备在很多工业部门中大量使用。尤其在化工、石油、能源设备等部门所使用的换热设备中,管壳式换热器仍处于主导地位,因此本次毕

业设计特针对这类换热器中的浮头式换热器的工艺设计以及结构设计进行介绍。

第二章 工艺计算

在换热器设计中,首先应根据工艺要求选择适用的类型,然后计算换热所需要的传热面积。工艺设计中包括了热力设计以及流动设计,其具体运算如下所述:

2.1 设计条件

两流体温度变化情况:热流体进口温度82℃,出口温度76℃;冷流体(自来水)进口温度51℃,出口温度71℃。该换热器用循环冷却水冷凝,冬季操作时进口温度会降低,考虑到这一因素,估计改换热器的管壁温和壳体壁温之差不大,因此初步确定选用固定管板式换热器。

2.流动空间及流速的确定

因两流体中苯发生相变,水的对流传热系数一般较大且易结垢,故应使循环水走管程,苯品走壳程。选用Φ20x2的碳钢管,管内流速取ui=1.2m/s 。

3.确定物性数据

定性温度:可取流体进口温度的平均值。

壳程苯的定性温度为

T=(82+80)/2=81(℃) T’=(80+76)=78(℃)

管程流体的定性温度为

t=(51+71)/2=61(℃)

苯在79℃下的有关物性数据如下:

密度 ρ=3.5kg/ m 3 ρ’=879kg/ m 3

定压比热容 c p =1.41kj/(kg .℃)c p ’=1.29kj/(kg .℃)

导热系数 λ=0.007W/(m. ℃) λ’=0.11W/(m. ℃)

粘度 μo =0.000312Pa.s

汽化热 △H=394kj /kg

流量 )/(35000h kg m

循环冷却水在61℃下的物性数据:

密度 ρi =983kg/m 3

定压比热容 c pi =4.622kj/(kg .℃)

导热系数 λi =0.66W/(m .℃)

粘度 μi =0.000469Pa.s

2.2换热器传热面积与换热器规格:

2.2.1 流动空间的确定

选择被冷却的苯品走壳程,冷却介质水走管程。这是因为:被冷却的流体走壳程可便于散热,而传热系数大的流体应走管程,这样可降低管壁的温差,减少热应力,同时对于浮头式换热器,一般是将易结垢流体流经管程。

2.2.2 初算换热器传热面积'

A

2.2.2.1 传热计算(热负荷计算)

热负荷:Q c =m o △H+m o c p t o +m o c p t 1

=3500×394﹢3500×1.41×(82-80) ﹢3500×1.29×

(80-76)=1.407?106kj/h=390.78KW 冷却水用量:140700015220kg/h ti 4.622Qo cpi ω==?=()△(71-51) 2.2.2.2 有效平均温差'm t 的计算

选取逆流流向,这是因为逆流比并流的传热效率高。

采用平均温度差。 t1-t2---tm===7.82t1-ln ln t2-△△(8280)(7151)△(℃)△8280△7151 t1-t2---t'm===9.94t1-ln ln t2-△△(8076)(7151)△(℃)△8076△7151

)(76.1794.982.70,C m t tm tm =+=?+?=?总

2.2.2.3 按经验值初选总传热系数K 估

查表选得K 估=300W/(㎡﹒℃);

2.2.2.4 初算出所需的传热面积'A

3907802A'=73.34m tm 30017.76

Q K ==?()△总; 考虑到所用传热计算式的准确程度及其他未可预料的因素,应使所选用的

换热器具有换热面积0A 留有裕度10%-25%,故有'21.1 1.1*73.3480A A m ===,

根据A 查选型手册,可选换热器的型式为:BES-2.5-85-6/25-4-Ⅱ,且为达到所需换热面积,应采用三台同类换热器串联。

所选浮头式换热器的规格参数以及其工艺计算常用参数可参考表2-3与表

2-4(附第二章后)。

2.2.3 传热管数及管程的确定

选用Φ20x2的传热管(碳钢)l=4.5(m),取管内流速ui=0.4m/s

依据传热管内径和流速确定单程传热管数

s 22i 15220/(9833600)n 72()0.7850.0160.34

V d u π?===??根 按单程管计算,所需的传热管长度为 o s 8017.69(m)d n 3.140.0272

S L π===?? p 17.694()l 4.5

L N ===管程 传热管总根数N=72x4=288 (根)

2.2.4管心距的计算

采用组合排列法,即每程内均按正方形排列,隔板两侧采用正方形排列。取管心距t=1.25do ,则

T=1.25?20=25(mm )

=18.6取19(根)

2.2.5换热器型号、参数的确定

将选型计算所得换热器管管子数与布管总数相比较,如果换热器管管子数大于布管总数,则需更换公称直径DN,然后重新计算布管总数;如果换热管管子数小于布管总数,则可最终确定换热器型号,并将换热器的型号参数输出。换热器型号参数有:公称直径DN 、公称压力PN 、换热管长度LN 、换热器管程NP 、换热器外径d 、

公称换热面积A 、管箱型式(A/B )、壳体型式等。

2.2.6壳体内径计算

采用多管程结构,取管板利用率

η=0.7,则壳体内径为

?(mm )取600mm

圆整可取D=600mm

式中:T —管心距

N —传热管总根数

η—管板利用率

圆缺高度计算:

采用弓形折流板圆缺高度为壳体内径的25﹪,则切去的圆缺高度为h=0.25?600=150mm

取折流板间距B=0.5D,则

B=0.5?600=300mm,可取B为300mm

2.2.7折流板的计算

折流板一般都比较薄,为了尽量避免加工偏差,便于管束装配,全部折流板应叠在一起同时进行钻孔为好,待钻孔工序完成后再按对称方向根据需要的形状进行边缘加工。

弓形折流板大部分换热器采用弓形折流板,其缺口高h数值,一般为0.20—0.45倍的圆筒内直径。折流板的缺口一般在排管中心以下或切于两排管孔的小桥中间。

折流板数

4500

1114

300

B

N=-=-=

传热管长

(块)折流板间距

对于折流板的间距,没有严格规定一般按工艺要求而定。一般采用等距分布。折流板的最小间距,一般不小于壳体内直径的五分之一,且不小于50mm,特殊情况可取小间距。折流板的最大间距与管径及壳体直径有关。

2.3换热器核算

管程流体进出口接管的直径:

取接管内循环水流速u=1.5m/s,则接管内径为

d0.0604m

=()

取标准管径为:65mm

壳程流体进出口接管:取接管内气体苯品流速为u=15m/s,液体苯品流速为u=0.5m/s,则接管内径为

进口内径

0.153

=

取200mm

出口内径:d0.081m

==()

取标准管径为:100mm

2.3.1传热系数核算

壳程对流传热系数 对圆缺形折流板,可采用克恩公式 o 0.14o o 0.551/3o e w =0.36Re Pr d λμαμ?? ???

