山东省青岛市市南区2018 2019年九年级下期中数学试卷 解析版
2019年山东青岛中考数学含答案解析

2019年山东省青岛市初中毕业、升学考试学科(满分150分,考试时间120分钟)一、选择题:本大题共10小题,每小题3分,共30分.不需写出解答过程,请把最后结果填在题后括号内. 1.(2019山东省青岛市,1,3分) -3的相反数是 【答案】D【解析】本题考查相反数的概念,数a 的相反数为-a ,所以-3的相反数3,故选D 。
【知识点】相反数的概念 2.(2019山东省青岛市,2,3分)下列四个图形中,既是轴对称图形,又是中心对称圄彤的是A .B .C .D .【答案】D 【解析】本题考查轴对称图形与中心对称图形的概念,轴对称图形是指沿图形内某直线折叠直线两旁的部分能完全重合的图形,能确定出对称轴的图形为轴对称图形,判断轴对称图形的关键是寻找对称轴,除了直接观察判断外,还可采用折叠法判断,看该图形按照某条直线折叠后直线两旁的部分能否重合即可. 另要注意有的轴对称图形只有一条对称轴,有的轴对称图形有多条对称轴.中心对称图形是指绕图形内某点旋转180°后能与自身完全重合的图形。
能确定出对称中心的图形为中心对称图形。
A 、C 只是轴对称图形,B 只是中心对称图形,D 既是轴对称图形,又是中心对称图形,故选D 。
【知识点】轴对称图形 中心对称图形3.(2019山东省青岛市,3,3分) 2019年1月3日,我国”媳娥四号”月球探测器在月球首醋凭着陆,实现人类有史以来首次登陆月球背面.已知月球与地球之间的平均距离约为384000km ,把384000km 用科学计数法可以表示为A .438.410km ⨯B .53.8410km ⨯C .60.38410km ⨯D .63.8410km ⨯【答案】B【解析】本题考查用科学记数法表示较大的数,384000=3.84×105,故选B 。
【知识点】科学记数法4.(2019山东省青岛市,4,3分)计算223(2)(3)m m m m --+gg 的结果是( ) A . 8m 5 B . -8m 5 C . 8 m 5D . -4m 5+ 12m 5【答案】A【解析】本题考查整式的乘法运算,根据运算法则进行计算,原式=4m 2·(-m 3+3m 3)= 4m 2·2m 3=8m 5,故选A 。
山东省青岛市市南区2018-2019学年九年级(下)期中数学试卷 解析版

2018-2019学年山东省青岛市市南区九年级(下)期中数学试卷一.选择题(共8小题)1.一个数的相反数是3,这个数是()A.﹣3B.3C.D.2.中国科学院国家天文台日前向全球发布郭守敬望远镜7年巡天光谱数据,其中高质量光谱达到9370000条,约是轨迹上其他巡天项目发布光谱数之和的2倍,将9370000用科学记数法可以表示为()A.9.37×10﹣6B.937×104 C.9.37×106D.9.37×1073.如图,已知点A,B的坐标分别是(﹣4,3)和(﹣1,4),把原点O和点A,B依次连接起来,得到△OAB,现将△OAB绕原点按逆时针方向旋转90°后,则点A的对应点的坐标为()A.(﹣3,﹣4)B.(﹣4,﹣3)C.(3,4)D.(4,3)4.下列运算正确的是()A.2a+2b=2ab B.(﹣a2b)3=a6b3C.3ab2÷ab=b D.2ab•a3b=2a4b25.如图,等边△ABC的边长为a,将它绕其中心旋转180°,则旋转前后两个三角形重叠部分(阴影)的面积是()A.a2B.a2C.a2D.a26.若关于x的一元二次方程kx2﹣6x+3=0通过配方可以化成(x+a)2=b(b>0)的形式,则k的值可能是()A.0B.2C.3D .7.如图,点A、B、C都在6×6的方格纸的格点上,若该方格纸上还有一格点D,使得格点A、B、C、D能组成一个轴对称图形,则满足条件的格点D的个数有()A.1个B.2个C.3个D.4个8.如图,直线y=x+2与y轴交于点A,与直线y=﹣3x+10交于点B,P是线段AB的中点,已知反比例函数y =的图象经过点P,则k的值为()A.1B.3C.6D.8二.填空题(共6小题)9.计算:+()﹣2﹣cos30°=.10.甲、乙两人参加射击比赛,下表记录了两人连续5次的射击成绩.通过这5次成绩,可以看出成绩比较稳定的是(填“甲”或“乙”).12345次数环数甲26778乙3568811.如图,AD为⊙O的直径,A,B,C三点在⊙O上,AB=BC,BD交AC于点E,∠ABC =110°,则∠CAD为°.12.函数y=a(x+m)2+n图象上的两个点的坐标分别为(﹣2,0),(1,0)(其中a,m,n是常数,a≠0),则方程a(x+m﹣5)2+n=0的解是.13.如图,已知正方形ABCD的边长为3,E是边BC上一点,BE=1,将△ABE,△ADF 分别沿折痕AE,AF向内折叠,点B,D在点G处重合,过点E作EH⊥AE,交AF的延长线于H,则线段FH的长为.14.如图,一“L”型纸片是由5个边长都是10cm的正方形拼接而成,过点I的直线分别与AE,JN交于点P,Q,且“L”型纸片被直线PQ分成面积相等的上下两部分,将该纸片沿BG,CH,DI,IJ折成一个无盖的正方体盒子后,点P,Q之间的距离为cm.三.解答题(共10小题)15.如图,现有一张平行四边形纸片ABCD,李老师想用这张纸片裁出一个尽可能大的圆形教具,请你帮李老师在图中画出符合条件的圆.16.(1)化简:(a﹣)÷(2)求不等式组的整数解.17.一个盒子中装有2个红球,1个白球和1个蓝球,这些球除颜色外都相同,小明和小凡准备用这些球做游戏,游戏规则如下:从盒子中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,若两次摸到的球的颜色都是红色,小明胜;若两次摸到的球的颜色能配成紫色,则小凡胜,这个游戏对双方公平吗?请说明理由.18.如图,要测量一垂直于水平面的建筑物AB的高度,小明从建筑物底端B出发,沿水平方向向右走30米到达点C,又经过一段坡角为30°,长为20米的斜坡CD,然后再沿水平方向向右走了50米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,求建筑物AB的高度.(结果保留根号,参考数据:sin24°≈,cos24°≈,tan24°=)19.《中学生体质健康标准》规定学生体质健康等级标准:90分及以上为优秀;80分~89分为良好;60分~79分为及格;60分以下为不及格.某校为了解学生的体质健康情况,从八年级学生中随机抽取了10%的学生进行了体质测试,并将测试数据制成如下统计图.请根据相关信息解答下面的问题:(1)扇形统计图中,“优秀”等级所在扇形圆心角的度数是多少?(2)求参加本次测试学生的平均成绩;(3)若参加本次测试“良好”及“良好”以上等级的学生共有35人,请你估计全校八年级“不及格”等级的学生大约有多少人.20.某工程队承接一铁路工程,在挖掘一条500米长的隧道时,为了尽快完成,实际施工时每天挖掘的长度是原计划的1.5倍,结果提前了25天完成了其中300米的隧道挖掘任务.(1)求实际每天挖掘多少米?(2)由于气候等原因,需要进一步缩短工期,要求完成整条隧道不超过70天,那么为了完成剩下的任务,在实际每天挖掘长度的基础上,至少每天还应多挖掘多少米?21.已知:如图,在矩形ABCD中,E是边BC上一点,过点E作对角线AC的平行线,交AB于F,交DA和DC的延长线于点G,H.(1)求证:△AFG≌△CHE;(2)若∠G=∠BAC,则四边形ABCD是什么特殊四边形?并证明你的结论.22.某商场在试销一种进价为20元/件的商品时,每天不断调整该商品的售价以期获利更多,经过20天的试销发现,第一天销售量为78件,以后每天销售量总比前一天减少2件,且第1天至第10天,商品销售单价p与天数x满足:p=30+x;第11天至第20天,商品销售单价p与天数x满足:p=20+.(1)写出销售量y(件)与天数x(天)的函数关系式;(2)求商场销售该商品的20天里每天获得的利润w(元)与x的函数关系式;(3)该商品试制期间,第几天销售该商品获得的利润最大?最大利润是多少?23.问题提出:将正m边形(m≥3)不断向外扩展,每扩展一个正m边形每条边上的点的个数(以下简称“点数”)就增加一个,则n个正m边形的点数总共有多少个?问题探究:为了解决上面的问题,我们将采取将一般问题特殊化的策略,先从简单和具体的情形入手:探究一:n个正三角形的点数总共有多少个?如图1﹣1,1个正三角形的点数总共有3个;如图1﹣2,2个正三角形的点数总共有6个;如图1﹣3,3个正三角形的点数总共有10个;…;n个正三角形的点数总共有个.探究二:n个正四边形的点数总共有多少个?如图2﹣1,1个正四边形的点数总共有4个;如图2﹣2,2个正四边形的点数总共有9个;如图2﹣3,连接AC,得到两个三角形△ABC和△ADC,这两个三角形相同之处在于,BC边与CD边都有相同个数的点,即4个点,并且与BC、CD平行的边上依次减少一个点直至顶点A,每个三角形都有10个点,两个三角形就是2×10个点.因为这两个三角形在AC上有4个点重合,所以3个正四边形的点数总共有2×10﹣4=16(个).如图2﹣4,4个正四边形的点数总共有个;……n个正四边形的点数总共有个.探究三:n个正五边形的点数总共有多少个?类比探究二的方法,求4个正五边形的点数总共有多少个?并叙述你的探究过程.n个正五边形的点数总共有个.探究四:n个正六边形的点数总共有个.问题解决:n个正m边形的点数总共有个.实际应用:若99个正m边形的点数总共有39700个,求m的值.24.如图,在矩形ABCD中,对角线AC,BD相交于点O,AB=3cm,BC=4cm,点E是BC上一点,且CE=1cm.点P由点C出发,沿CD方向向点D匀速运动,速度为1cm/s;点Q由点A出发,沿AD方向向点D匀速运动,速度为cm/s,点P,Q同时出发,PQ 交BD于F,连接PE,QB,设运动时间为t(s)(0<t<3).(1)当t为何值时,PE∥BD?(2)设△FQD的面积为y(cm2),求y与t之间的函数关系式.(3)是否存在某一时刻t,使得四边形BQPE的周长最小.若存在,求出此四边形BQPE 的面积;若不存在,请说明理由.参考答案与试题解析一.选择题(共8小题)1.一个数的相反数是3,这个数是()A.﹣3B.3C.D.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:3的相反数是﹣3,故选:A.2.中国科学院国家天文台日前向全球发布郭守敬望远镜7年巡天光谱数据,其中高质量光谱达到9370000条,约是轨迹上其他巡天项目发布光谱数之和的2倍,将9370000用科学记数法可以表示为()A.9.37×10﹣6B.937×104 C.9.37×106D.9.37×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:9370000=9.37×106.故选:C.3.如图,已知点A,B的坐标分别是(﹣4,3)和(﹣1,4),把原点O和点A,B依次连接起来,得到△OAB,现将△OAB绕原点按逆时针方向旋转90°后,则点A的对应点的坐标为()A.(﹣3,﹣4)B.(﹣4,﹣3)C.(3,4)D.(4,3)【分析】画出图形,利用图象法解决问题.【解答】解:观察图形可知A′(﹣3,﹣4).故选:A.4.下列运算正确的是()A.2a+2b=2ab B.(﹣a2b)3=a6b3C.3ab2÷ab=b D.2ab•a3b=2a4b2【分析】直接利用整式的混合运算法则分别计算判断即可.【解答】解:A、2a+2b,不是同类项,无法合并,故此选项错误;B、(﹣a2b)3=﹣a6b3,故此选项错误;C、3ab2÷ab=9b,故此选项错误;D、2ab•a3b=2a4b2,正确.故选:D.5.如图,等边△ABC的边长为a,将它绕其中心旋转180°,则旋转前后两个三角形重叠部分(阴影)的面积是()A.a2B.a2C.a2D.a2【分析】根据等边三角形的特殊性,重叠部分为正六边形,四周空白部分的小三角形是等边三角形,从而得出重叠部分的面积是△ABC与三个小等边三角形的面积之差.【解答】解:根据旋转的意义,图中空白部分的小三角形也是等边三角形,且边长为,面积是△ABC的.仔细观察图形,重叠部分的面积是△ABC与三个小等边三角形的面积之差,△ABC的面积是,一个小等边三角形的面积是,所以重叠部分的面积是=.故选:D.6.若关于x的一元二次方程kx2﹣6x+3=0通过配方可以化成(x+a)2=b(b>0)的形式,则k的值可能是()A.0B.2C.3D.【分析】把选项中的k的值代入,得出方程,再解方程,即可得出选项.【解答】解:A、当k=0时,方程为﹣6x+3=0,不能化成(x+a)2=b(b>0)的形式,故本选项不符合题意;B、当k=2时,方程为2x2﹣6x+3=0,x2﹣3x=﹣,x2﹣3x+()2=﹣+()2,(x﹣)2=,故本选项符合题意;C、当k=3时,方程为3x2﹣6x+3=0,x2﹣2x+1=0,(x﹣2)2=0,b=0,故本选项不符合题意;D、当k=时,方程为x2﹣6x+3=0,9x2﹣12x+6=0,9x2﹣12x+4=﹣2,(3x﹣2)2=﹣2,b<0,故本选项不符合题意;故选:B.7.如图,点A、B、C都在6×6的方格纸的格点上,若该方格纸上还有一格点D,使得格点A、B、C、D能组成一个轴对称图形,则满足条件的格点D的个数有()A.1个B.2个C.3个D.4个【分析】分别以AC的垂直平分线,AB所在直线,BC所在直线为对称轴,即可得到满足条件的所有点D的位置.【解答】解:如图所示,点D1,D2,D3即为所求.故选:C.8.如图,直线y=x+2与y轴交于点A,与直线y=﹣3x+10交于点B,P是线段AB的中点,已知反比例函数y=的图象经过点P,则k的值为()A.1B.3C.6D.8【分析】先求出直线y=x+2与坐标轴的交点A坐标,再由两条直线解析式构成方程组,解方程组求得B点坐标,进而求得中点P的坐标,问题就迎刃而解了.【解答】解:直线y=x+2中,令x=0,得y=2,∴A(0,2),解得,∴B(2,4),∵P是线段AB的中点,∴P(1,3),把P(1,3)代入y =中,得k=3,故选:B.二.填空题(共6小题)9.计算:+()﹣2﹣cos30°=+4.【分析】原式利用二次根式性质,负整数指数幂法则,以及特殊角的三角函数值计算即可求出值.【解答】解:原式=2+4﹣=+4,故答案为:+410.甲、乙两人参加射击比赛,下表记录了两人连续5次的射击成绩.通过这5次成绩,可以看出成绩比较稳定的是乙(填“甲”或“乙”).12345次数环数甲26778乙35688【分析】根据平均数和方差的公式求出甲和乙的方差,再根据方差的意义即可得出答案.【解答】解:甲的平均数为:(2+6+7+7+8)=6,甲的方差为:[(2﹣6)2+(6﹣6)2+(7﹣6)2+(7﹣6)2+(8﹣6)2]=4.4,乙的平均数为:(3+5+6+8+8)=6,乙的方差为:[(3﹣6)2+(5﹣6)2+(6﹣6)2+(8﹣6)2+(8﹣6)2]=3.6,∵甲的方差>乙的方差,∴成绩比较稳定的是乙;故答案为:乙.11.如图,AD为⊙O的直径,A,B,C三点在⊙O上,AB=BC,BD交AC于点E,∠ABC=110°,则∠CAD为20°.【分析】利用圆周角定理得到∠ABD=90°,∠CAD=∠DBC,然后计算∠DBC即可、【解答】解:∵AD为⊙O的直径,∴∠ABD=90°,∵∠ABC=110°,∴∠DBC=110°﹣90°=20°.∴∠CAD=∠DBC=20°.故答案为20.12.函数y=a(x+m)2+n图象上的两个点的坐标分别为(﹣2,0),(1,0)(其中a,m,n是常数,a≠0),则方程a(x+m﹣5)2+n=0的解是x1=3,x2=6.【分析】把方程a(x+m﹣5)2+n=0的解可看作二次函数y=a(x+m﹣5)2+n与x轴的交点的横坐标,利用抛物线的平移,把抛物线y=a(x+m)2+n向右平移5个单位得到y =a(x+m﹣5)2+n,然后确定抛物线y=a(x+m﹣5)2+n与x轴的两个交点的坐标即可.