当量直径,由正方形排列得

()o 2222e o 4t d 40.0250.7850.0204d =0.020m d 3.140.020

ππ??- ?-???==?() 壳体流通截面积

o 2o d 0.020=BD 10.30.610.036m t 0.025????-=??-= ? ?????

S () 壳体流体流速及其雷诺系数分别为 气体苯:o 3500/3600 3.50.389m s 0.036

u ?==()(/) o 0.0160.3893.5e =69.820.000312

??=R 液体苯:o o 3500/36008790.0308m s 0.036

0.0160.0308879e =1388.80.000312u ?=??==()(/)R

普兰特准数 气体苯:36

1.411031210Pr 6

2.80.007-???== 液体苯:36

1.291031210Pr 3.660.11

-???== 粘度校正 0.14o w μμ?? ???≈1

0.551/3o 0.141=0.3669.8262.8104.30.02

α???=W/(m 2

. ℃)

0.551/3o 0.129=0.361388.8 3.661920.02α???= W/(m 2. ℃) o α’=(104.3×1/3﹢192×2/3)×2=325.5 W/(m 2. ℃)

列管式换热器课程设计作业

化工原理课程设计说明书 列管式换热器的选用和设计 苏州科技学院 班级应化0921 姓名朱子屹 指导教师杨兰 2011-6-30 目录 1 化工原理课程设计任务书 2 设计概述 3 换热器方案的确定 3.1 确定设计方案 3.2确定物性数据 3.3 计算总传热系数 4 计算换热面积 5 工艺结构尺寸 5.1 管径和管内流速 5.2 管程和传热管数

5.3 平均传热温差校正及壳程数 6传热管的排列和分程方法 7换热器核算 8 换热器的主要结构尺寸和计算结果表 9 设计评述 10 参考资料 11 主要符号说明 12 特别鸣谢 1化工原理课程设计任务书 欲用井水将6000kg/h的煤油从140℃冷却至40℃,冷水进、出口温度分别为30℃和40℃。若要求换热器的管程和壳程压强降不大于30kpa,试选择合适型号的列管式换热器。假设管壁热阻和热损失可以忽略。 名称水煤油 密度 994 825 比热 4.08 2.22 导热系数 0.626 0.14 粘度 0.725×10^-3 0.715×10^-3 2.概述和设计方案简介 换热器的类型 列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用,主要有壳体、管束、管板、折流挡板和封头等组成。一种流体在关内流动,其行程称为管程;另一种流体在管外流动,其行程称为壳程。管束的壁面即为传热面。 其主要优点是单位体积所具有的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,因此在高温、高压和大型装置上多采用列管式换热器。为提高壳程流体流速,往往在壳体内安装一定数目和管束相互垂直的折流挡板。折流挡板不仅可防止流体短路、增加流体流速,还迫使流体按规定路径多次错流通过管束,使湍流程度大为增加。列管式换热器中,由于两流体的温度不同,使管束和壳体的温度也不相同,因此它们的热膨胀程度也有差别。若两流体温差较大(50℃以上)时,就可能由于热应力而引起设备的变形,甚至弯曲或破裂,因此必须考虑这种热膨胀的影响。 2.1换热器 换热器是化工、石油、食品及其他许多工业部门的通用设备,在生产中占有重要地位。由于生产规模、物料的性质、传热的要求等各不相同,故换热器的类型也是多种多样。 按用途它可分为加热器、冷却器、冷凝器、蒸发器和再沸器等。根据冷、热流体热量交换的原理和方式可分为三大类:混合式、蓄热式、间壁式。 间壁式换热器又称表面式换热器或间接式换热器。在这类换热器中,冷、热流体被固体

列管式换热器课程设计

——大学《化工原理》列管式换热器 课程设计说明书 学院: 班级: 学号: 姓名: 指导教师: 时间:年月日

目录 一、化工原理课程设计任务书............................................................................ . (2) 二、确定设计方案............................................................................ (3) 1.选择换热器的类型 2.管程安排 三、确定物性数据............................................................................ (4) 四、估算传热面积............................................................................ (5) 1.热流量 2.平均传热温差 3.传热面积 4.冷却水用量 五、工艺结构尺寸............................................................................ (6) 1.管径和管内流速 2.管程数和传热管数 3.传热温差校平均正及壳程数 4.传热管排列和分程方法 5.壳体内径 6.折流挡板 (7) 7.其他附件 8.接管 六、换热器核算............................................................................ . (8) 1.热流量核算 2.壁温计算 (10) 3.换热器内流体的流动阻力 七、结构设计............................................................................ . (13) 1.浮头管板及钩圈法兰结构设计 2.管箱法兰和管箱侧壳体法兰设计 3.管箱结构设计 4.固定端管板结构设计 5.外头盖法兰、外头盖侧法兰设计 (14) 6.外头盖结构设计 7.垫片选择

换热器设计说明书模板

换热器课程设计说明书 专业名称:核工程与核技术姓名:*** 班级:*** 学号:*** 指导教师:*** 哈尔滨工程大学 核科学与技术学院 2017 年 1 月 13 日