【解答】解:方程a(x+m﹣5)2+n=0的解可看作二次函数y=a(x+m﹣5)2+n与x轴的交点的横坐标,∵抛物线y=a(x+m)2+n向右平移5个单位得到y=a(x+m﹣5)2+n,而抛物线y=a(x+m)2+n与x轴的两个交点的坐标为(﹣2,0),(1,0),∴抛物线y=a(x+m﹣5)2+n与x轴的两个交点的坐标为(3,0),(6,0),∴方程a(x+m﹣5)2+n=0的解是x1=3,x2=6.故答案为x1=3,x2=6.13.如图,已知正方形ABCD的边长为3,E是边BC上一点,BE=1,将△ABE,△ADF 分别沿折痕AE,AF向内折叠,点B,D在点G处重合,过点E作EH⊥AE,交AF的延长线于H,则线段FH的长为.【分析】设DF=FG=x,在Rt△EFC中,由EF=1+x,EC=3﹣1=2,FC=3﹣x,根据勾股定理构建方程求出x,再求出AF,AH即可解决问题.【解答】解:∵四边形ABCD是正方形,∴∠B=∠C=∠D=∠BAD=90°,AB=BC=CD=AD=3,设DF=FG=x,在Rt△EFC中,∵EF=1+x,EC=3﹣1=2,FC=3﹣x,∴(x+1)2=22+(3﹣x)2,解得x=∴AF===,AE===,由翻折的性质可知,∠DAF=∠GAF,∠EAB=∠EAG,∴∠EAH=45°,∵EH⊥EA,∴∠AEH=90°,∴AE=EH=,AH=AE=2,∴FH=AH﹣AF=2﹣=,故答案为.14.如图,一“L”型纸片是由5个边长都是10cm的正方形拼接而成,过点I的直线分别与AE,JN交于点P,Q,且“L”型纸片被直线PQ分成面积相等的上下两部分,将该纸片沿BG,CH,DI,IJ折成一个无盖的正方体盒子后,点P,Q之间的距离为10cm.【分析】首先证明PB+QJ=10,在立体图形中,证明四边形BGQP为矩形,根据矩形的性质解答即可.【解答】解:平面图形中,∵IJ∥PE,∴△QIJ∽△QPE,∴=,即=,∴10EQ+10PE=PE•EQ,∵图L被直线PQ分成面积相等的上、下两部分,∴×PE•EQ=×5×100=250,∴PE•QE=500,即PE+QE=50(cm),∴PB+JQ=50﹣40=10(cm),立体图形中,连接MN,∵PB+JQ=10,JQ+QG=10,∴PB=QG,∴四边形BGQP为矩形,∴PQ=BG=10(cm),故答案为10.三.解答题(共10小题)15.如图,现有一张平行四边形纸片ABCD,李老师想用这张纸片裁出一个尽可能大的圆形教具,请你帮李老师在图中画出符合条件的圆.【分析】抓住题干中“裁下一个尽可能大的圆”,那么这个圆的直径就是这个平行四边形的竖直宽度.【解答】解:如图,圆O即为所求.16.(1)化简:(a﹣)÷(2)求不等式组的整数解.【分析】(1)根据分式的运算法则即可求出答案.(2)根据一元一次不等式组即可求出答案.【解答】解:(1)原式=•==.(2),由①得:x≥﹣3,由②得:x<,∴该不等式组的解集为:3≤x<17.一个盒子中装有2个红球,1个白球和1个蓝球,这些球除颜色外都相同,小明和小凡准备用这些球做游戏,游戏规则如下:从盒子中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,若两次摸到的球的颜色都是红色,小明胜;若两次摸到的球的颜色能配成紫色,则小凡胜,这个游戏对双方公平吗?请说明理由.【分析】根据题意画出树状图得出所有等情况数和两次摸到的球的颜色都是红色的情况数以及两次摸到的球的颜色能配成紫色的情况数,然后根据概率公式求出各自的概率,最后进行比较即可得出答案.【解答】解:根据题意画图如下:∵共有16种等可能的结果,两次摸到的球的颜色能是红色的有4种情况,两次摸到的球的颜色能配成紫色的有4种,∴两次摸到的球的颜色都是红色的概率是=,两次摸到的球的颜色能配成紫色的概率是=;∴这个游戏对双方公平.18.如图,要测量一垂直于水平面的建筑物AB的高度,小明从建筑物底端B出发,沿水平方向向右走30米到达点C,又经过一段坡角为30°,长为20米的斜坡CD,然后再沿水平方向向右走了50米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,求建筑物AB的高度.(结果保留根号,参考数据:sin24°≈,cos24°≈,tan24°=)【分析】作BM⊥ED交ED的延长线于M,CN⊥DM于N.首先解直角三角形Rt△CDN,求出CN,DN,再根据tan24°=,构建方程即可解决问题.【解答】解:作BM⊥ED交ED的延长线于M,CN⊥DM于N.在Rt△CDN中,∵∠CDN=30°,CD=20米,∴CN=CD•sin30°=10米,DN=CD•cos30°=5米,∵四边形BMNC是矩形,∴BM=CN=10米,BC=MN=30米,EM=MN+DN+DE=(80+5)米,在Rt△AEM中,tan24°=,∴=,∴AB=.答:建筑物AB的高度是米.19.《中学生体质健康标准》规定学生体质健康等级标准:90分及以上为优秀;80分~89分为良好;60分~79分为及格;60分以下为不及格.某校为了解学生的体质健康情况,从八年级学生中随机抽取了10%的学生进行了体质测试,并将测试数据制成如下统计图.请根据相关信息解答下面的问题:(1)扇形统计图中,“优秀”等级所在扇形圆心角的度数是多少?(2)求参加本次测试学生的平均成绩;(3)若参加本次测试“良好”及“良好”以上等级的学生共有35人,请你估计全校八年级“不及格”等级的学生大约有多少人.【分析】(1)用360°乘以“优秀”所占的百分比即可得出答案;(2)利用加权平均数公式计算即可;(3)根据“良好”及“良好”以上等级的学生数和所占的百分比求出抽取的人数,再求出全校的总人数,然后乘以“不及格”等级的学生所占的百分比即可得出答案.【解答】解:(1)“优秀”等级所在扇形圆心角的度数是360°×(1﹣50%﹣25%﹣5%)=72°;(2)参加本次测试学生的平均成绩是:94×(1﹣50%﹣25%﹣5%)+86×50%+72×25%+40×5%=82.7(分);(3)根据题意得:35÷(1﹣50%﹣25%﹣5%+50%)÷10%×5%=25(人),答:全校八年级“不及格”等级的学生大约有25人.20.某工程队承接一铁路工程,在挖掘一条500米长的隧道时,为了尽快完成,实际施工时每天挖掘的长度是原计划的1.5倍,结果提前了25天完成了其中300米的隧道挖掘任务.(1)求实际每天挖掘多少米?(2)由于气候等原因,需要进一步缩短工期,要求完成整条隧道不超过70天,那么为了完成剩下的任务,在实际每天挖掘长度的基础上,至少每天还应多挖掘多少米?【分析】(1)设原计划每天挖掘x米,则实际每天挖掘1.5x米,根据结果提前了25天完成了其中300米的隧道挖掘任务,列方程求解;(2)设每天还应多挖掘y米.根据完成该项工程的工期不超过70天,列不等式进行分析.【解答】解:(1)设原计划每天挖掘x米,则实际每天挖掘1.5x米,根据题意得:﹣=25,解得x=4.经检验,x=4是原分式方程的解,且符合题意,则1.5x=6答:实际每天挖掘6米.(2)设每天还应多挖掘y米,由题意,得(70﹣)(6+y)≥500﹣300,解得y≥4.答:每天还应多挖掘4米.21.已知:如图,在矩形ABCD中,E是边BC上一点,过点E作对角线AC的平行线,交AB于F,交DA和DC的延长线于点G,H.(1)求证:△AFG≌△CHE;(2)若∠G=∠BAC,则四边形ABCD是什么特殊四边形?并证明你的结论.【分析】(1)根据SAS可以证明两三角形全等;(2)先根据平行线的性质和已知可得∠BAC=45°,所以△ABC是等腰直角三角形,所以AB=BC,可得结论.【解答】证明:(1)∵四边形ABCD是矩形,∴AD∥BC,AB∥CD,∠BAD=∠BCD=90°∴∠GAB=∠B=∠BCH,∵AD∥BC,EF∥AC,∴四边形AGEC是平行四边形,∴AG=EC,∵AB∥CD,EF∥AC∴四边形AFHC是平行四边形,∴AF=CH,∴△AFG≌△CHE(SAS).(2)四边形ABCD是正方形理由:∵EF∥AC,∴∠G=∠CAD,∵∠G=∠BAC,∴∠BAC=∠CAD,∵∠BAD=90°,∴∠BAC=45°,∵∠B=90°,∴∠BAC=∠ACB=45°,∴BA=BC,∴矩形ABCD是正方形.22.某商场在试销一种进价为20元/件的商品时,每天不断调整该商品的售价以期获利更多,经过20天的试销发现,第一天销售量为78件,以后每天销售量总比前一天减少2件,且第1天至第10天,商品销售单价p与天数x满足:p=30+x;第11天至第20天,商品销售单价p与天数x满足:p=20+.(1)写出销售量y(件)与天数x(天)的函数关系式;(2)求商场销售该商品的20天里每天获得的利润w(元)与x的函数关系式;(3)该商品试制期间,第几天销售该商品获得的利润最大?最大利润是多少?【分析】(1)设P与x之间的函数关系式为y=kx+b,将(1,78),(2,76)代入关系式就可以求出结论;(2)设前10天每天的利润为w1(元),后10天每天的利润为w2(元),由日销售利润=每天的销售量×每公斤的利润就可以分别表示出w1与w2与x的关系;(3)当1≤x≤10,得到当x=10时,w1有最大值=1200元,当11≤x≤20,当x=11时,w2有最大值=580元,比较即可得到结论.【解答】解:(1)设y与x之间的函数关系式为y=kx+b,由题意,得,解得:,∴销售量y(件)与天数x(天)的函数关系式为:y=﹣2x+80;(2)设前10天每天的利润为w1(元),后10天每天的利润为w2(元),由题意,得w1=(p﹣20)y=(30+x﹣20)(﹣2x+80),=﹣2x2+60x+800,w2=(p﹣20)y=(20+﹣20)(﹣2x+80),=﹣220;(3)当1≤x≤10,w1=﹣2x2+60x+800=﹣2(x﹣15)2+1250,∴当x=10时,w1有最大值=1200元,当11≤x≤20,w2=﹣220,∴当x=11时,w2有最大值=580元,∵1200>580,∴第10天销售该商品获得的利润最大,最大利润是1200元.23.问题提出:将正m边形(m≥3)不断向外扩展,每扩展一个正m边形每条边上的点的个数(以下简称“点数”)就增加一个,则n个正m边形的点数总共有多少个?问题探究:为了解决上面的问题,我们将采取将一般问题特殊化的策略,先从简单和具体的情形入手:探究一:n个正三角形的点数总共有多少个?如图1﹣1,1个正三角形的点数总共有3个;如图1﹣2,2个正三角形的点数总共有6个;如图1﹣3,3个正三角形的点数总共有10个;…;n个正三角形的点数总共有个.探究二:n个正四边形的点数总共有多少个?如图2﹣1,1个正四边形的点数总共有4个;如图2﹣2,2个正四边形的点数总共有9个;如图2﹣3,连接AC,得到两个三角形△ABC和△ADC,这两个三角形相同之处在于,BC边与CD边都有相同个数的点,即4个点,并且与BC、CD平行的边上依次减少一个点直至顶点A,每个三角形都有10个点,两个三角形就是2×10个点.因为这两个三角形在AC上有4个点重合,所以3个正四边形的点数总共有2×10﹣4=16(个).如图2﹣4,4个正四边形的点数总共有25个;……n个正四边形的点数总共有(n+1)2个.探究三:n个正五边形的点数总共有多少个?类比探究二的方法,求4个正五边形的点数总共有多少个?并叙述你的探究过程.n个正五边形的点数总共有(n+1)(3n+2)个.探究四:n个正六边形的点数总共有(n+1)(2n+1)个.问题解决:n个正m边形的点数总共有(n+1)[+1]个.实际应用:若99个正m边形的点数总共有39700个,求m的值.【分析】探究一:n个正三角形的点数总个数是前(n+1)个数的和;探究二:4,9,16,25…,发现n个正四边形的点数总共有(n+1)2个;探究三:如图3﹣1,直接数点的个数为5个,如图3﹣2,连接AC,AD,得到三个三角形,每个三角形都有6个点,就是3×6=18个点,因为每两个三角形有3个点重合,所以,2个正五边形的点数总共有:3×6﹣2×3=12个;同理得如图3﹣3,3个正五边形的点数总共有:3×10﹣2×4=22个;如图3﹣4,4个正五边形的点数总共有:3×15﹣2×5=35个,确定规律得:n个正五边形的点数总共有:(n+1)(3n+2)个;探究四:如图3﹣1,直接数点的个数为6个,如图4﹣2,连接A'C',A'D',A'E',得到4个三角形,每个三角形都有1+2+3=6个点,就是24个点,因为每两个三角形有3个点重合,所以,2个正五边形的点数总共有:4×6﹣3×3=15个;同理得点的个数依次为:28,45=5×9,…,(n+1)(2n+1)个;问题解决:根据以上规律可得结论;实际应用:将n=99代入问题解决的等式中解方程即可.【解答】解:探究一:如图1﹣1,1个正三角形的点数总共有3个,即3=1+2;如图1﹣2,2个正三角形的点数总共有6个,即6=1+2+3;如图1﹣3,3个正三角形的点数总共有10个,即10=1+2+3+4;…;n个正三角形的点数总共有:1+2+3+…+n+(n+1)=个;故答案为:;探究二:如图2﹣1,1个正四边形的点数总共有4个,即4=22;如图2﹣2,2个正四边形的点数总共有9个,即9=32;如图2﹣3,连接AC,得到两个三角形△ABC和△ADC,这两个三角形相同之处在于,BC边与CD边都有相同个数的点,即4个点,并且与BC、CD平行的边上依次减少一个点直至顶点A,每个三角形都有10个点,两个三角形就是2×10个点.因为这两个三角形在AC上有4个点重合,所以3个正四边形的点数总共有2×10﹣4=16(个),即16=42;如图2﹣4,连接AC,得到两个三角形△ABC和△ADC,这两个三角形相同之处在于,BC边与CD边都有相同个数的点,即5个点,并且与BC、CD平行的边上依次减少一个点直至顶点A,每个三角形都有15个点,两个三角形就是2×15个点.因为这两个三角形在AC上有5个点重合,所以4个正四边形的点数总共有2×15﹣5=25(个),即25=52;∴n个正四边形的点数总共有2×﹣(n+1)=n2+2n+1=(n+1)2个;故答案为:25,(n+1)2;探究三:如图3﹣1,1个正五边形的点数总共有5个,即5=;如图3﹣2,连接AC,AD,得到三个三角形,每个三角形都有6个点,就是3×6=18个点,因为每两个三角形有3个点重合,所以,2个正五边形的点数总共有:3×6﹣2×3=12个,即12=;如图3﹣3,连接A'C',A'D',得到三个三角形,每个三角形都有10个点,就是3×10=30个点,因为每两个三角形有4个点重合,所以,3个正五边形的点数总共有:3×10﹣2×4=22个,即22=;如图3﹣4,连接AC,AD,得到三个三角形,每个三角形都有15个点,就是3×15=45个点,因为每两个三角形有5个点重合,所以,4个正五边形的点数总共有:3×15﹣2×5=35个,即35=;…同理得:n个正五边形的点数总共有:(n+1)(3n+2)个;故答案为:(n+1)(3n+2);探究四:如图4﹣1,1个正六边形的点数总共有6个,即6=2×3;如图4﹣2,连接A'C',A'D',A'E',得到4个三角形,每个三角形都有6个点,就是4×6=24个点,因为每两个三角形有3个点重合,所以,2个正六边形的点数总共有:4×6﹣3×3=15个,即15=3×5;如图4﹣3,连接AC,AD,AE,得到4个三角形,每个三角形都有10个点,就是4×10=40个点,因为每两个三角形有4个点重合,所以,3个正六边形的点数总共有:4×10﹣3×4=28个,即28=4×7;…同理得:4个六五边形的点数总共有:5×9=45个;n个正六边形的点数总共有:(n+1)(2n+1)个;故答案为:(n+1)(2n+1);问题解决:∵n个正三角形的点数总共有:(n+1)(n+1)个;n个正四边形的点数总共有:(n+1)(n+1)个;n个正五边形的点数总共有:(n+1)(n+1)个;n个正六边形的点数总共有:(n+1)(2n+1)个;…∴n个正m边形的点数总共有:(n+1)[+1]个;故答案为:(n+1)[+1];实际应用:由规律得:n=99时,(99+1)(99×+1)=39700,解得:m=10.24.如图,在矩形ABCD中,对角线AC,BD相交于点O,AB=3cm,BC=4cm,点E是BC上一点,且CE=1cm.点P由点C出发,沿CD方向向点D匀速运动,速度为1cm/s;点Q由点A出发,沿AD方向向点D匀速运动,速度为cm/s,点P,Q同时出发,PQ 交BD于F,连接PE,QB,设运动时间为t(s)(0<t<3).(1)当t为何值时,PE∥BD?(2)设△FQD的面积为y(cm2),求y与t之间的函数关系式.(3)是否存在某一时刻t,使得四边形BQPE的周长最小.若存在,求出此四边形BQPE 的面积;若不存在,请说明理由.【分析】(1)当=时,PE∥BD,由此构建方程即可解决问题.(2)作FH⊥DQ.首先证明QF∥OA,△QDF是等腰三角形,求出FH即可解决问题.(3)如图2中,作B关于直线AD的对称点B′,点E关于直线CD的对称点E′,连接B′E′交AD于Q,交CD于P,连接BQ,PE.此时BQ+QP+PE+BE的值最小.【解答】解:(1)∵四边形ABCD是矩形,∴AB=CD=3,AD=BC=4,∠BAD=90°,∴BD=AC===5,∴OA=OC=OD=OB=,∵当=时,PE∥BD,∴=,∴t═s时,PE∥BC.(2)如图1中,作FH⊥DQ.。