目录 1 设计题目…………………………………………………………………………… 1.1 设计题目………………………………………………………………………1.2 团队成员……………………………………………………………………… 1.3 设计题目的确定过程………………………………………………………… 2 设计过程…………………………………………………………………………… 3 热力计算…………………………………………………………………………… 4 水力计算…………………………………………………………………………… 5 分析与总结………………………………………………………………………… 5.1 可行性评价和方案优选………………………………………………………5.2 技术分析………………………………………………………………………5.3 总结与体会……………………………………………………………………参考文献………………………………………………………………………………附录计算程序………………………………………………………………………

1.1、设计题目 设计一台管壳式换热器,把 18000 kg/h 的热水由温度 t 1 ’冷却至 t 1 ”,冷却水入口温 度 t 2 ’,出口温度 t 2 ”,设热水和冷却水的运行压力均为低压。 初始参数: 热水的运行压力:0.2MPa (绝对压力) 冷却水运行压力:0.16MPa(绝对压力) 热水入口温度 t 1 ’: 80℃; 热水出口温度 t 1 ”: 50℃; 冷却水入口温度 t 2 ’: 20℃; 冷却水出口温度 t 2 ”: 45℃; 1.3设计题目的确定过程 首先,我们小组集中讨论了本次课程设计内容,即换热器设计的内容和具体细节上的要求,然后在组内达成了共识——求同存异。在题目初始参数相同的情况下对后续的计算以及编程过程发挥各自的特长,并将自己存在的疑问于组内其他成员讨论,充分发挥组内成员的自主和协作能力,努力做到一个合格并且优秀的核专业学生应有的素质。 对于管壳式换热器的设计计算,我们查阅了相关的资料(在本说明书最后一并提到),第一次尝试选择参数,如下: 热水的运行压力:0.2MPa (绝对压力) 冷却水运行压力:0.16MPa(绝对压力) 热水入口温度 t 1 ’: 82℃; 热水出口温度 t 1 ”: 46℃; 冷却水入口温度 t 2 ’: 23℃; 冷却水出口温度 t 2 ”: 43℃; 并尝试进行初步计算,不过在后面进行有效平均温差的计算时,针对我们手头有限的资料(见附录3),为了保证R可查,将参数修正为以下值。 二次选择参数: 热水的运行压力:0.2MPa (绝对压力) 冷却水运行压力:0.16MPa(绝对压力) 热水入口温度 t 1 ’: 82℃; 热水出口温度 t 1 ”: 42℃; 冷却水入口温度 t 2 ’: 23℃; 冷却水出口温度 t 2 ”: 43℃; 继续往下计算,我们通过之前的知识,发现在换热器的设计中,除非处于必须降 ψ>,至少不小于0.8。 低壁温的目的,一般按照要求使0.9

列管式换热器设计方案计算过程参考

根据给定的原始条件,确定各股物料的进出口温度,计算换热器所需的传热面积,设计换热器的结构和尺寸,并要求核对换热器压强降是否符合小于30 kPa的要求。各项设计均可参照国家标准或是行业标准来完成。具体项目如下:设计要求: =0.727Χ10-3Pa.s 密度ρ=994kg/m3粘度μ 2 导热系数λ=62.6Χ10-2 W/(m.K) 比热容Cpc=4.184 kJ/(kg.K) 苯的物性如下: 进口温度:80.1℃出口温度:40℃ =1.15Χ10-3Pa.s 密度ρ=880kg/m3粘度μ 2 导热系数λ=14.8Χ10-2 W/(m.K) 比热容Cpc=1.6 kJ/(kg.K) 苯处理量:1000t/day=41667kg/h=11.57kg/s 热负荷:Q=WhCph(T2-T1)=11.57×1.6×1000×(80.1-40)=7.4×105W 冷却水用量:Wc=Q/[c pc(t2-t1)]=7.4×105/[4.184×1000×(38-30)]=22.1kg/s

4、传热面积的计算。 平均温度差 确定R和P值 查阅《化工原理》上册203页得出温度校正系数为0.8,适合单壳程换热器,平均温度差为 △tm=△t’m×0.9=27.2×0.9=24.5 由《化工原理》上册表4-1估算总传热系数K(估计)为400W/(m2·℃) 估算所需要的传热面积: S0==75m2 5、换热器结构尺寸的确定,包括: (1)传热管的直径、管长及管子根数; 由于苯属于不易结垢的流体,采用常用的管子规格Φ19mm×2mm 管内流体流速暂定为0.7m/s 所需要的管子数目:,取n为123 管长:=12.9m 按商品管长系列规格,取管长L=4.5m,选用三管程 管子的排列方式及管子与管板的连接方式: 管子的排列方式,采用正三角形排列;管子与管板的连接,采用焊接法。(2)壳体直径; e取1.5d0,即e=28.5mm D i=t(n c—1)+2e=19×(—1)+2×28.5=537.0mm,按照标准尺寸进行整圆,壳体直径为600mm。此时长径比为7.5,符合6-10的范围。

课程设计报告,列管式换热器设计

设计(论文)题目: 列管式换热器的设计 目录 1 前言 (3) 2 设计任务及操作条件 (3) 3 列管式换热器的工艺设计 (3) 3.1换热器设计方案的确定 (3) 3.2 物性数据的确定 (4) 3.3 平均温差的计算 (4) 3.4 传热总系数K的确定 (4) 3.5 传热面积A的确定 (6) 3.6 主要工艺尺寸的确定 (6) 3.6.1 管子的选用 (6) 3.6.2 管子总数n和管程数Np的确定 (6) 3.6.3 校核平均温度差 t m及壳程数Ns (7) 3.6.4 传热管排列和分程方法 (7) 3.6.5 壳体径 (7) 3.6.6 折流板 (7)

3.7 核算换热器传热能力及流体阻力 (7) 3.7.1 热量核算 (7) 3.7.2 换热器压降校核 (9) 4 列管式换热器机械设计 (10) 4.1 壳体壁厚的计算 (10) 4.2 换热器封头选择 (10) 4.3 其他部件 (11) 5 课程设计评价 (11) 5.1 可靠性评价 (11) 5.2 个人感想 (11) 6 参考文献 (11) 附表换热器主要结构尺寸和计算结果 (12) 1 前言 换热器(英语翻译:heat exchanger),是将热流体的部分热量传递给冷流体的设备,又称热交换器。换热器是化工、石油、动力、食品及其它许多工业部门的通用设备,在生产中占有重要地位。在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用更加广泛。换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。 列管式换热器工业上使用最广泛的一种换热设备。其优点是单位体积的传热面积、处理能力和操作弹性大,适应能力强,尤其在高温、高压和大型装置中采用更为普遍。列管式换热器主要有以下几个类型:固定管板式换热器、浮头式换热器、U形管式换热器等。 设计一个比较完善的列管式换热器,除了能满足传热方面的要求外,还应该满足传热效率高、体积小、重量轻、消耗材料少、制造成本低、清洗维护方便和操作安全等要求。 列管式换热器的设计,首先应根据化工生产工艺条件的要求,通过化工工艺计算,确定换热器的传热面积,同时选择管径、管长,确定管数、管程数和壳程数,

换热器设计说明书

甲醇■甲醇换热器II的设计 第一部分设计任务书 一,设计题目 甲醇-甲醇换热器II的设计 二,设计任务 1,热交换量:8029.39kw 2,设备形式:长绕管式换热器 三,操作条件 ①甲醇:入口温度7.83°C,出口温度-31.68°C ②甲醇:入口温度-37.68°C,出口温度1.00°C ③允许压强降:管侧不大于1.5*105pa壳侧不大于2.9*10’pa. 四,设计内容 ①设计方案简介:对确定的工艺流程及换热器型式进行简要论述。 ②换热器的工艺计算:确定换热器的传热面积和传热系数。 ③换热器的主要结构尺寸设计。 ④主要辅助设备选型。 ⑤绘制换热器总装配图。 第二部分换热器设计理论计算 1,计算并初选换热器的规格

(1) 两流体均不发生相变的传热过程,管程,壳程的介质均为 甲醇。 (2) 确定流体的定性温度,物性数据。 管程介质为甲醇,入口温度为7.83°C,出口温度-31.68°Co 壳程介质也为甲醇,入口温度?37.68°C,出口温度1.00°Co 管侧甲醇的定性温度:打=7兀:型=-H.925 °C 。 2 壳侧的甲醇定性温度:仏=二门卑V —1&34°C 。 2 两流体在定性温度下的物性数据: ⑶传热温差 △ _ 7厂力)一72一" _ (7.83-1)-[-31.8 — (-37.68)] _ 6.83-6 —钳% °C 」厂T- 7?83-(一31?68)_39?51 r-f " 1-(-37.68) ~ 38.68 ") p=hzk= 1—(—37S)=坯=085 「-匕 7.83-(-37.68) 45.51 … 由R 和P 查图得到校正系数为:处ul,所以校正后的温度为 = ^=6.406°C (查传热课本 P288) ,6.83 In ----- 6 [-31.8-(-37.68)]

换热器设计说明书样本1

2010级应用化学专业《化工原理》课程设计说明书 题目: 姓名: 班级学号: 指导老师: 同组人员 完成时间:

《化工原理》课程设计评分细则 说明:评定成绩分为优秀(90-100),良好(80-89),中等(70-79),及格(60-69)和不及格(<60)

目录(按毕业论文格式要求书写)

第一部分设计任务书

第二部分设计方案简介评述 我们设计的是煤油冷却器,冷却器是许多工业生产中常用的设备。列管式换热器的结构简单、牢固,操作弹性大,应用材料广。列管式换热器有固定管板式、浮头式、U形管式和填料函式等类型。列管式换热器的形式主要依据换热器管程与壳程流体的温度差来确定。由于两流体 的温差大于50 C,故选用带补偿圈的固定管板式换热器。这类换热器 结构简单、价格低廉,但管外清洗困难,宜处理壳方流体较清洁及不易结垢的物料。因水的对流传热系数一般较大,并易结垢,故选择冷却水走换热器的管程,煤油走壳程。

第三部分 换热器设计理论计算 1、试算并初选换热器规格 (1)、 定流体通入空间 两流体均不发生相变的传热过程,因水的对流传热系数一 般较大,并易结垢,故选择冷却水走换热器的管程,煤油走壳程。 (2)、确定流体的定性温度、物性数据,并选择列管式换热器的形式: 被冷却物质为煤油,入口温度为140℃,出口温度为40C 冷却介质为自来水,入口温度为30C ,出口温度为40C 煤油的定性温度:(14040)/290m T C =+= 水的定性温度:(3040)/235m t C =+= 两流体的温差:903555m m T t C -=-= 由于两流体温差大于50℃,故选用带补偿圈的固定管板式列管换热器。 两流体在定性温度下的物性数据 (3)、计算热负荷Q 按管内煤油计算,即 1253 361.981010() 2.2210(14040) 1.541610330243600 n ph W Q C T T W ?=-= ????-=??? 若忽略换热器的热损失,水的流量可由热量衡算求得,即 6 3,21() 1.54161036.94/4.17410(4030) c p c Q C t t W kg s =-?==??- (4)、计算两流体的平均温度差,并确定壳程数 逆流 温 差 212211222111 ()()(14040)(4030)39.09614040 ln ln ln 4030m t t T t T t t C t T t t T t ??-?------'====??---?- 121214040 104030 T T R t t --= ==--