2018-2019学年第二学期山东省九年级数学下册期中考试卷及答案含有详细解析

2018~2019学年第二学期山东省九年级数学下册期中试卷一、选择题1、在反比例函数(k <0)的图象上有两点(-1,y 1),(-,y 2),则y 1-y 2的值是( )A .负数B .非正数C .正数D .不能确定 2、如图,过点C (1,2)分别作x 轴、y 轴的平行线,交直线y=﹣x+6于A 、B 两点,若反比例函数y=(x >0)的图象与△ABC 有公共点,则k 的取值范围是( ) A. 2≤k ≤9 B. 2≤k ≤8 C. 2≤k ≤5 D. 5≤k ≤8(第2题图) (第4题图) (第5题图)3、反比例函数y =图像上有两个点为(x 1,y 1)、(x 2,y 2),且x 1<x 2则下列关系成立的是( )A .y 1>y 2B .y 1<y 2C .y 1=y 2D .不能确定4、在△ABC 中,AB=12,AC=10,BC=9,AD 是BC 边上的高.将△ABC 按如图所示的方式折叠,使点A 与点D 重合,折痕为EF ,则△DEF 的周长为( ) A .9.5 B .10.5 C .11 D .15.55、如图,在长为8 cm 、宽为4 cm 的矩形中,截去一个矩形,使得留下的矩形(图中阴影部分)与原矩形相似,则留下矩形的面积是( )A .2 cm 2B .4 cm 2C .8 cm 2D .16 cm26、若双曲线与直线一个交点的横坐标为-1,则k 的值为( )A .-1.B .1C .-2D .27、如图,若点M 是x 轴正半轴上的任意一点,过点M 作PQ ∥y 轴,分别交函数(x >0)和(x >0)的图象于点P 和Q ,连接OP 、OQ ,则下列结论正确的是( )A .∠POQ 不可能等于900B .C .这两个函数的图象一定关于x 轴对称D .△POQ 的面积是(第7题图) (第8题图) (第10题图)8、如图,正方形ABCD 中,E 为AB 中点,BF ⊥CE 于F ,则S △BFC =( )S 正方形ABC DA .B .C .D .9、如果梯形两底的长分别为3.6和6,高的长为0.3,那么它的两腰延长线的交点到较短底边的距离为( )。
2019年山东青岛中考真题数学试题(解析版)(含考点分析)

{难度:2-简单}
{题目}3.(2019年青岛)2019 年 1 月 3 日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现 人类有史以来首次成功登陆月球背面.已知月球与地球之间的平均距离约为 384 000km,把 384 000km用科学记数法可以表示为( ) A.38.4×104 km B.3.84×105 km C.0.384×106 km D.3.84×106 km {答案}B {解析}本题考查了用科学记数法表示较大的数,将一个数表示为a×10n的形式时,注意1≤a<10. 384 000=384×103=3.84×102×103=3.84×105,因此本题选B. {分值}3 {章节:[1-1-5-2]科学计数法}
{分值}3 {章节:[1-24-4]弧长和扇形面积} {考点:三角形内角和定理} {考点:等角对等边} {考点:切线的性质} {考点:弧长的计算} {类别:常考题} {难度:3-中等难度} {题目}6.(2019年青岛)如图,将线段 AB 先向右平移 5 个单位,再将所得线段绕原点按顺时针 方向旋转 90°,得到线段 AB,则点 B 的对应点 B的坐标是( )
3
{分值}3 {章节:[1-12-2]三角形全等的判定} {考点:三角形的角平分线} {考点:三角形内角和定理} {考点:全等三角形的判定SAS} {考点:三角形的外角} {类别:常考题} {难度:3-中等难度}
2019年山东省青岛市中考数学试卷
考试时间:120分钟 满分:120分
{题型:1-选择题}一、选择题:本大题共 小题,每小题 分,合计分.
{题目}1.(2019年青岛)- 3 的相反数是( )
3
A.- 3
{答案}D
B.− 3C.± 3 NhomakorabeaD. 3
九年级下数学中考真题2018年山东省青岛市中考数学试卷(解析版)

山东省青岛市2018年中考数学试卷(解析版)一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)观察下列四个图形,中心对称图形是()A.B.C.D.【分析】根据中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误.故选:C.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.(3分)斑叶兰被列为国家二级保护植物,它的一粒种子重约0.0000005克.将0.0000005用科学记数法表示为()A.5×107B.5×10﹣7C.0.5×10﹣6D.5×10﹣6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.0000005用科学记数法表示为5×10﹣7.故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(3分)如图,点A所表示的数的绝对值是()A.3 B.﹣3 C.D.【分析】根据负数的绝对值是其相反数解答即可.【解答】解:|﹣3|=3,故选:A.【点评】此题考查绝对值问题,关键是根据负数的绝对值是其相反数解答.4.(3分)计算(a2)3﹣5a3•a3的结果是()A.a5﹣5a6B.a6﹣5a9C.﹣4a6D.4a6【分析】直接利用幂的乘方运算法则化简,再利用单项式乘以单项式、合并同类项法则计算得出答案.【解答】解:(a2)3﹣5a3•a3=a6﹣5a6=﹣4a6.故选:C.【点评】此题主要考查了幂的乘方运算、单项式乘以单项式,正确掌握运算法则是解题关键.5.(3分)如图,点A、B、C、D在⊙O上,∠AOC=140°,点B是的中点,则∠D的度数是()A.70°B.55°C.35.5°D.35°【分析】根据圆心角、弧、弦的关系定理得到∠AOB=∠AOC,再根据圆周角定理解答.【解答】解:连接OB,∵点B是的中点,∴∠AOB=∠AOC=70°,由圆周角定理得,∠D=∠AOB=35°,故选:D.【点评】本题考查的是圆心角、弧、弦的关系定理、圆周角定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.6.(3分)如图,三角形纸片ABC,AB=AC,∠BAC=90°,点E为AB中点.沿过点E的直线折叠,使点B与点A重合,折痕现交于点F.已知EF=,则BC的长是()A.B.C.3 D.【分析】由折叠的性质可知∠B=∠EAF=45°,所以可求出∠AFB=90°,再直角三角形的性质可知EF=AB,所以AB=AC的长可求,再利用勾股定理即可求出BC的长.【解答】解:∵沿过点E的直线折叠,使点B与点A重合,∴∠B=∠EAF=45°,∴∠AFB=90°,∵点E为AB中点,∴EF=AB,EF=,∴AB=AC=3,∵∠BAC=90°,∴BC==3,故选:B.【点评】本题考查了折叠的性质、等腰直角三角形的判断和性质以及勾股定理的运用,求出∠AFB=90°是解题的关键.7.(3分)如图,将线段AB绕点P按顺时针方向旋转90°,得到线段A'B',其中点A、B的对应点分别是点A'、B',则点A'的坐标是()A.(﹣1,3)B.(4,0) C.(3,﹣3)D.(5,﹣1)【分析】画图可得结论.【解答】解:画图如下:则A'(5,﹣1),故选:D.【点评】本题考查了旋转的性质,熟练掌握顺时针或逆时针旋转某个点或某直线的位置关系.8.(3分)已知一次函数y=x+c的图象如图,则二次函数y=ax2+bx+c在平面直角坐标系中的图象可能是()A.B.C.D.【分析】根据反比例函数图象一次函数图象经过的象限,即可得出<0、c>0,由此即可得出:二次函数y=ax2+bx+c的图象对称轴x=﹣>0,与y轴的交点在y轴负正半轴,再对照四个选项中的图象即可得出结论.【解答】解:观察函数图象可知:<0、c>0,∴二次函数y=ax2+bx+c的图象对称轴x=﹣>0,与y轴的交点在y轴负正半轴.故选:A.【点评】本题考查了一次函数的图象以及二次函数的图象,根据一次函数图象经过的象限,找出<0、c>0是解题的关键.二、填空题(每题3分,满分18分,将答案填在答题纸上)9.(3分)已知甲、乙两组数据的折线图如图,设甲、乙两组数据的方差分别为S甲2、S乙2,则S甲2<S乙2(填“>”、“=”、“<”)【分析】结合图形,根据数据波动较大的方差较大即可求解.【解答】解:从图看出:乙组数据的波动较小,故乙的方差较小,即S甲2<S乙2.故答案为:<.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.10.(3分)计算:2﹣1×+2cos30°=2.【分析】根据特殊角的三角函数值和有理数的乘法和加法可以解答本题.【解答】解:2﹣1×+2cos30°===2,故答案为:2.【点评】本题考查实数的运算、负整数指数幂、特殊角的三角函数值,解答本题的关键是明确它们各自的计算方法.11.(3分)5月份,甲、乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施.6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水量共为174吨,求两个工厂5月份的用水量各是多少.设甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据题意列关于x,y的方程组为.【分析】设甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据两厂5月份的用水量及6月份的用水量,即可得出关于x、y的二元一次方程组,此题得解.【解答】解:设甲工厂5月份用水量为x吨,乙工厂5月份用水量为y吨,根据题意得:.故答案为:.【点评】本题考查了二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.12.(3分)如图,已知正方形ABCD的边长为5,点E、F分别在AD、DC上,AE=DF=2,BE与AF相交于点G,点H为BF的中点,连接GH,则GH的长为.【分析】根据正方形的四条边都相等可得AB=AD,每一个角都是直角可得∠BAE=∠D=90°,然后利用“边角边”证明△ABE≌△DAF得∠ABE=∠DAF,进一步得∠AGE=∠BGF=90°,从而知GH=BF,利用勾股定理求出BF的长即可得出答案.【解答】解:∵四边形ABCD为正方形,∴∠BAE=∠D=90°,AB=AD,在△ABE和△DAF中,∵,∴△ABE≌△DAF(SAS),∴∠ABE=∠DAF,∵∠ABE+∠BEA=90°,∴∠DAF+∠BEA=90°,∴∠AGE=∠BGF=90°,∵点H为BF的中点,∴GH=BF,∵BC=5、CF=CD﹣DF=5﹣2=3,∴BF==,∴GH=BF=,故答案为:.【点评】本题考查了正方形的性质,全等三角形的判定与性质,直角三角形两锐角互余等知识,掌握三角形全等的判定方法与正方形的性质是解题的关键.13.(3分)如图,Rt△ABC,∠B=90°,∠C=30°,O为AC上一点,OA=2,以O 为圆心,以OA为半径的圆与CB相切于点E,与AB相交于点F,连接OE、OF,则图中阴影部分的面积是﹣π.【分析】根据扇形面积公式以及三角形面积公式即可求出答案.【解答】解:∵∠B=90°,∠C=30°,∴∠A=60°,∵OA=OF,∴△AOF是等边三角形,∴∠COF=120°,∵OA=2,∴扇形OGF的面积为:=∵OA为半径的圆与CB相切于点E,∴∠OEC=90°,∴OC=2OE=4,∴AC=OC+OA=6,∴AB=AC=3,∴由勾股定理可知:BC=3∴△ABC的面积为:×3×3=∵△OAF的面积为:×2×=,∴阴影部分面积为:﹣﹣π=﹣π故答案为:﹣π【点评】本题考查扇形面积公式,涉及含30度角的直角三角形的性质,勾股定理,切线的性质,扇形的面积公式等知识,综合程度较高.14.(3分)一个由16个完全相同的小立方块搭成的几何体,其最下面一层摆放了9个小立方块,它的主视图和左视图如图所示,那么这个几何体的搭法共有4种.【分析】先根据主视图确定每一列最大分别为4,2,3,再根据左视确定每一行最大分别为4,3,2,总和要保证为16,还要保证俯视图有9个位置.【解答】解:这个几何体的搭法共有4种:如下图所示:故答案为:4.【点评】本题考查几何体的三视图.由几何体的主视图、左视图及小立方块的个数,可知俯视图的列数和行数中的最大数字.三、作图题:本大题满分4分.15.(4分)已知:如图,∠ABC,射线BC上一点D.求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P 到∠ABC两边的距离相等.【分析】根据角平分线的性质、线段的垂直平分线的性质即可解决问题.【解答】解:∵点P在∠ABC的平分线上,∴点P到∠ABC两边的距离相等(角平分线上的点到角的两边距离相等),∵点P在线段BD的垂直平分线上,∴PB=PD(线段的垂直平分线上的点到线段的两个端点的距离相等),如图所示:【点评】本题考查作图﹣复杂作图、角平分线的性质、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于基础题,中考常考题型.四、解答题(本大题共9小题,共74分.解答应写出文字说明、证明过程或演算步骤.)16.(8分)(1)解不等式组:(2)化简:(﹣2)•.【分析】(1)先求出各不等式的解集,再求出其公共解集即可.(2)根据分式的混合运算顺序和运算法则计算可得.【解答】解:(1)解不等式<1,得:x<5,解不等式2x+16>14,得:x>﹣1,则不等式组的解集为﹣1<x<5;(2)原式=(﹣)•=•=.【点评】本题主要考查分式的混合运算和解一元一次不等式组,解题的关键是掌握解一元一次不等式组的步骤和分式混合运算顺序和运算法则.17.(6分)小明和小亮计划暑期结伴参加志愿者活动.小明想参加敬老服务活动,小亮想参加文明礼仪宣传活动.他们想通过做游戏来决定参加哪个活动,于是小明设计了一个游戏,游戏规则是:在三张完全相同的卡片上分别标记4、5、6三个数字,一人先从三张卡片中随机抽出一张,记下数字后放回,另一人再从中随机抽出一张,记下数字,若抽出的两张卡片标记的数字之和为偶数,则按照小明的想法参加敬老服务活动,若抽出的两张卡片标记的数字之和为奇数,则按照小亮的想法参加文明礼仪宣传活动.你认为这个游戏公平吗?请说明理由.【分析】首先根据题意列表,然后根据表求得所有等可能的结果与和为奇数、偶数的情况,再利用概率公式求解即可.【解答】解:不公平,列表如下:456489159101 161 01 1 1 2由表可知,共有9种等可能结果,其中和为偶数的有5种结果,和为奇数的有4种结果,所以按照小明的想法参加敬老服务活动的概率为,按照小亮的想法参加文明礼仪宣传活动的概率为,由≠知这个游戏不公平;【点评】此题考查了列表法求概率.注意树状图与列表法可以不重不漏的表示出所有等可能的情况.用到的知识点为:概率=所求情况数与总情况数之比.18.(6分)八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.请根据图中信息解决下列问题:(1)共有100名同学参与问卷调查;(2)补全条形统计图和扇形统计图;(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.【分析】(1)由读书1本的人数及其所占百分比可得总人数;(2)总人数乘以读4本的百分比求得其人数,减去男生人数即可得出女生人数,用读2本的人数除以总人数可得对应百分比;(3)总人数乘以样本中读2本人数所占比例.【解答】解:(1)参与问卷调查的学生人数为(8+2)÷10%=100人,故答案为:100;(2)读4本的女生人数为100×15%﹣10=5人,读2本人数所占百分比为×100%=38%,补全图形如下:(3)估计该校学生一个月阅读2本课外书的人数约为1500×38%=570人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.(6分)某区域平面示意图如图,点O在河的一侧,AC和BC表示两条互相垂直的公路.甲勘测员在A处测得点O位于北偏东45°,乙勘测员在B处测得点O位于南偏西73.7°,测得AC=840m,BC=500m.请求出点O到BC的距离.参考数据:sin73.7°≈,cos73.7°≈,tan73.7°≈【分析】作OM⊥BC于M,ON⊥AC于N,设OM=x,根据矩形的性质用x表示出OM、MC,根据正切的定义用x表示出BM,根据题意列式计算即可.【解答】解:作OM⊥BC于M,ON⊥AC于N,则四边形ONCM为矩形,∴ON=MC,OM=NC,设OM=x,则NC=x,AN=840﹣x,在Rt△ANO中,∠OAN=45°,∴ON=AN=840﹣x,则MC=ON=840﹣x,在Rt△BOM中,BM==x,由题意得,840﹣x+x=500,解得,x=480,答:点O到BC的距离为480m.【点评】本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、正确标注方向角是解题的关键.20.(8分)已知反比例函数的图象经过三个点A(﹣4,﹣3),B(2m,y1),C (6m,y2),其中m>0.(1)当y1﹣y2=4时,求m的值;(2)如图,过点B、C分别作x轴、y轴的垂线,两垂线相交于点D,点P在x 轴上,若三角形PBD的面积是8,请写出点P坐标(不需要写解答过程).【分析】(1)先根据反比例函数的图象经过点A(﹣4,﹣3),利用待定系数法求出反比例函数的解析式为y=,再由反比例函数图象上点的坐标特征得出y1==,y2==,然后根据y1﹣y2=4列出方程﹣=4,解方程即可求出m 的值;(2)设BD与x轴交于点E.根据三角形PBD的面积是8列出方程••PE=8,求出PE=4m,再由E(2m,0),点P在x轴上,即可求出点P的坐标.【解答】解:(1)设反比例函数的解析式为y=,∵反比例函数的图象经过点A(﹣4,﹣3),∴k=﹣4×(﹣3)=12,∴反比例函数的解析式为y=,∵反比例函数的图象经过点B(2m,y1),C(6m,y2),∴y1==,y2==,∵y1﹣y2=4,∴﹣=4,∴m=1;(2)设BD与x轴交于点E.∵点B(2m,),C(6m,),过点B、C分别作x轴、y轴的垂线,两垂线相交于点D,∴D(2m,),BD=﹣=.∵三角形PBD的面积是8,∴BD•PE=8,∴••PE=8,∴PE=4m,∵E(2m,0),点P在x轴上,∴点P坐标为(﹣2m,0)或(6m,0).【点评】本题考查了待定系数法求反比例函数的解析式,反比例函数图象上点的坐标特征以及三角形的面积,正确求出双曲线的解析式是解题的关键.21.(8分)已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G 为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.【分析】(1)只要证明AB=CD,AF=CD即可解决问题;(2)结论:四边形ACDF是矩形.根据对角线相等的平行四边形是矩形判断即可;【解答】(1)证明:∵四边形ABCD是平行四边形,∴BE∥CD,AB=CD,∴∠AFC=∠DCG,∵GA=GD,∠AGF=∠CGD,∴△AGF≌△DGC,∴AF=CD,∴AB=CF.(2)解:结论:四边形ACDF是矩形.理由:∵AF=CD,AF∥CD,∴四边形ACDF是平行四边形,∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=120°,∴∠FAG=60°,∵AB=AG=AF,∴△AFG是等边三角形,∴AG=GF,∵△AGF≌△DGC,∴FG=CG,∵AG=GD,∴AD=CF,∴四边形ACDF是矩形.【点评】本题考查平行四边形的判定和性质、矩形的判定、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.22.(10分)某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y(万件)与售价x(元/件)之间满足函数关系式y=﹣x+26.(1)求这种产品第一年的利润W1(万元)与售价x(元/件)满足的函数关系式;(2)该产品第一年的利润为20万元,那么该产品第一年的售价是多少?(3)第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润W2至少为多少万元.【分析】(1)根据总利润=每件利润×销售量﹣投资成本,列出式子即可;(2)构建方程即可解决问题;(3)根据题意求出自变量的取值范围,再根据二次函数,利用而学会设的性质即可解决问题;【解答】解:(1)W1=(x﹣6)(﹣x+26)﹣80=﹣x2+32x﹣236.(2)由题意:20=﹣x2+32x﹣236.解得:x=16,答:该产品第一年的售价是16元.(3)由题意:7≤x≤16,W2=(x﹣5)(﹣x+26)﹣20=﹣x2+31x﹣150,∵7≤x≤16,∴x=7时,W2有最小值,最小值=18(万元),答:该公司第二年的利润W2至少为18万元.【点评】本题考查二次函数的应用、一元二次方程的应用等知识,解题的关键是理解题意,学会构建方程或函数解决问题,属于中考常考题型.23.(10分)问题提出:用若干相同的一个单位长度的细直木棒,按照如图1方式搭建一个长方体框架,探究所用木棒条数的规律.问题探究:我们先从简单的问题开始探究,从中找出解决问题的方法.探究一用若干木棒来搭建横长是m,纵长是n的矩形框架(m、n是正整数),需要木棒的条数.如图①,当m=1,n=1时,横放木棒为1×(1+1)条,纵放木棒为(1+1)×1条,共需4条;如图②,当m=2,n=1时,横放木棒为2×(1+1)条,纵放木棒为(2+1)×1条,共需7条;如图③,当m=2,n=2时,横放木棒为2×(2+1))条,纵放木棒为(2+1)×2条,共需12条;如图④,当m=3,n=1时,横放木棒为3×(1+1)条,纵放木棒为(3+1)×1条,共需10条;如图⑤,当m=3,n=2时,横放木棒为3×(2+1)条,纵放木棒为(3+1)×2条,共需17条.问题(一):当m=4,n=2时,共需木棒22条.问题(二):当矩形框架横长是m,纵长是n时,横放的木棒为m(n+1)条,纵放的木棒为n(m+1)条.探究二用若干木棒来搭建横长是m,纵长是n,高是s的长方体框架(m、n、s是正整数),需要木棒的条数.如图⑥,当m=3,n=2,s=1时,横放与纵放木棒之和为[3×(2+1)+(3+1)×2]×(1+1)=34条,竖放木棒为(3+1)×(2+1)×1=12条,共需46条;如图⑦,当m=3,n=2,s=2时,横放与纵放木棒之和为[3×(2+1)+(3+1)×2]×(2+1)=51条,竖放木棒为(3+1)×(2+1)×2=24条,共需75条;如图⑧,当m=3,n=2,s=3时,横放与纵放木棒之和为[3×(2+1)+(3+1)×2]×(3+1)=68条,竖放木棒为(3+1)×(2+1)×3=36条,共需104条.问题(三):当长方体框架的横长是m,纵长是n,高是s时,横放与纵放木棒条数之和为[m(n+1)+n(m+1)](s+1)条,竖放木棒条数为(m+1)(n+1)s条.实际应用:现在按探究二的搭建方式搭建一个纵长是2、高是4的长方体框架,总共使用了170条木棒,则这个长方体框架的横长是4.拓展应用:若按照如图2方式搭建一个底面边长是10,高是5的正三棱柱框架,需要木棒1320条.【分析】从特殊到一般探究规律后利用规律即可解决问题;【解答】解:问题(一):当m=4,n=2时,横放木棒为4×(2+1)条,纵放木棒为(4+1)×2条,共需22条;问题(二):当矩形框架横长是m,纵长是n时,横放的木棒为m(n+1)条,纵放的木棒为n(m+1)条;问题(三):当长方体框架的横长是m,纵长是n,高是s时,横放与纵放木棒条数之和为[m(n+1)+n(m+1)](s+1)条,竖放木棒条数为(m+1)(n+1)s 条.实际应用:这个长方体框架的横长是 s ,则:[3m +2(m +1)]×5+(m +1)×3×4=170,解得m=4,拓展应用:若按照如图2方式搭建一个底面边长是10,高是5的正三棱柱框架,横放与纵放木棒条数之和为165×6=990条,竖放木棒条数为60×5=330条需要木棒1320条.故答案为22,m (n +1),n (m +1),[m (n +1)+n (m +1)](s +1),(m +1)(n +1)s ,4,1320;【点评】本题考查规律型﹣图形变化类问题,解题的关键是理解题意,学会用分类讨论的思想解决问题,属于中考填空题中的压轴题.24.(12分)已知:如图,四边形ABCD ,AB ∥DC ,CB ⊥AB ,AB=16cm ,BC=6cm ,CD=8cm ,动点P 从点D 开始沿DA 边匀速运动,动点Q 从点A 开始沿AB 边匀速运动,它们的运动速度均为2cm/s .点P 和点Q 同时出发,以QA 、QP 为边作平行四边形AQPE ,设运动的时间为t (s ),0<t <5.根据题意解答下列问题:(1)用含t 的代数式表示AP ;(2)设四边形CPQB 的面积为S (cm 2),求S 与t 的函数关系式;(3)当QP ⊥BD 时,求t 的值;(4)在运动过程中,是否存在某一时刻t ,使点E 在∠ABD 的平分线上?若存在,求出t 的值;若不存在,请说明理由.【分析】(1)如图作DH ⊥AB 于H 则四边形DHBC 是矩形,利用勾股定理求出AD 的长即可解决问题;(2)作PN ⊥AB 于N .连接PB ,根据S=S △PQB +S △BCP ,计算即可;(3)当PQ ⊥BD 时,∠PQN +∠DBA=90°,∠QPN +∠PQN=90°,推出∠QPN=∠DBA ,推出tan∠QPN==,由此构建方程即可解解题问题;(4)存在.连接BE交DH于K,作KM⊥BD于M.当BE平分∠ABD时,△KBH ≌△KBM,推出KH=KM,BH=BM=8,设KH=KM=x,在Rt△DKM中,(6﹣x)2=22+x2,解得x=,作EF⊥AB于F,则△AEF≌△QPN,推出EF=PN=(10﹣2t),AF=QN=(10﹣2t)﹣2t,推出BF=16﹣[(10﹣2t)﹣2t],由KH∥EF,可得=,由此构建方程即可解决问题;【解答】解:(1)如图作DH⊥AB于H,则四边形DHBC是矩形,∴CD=BH=8,DH=BC=6,∴AH=AB﹣BH=8,AD==10,BD==10,由题意AP=AD﹣DP=10﹣2t.(2)作PN⊥AB于N.连接PB.在Rt△APN中,PA=10﹣2t,∴PN=PA•sin∠DAH=(10﹣2t),AN=PA•cos∠DAH=(10﹣2t),∴BN=16﹣AN=16﹣(10﹣2t),S=S△PQB+S△BCP=•(16﹣2t)•(10﹣2t)+×6×[16﹣(10﹣2t)]=t2﹣12t+78(3)当PQ⊥BD时,∠PQN+∠DBA=90°,∵∠QPN+∠PQN=90°,∴∠QPN=∠DBA,∴tan∠QPN==,∴=,解得t=,经检验:t=是分式方程的解,∴当t=s时,PQ⊥BD.(4)存在.理由:连接BE交DH于K,作KM⊥BD于M.当BE平分∠ABD时,△KBH≌△KBM,∴KH=KM,BH=BM=8,设KH=KM=x,在Rt△DKM中,(6﹣x)2=22+x2,解得x=,作EF⊥AB于F,则△AEF≌△QPN,∴EF=PN=(10﹣2t),AF=QN=(10﹣2t)﹣2t,∴BF=16﹣[(10﹣2t)﹣2t],∵KH∥EF,∴=,∴=,解得:t=,经检验:t=是分式方程的解,∴当t=s时,点E在∠ABD的平分线.【点评】本题考查四边形综合题,解直角三角形、锐角三角函数、全等三角形的判定和性质、平行线分线段成比例定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形或全等三角形解决问题,学会理由参数构建方程解决问题,属于中考压轴题.。
2019年山东省青岛市中考数学试卷及解析

2019年山东省青岛市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的、1、(3分)﹣的相反数是()A、﹣B、﹣C、±D、2、(3分)下列四个图形中,既是轴对称图形,又是中心对称图形的是()A、B、C、D、3、(3分)2019年1月3日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面、已知月球与地球之间的平均距离约为384000km,把384000km用科学记数法可以表示为()A、38.4×104kmB、3.84×105kmC、0.384×10 6kmD、3.84×106km4、(3分)计算(﹣2m)2•(﹣m•m2+3m3)的结果是()A、8m5B、﹣8m5C、8m6D、﹣4m4+12m55、(3分)如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D、若AC=BD=4,∠A=45°,则的长度为()A、πB、2πC、2πD、4π6、(3分)如图,将线段AB先向右平移5个单位,再将所得线段绕原点按顺时针方向旋转90°,得到线段A′B′,则点B的对应点B′的坐标是()A、(﹣4,1)B、(﹣1,2)C、(4,﹣1)D、(1,﹣2)7、(3分)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F、若∠ABC=35°,∠C=50°,则∠CDE的度数为()A、35°B、40°C、45°D、50°8、(3分)已知反比例函数y=的图象如图所示,则二次函数y=ax2﹣2x和一次函数y=bx+a在同一平面直角坐标系中的图象可能是()A、B、C、D、二、填空题(本大题共6小题,每小题3分,共18分)9、(3分)计算:﹣()0=、10、(3分)若关于x的一元二次方程2x2﹣x+m=0有两个相等的实数根,则m的值为、11、(3分)射击比赛中,某队员10次射击成绩如图所示,则该队员的平均成绩是环、12、(3分)如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是°、13、(3分)如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF、若AD=4cm,则CF的长为cm、14、(3分)如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体、若新几何体与原正方体的表面积相等,则最多可以取走个小立方块、三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹、15、(4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹、已知:∠α,直线l及l上两点A,B、求作:Rt△ABC,使点C在直线l的上方,且∠ABC=90°,∠BAC=∠α、四、解答题(本大题共9小题,共74分)16、(8分)(1)化简:÷(﹣2n);(2)解不等式组,并写出它的正整数解、17、(6分)小明和小刚一起做游戏,游戏规则如下:将分别标有数字1,2,3,4的4个小球放入一个不透明的袋子中,这些球除数字外都相同、从中随机摸出一个球记下数字后放回,再从中随机摸出一个球记下数字、若两次数字差的绝对值小于2,则小明获胜,否则小刚获胜、这个游戏对两人公平吗?