(新)换热器的强度计算

确定了换热器的结构及尺寸以后,必须对换热器的所 有受压元件进行强度计算。因为管壳式换热器一般用 于压力介质的工况,所以换热器的壳体大多为压力容 器,必须按照压力容器的标准进行计算和设计,对于 钢制的换热器,我国一般按照GB150<<钢制压力容器>> 标准进行设计,或者美国ASME标准进行设计。对于其 它一些受压元件,例如管板、折流板等,可以按照我 国的GB151<<管壳式换热器>>或者美国TEMA标准进行 设计。对于其它材料的换热器,例如钛材、铜材等应 按照相应的标准进行设计。 下面提供一氮气冷却器的受压元件强度计算,以供 参考。该换热器为U形管式换热器,壳体直径500mm, 管程设计压力3.8MPa,壳程设计压力0.6MPa。详细强 度计算如下: 1.壳程筒体强度计算 2. 前端管箱筒体强度计算 3. 前端管箱封头强度计算 4. 后端壳程封头强度计算 5.管板强度计算 6. 管程设备法兰强度计算 7. 接管开孔补强计算 氮气冷却器(U形管式换热器)筒体计算 计算条件筒体简图 计算压力P c0.60MPa 设计温度 t100.00? C 内径D i500.00mm 材料16MnR(热轧) ( 板材) 试验温度许用应力[σ]170.00MPa 设计温度许用应力[σ]t170.00MPa 试验温度下屈服点σ s 345.00MPa 钢板负偏差C10.00mm 腐蚀裕量C2 1.00mm 焊接接头系数φ0.85 厚度及重量计算 计算厚度 δ == 1.04 mm 有效厚度δ e =δ n - C1- C2= 7.00mm 名义厚度δ n = 8.00mm 重量481.06Kg

换热器的设计说明书.

西安科技大学—乘风破浪团队 1 换热器的设计 1.1 换热器概述 换热器是化工、石油、动力、食品及其它许多任务业部门的通用设备,在生产中占有重要地位。换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。在三类换热器中,间壁式换热器应用最多。换热器随着换热目的的不同,具体可分为加热器、冷却器、蒸发器、冷凝器,再沸器和热交换器等。由于使用条件的不同,换热设备又有各种各样的形式和结构。 换热器选型时需要考虑的因素是多方面的,主要有: ① 热负荷及流量大小; ② 流体的性质; ③ 温度、压力及允许压降的范围; ④ 对清洗、维修的要求; ⑤ 设备结构、材料、尺寸、重量; ⑥ 价格、使用安全性和寿命; 按照换热面积的形状和结构进行分类可分为管型、板型和其它型式的换热器。其中,管型换热器中的管壳式换热器因制造容易、生产成本低、处理量大、适应高温高压等优点,应用最为广泛。 管型换热器主要有以下几种形式: (1)固定管板式换热器:当冷热流体温差不大时,可采用固定管板的结构型式,这种换热器的特点是结构简单,制造成本低。但由于壳程不易清洗或检修,管外物料应是比较清洁、不易结垢的。对于温差较大而壳体承受压力较低时,可在壳体壁上安装膨胀节以减少温差应力。 (2)浮头式换热器:两端管板只有一端与壳体以法兰实行固定连接,称为固定端。另一端管板不与壳体连接而可相对滑动,称为浮头端。因此,管束的热膨胀不受壳体的约束,检修和清洗时只要将整个管束抽出即可。适用于冷热流体温

西安科技大学—乘风破浪团队 2 差较大,壳程介质腐蚀性强、易结垢的情况。 (3)U 形管式换热器换:热效率高,传热面积大。结构较浮头简单,但是管程不易清洗,且每根管流程不同,不均匀。 表1-1 换热器特点一览表 分类 管 壳 式 名称 特性 管式 固定管板式 刚性结构用于管壳温差较小的情况(一般≤50°C),管间不 能清洗 带膨胀节:有一定的温度补偿能力,壳程只能承受较低的压 力 浮头式 管内外均能承受高压,壳层易清洗,管壳两物料温差>120℃; 内垫片易渗漏 U 型管式 制造、安装方便,造价较低,管程耐压高;但结构不紧凑、 管子不易更换和不易机械清洗 填料 函式 内填料函:密封性能差,只能用于压差较小场合 外填料函:管间容易泄露,不易处理易挥发、易爆易燃及压 力较高场合 釜式 壳体上都有个蒸发空间,用于蒸汽与液相分离 套管 双套管式 结构比较复杂,主要用于高温高压场合或固定床反应器中

换热器的设计说明书

换热器的设计 1.1 换热器概述 换热器是化工、石油、动力、食品及其它许多任务业部门的通用设备,在生产中占有重要地位。换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。在三类换热器中,间壁式换热器应用最多。换热器随着换热目的的不同,具体可分为加热器、冷却器、蒸发器、冷凝器,再沸器和热交换器等。由于使用条件的不同,换热设备又有各种各样的形式和结构。 换热器选型时需要考虑的因素是多方面的,主要有: ①热负荷及流量大小; ②流体的性质; ③温度、压力及允许压降的范围; ④对清洗、维修的要求; ⑤设备结构、材料、尺寸、重量; ⑥价格、使用安全性和寿命; 按照换热面积的形状和结构进行分类可分为管型、板型和其它型式的换热器。其中,管型换热器中的管壳式换热器因制造容易、生产成本低、处理量大、适应高温高压等优点,应用最为广泛。 管型换热器主要有以下几种形式: (1)固定管板式换热器:当冷热流体温差不大时,可采用固定管板的结构型式,这种换热器的特 页脚内容1

点是结构简单,制造成本低。但由于壳程不易清洗或检修,管外物料应是比较清洁、不易结垢的。对于温差较大而壳体承受压力较低时,可在壳体壁上安装膨胀节以减少温差应力。 (2)浮头式换热器:两端管板只有一端与壳体以法兰实行固定连接,称为固定端。另一端管板不与壳体连接而可相对滑动,称为浮头端。因此,管束的热膨胀不受壳体的约束,检修和清洗时只要将整个管束抽出即可。适用于冷热流体温差较大,壳程介质腐蚀性强、易结垢的情况。 (3)U形管式换热器换:热效率高,传热面积大。结构较浮头简单,但是管程不易清洗,且每根管流程不同,不均匀。 表1-1 换热器特点一览表 页脚内容2