请说明理由、18、(6分)为了解学生每天的睡眠情况,某初中学校从全校800名学生中随机抽取了40名学生,调查了他们平均每天的睡眠时间(单位:h),统计结果如下:9,8,10.5,7,9,8,10,9.5,8,9,9.5,7.5,9.5,9,8.5,7.5,10,9.5,8,9,7,9.5,8.5,9,7,9,9,7.5,8.5,8.5,9,8,7.5,9.5,10,9.5,8.5,9,8,9、在对这些数据整理后,绘制了如下的统计图表:睡眠时间分组统计表睡眠时间分布情况组别睡眠时间分组人数(频数)17≤t<8m28≤t<91139≤t<10n410≤t<114请根据以上信息,解答下列问题:(1)m=,n=,a=,b=;(2)抽取的这40名学生平均每天睡眠时间的中位数落在组(填组别);(3)如果按照学校要求,学生平均每天的睡眠时间应不少于9h,请估计该校学生中睡眠时间符合要求的人数、19、(6分)如图,某旅游景区为方便游客,修建了一条东西走向的木栈道AB,栈道AB与景区道路CD平行、在C处测得栈道一端A位于北偏西42°方向,在D处测得栈道另一端B位于北偏西32°方向、已知CD=120m,BD=80m,求木栈道AB的长度(结果保留整数)、(参考数据:sin32°≈,cos32°≈,tan32°≈,sin42°≈,cos42°≈,tan42°≈)20、(8分)甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天、(1)求甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有3000个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成、如果总加工费不超过7800元,那么甲至少加工了多少天?21、(8分)如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG、(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由、22、(10分)某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示、(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?23、(10分)问题提出:如图,图①是一张由三个边长为1的小正方形组成的“L”形纸片,图②是一张a×b的方格纸(a×b的方格纸指边长分别为a,b的矩形,被分成a×b个边长为1的小正方形,其中a≥2,b≥2,且a,b为正整数)、把图①放置在图②中,使它恰好盖住图②中的三个小正方形,共有多少种不同的放置方法?问题探究:为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论、探究一:把图①放置在2×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图③,对于2×2的方格纸,要用图①盖住其中的三个小正方形,显然有4种不同的放置方法、探究二:把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图④,在3×2的方格纸中,共可以找到2个位置不同的2×2方格,依据探究一的结论可知,把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有2×4=8种不同的放置方法、探究三:把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑤,在a×2的方格纸中,共可以找到个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×2的方格纸中,使它恰好盖住其中的三个小正方形,共有种不同的放置方法、探究四:把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑥,在a×3的方格纸中,共可以找到个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有种不同的放置方法、……问题解决:把图①放置在a×b的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?(仿照前面的探究方法,写出解答过程,不需画图、)问题拓展:如图,图⑦是一个由4个棱长为1的小立方体构成的几何体,图⑧是一个长、宽、高分别为a,b,c(a≥2,b≥2,c≥2,且a,b,c是正整数)的长方体,被分成了a×b×c 个棱长为1的小立方体、在图⑧的不同位置共可以找到个图⑦这样的几何体、24、(12分)已知:如图,在四边形ABCD中,AB∥CD,∠ACB=90°,AB=10cm,BC=8cm,OD垂直平分A C、点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动,另一个点也停止运动、过点P作PE⊥AB,交BC于点E,过点Q作QF∥AC,分别交AD,OD于点F,G、连接OP,EG、设运动时间为t(s)(0<t<5),解答下列问题:(1)当t为何值时,点E在∠BAC的平分线上?(2)设四边形PEGO的面积为S(cm2),求S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使四边形PEGO的面积最大?若存在,求出t的值;若不存在,请说明理由;(4)连接OE,OQ,在运动过程中,是否存在某一时刻t,使OE⊥OQ?若存在,求出t的值;若不存在,请说明理由、参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的、1、(3分)﹣的相反数是()A、﹣B、﹣C、±D、题目分析:相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0、试题解答:解:根据相反数、绝对值的性质可知:﹣的相反数是、故选:D、点评:本题考查的是相反数的求法、要求掌握相反数定义,并能熟练运用到实际当中、2、(3分)下列四个图形中,既是轴对称图形,又是中心对称图形的是()A、B、C、D、题目分析:根据轴对称图形与中心对称图形的概念求解、试题解答:解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、既是轴对称图形,又是中心对称图形,故此选项正确、故选:D、点评:此题主要考查了中心对称图形与轴对称图形的概念、轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合、3、(3分)2019年1月3日,我国“嫦娥四号”月球探测器在月球背面软着陆,实现人类有史以来首次成功登陆月球背面、已知月球与地球之间的平均距离约为384000km,把384000km用科学记数法可以表示为()A、38.4×104kmB、3.84×105kmC、0.384×10 6kmD、3.84×106km题目分析:利用科学记数法的表示形式即可试题解答:解:科学记数法表示:384 000=3.84×105km故选:B、点评:本题主要考查科学记数法的表示,把一个数表示成a与10的n次幂相乘的形式(1≤a<10,n为整数),这种记数法叫做科学记数法、4、(3分)计算(﹣2m)2•(﹣m•m2+3m3)的结果是()A、8m5B、﹣8m5C、8m6D、﹣4m4+12m5题目分析:根据积的乘方以及合并同类项进行计算即可、试题解答:解:原式=4m2•2m3=8m5,故选:A、点评:本题考查了幂的乘方、积的乘方以及合并同类项的法则,掌握运算法则是解题的关键、5、(3分)如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D、若AC=BD=4,∠A=45°,则的长度为()A、πB、2πC、2πD、4π题目分析:连接OC、OD,根据切线性质和∠A=45°,易证得△AOC和△BOD是等腰直角三角形,进而求得OC=OD=4,∠COD=90°,根据弧长公式求得即可、试题解答:解:连接OC、OD,∵AC,BD分别与⊙O相切于点C,D、∴OC⊥AC,OD⊥BD,∵∠A=45°,∴∠AOC=45°,∴AC=OC=4,∵AC=BD=4,OC=OD=4,∴OD=BD,∴∠BOD=45°,∴∠COD=180°﹣45°﹣45°=90°,∴的长度为:=2π,故选:B、点评:本题考查了切线的性质,等腰直角三角形的判定和性质,弧长的计算等,证得∠COD=90°是解题的关键、6、(3分)如图,将线段AB先向右平移5个单位,再将所得线段绕原点按顺时针方向旋转90°,得到线段A′B′,则点B的对应点B′的坐标是()A、(﹣4,1)B、(﹣1,2)C、(4,﹣1)D、(1,﹣2)题目分析:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a 个单位长度;图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标、常见的是旋转特殊角度如:30°,45°,60°,90°,180°、试题解答:解:将线段AB先向右平移5个单位,点B(2,1),连接OB,顺时针旋转90°,则B'对应坐标为(1,﹣2),故选:D、点评:本题考查了图形的平移与旋转,熟练运用平移与旋转的性质是解题的关键、7、(3分)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F、若∠ABC=35°,∠C=50°,则∠CDE的度数为()A、35°B、40°C、45°D、50°题目分析:根据角平分线的定义和垂直的定义得到∠ABD=∠EBD=∠ABC=,∠AFB=∠EFB=90°,推出AB=BE,根据等腰三角形的性质得到AF=EF,求得AD =ED,得到∠DAF=∠DEF,根据三角形的外角的性质即可得到结论、试题解答:解:∵BD是△ABC的角平分线,AE⊥BD,∴∠ABD=∠EBD=∠ABC=,∠AFB=∠EFB=90°,∴∠BAF=∠BEF=90°﹣17.5°,∴AB=BE,∴AF=EF,∴AD=ED,∴∠DAF=∠DEF,∵∠BAC=180°﹣∠ABC﹣∠C=95°,∴∠BED=∠BAD=95°,∴∠CDE=95°﹣50°=45°,故选:C、点评:本题考查了三角形的内角和,全等三角形的判定和性质,三角形的外角的性质,熟练掌握全等三角形的判定和性质是解题的关键、8、(3分)已知反比例函数y=的图象如图所示,则二次函数y=ax2﹣2x和一次函数y=bx+a在同一平面直角坐标系中的图象可能是()A、B、C、D、题目分析:先根据抛物线y=ax2﹣2过原点排除A,再反比例函数图象确定ab的符号,再由a、b的符号和抛物线对称轴确定抛物线与直线y=bx+a的位置关系,进而得解、试题解答:解:∵当x=0时,y=ax2﹣2x=0,即抛物线y=ax2﹣2x经过原点,故A错误;∵反比例函数y=的图象在第一、三象限,∴ab>0,即a、b同号,当a<0时,抛物线y=ax2﹣2x的对称轴x=<0,对称轴在y轴左边,故D错误;当a<0时,b<0,直线y=bx+a经过第二、三、四象限,故B错误,C正确、故选:C、点评:本题主要考查了一次函数、反比例函数、二次函数的图象与性质,根据函数图象与系数的关系进行判断是解题的关键,同时考查了数形结合的思想、二、填空题(本大题共6小题,每小题3分,共18分)9、(3分)计算:﹣()0=2+1、题目分析:根据二次根式混合运算的法则计算即可、试题解答:解:﹣()0=2+2﹣1=2+1,故答案为:2+1、点评:本题考查了二次根式的混合运算,熟记法则是解题的关键、10、(3分)若关于x的一元二次方程2x2﹣x+m=0有两个相等的实数根,则m的值为、题目分析:根据“关于x的一元二次方程2x2﹣x+m=0有两个相等的实数根”,结合根的判别式公式,得到关于m的一元一次方程,解之即可、试题解答:解:根据题意得:△=1﹣4×2m=0,整理得:1﹣8m=0,解得:m=,故答案为:、点评:本题考查了根的判别式,正确掌握根的判别式公式是解题的关键、11、(3分)射击比赛中,某队员10次射击成绩如图所示,则该队员的平均成绩是8.5环、题目分析:由加权平均数公式即可得出结果、试题解答:解:该队员的平均成绩为(1×6+1×7+2×8+4×9+2×10)=8.5(环);故答案为:8.5、点评:本题考查了加权平均数和条形统计图;熟练掌握加权平均数的计算公式是解决问题的关键、12、(3分)如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是54°、题目分析:正五边形的性质和圆周角定理即可得到结论、试题解答:解:∵AF是⊙O的直径,∴=,∵五边形ABCDE是⊙O的内接正五边形,∴=,∠BAE=108°,∴=,∴∠BAF=∠BAE=54°,∴∠BDF=∠BAF=54°,故答案为:54、点评:本题考查正多边形与圆,圆周角定理等知识,解题的关键灵活运用所学知识解决问题,属于中考常考题型、13、(3分)如图,在正方形纸片ABCD中,E是CD的中点,将正方形纸片折叠,点B落在线段AE上的点G处,折痕为AF、若AD=4cm,则CF的长为6﹣cm、题目分析:设BF=x,则FG=x,CF=4﹣x,在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,从而得到关于x方程,求解x,最后用4﹣x即可、试题解答:解:设BF=x,则FG=x,CF=4﹣x、在Rt△ADE中,利用勾股定理可得AE=、根据折叠的性质可知AG=AB=4,所以GE=﹣4、在Rt△GEF中,利用勾股定理可得EF2=(﹣4)2+x2,在Rt△FCE中,利用勾股定理可得EF2=(4﹣x)2+22,所以(﹣4)2+x2=(4﹣x)2+22,解得x=﹣2、则FC=4﹣x=6﹣、故答案为6﹣、点评:本题主要考查了折叠的性质、勾股定理、折叠问题主要是抓住折叠的不变量,在直角三角形中利用勾股定理求解是解题的关键、14、(3分)如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体、若新几何体与原正方体的表面积相等,则最多可以取走16个小立方块、题目分析:根据表面积不变,只需留11个,分别是正中心的3个和四角上各2个、试题解答:解:若新几何体与原正方体的表面积相等,最多可以取走16个小正方体,只需留11个,分别是正中心的3个和四角上各2个,如图所示:故答案为:16点评:本题主要考查了几何体的表面积、三、作图题(本大题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹、15、(4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹、已知:∠α,直线l及l上两点A,B、求作:Rt△ABC,使点C在直线l的上方,且∠ABC=90°,∠BAC=∠α、题目分析:先作∠DAB=α,再过B点作BE⊥AB,则AD与BE的交点为C点、试题解答:解:如图,△ABC为所作、点评:本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法、解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作、四、解答题(本大题共9小题,共74分)16、(8分)(1)化简:÷(﹣2n);(2)解不等式组,并写出它的正整数解、题目分析:(1)按分式的运算顺序和运算法则计算求值;(2)先确定不等式组的解集,再求出满足条件的正整数解、试题解答:解:(1)原式=÷=×=;(2)由①,得x≥﹣1,由②,得x<3、所以该不等式组的解集为:﹣1≤x<3、所以满足条件的正整数解为:1、2、点评:本题考查了分式的混合运算、不等式组的正整数解等知识点、解决(1)的关键是掌握分式的运算法则,解决(2)的关键是确定不等式组的解集、17、(6分)小明和小刚一起做游戏,游戏规则如下:将分别标有数字1,2,3,4的4个小球放入一个不透明的袋子中,这些球除数字外都相同、从中随机摸出一个球记下数字后放回,再从中随机摸出一个球记下数字、若两次数字差的绝对值小于2,则小明获胜,否则小刚获胜、这个游戏对两人公平吗?请说明理由、题目分析:列表得出所有等可能的情况数,找出两次数字差的绝对值小于2的情况数,分别求出两人获胜的概率,比较即可得到游戏公平与否、试题解答:解:这个游戏对双方不公平、理由:列表如下:1234 1(1,1)(2,1)(3,1)(4,1)2(1,2)(2,2)(3,2)(4,2)3(1,3)(2,3)(3,3)(4,3)4(1,4)(2,4)(3,4)(4,4)所有等可能的情况有16种,其中两次数字差的绝对值小于2的情况有(1,1),(2,1),(1,2),(2,2),(3,2),(2,3),(3,3),(4,3),(3,4),(4,4)共10种,故小明获胜的概率为:=,则小刚获胜的概率为:=,∵≠,∴这个游戏对两人不公平、点评:此题考查了游戏公平性,以及列表法与树状图法,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平、18、(6分)为了解学生每天的睡眠情况,某初中学校从全校800名学生中随机抽取了40名学生,调查了他们平均每天的睡眠时间(单位:h),统计结果如下:9,8,10.5,7,9,8,10,9.5,8,9,9.5,7.5,9.5,9,8.5,7.5,10,9.5,8,9,7,9.5,8.5,9,7,9,9,7.5,8.5,8.5,9,8,7.5,9.5,10,9.5,8.5,9,8,9、在对这些数据整理后,绘制了如下的统计图表:睡眠时间分组统计表睡眠时间分布情况组别睡眠时间分组人数(频数)17≤t<8m28≤t<91139≤t<10n410≤t<114请根据以上信息,解答下列问题:(1)m=7,n=18,a=17.5%,b=45%;(2)抽取的这40名学生平均每天睡眠时间的中位数落在3组(填组别);(3)如果按照学校要求,学生平均每天的睡眠时间应不少于9h,请估计该校学生中睡眠时间符合要求的人数、题目分析:(1)根据40名学生平均每天的睡眠时间即可得出结果;(2)由中位数的定义即可得出结论;(3)由学校总人数×该校学生中睡眠时间符合要求的人数所占的比例,即可得出结果、试题解答:解:(1)7≤t<8时,频数为m=7;9≤t<10时,频数为n=18;∴a=×100%=17.5%;b=×100%=45%;故答案为:7,18,17.5%,45%;(2)由统计表可知,抽取的这40名学生平均每天睡眠时间的中位数为第20个和第21个数据的平均数,∴落在第3组;故答案为:3;(3)该校学生中睡眠时间符合要求的人数为800×=440(人);答:估计该校学生中睡眠时间符合要求的人数为440人、点评:本题考查了统计图的有关知识,解题的关键是仔细地审题,从图中找到进一步解题的信息、19、(6分)如图,某旅游景区为方便游客,修建了一条东西走向的木栈道AB,栈道AB与景区道路CD平行、在C处测得栈道一端A位于北偏西42°方向,在D处测得栈道另一端B位于北偏西32°方向、已知CD=120m,BD=80m,求木栈道AB的长度(结果保留整数)、(参考数据:sin32°≈,cos32°≈,tan32°≈,sin42°≈,cos42°≈,tan42°≈)题目分析:过C作CE⊥AB于E,DF⊥AB交AB的延长线于F,于是得到CE∥DF,推出四边形CDFE是矩形,得到EF=CD=120,DF=CE,解直角三角形即可得到结论、试题解答:解:过C作CE⊥AB于E,DF⊥AB交AB的延长线于F,则CE∥DF,∵AB∥CD,∴四边形CDFE是矩形,∴EF=CD=120,DF=CE,在Rt△BDF中,∵∠BDF=32°,BD=80,∴DF=cos32°•BD=80×≈68,BF=sin32°•BD=80×≈,∴BE=EF﹣BF=,在Rt△ACE中,∵∠ACE=42°,CE=DF=68,∴AE=CE•tan42°=68×=,∴AB=AE+BE=+≈139m,答:木栈道AB的长度约为139m、点评:本题考查解直角三角形﹣方向角问题,解题的关键是学会添加常用辅助线、构造直角三角形解决问题,属于中考常考题型、20、(8分)甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天、(1)求甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120元,现有3000个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成、如果总加工费不超过7800元,那么甲至少加工了多少天?题目分析:(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,根据甲比乙少用5天,列分式方程求解;(2)设甲加工了x天,乙加工了y天,根据3000个零件,列方程;根据总加工费不超过7800元,列不等式,方程和不等式综合考虑求解即可、试题解答:解:(1)设乙每天加工x个零件,则甲每天加工1.5x个零件,由题意得:=+5化简得600×1.5=600+5×1.5x解得x=40∴1.5x=60经检验,x=40是分式方程的解且符合实际意义、答:甲每天加工60个零件,乙每天加工,40个零件、(2)设甲加工了x天,乙加工了y天,则由题意得由①得y=75﹣1.5x③将③代入②得150x+120(75﹣1.5x)≤7800解得x≥40,当x=40时,y=15,符合问题的实际意义、答:甲至少加工了40天、点评:本题是分式方程与不等式的实际应用题,题目数量关系清晰,难度不大、21、(8分)如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG、(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由、题目分析:(1)由平行四边形的性质得出AB=CD,AB∥CD,OB=OD,OA=OC,由平行线的性质得出∠ABE=∠CDF,证出BE=DF,由SAS证明△ABE≌△CDF即可;(2)证出AB=OA,由等腰三角形的性质得出AG⊥OB,∠OEG=90°,同理:CF⊥OD,得出EG∥CF,由三角形中位线定理得出OE∥CG,EF∥CG,得出四边形EGCF 是平行四边形,即可得出结论、试题解答:(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,OB=OD,OA=OC,∴∠ABE=∠CDF,∵点E,F分别为OB,OD的中点,∴BE=OB,DF=OD,∴BE=DF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)解:当AC=2AB时,四边形EGCF是矩形;理由如下:∵AC=2OA,AC=2AB,∴AB=OA,∵E是OB的中点,∴AG⊥OB,∴∠OEG=90°,同理:CF⊥OD,∴AG∥CF,∴EG∥CF,∵EG=AE,OA=OC,∴OE是△ACG的中位线,∴OE∥CG,∴EF∥CG,∴四边形EGCF是平行四边形,∵∠OEG=90°,∴四边形EGCF是矩形、点评:本题考查了矩形的判定、平行四边形的性质和判定、全等三角形的判定、三角形中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型、22、(10分)某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示、(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?题目分析:(1)将点(30,100)、(45,70)代入一次函数表达式,即可求解;(2)由题意得w=(x﹣30)(﹣2x+160)=﹣2(x﹣55)2+1250,即可求解;(3)由题意得(x﹣30)(﹣2x+160)≥800,解不等式即可得到结论、试题解答:解:(1)设y与销售单价x之间的函数关系式为:y=kx+b,将点(30,100)、(45,70)代入一次函数表达式得:,解得:,故函数的表达式为:y=﹣2x+160;(2)由题意得:w=(x﹣30)(﹣2x+160)=﹣2(x﹣55)2+1250,∵﹣2<0,故当x<55时,w随x的增大而增大,而30≤x≤50,∴当x=50时,w有最大值,此时,w=1200,故销售单价定为50元时,该超市每天的利润最大,最大利润1200元;(3)由题意得:(x﹣30)(﹣2x+160)≥800,解得:40≤x≤70,∴每天的销售量y=﹣2x+160≥20,∴每天的销售量最少应为20件、点评:此题主要考查了二次函数的应用以及一元二次不等式的应用、待定系数法求一次函数解析式等知识,正确利用销量×每件的利润=w得出函数关系式是解题关键、23、(10分)问题提出:如图,图①是一张由三个边长为1的小正方形组成的“L”形纸片,图②是一张a×b的方格纸(a×b的方格纸指边长分别为a,b的矩形,被分成a×b个边长为1的小正方形,其中a≥2,b≥2,且a,b为正整数)、把图①放置在图②中,使它恰好盖住图②中的三个小正方形,共有多少种不同的放置方法?问题探究:为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论、探究一:把图①放置在2×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图③,对于2×2的方格纸,要用图①盖住其中的三个小正方形,显然有4种不同的放置方法、探究二:把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的。
山东省青岛市市南区2018届九年级数学阶段性质量检测试题(pdf)

2 八 I X 〈 -乏
2 8 ‘X 〉 ^
( ^ . 或太 〉0 1
第 II卷
二 、填 空 题 (本 题 满 分 18分 ,共 有 6 道小题,每 小 题 3 分 〉
IX ^
^
7 2 4 + ^ 1 2 「 1丫2
』
^ 计算:1
~ 一卜I ^一 ‘
1 0 . 据 统 计 ,2017年国庆假日期间,我市共接待游客600万人次,其中各景区接待游客人次占
18.(本小题满分6 分) 如图是某斜拉桥引申出的部分平面图,他
是两条拉索,其中拉索07?与水平桥面
抓 的 夹 角 为 72。,其 底 端 与 立 柱 底 端 的 距 离 为 4 米,两 条 拉 索 顶 端 距 离 为 2 米, 若要使字索与水平桥面的夹角为35。,请 计 算 拉 索 的 长 . (结 果 精 确 到 米 )
2017— 2018学年度第二学期阶段性教育质量监测
九年级数学试题
修
( 本试题满分:120分;考试时间:120分 钟 )
集爱的同含,欢迎俅參釦砗决老诔I 祝垅答教祆功广
本 试 题 分 第 I 卷 和 第 I丨卷两部分,共 有 2 4 道 题 . 第 I 卷 1— 8 题 为 选 择 题 ,共 2 4 分 ; 第 I I 卷 9一 14题 为 填 空 题 ,15题为作图题,16~24题为 解 答 题 ,共 9 6 分 .要 求 所 有 题 目 均 在 答 题 卡上作答,在本卷上作答无效.
八. - 2 - 七
―吕. 2 - ^ 5
匕 ^5-2
IX 2 + ^5
1 . 下列图形中,是中心对称图形,但不是轴对称图形的有〈 〕
六丨1 个
8 ,2 个
2019年春青岛版九年级下学期期中考试数学试卷 (含解析)

2019年春青岛版九年级下学期期中考试数学试卷一、选择题1.下列说法中正确的是()A.用图象表示变量之间关系时,用水平方向上的点表示自变量B.用图象表示变量之间关系时,用纵轴上的点表示因变量C.用图象表示变量之间关系时,用竖直方向上的点表示自变量D.用图象表示变量之间关系时,用横轴上的点表示因变量2.下列的曲线中,表示y是x的函数的有()A.1个B.2个C.3个D.4个3.下列关系中,两个变量之间为反比例函数关系的是()A.长40米的绳子减去x米,还剩y米B.买单价3元的笔记本x本,花了y元C.正方形的面积为S,边长为aD.菱形的面积为20,对角线的长分别为x,y4.当k=﹣2时,下列双曲线中,在每一个象限内,y随x增大而减小的是()A.y=﹣B.y=C.y=D.y=5.如图,点A(m,1),B(2,n)在双曲线y=(k≠0),连接OA,OB.若S =8,则k的值是()△ABOA.﹣12B.﹣8C.﹣6D.﹣46.若y=(m﹣1)x是关于x的二次函数,则m的值为()A.﹣2B.﹣2或1C.1D.不存在7.下列成语所描述的事件为随机事件的是()A.水涨船高B.水中捞月C.守株待兔D.缘木求鱼8.在不透明的布袋中装有2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是白球的概率是()A.B.C.D.9.将下列如图的平面图形绕轴l旋转一周,可以得到的立体图形是()A.B.C.D.10.关于抛物线y=x2﹣4x+4,下列说法错误的是()A.开口向上B.与x轴只有一个交点C.对称轴是直线x=2D.当x>0时,y随x的增大而增大11.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②b2﹣4ac<0;③4a+c>2b;④(a+c)2>b2;⑤x(ax+b)⩽a﹣b,其中正确结论的是()A.①③④B.②③④C.①③⑤D.③④⑤12.二次函数的部分图象如图所示,对称轴是x=﹣1,则这个二次函数的表达式为()A.y=﹣x2+2x+3B.y=x2+2x+3C.y=﹣x2+2x﹣3D.y=﹣x2﹣2x+3二、填空题13.如图,A,B两点分别在反比例函数y=(x<0)和y=(x>0)的图象上,连接OA,OB,若OA⊥OB,OA=OB,则k的值为.14.如图,抛物线y=ax2+bx﹣3,顶点为E,该抛物线与x轴交于A,B两点,与y轴交子点C,且OB=OC=3OA,直线y=﹣x+1与y轴交于点D.求∠DBC﹣∠CBE=.15.2018年6月6日是第二十三个全国爱眼日.某校为了做好学生的眼睛保护工作,对全体学生的裸眼视力进行了一次抽样调查,调查结果如图所示.根据学生视力合格标准,裸眼视力大于或等于5.0的为正常视力,那么该校正常视力的学生占全体学生的比值是.16.如图,△ABC中,D、E、F分别是各边的中点,随机地向△ABC中内掷一粒米,则米粒落到阴影区域内的概率是.三、解答题17.在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:次数12345678910黑棋数2515474336根据以上数据,解答下列问题:(I)直接填空:第10次摸棋子摸到黑棋子的频率为;(Ⅱ)试估算袋中的白棋子数量.18.已知二次函数y=9x2﹣6ax+a2﹣b(1)当b=﹣3时,二次函数的图象经过点(﹣1,4)①求a的值;②求当a≤x≤b时,一次函数y=ax+b的最大值及最小值;(2)若a≥3,b﹣1=2a,函数y=9x2﹣6ax+a2﹣b在﹣<x<c时的值恒大于或等于0,求实数c的取值范围.19.为了传承中华民族优秀传统文化,我县某中学组织了一次“中华民族优秀传统文化知识竞赛”活动,比赛后整理参赛学生的成绩,将参赛学生的成绩分为A、B、C、D四个等级,并制作了如下的统计表和统计图,但都不完整,请你根据统计图、表解答下列问题:等级频数(人)频率A300.1B900.3C m0.4D60n(1)在表中,m=;n=.(2)补全频数直方图;(3)计算扇形统计图中圆心角β的度数.20.