课程设计—列管式换热器

课程设计设计题目:列管式换热器 专业班级:应化1301班 姓名:王伟 学号: U201310289 指导老师:王华军 时间: 2016年8月

目录 1.课程设计任务书 (5) 1.1 设计题目 (5) 1.2 设计任务及操作条件 (5) 1.3 技术参数 (5) 2.设计方案简介 (5) 3.课程设计说明书 (6) 3.1确定设计方案 (6) 3.1.1确定自来水进出口温度 (6) 3.1.2确定换热器类型 (6) 3.1.3流程安排 (7) 3.2确定物性数据 (7) 3.3计算传热系数 (8) 3.3.1热流量 (8) 3.3.2 平均传热温度差 (8) 3.3.3 传热面积 (8) 3.3.4 冷却水用量 (8) 4.工艺结构尺寸 (9) 4.1 管径和管内流速 (9) 4.2 管程数和传热管数 (9)

4.3 传热管排列和分程方法 (9) 4.4 壳体内径 (10) 4.5 折流板 (10) 4.6 接管 (11) 4.6.1 壳程流体进出管时接管 (11) 4.6.2 管程流体进出管时接管 (11) 4.7 壁厚的确定和封头 (12) 4.7.1 壁厚 (12) 4.7.2 椭圆形封头 (12) 4.8 管板 (12) 4.8.1 管板的结构尺寸 (13) 4.8.2 管板尺寸 (13) 5.换热器核算 (13) 5.1热流量衡算 (13) 5.1.1壳程表面传热系数 (13) 5.1.2 管程对流传热系数 (14) 5.1.3 传热系数K (15) 5.1.4 传热面积裕度 (16) 5.2 壁温衡算 (16) 5.3 流动阻力衡算 (17) 5.3.1 管程流动阻力衡算 (17) 5.3.2 壳程流动阻力衡算 (17)

列管式换热器设计课程设计说明

化工原理课程设计说明书列管式换热器设计 专业:过程装备与控制工程 学院:机电工程学院

化工原理课程设计任务书 某生产过程的流程如图3-20所示。反应器的混合气体经与进料物流换热后,用循环冷却水将其从110℃进一步冷却至60℃之后,进入吸收塔吸收其中的可溶性组分。已知混合气体的流量为220301kg h ,压力为6.9MPa ,循环冷却水的压力为0.4MPa ,循环水的入口温度为29℃,出口的温度为39℃,试设计一列管式换热器,完成生产任务。 已知: 混合气体在85℃下的有关物性数据如下(来自生产中的实测值) 密度 3190kg m ρ= 定压比热容1 3.297p c kj kg =g ℃ 热导率10.0279w m λ=g ℃ 粘度51 1.510Pa s μ-=?g 循环水在34℃下的物性数据: 密度 31994.3kg m ρ= 定压比热容1 4.174p c kj kg =g K 热导率10.624w m λ=g K 粘度310.74210Pa s μ-=?g

目录 1、确定设计方案 ............................................................................................. - 4 - 1.1选择换热器的类型 (4) 1.2流程安排 (4) 2、确定物性数据............................................................................................. - 4 - 3、估算传热面积............................................................................................. - 5 - 3.1热流量 (5) 3.2平均传热温差 (5) 3.3传热面积 (5) 3.4冷却水用量 (5) 4、工艺结构尺寸............................................................................................. - 5 - 4.1管径和管内流速 (5) 4.2管程数和传热管数 (5) 4.3传热温差校平均正及壳程数 (6) 4.4传热管排列和分程方法 (6) 4.5壳体内径 (6) 4.6折流挡板 (7) 4.7其他附件 (7) 4.8接管 (7) 5、换热器核算 ................................................................................................ - 8 - 5.1热流量核算 (8) 5.1.1壳程表面传热系数.......................................................................................... - 8 -5.1.2管内表面传热系数.......................................................................................... - 8 -5.1.3污垢热阻和管壁热阻...................................................................................... - 9 -5.1.4传热系数.......................................................................................................... - 9 -5.1.5传热面积裕度.................................................................................................. - 9 -5.2壁温计算. (9) 5.3换热器内流体的流动阻力 (10) 5.3.1管程流体阻力................................................................................................ - 10 -5.3.2壳程阻力........................................................................................................ - 11 - 5.3.3换热器主要结构尺寸和计算结果................................................................ - 11 - 6、结构设计 .................................................................................................. - 12 - 6.1浮头管板及钩圈法兰结构设计 (12) 6.2管箱法兰和管箱侧壳体法兰设计 (13) 6.3管箱结构设计 (13) 6.4固定端管板结构设计 (14) 6.5外头盖法兰、外头盖侧法兰设计 (14) 6.6外头盖结构设计 (14) 6.7垫片选择 (14)

列管式换热器-课程设计说明书

列管式换热器-课程设计说明书 《化工原理》 列管式换热器 课程设计说明书 学院: 班级: 学号: 姓名: 指导教师: 时间:年月日 目录 一、化工原理课程设计任务书 (2) 二、确定设计方案 (3) 1.选择换热器的类型 2.管程安排 三、确定物性数据 (4)

四、估算传热面积 (5) 1.热流量 2.平均传热温差 3.传热面积 4.冷却水用量 五、工艺结构尺寸 (6) 1.管径和管内流速 2.管程数和传热管数 3.传热温差校平均正及壳程数 4.传热管排列和分程方法 5.壳体内径 6.折流挡板 (7) 7.其他附件 8.接管 六、换热器核算 (8) 1.热流量核算 2.壁温计算 (10) 3.换热器内流体的流动阻力 七、结构设计 (13) 1.浮头管板及钩圈法兰结构设计 2.管箱法兰和管箱侧壳体法兰设计 3.管箱结构设计 4.固定端管板结构设计 5.外头盖法兰、外头盖侧法兰设计............14 6.外头盖结构设计 7.垫片选择 8.鞍座选用及安装位置确定 9.折流板布置 10.说明 八、强度设计计算 (15) 1.筒体壁厚计算 2.外头盖短节、封头厚度计算 3.管箱短节、封头厚度计算 (16) 4.管箱短节开孔补强校核 (17) 5.壳体接管开孔补强校核6.固定管板计算 (18) 7.浮头管板及钩圈 (19) 8.无折边球封头计算 9.浮头法兰计算 (20) 九、参考文献 (20) 一、化工原理课程设计任务书