某商场购进一种单价为30元的商品,如果以单价55元售出,那么每天可卖出200个,根据销售经验,每降价1元,每天可多卖出10个,假设每个降价x(元),每天销售y(个),每天获得的利润W(元).(1)写出y与x的函数关系式;(2)求出W与x的函数关系式(不必写出x的取值范围);(3)降价多少元时,每天获得的利润最大?21.如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,C在x 轴的正半轴上,已知A(0,8)、C(10,0),作∠AOC的平分线交AB于点D,连接CD,过点D作DE⊥CD交OA于点E.(1)求点D的坐标;(2)求证:△ADE≌△BCD;(3)抛物线y=x2+x+8经过点A、C,连接AC.探索:若点P是x轴下方抛物线上一动点,过点P作平行于y轴的直线交AC于点M.是否存在点P,使线段MP的长度有最大值?若存在,求出点P的坐标;若不存在,请说明理由.参考答案一.选择题1.【解答】解:∵用水平方向的横轴上的点表示自变量,用竖直方向的纵轴上的点表示因变量.∴A、C、D错误;B正确.故选:B.2.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以表示y是x的函数的是第1、2、4这3个,故选:C.3.【解答】解:长40米的绳子减去x米,还剩y米,则y=40﹣x,A不是反比例函数;买单价3元的笔记本x本,花了y元,则y=3x,B不是反比例函数;正方形的面积为S,边长为a,则S=a2,C不是反比例函数;菱形的面积为20,对角线的长分别为x,y,则y=是反比例函数,故选:D.4.【解答】解:当k=﹣2时,y=﹣的图象双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大;当k=﹣2时,y=的图象双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大;当k=﹣2时,y=的图象双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大;当k=﹣2时,y=的图象双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;故选:D.5.【解答】解:过A作y轴的垂线,过B作x轴的垂线,交于点C,连接OC,设A(k,1),B(2,k),则AC=2﹣k,BC=1﹣k,∵S△ABO=8,∴S△ABC ﹣S△ACO﹣S△BOC=8,即(2﹣k)(1﹣k)﹣(2﹣k)×1﹣(1﹣k)×2=8,解得k=±6,∵k<0,∴k=﹣6,故选:C.6.【解答】解:若y=(m﹣1)x是关于x的二次函数,则,解得:m=﹣2.故选:A.7.【解答】解:A、是必然事件,故A不符合题意;B、是不可能事件,故B不符合题意;C、是随机事件,故C符合题意;D、是不可能事件,故D不符合题意;故选:C.8.【解答】解:∵在不透明的布袋中装有2个白球,3个黑球,∴从袋中任意摸出一个球,摸出的球是白球的概率是:=.故选:C.9.【解答】解:绕直线l旋转一周,可以得到圆台,故选:D.10.【解答】解:∵抛物线y=x2﹣4x+4,∴该抛物线的开口向上,故选项A正确,(﹣4)2﹣4×1×4=0,故该抛物线与x轴只有一个交点,故选项B正确,对称轴是直线x=﹣=2,故选项C正确,当x>2时,y随x的增大而增大,故选项D错误,故选:D.11.【解答】解:∵抛物线开口向下,∴a<0,∵对称轴x=﹣1=﹣,∴b<0,∵抛物线交y轴于正半轴,∴c>0,∴abc>0,故①正确,∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故②错误,∵x=﹣2时,y<0,∴4a﹣2b+c<0,∴4a+c<2b,故③正确,∵x=﹣1时,y>0,x=1时,y<0,∴a﹣b+c>0,a+b+c<0,∴b<a+c<﹣b,∴(a+c)2不一定大于b2,故④错误,∵x=﹣1时,y取得最大值a﹣b+c,∴ax2+bx+c≤a﹣b+c,∴x(ax+b)<a﹣b,故⑤正确.故选:C.12.【解答】解:由图象知抛物线的对称轴为直线x=﹣1,过点(﹣3,0)、(0,3),设抛物线解析式为y=a(x+1)2+k,将(﹣3,0)、(0,3)代入,得:,解得:,则抛物线解析式为y=﹣(x+1)2+4=﹣x2﹣2x+3,故选:D.二.填空题13.【解答】解:如图,过A、B分别作x轴的垂线,垂足分别为E、F.∵OA⊥OB,∴∠AOE+∠BOF=90°,∵∠AOE+∠OAE=90°,∴∠BOF=∠OAE,∵∠AEO=∠OFB=90°,∴△AEO∽△OFB,∴===,∴OF=3AE,BF=3OE,∴OFBF=3AE3OE=9AEOE,∵B点在反比例函数y=(x>0)的图象上,∴OFBF=9AEOE=3,∴AEOE=,设A(a,b),∵OE=﹣a,AE=b,∴AEOE=﹣ab=,∴k=ab=﹣.故答案为﹣.14.【解答】解:由题意得:OC=3则:以下各点的坐标分别为:A(﹣1,0)、B(3,0)、C(0,﹣3),直线y=﹣x+1与y轴交于点D,知D坐标为(0,1),易证△ACO≌△DBO(SAS),∴∠DBO=∠ACO,而∠ABC=∠ACB=45°,∴∠DBC=∠ACB,则二次函数的表达式为y=x2﹣2x﹣3,则顶点E的坐标为(1,﹣4),由点B、E坐标可知,BE所在的直线的k BE=2,过点C作OF∥BE,则∠FCB=∠CBE,∴∠DBC﹣∠CBE=∠ACF,则直线CF所在的方程的k=k BE=2,方程为y=2x﹣3,∴点F的坐标为(,0),在△ACF中,由A、C、F的坐标可求出:则AC=,CF=,AF=,过点A作AH⊥CF,设:CH=x,则根据AH2=AC2﹣CH2=AF2﹣FH2,解得:x=,则cos∠ACH==,∴∠ACH=45°,∴∠DBC﹣∠CBE=∠ACH=45°,故答案为45°.15.【解答】解:该校正常视力的学生占全体学生的比值是=0.2=20%,故答案为:20%.16.【解答】解:设三角形面积为1,∵△ABC中,D、E、F分别是各边的中点,∴阴影部分的面积为,即米粒落到阴影区域内的概率是=故答案为:三.解答题17.【解答】解:(I)第10次摸棋子摸到黑棋子的频率为6÷10=0.6,故答案为:0.6;(Ⅱ)根据表格中数据知,摸到黑棋子的频率为=0.4,设白棋子有x枚,由题意,得:=0.4,解得:x=15,经检验:x=15是原分式方程的解,答:白棋子的数量约为15枚.18.【解答】解:(1)①∵y=9x2﹣6ax+a2﹣b,当b=﹣3时,二次函数的图象经过点(﹣1,4)∴4=9×(﹣1)2﹣6a×(﹣1)+a2+3,解得,a1=﹣2,a2=﹣4,∴a的值是﹣2或﹣4;②∵a≤x≤b,b=﹣3∴a=﹣2舍去,∴a=﹣4,∴﹣4≤x≤﹣3,∴一次函数y=﹣4x﹣3,∵一次函数y=﹣4x﹣3为单调递减函数,∴当x=﹣4时,函数取得最大值,y=﹣4×(﹣4)﹣3=13x=﹣3时,函数取得最小值,y=﹣4×(﹣3)﹣3=9(2)∵b﹣1=2a∴y=9x2﹣6ax+a2﹣b可化简为y=9x2﹣6ax+a2﹣2a﹣1∴抛物线的对称轴为:x=≥1,抛物线与x轴的交点为(,0)(,0)∵函数y=9x2﹣6ax+a2﹣b在﹣<x<c时的值恒大于或等于0∴c≤,∵a≥3,∴﹣<c≤.19.【解答】解:(1)∵被调查的总人数为30÷0.1=300,∴m=300×0.4=120、n=60÷300=0.2,故答案为:120、0.2;(2)补全条形图如下:(3)扇形统计图中圆心角β的度数为360°×0.2=72°.20.【解答】解:(1)y与x的函数关系式为:y=200+10x;(2)W=(55﹣30﹣x)y=(25﹣x)(200+10x)=﹣10x2+250x+5000=﹣10(x﹣25)(x+20),W与x的函数关系式为W=﹣10x2+250x+5000;(3)从(2)中可以看出,函数对称轴为x=2.5,∴降价2.5元时,每天获得的利润最大.21.【解答】解:(1)∵OD平分∠AOC,∴∠AOD=∠DOC.∵四边形AOCB是矩形,∴AB∥OC∴∠AOD=∠DOC∴∠AOD=∠ADO.∴OA=AD(等角对等边).∵A点的坐标为(0,8),∴D点的坐标为(8,8)(2)∵四边形AOCB是矩形,∴∠OAB=∠B=90°,BC=OA.∵OA=AD,∴AD=BC.∵ED⊥DC∴∠EDC=90°∴∠ADE+∠BDC=90°∴∠BDC+∠BCD=90°.∴∠ADE=∠BCD.在△ADE和△BCD中,∵∠DAE=∠B,AD=BC,∠ADE=∠BCD,∴△ADE≌△BCD(ASA)(3)存在,∵二次函数的解析式为:,点P是抛物线上的一动点,∴设P点坐标为(t,)设AC所在的直线的函数关系式为y=kx+b,∵A(0,8)、C(10,0)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年山东省青岛市市南区九年级(下)期中数学试卷一.选择题(共8小题)1.一个数的相反数是3,这个数是().DC.A.﹣3B.32.中国科学院国家天文台日前向全球发布郭守敬望远镜7年巡天光谱数据,其中高质量光谱达到9370000条,约是轨迹上其他巡天项目发布光谱数之和的2倍,将9370000用科学记数法可以表示为()64 67﹣×10D..9.37×10.9.37×109.37937B.×10CA3.如图,已知点A,B的坐标分别是(﹣4,3)和(﹣1,4),把原点O和点A,B依次连接起来,得到△OAB,现将△OAB绕原点按逆时针方向旋转90°后,则点A的对应点的坐标为()A.(﹣3,﹣4)B.(﹣4,﹣3)C.(3,4)D.(4,3)4.下列运算正确的是()2363aa b)b=B.2A.a+2b=2ab(﹣3422aabb=C.3ab=÷abb2D.2ab?5.如图,等边△ABC的边长为a,将它绕其中心旋转180°,则旋转前后两个三角形重叠部分(阴影)的面积是()2222.a AD.a B.a C a.22)的形式,0>b(b=)a+x通过配方可以化成(0=+3x6﹣kx的一元二次方程x.若关于6.的值可能是()则k.DB.2C.30A.,使得格6的方格纸的格点上,若该方格纸上还有一格点D、B、C都在6×A7.如图,点)C、D能组成一个轴对称图形,则满足条件的格点D的个数有(、点A、B4个.3个D.个A.1B.2个C的中点,AB交于点B,P是线段=﹣与y轴交于点A,与直线y3x+10+28.如图,直线y=x)k的值为(已知反比例函数yP=的图象经过点,则D.831B.C.6A.二.填空题(共6小题)2﹣.﹣cos30°=9.计算:+ ()次成绩,可5次的射击成绩.通过这510.甲、乙两人参加射击比赛,下表记录了两人连续(填“甲”或“乙”).以看出成绩比较稳定的是5412次数3环数78甲26786乙835ABCE,∠于点,AB=BCBD交AC上,⊙CBAO为.如图,11AD⊙的直径,,,三点在O°.为CAD°,则∠110=2,m,,0),(1,0)(其中ay12.函数=a(x+m)+n图象上的两个点的坐标分别为(﹣22=0 .5)n是常数,a≠0,则方程a(x+m﹣)的解是+n13.如图,已知正方形ABCD的边长为3,E是边BC上一点,BE=1,将△ABE,△ADF分别沿折痕AE,AF向内折叠,点B,D在点G处重合,过点E作EH⊥AE,交AF的延长线于H,则线段FH的长为.14.如图,一“L”型纸片是由5个边长都是10cm的正方形拼接而成,过点I的直线分别与AE,JN交于点P,Q,且“L”型纸片被直线PQ分成面积相等的上下两部分,将该纸片沿BG,CH,DI,IJ折成一个无盖的正方体盒子后,点P,Q之间的距离为cm.三.解答题(共10小题)15.如图,现有一张平行四边形纸片ABCD,李老师想用这张纸片裁出一个尽可能大的圆形教具,请你帮李老师在图中画出符合条件的圆.)÷﹣a()化简:1(.16.)求不等式组的整数解.(217.一个盒子中装有2个红球,1个白球和1个蓝球,这些球除颜色外都相同,小明和小凡准备用这些球做游戏,游戏规则如下:从盒子中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,若两次摸到的球的颜色都是红色,小明胜;若两次摸到的球的颜色能配成紫色,则小凡胜,这个游戏对双方公平吗?请说明理由.18.如图,要测量一垂直于水平面的建筑物AB的高度,小明从建筑物底端B出发,沿水平方向向右走30米到达点C,又经过一段坡角为30°,长为20米的斜坡CD,然后再沿水平方向向右走了50米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑°≈,(结果保留根号,参考数据:sin2424A的仰角为°,求建筑物AB的高度.物顶端°=)tan24cos24°≈,19.《中学生体质健康标准》规定学生体质健康等级标准:90分及以上为优秀;80分~89分为良好;60分~79分为及格;60分以下为不及格.某校为了解学生的体质健康情况,从八年级学生中随机抽取了10%的学生进行了体质测试,并将测试数据制成如下统计图.请根据相关信息解答下面的问题:“优秀”等级所在扇形圆心角的度数是多少?)扇形统计图中,1(.(2)求参加本次测试学生的平均成绩;(3)若参加本次测试“良好”及“良好”以上等级的学生共有35人,请你估计全校八年级“不及格”等级的学生大约有多少人.20.某工程队承接一铁路工程,在挖掘一条500米长的隧道时,为了尽快完成,实际施工时每天挖掘的长度是原计划的1.5倍,结果提前了25天完成了其中300米的隧道挖掘任务.(1)求实际每天挖掘多少米?(2)由于气候等原因,需要进一步缩短工期,要求完成整条隧道不超过70天,那么为了完成剩下的任务,在实际每天挖掘长度的基础上,至少每天还应多挖掘多少米?21.已知:如图,在矩形ABCD中,E是边BC上一点,过点E作对角线AC的平行线,交AB于F,交DA和DC的延长线于点G,H.(1)求证:△AFG≌△CHE;(2)若∠G=∠BAC,则四边形ABCD是什么特殊四边形?并证明你的结论.22.某商场在试销一种进价为20元/件的商品时,每天不断调整该商品的售价以期获利更多,经过20天的试销发现,第一天销售量为78件,以后每天销售量总比前一天减少2件,且第1天至第10天,商品销售单价p与天数x满足:p=30+x;第11天至第20天,商20+.p=满足:品销售单价p与天数x(1)写出销售量y(件)与天数x(天)的函数关系式;(2)求商场销售该商品的20天里每天获得的利润w(元)与x的函数关系式;(3)该商品试制期间,第几天销售该商品获得的利润最大?最大利润是多少?23.问题提出:将正m边形(m≥3)不断向外扩展,每扩展一个正m边形每条边上的点的个数(以下简称“点数”)就增加一个,则n个正m边形的点数总共有多少个?问题探究:为了解决上面的问题,我们将采取将一般问题特殊化的策略,先从简单和具体的情形入手:个正三角形的点数总共有多少个?探究一:n6个正三角形的点数总共有﹣2,2,如图1﹣11个正三角形的点数总共有3个;如图1,﹣33个正三角形的点数总共有10个;…;n个正三角形的点数总共有个;如图1个.探究二:n个正四边形的点数总共有多少个?92个正四边形的点数总共有,个正四边形的点数总共有4个;如图2﹣2,如图2﹣11个;,这两个三角形相同之处在于,和△ADC3,连接AC,得到两个三角形△ABC﹣如图2平行的边上依次减少一个CD边都有相同个数的点,即4个点,并且与BC、BC边与CD个点.因为这两个三角210个点,两个三角形就是×10点直至顶点A,每个三角形都有(个).=个正四边形的点数总共有2×10﹣416个点重合,所以形在AC上有43个正四边形的点数总共有个;……4﹣,4 个正四边形的点数总共有n2如图个.探究三:n个正五边形的点数总共有多少个?类比探究二的方法,求4个正五边形的点数总共有多少个?并叙述你的探究过程.个.个正五边形的点数总共有n个正六边形的点数总共有探究四:n个.问题解决:n个正m边形的点数总共有个.实际应用:若99个正m边形的点数总共有39700个,求m的值.24.如图,在矩形ABCD中,对角线AC,BD相交于点O,AB=3cm,BC=4cm,点E是BC上一点,且CE=1cm.