某生产过程的流程如图3-20所示。反应器的混合气体经与进料物流换热后,用循环冷却水将其从110℃进一步冷却至60℃之后,进入吸收塔吸收其中的可溶性组分。已知混合气体的流量为231801kg h ,压力为6.9MPa ,循环冷却水的压力为0.4MPa ,循环水的入口温度为29℃,出口的温度为39℃,试设计一列管式换热器,完成生产任务。 已知: 混合气体在85℃下的有关物性数据如下(来自生产中的实测值) 密度 3190kg m ρ= 定压比热容1 3.297p c kj kg = ℃ 热导率10.0279w m λ= ℃ 粘度51 1.510Pa s μ-=? 循环水在34℃下的物性数据: 密度 31994.3kg m ρ= 定压比热容1 4.174p c kj kg = K 热导率10.624w m λ= K 粘度310.74210Pa s μ-=? 二、确定设计方案

列管式换热器课程设计

化工原理课程设计说明书列管式换热器的选用和设计

目录 1 化工原理课程设计任务书 2 设计概述 3 换热器方案的确定 3.1 确定设计方案 3.2确定物性数据 3.3 计算总传热系数 4 计算换热面积 5 工艺结构尺寸 5.1 管径和管内流速 5.2 管程和传热管数 5.3 平均传热温差校正及壳程数 6传热管的排列和分程方法 7换热器核算 8 换热器的主要结构尺寸和计算结果表 9 设计评述 10 参考资料 11 主要符号说明 12 特别鸣谢

1化工原理课程设计任务书 欲用自来水将2.3万吨/年的异丁烯从300℃冷却至90℃,冷水进、出口温度分别为25℃和90℃。若要求换热器的管程和壳程压强降不大于100kpa,试选择合适型号的列管式换热器。假设管壁热阻和热损失可以忽略。 名称水异丁烯 密度 996 12 比热 4.08 130 导热系数 0.668 0.037 粘度 0.37×10^-3 13×10^-3 2.概述与设计方案简介 换热器的类型 列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用,主要有壳体、管束、管板、折流挡板和封头等组成。一种流体在关内流动,其行程称为管程;另一种流体在管外流动,其行程称为壳程。管束的壁面即为传热面。 其主要优点是单位体积所具有的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,因此在高温、高压和大型装置上多采用列管式换热器。为提高壳程流体流速,往往在壳体内安装一定数目与管束相互垂直的折流挡板。折流挡板不仅可防止流体短路、增加流体流速,还迫使流体按规定路径多次错流通过管束,使湍流程度大为增加。列管式换热器中,由于两流体的温度不同,使管束和壳体的温度也不相同,因此它们的热膨胀程度也有差别。若两流体温差较大(50℃以上)时,就可能由于热应力而引起设备的变形,甚至弯曲或破裂,因此必须考虑这种热膨胀的影响。 2.1换热器 换热器是化工、石油、食品及其他许多工业部门的通用设备,在生产中占有重要地位。由于生产规模、物料的性质、传热的要求等各不相同,故换热器的类型也是多种多样。 按用途它可分为加热器、冷却器、冷凝器、蒸发器和再沸器等。根据冷、热流体热量交换的原理和方式可分为三大类:混合式、蓄热式、间壁式。 间壁式换热器又称表面式换热器或间接式换热器。在这类换热器中,冷、热流体被固体壁面隔开,互不接触,热量从热流体穿过壁面传给冷流体。该类换热器适用于冷、热流体不允许直接接触的场合。间壁式换热器的应用广泛,形式繁多。将在后面做重点介绍。

管壳式换热器设计说明书

1.设计题目及设计参数 (1) 1.1设计题目:满液式蒸发器 (1) 1.2设计参数: (1) 2设计计算 (1) 2.1热力计算 (1) 2.1.1制冷剂的流量 (1) 2.1.2冷媒水流量 (1) 2.2传热计算 (2) 2.2.1选管 (2) 2.2.2污垢热阻确定 (2) 2.2.3管内换热系数的计算 (2) 2.2.4管外换热系数的计算 (3) 2.2.5传热系数 K计算 (3) 2.2.6传热面积和管长确定 (4) 2.3流动阻力计算 (4) 3.结构计算 (5) 3.1换热管布置设计 (5) 3.2壳体设计计算 (5) 3.3校验换热管管与管板结构合理性 (5) 3.4零部件结构尺寸设计 (6) 3.4.1管板尺寸设计 (6) 3.4.2端盖 (6) 3.4.3分程隔板 (7) 3.4.4支座 (7) 3.4.5支撑板与拉杆 (7) 3.4.6垫片的选取 (7) 3.4.7螺栓 (8) 3.4.8连接管 (9) 4.换热器总体结构讨论分析 (10) 5.设计心得体会 (10) 6.参考文献 (10)

1.设计题目及设计参数 1.1设计题目:105KW 满液式蒸发器 1.2设计参数: 蒸发器的换热量Q 0=105KW ; 给定制冷剂:R22; 蒸发温度:t 0=2℃,t k =40℃, 冷却水的进出口温度: 进口1t '=12℃; 出口1 t " =7℃。 2设计计算 2.1热力计算 2.1.1制冷剂的流量 根据资料【1】,制冷剂的lgp-h 图:P 0=0.4MPa ,h 1=405KJ/Kg ,h 2=433KJ/Kg , P K =1.5MPa ,h 3=h 4=250KJ/Kg ,kg m 04427.0v 3 1=,kg m v 3 400078.0= 图2-1 R22的lgP-h 图 制冷剂流量s kg s kg h h Q q m 667 .0250 4051054 10=-= -= 2.1.2冷媒水流量 水的定性温度t s =(12+7)/2℃=9.5℃,根据资料【2】附录9,ρ=999.71kg/m 3 ,c p =4.192KJ/(Kg ·K)

列管式换热器的设计

化工原理课程设计 学院: 化学化工学院 班级: | 姓名学号: 指导教师: $

目录§一.列管式换热器 ! .列管式换热器简介 设计任务 .列管式换热器设计内容 .操作条件 .主要设备结构图 §二.概述及设计要求 .换热器概述 .设计要求 ~ §三.设计条件及主要物理参数 . 初选换热器的类型 . 确定物性参数 .计算热流量及平均温差 壳程结构与相关计算公式 管程安排(流动空间的选择)及流速确定 计算传热系数k 计算传热面积 ^ §四.工艺设计计算 §五.换热器核算 §六.设计结果汇总 §七.设计评述 §八.工艺流程图 §九.主要符号说明 §十.参考资料

: §一 .列管式换热器 . 列管式换热器简介 列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用,主要有壳体、管束、管板、折流挡板和封头等组成。一种流体在关内流动,其行程称为管程;另一种流体在管外流动,其行程称为壳程。管束的壁面即为传热面。 其主要优点是单位体积所具有的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,因此在高温、高压和大型装置上多采用列管式换热器。为提高壳程流体流速,往往在壳体内安装一定数目与管束相互垂直的折流挡板。折流挡板不仅可防止流体短路、增加流体流速,还迫使流体按规定路径多次错流通过管束,使湍流程度大为增加。 列管式换热器中,由于两流体的温度不同,使管束和壳体的温度也不相同,因此它们的热膨胀程度也有差别。若两流体温差较大(50℃以上)时,就可能由于热应力而引起设备的变形,甚至弯曲或破裂,因此必须考虑这种热膨胀的影响。 设计任务 ¥ 1.任务 处理能力:3×105t/年煤油(每年按300天计算,每天24小时运行) 设备形式:列管式换热器 2.操作条件 (1)煤油:入口温度150℃,出口温度50℃ (2)冷却介质:循环水,入口温度20℃,出口温度30℃ (3)允许压强降:不大于一个大气压。 备注:此设计任务书(包括纸板和电子版)1月15日前由学委统一收齐上交,两人一组,自由组合。延迟上交的同学将没有成绩。 [ .列管式换热器设计内容 1.3.1、确定设计方案 (1)选择换热器的类型;(2)流程安排 1.3.2、确定物性参数 (1)定性温度;(2)定性温度下的物性参数 1.3.3、估算传热面积 (1)热负荷;(2)平均传热温度差;(3)传热面积;(4)冷却水用量 % 1.3.4、工艺结构尺寸 (1)管径和管内流速;(2)管程数;(3)平均传热温度差校正及壳程数;(4)

列管式换热器课程设计

(封面) XXXXXXX学院 列管式换热器课程设计报告 题目: 院(系): 专业班级: 学生姓名: 指导老师: 时间:年月日 目录

1、设计题目(任务书) (2) 2、流程示意图 (3) 3、流程及方案的说明和论证 (3) 4、换热器的设计计算及说明 (4) 5、主体设备结构图 (10) 6、设计结果概要表 (11) 7、设计评价及讨论 (12) 8、参考文献 (12) 附图:主体设备结构图和花版设计图 一.任务书

(一)设计题目: 列管式冷却器设计 (二)设计任务: 将自选物料用河水冷却或自选热源加热至生产工艺所要求的温度 (三)设计条件: 1.处理能力:G=学号最后2位×300t物料/d; 2.冷却器用河水为冷却介质,考虑广州地区可取进口水温度为20~30C;加热器用热水或水蒸气为热源,条件自选; 3.允许压降:不大于105Pa; 4.传热面积安全系数5~15% 5.每年按330天计,每天24小时连续运行。 (四)设计要求: 1.对确定的设计方案进行简要论述; 2.物料衡算、热量衡算; 3.确定列管壳式冷却器的主要结构尺寸; 4.计算阻力; 5.选择合宜的列管换热器并运行核算; 6.用Autocad绘制列管式冷却器的结构(3号图纸)、花板布置图(3号图纸); 7.编写设计说明书(包括:①.封面;②.目录;③.设计题目;④.流程示意图;⑤.流程及方案的说明和论证;⑥设计计算及说明;⑦主体设备结构图;⑧设计结果概要表;⑨对设计的评价及问题讨论;⑩参考文献。) (五)设计进度安排: 备注:参考文献格式: 期刊格式为:作者姓名.出版年.论文题目.刊物名称.卷号(期号):起止页码。专著格式为:作者姓名.出版年.专著书名.出版社名.起止页码。 二.流程示意图

换热器的强度计算

确定了换热器的结构及尺寸以后,必须对换热器的所有受压元件进行强度计算。因为管壳式换热器一般用于压力介质的工况,所以换热器的壳体大多为压力容器,必须按照压力容器的标准进行计算和设计,对于钢制的换热器,我国一般按照GB150<<钢制压力容器>>标准进行设计,或者美国ASME标准进行设计。对于其它一些受压元件,例如管板、折流板等,可以按照我国的GB151<<管壳式换热器>>或者美国TEMA标准进行设计。对于其它材料的换热器,例如钛材、铜材等应按照相应的标准进行设计。 下面提供一氮气冷却器的受压元件强度计算,以供参考。该换热器为U形管式换热器,壳体直径500mm,管程设计压力3.8MPa,壳程设计压力0.6MPa。详细强度计算如下: 1.壳程筒体强度计算 2. 前端管箱筒体强度计算 3. 前端管箱封头强度计算 4. 后端壳程封头强度计算 5.管板强度计算 6. 管程设备法兰强度计算 7. 接管开孔补强计算

P ]= P ]=

= =

壳程设计压力 管程设计压力 壳程设计温度 管程设计温度 壳程筒体壁厚 管程筒体壁厚 换热器公称直径 ( c 型 ) ( d 型 )

( b d 型 ) ( b c 型 ) ( c d 型 ) ( c 型) ( d 型 ) = 106.81 金属横截面积 0.00 436.43 量直径 0.80 按 : = 按 : = 0 0.00 = 0 0.00 = 0 0.00 0.00 0.2696 和 0.0000 取、大值

= 0 = 0 = 0 = 0 = 0 = 0 = 工况 = = 工况 = 只有壳程设计压力 管程设计压力 只有管程设计压力 = 壳程设计压力 壳程设计压力 设计压力 3.21 ≤[q]

相关文档
最新文档