点P由点C出发,沿CD方向向点D匀速运动,速度为1cm/s;点Q由点A出发,沿AD方向向点D匀速运动,速度为cm/s,点P,Q同时出发,PQ交BD于F,连接PE,QB,设运动时间为t(s)(0<t<3).(1)当t为何值时,PE∥BD?2),求y与t()设△2FQD的面积为ycm之间的函数关系式.((3)是否存在某一时刻t,使得四边形BQPE的周长最小.若存在,求出此四边形BQPE的面积;若不存在,请说明理由.参考答案与试题解析一.选择题(共8小题)1.一个数的相反数是3,这个数是().D.B.3CA.﹣3【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:3的相反数是﹣3,故选:A.2.中国科学院国家天文台日前向全球发布郭守敬望远镜7年巡天光谱数据,其中高质量光谱达到9370000条,约是轨迹上其他巡天项目发布光谱数之和的2倍,将9370000用科学记数法可以表示为()64 67﹣109.37×D.937×10C.9.37×A.9.37×1010B.n的形式,其中1≤|a|<a科学记数法的表示形式为×1010,n为整数.确定n【分析】的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.6.9.37×10【解答】解:9370000=故选:C.3.如图,已知点A,B的坐标分别是(﹣4,3)和(﹣1,4),把原点O和点A,B依次连接起来,得到△OAB,现将△OAB绕原点按逆时针方向旋转90°后,则点A的对应点的坐标为()A.(﹣3,﹣4)B.(﹣4,﹣3)C.(3,4)D.(4,3)【分析】画出图形,利用图象法解决问题..)4,﹣3′(﹣A解:观察图形可知【解答】.故选:A.4.下列运算正确的是()2363)b=a B+2b=2ab.(﹣ab2A.a3242=÷abb bb=2.3aba D.2ab?a C【分析】直接利用整式的混合运算法则分别计算判断即可.【解答】解:A、2a+2b,不是同类项,无法合并,故此选项错误;2363,故此选项错误;=﹣、(﹣aab)bB2÷ab=9、3abb,故此选项错误;C342,正确.bb=2aD、2ab?a故选:D.5.如图,等边△ABC的边长为a,将它绕其中心旋转180°,则旋转前后两个三角形重叠部分(阴影)的面积是()2222a D B.a C a..a A.【分析】根据等边三角形的特殊性,重叠部分为正六边形,四周空白部分的小三角形是等边三角形,从而得出重叠部分的面积是△ABC与三个小等边三角形的面积之差.解:根据旋转的意义,图中空白部分的小三角形也是等边三角形,且边长为【解答】,的.ABC面积是△与三个小等边三角形的面积之差,ABC仔细观察图形,重叠部分的面积是△.是,一个小等边三角ABC的面积形的面积是△,.=所以重叠部分的面积是故选:D.22=b(b>0)的形式,+3=0通过配方可以化成(x+a)6.若关于x的一元二次方程kx6﹣x则k的值可能是().D.3.0B.2CA【分析】把选项中的k的值代入,得出方程,再解方程,即可得出选项.2=b(b>0,不能化成(x+a))的形式,A【解答】解:、当k=0时,方程为﹣6x+3=0故本选项不符合题意;2﹣6x+3=时,方程为2x0,B、当k=22=﹣,3xx﹣222,(=﹣x+﹣3x+)()2=,故本选项符合题意;x﹣)(2﹣6x+3=0,、当k=3时,方程为3x C2﹣2x+1=0x,2=0,b=)x﹣20,故本选项不符合题意;(2﹣6x+3x=0,D、当k=时,方程为2﹣12x+6=0,9x2﹣12x+4=﹣2,9x2=﹣2,b<2)0,故本选项不符合题意;﹣(3x故选:B.7.如图,点A、B、C都在6×6的方格纸的格点上,若该方格纸上还有一格点D,使得格)的个数有(D能组成一个轴对称图形,则满足条件的格点D、C、B、A点.A.1个B.2个C.3个D.4个【分析】分别以AC的垂直平分线,AB所在直线,BC所在直线为对称轴,即可得到满足条件的所有点D的位置.【解答】解:如图所示,点D,D,D即为所求.321故选:C.8.如图,直线y=x+2与y轴交于点A,与直线y=﹣3x+10交于点B,P是线段AB的中点,=的图象经过点P,则k的值为()已知反比例函数yA.1B.3C.6D.8【分析】先求出直线y=x+2与坐标轴的交点A坐标,再由两条直线解析式构成方程组,解方程组求得B点坐标,进而求得中点P的坐标,问题就迎刃而解了.【解答】解:直线y=x+2中,令x=0,得y=2,∴A(0,2),,得解,)4,2(B∴.的中点,∵P是线段AB,1,3)∴P(k=3y把P(1,3)代入,=中,得故选:B.二.填空题(共6小题)2﹣+4()﹣cos309.计算:+°=.【分析】原式利用二次根式性质,负整数指数幂法则,以及特殊角的三角函数值计算即可求出值.【解答】解:原式=2+4﹣=+4,故答案为:+410.甲、乙两人参加射击比赛,下表记录了两人连续5次的射击成绩.通过这5次成绩,可以看出成绩比较稳定的是乙(填“甲”或“乙”).次数12345环数甲26877乙63858【分析】根据平均数和方差的公式求出甲和乙的方差,再根据方差的意义即可得出答案.【解答】解:甲的平均数为:(2+6+7+7+8)=6,22222]=4.4,+(8﹣67+(﹣6)﹣+(76)))6[甲的方差为:(2﹣)(+6﹣6乙的平均数为:(3+5+6+8+8)=6,22222]=3.6,6(8﹣)﹣)(+5﹣66+(﹣6)+(86)+63[乙的方差为:(﹣)∵甲的方差>乙的方差,∴成绩比较稳定的是乙;故答案为:乙.ABC,∠E于点AC交BD,BC=AB上,O⊙三点在C,B,A的直径,O⊙为AD.如图,11.20为°.CAD=110°,则∠【分析】利用圆周角定理得到∠ABD=90°,∠CAD=∠DBC,然后计算∠DBC即可、【解答】解:∵AD为⊙O的直径,∴∠ABD=90°,∵∠ABC=110°,∴∠DBC=110°﹣90°=20°.∴∠CAD=∠DBC=20°.故答案为20.2+n图象上的两个点的坐标分别为(﹣2,0),(1m),0)(其中a,m,+12.函数y=a(x2+n =0的解是x=35),x=6.+n是常数,a≠0),则方程a(xm﹣2122+n与5﹣)x轴的的解可看作二次函数y=a(x+5【分析】把方程a(x+m﹣)m+n=02+n向右平移)5个单位得到y交点的横坐标,利用抛物线的平移,把抛物线y=a(x+m22+n与x轴的两个交点的坐标即可.(x+m ﹣5)a(x+m﹣5)+n,然后确定抛物线y=a=22+n与x轴x+m﹣5)﹣5)+n=0的解可看作二次函数y=a(a【解答】解:方程(x+m的交点的横坐标,22+n,+m﹣5)+n向右平移5个单位得到y=a()∵抛物线y=a(x+mx2+n与x轴的两个交点的坐标为(﹣2,0),(1,0),=而抛物线ya(x+m)2+n与x轴的两个交点的坐标为(3,0),(6my=a(x+﹣5),0),∴抛物线2+n=0的解是x =3,+m﹣5)x=6.(∴方程ax21故答案为x=3,x=6.2113.如图,已知正方形ABCD的边长为3,E是边BC上一点,BE=1,将△ABE,△ADF分别沿折痕AE,AF向内折叠,点B,D在点G处重合,过点E作EH⊥AE,交AF的延.的长为FH,则线段H长线于,根据xFC=3﹣EC=3﹣1=2,=【分析】设DFFG=x,在Rt△EFC中,由EF=1+x,即可解决问题.,再求出AF,AH勾股定理构建方程求出x是正方形,【解答】解:∵四边形ABCD,AD=3AB=BC=CD=BAD∴∠B=∠C=∠D=∠=90°,=x,DF设=FG﹣x,2,FC=3,中,∵EF=1+xEC=3﹣1=Rt在△EFC222,(3﹣∴(x+1)x=2)+=解得x==,===,AE=∴AF,,∠EAB=∠EAG由翻折的性质可知,∠DAF=∠GAF°,EAH =45∴∠,EH⊥EA∵=AEH90°,∴∠2AHAE==,∴AE=EH=,2AH﹣AF==,∴FH﹣=.故答案为的直线分别I10cm的正方形拼接而成,过点.如图,一“14L”型纸片是由5个边长都是分成面积相等的上下两部分,将该”型纸片被直线PQ,交于点PQ,且“L,与AEJN之间的距离为10P,Qcm.点IJDICHBG纸片沿,,,折成一个无盖的正方体盒子后,为矩形,根据矩形的BGQP,在立体图形中,证明四边形10=QJ+PB首先证明【分析】.性质解答即可.【解答】解:平面图形中,∵IJ∥PE,∴△QIJ∽△QPE,=,∴,即=∴10EQ+10PE=PE?EQ,∵图L被直线PQ分成面积相等的上、下两部分,=×5×100=×PE?EQ250,∴∴PE?QE=500,即PE+QE=50(cm),∴PB+JQ=50﹣40=10(cm),立体图形中,连接MN,∵PB+JQ=10,JQ+QG=10,∴PB=QG,∴四边形BGQP为矩形,∴PQ=BG=10(cm),故答案为10.三.解答题(共10小题)15.如图,现有一张平行四边形纸片ABCD,李老师想用这张纸片裁出一个尽可能大的圆形教具,请你帮李老师在图中画出符合条件的圆.【分析】抓住题干中“裁下一个尽可能大的圆”,那么这个圆的直径就是这个平行四边形的竖直宽度.解:如图,【解答】.圆O即为所求.)÷a﹣.(1)化简:(16)求不等式组的整数解.2(【分析】(1)根据分式的运算法则即可求出答案.(2)根据一元一次不等式组即可求出答案.?)原式=解:(1【解答】==.),(23,由①得:x≥﹣得:x,<由②<≤x3∴该不等式组的解集为:17.一个盒子中装有2个红球,1个白球和1个蓝球,这些球除颜色外都相同,小明和小凡准备用这些球做游戏,游戏规则如下:从盒子中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,若两次摸到的球的颜色都是红色,小明胜;若两次摸到的球的颜色能配成紫色,则小凡胜,这个游戏对双方公平吗?请说明理由.【分析】根据题意画出树状图得出所有等情况数和两次摸到的球的颜色都是红色的情况数以及两次摸到的球的颜色能配成紫色的情况数,然后根据概率公式求出各自的概率,最后进行比较即可得出答案.【解答】解:根据题意画图如下:∵共有16种等可能的结果,两次摸到的球的颜色能是红色的有4种情况,两次摸到的球的颜色能配成紫色的有4种,=,两次摸到的球的颜色能配成紫色的概∴两次摸到的球的颜色都是红色的概率是;=率是∴这个游戏对双方公平.18.如图,要测量一垂直于水平面的建筑物AB的高度,小明从建筑物底端B出发,沿水平方向向右走30米到达点C,又经过一段坡角为30°,长为20米的斜坡CD,然后再沿水平方向向右走了50米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑°≈sin24,(结果保留根号,求建筑物AB的高度.参考数据:物顶端A的仰角为24°,°=)°≈,tan24cos24【分析】作BM⊥ED交ED的延长线于M,CN⊥DM于N.首先解直角三角形Rt△CDN,°=,构建方程即可解决问题.,再根据tan24,求出CNDN.N于DM⊥CN,M的延长线于ED 交ED⊥BM解:作【解答】.在Rt△CDN中,∵∠CDN=30°,CD=20米,5米,?cos30°=sin30°=10米,DN=CDCN∴=CD?∵四边形BMNC是矩形,80+5DN+DE=()米,米,10米,BC=MN=30EM=MN+=∴BM=CN,°=tan24在Rt△AEM中,=∴,=AB.∴的高度是AB米.答:建筑物19.《中学生体质健康标准》规定学生体质健康等级标准:90分及以上为优秀;80分~89分为良好;60分~79分为及格;60分以下为不及格.某校为了解学生的体质健康情况,从八年级学生中随机抽取了10%的学生进行了体质测试,并将测试数据制成如下统计图.请根据相关信息解答下面的问题:(1)扇形统计图中,“优秀”等级所在扇形圆心角的度数是多少?(2)求参加本次测试学生的平均成绩;(3)若参加本次测试“良好”及“良好”以上等级的学生共有35人,请你估计全校八年级“不及格”等级的学生大约有多少人.【分析】(1)用360°乘以“优秀”所占的百分比即可得出答案;(2)利用加权平均数公式计算即可;(3)根据“良好”及“良好”以上等级的学生数和所占的百分比求出抽取的人数,再求出全校的总人数,然后乘以“不及格”等级的学生所占的百分比即可得出答案.【解答】解:(1)“优秀”等级所在扇形圆心角的度数是360°×(1﹣50%﹣25%﹣5%)=72°;(2)参加本次测试学生的平均成绩是:94×(1﹣50%﹣25%﹣5%)+86×50%+72×25%+40×5%=82.7(分);(3)根据题意得:35÷(1﹣50%﹣25%﹣5%+50%)÷10%×5%=25(人),答:全校八年级“不及格”等级的学生大约有25人.20.某工程队承接一铁路工程,在挖掘一条500米长的隧道时,为了尽快完成,实际施工时每天挖掘的长度是原计划的1.5倍,结果提前了25天完成了其中300米的隧道挖掘任务.(1)求实际每天挖掘多少米?(2)由于气候等原因,需要进一步缩短工期,要求完成整条隧道不超过70天,那么为了完成剩下的任务,在实际每天挖掘长度的基础上,至少每天还应多挖掘多少米?【分析】(1)设原计划每天挖掘x米,则实际每天挖掘1.5x米,根据结果提前了25天完成了其中300米的隧道挖掘任务,列方程求解;(2)设每天还应多挖掘y米.根据完成该项工程的工期不超过70天,列不等式进行分析.【解答】解:(1)设原计划每天挖掘x米,则实际每天挖掘1.5x米,,25根据题意得:=﹣4解得x=.经检验,是原分式方程的解,且符合题意,x=4=1.5则x66答:实际每天挖掘米.(2)设每天还应多挖掘y米,﹣)(6+y)≥70500﹣300,由题意,得(.解得y≥4米.答:每天还应多挖掘4的平行线,交E21.已知:如图,在矩形ABCD中,是边BC上一点,过点E作对角线AC F,交DA和DC 的延长线于点.G,HAB于;≌△CHEAFG(1)求证:△ABCD是什么特殊四边形?并证明你的结论.G2)若∠=∠BAC,则四边形(【分析】(1)根据SAS可以证明两三角形全等;(2)先根据平行线的性质和已知可得∠BAC=45°,所以△ABC是等腰直角三角形,所以AB=BC,可得结论.【解答】证明:(1)∵四边形ABCD是矩形,∴AD∥BC,AB∥CD,∠BAD=∠BCD=90°∴∠GAB=∠B=∠BCH,∵AD∥BC,EF∥AC,∴四边形AGEC是平行四边形,∴AG=EC,∵AB∥CD,EF∥AC∴四边形AFHC是平行四边形,∴AF=CH,∴△AFG≌△CHE(SAS).(2)四边形ABCD是正方形理由:∵EF∥AC,∴∠G=∠CAD,,BAC=∠G∵∠.∴∠BAC=∠CAD,∵∠BAD=90°,∴∠BAC=45°,∵∠B=90°,∴∠BAC=∠ACB=45°,∴BA=BC,∴矩形ABCD是正方形.22.某商场在试销一种进价为20元/件的商品时,每天不断调整该商品的售价以期获利更多,经过20天的试销发现,第一天销售量为78件,以后每天销售量总比前一天减少2件,且第1天至第10天,商品销售单价p与天数x满足:p=30+x;第11天至第20天,商20+.满足:p=品销售单价p与天数x(1)写出销售量y(件)与天数x(天)的函数关系式;(2)求商场销售该商品的20天里每天获得的利润w(元)与x的函数关系式;(3)该商品试制期间,第几天销售该商品获得的利润最大?最大利润是多少?【分析】(1)设P与x之间的函数关系式为y=kx+b,将(1,78),(2,76)代入关系式就可以求出结论;(2)设前10天每天的利润为w(元),后10天每天的利润为w(元),由日销售利润21=每天的销售量×每公斤的利润就可以分别表示出w与w与x的关系;21(3)当1≤x≤10,得到当x=10时,w有最大值=1200元,当11≤x≤20,当x=111时,w有最大值=580元,比较即可得到结论.2,由题意,得,解得:+by与x之间的函数关系式为=kx解:【解答】(1)设y,+80;=﹣(天)的函数关系式为:y2x∴销售量y(件)与天数x,天每天的利润为10w (元))设前(210天每天的利润为w(元),后21由题意,得y20)w=(p﹣1,x+80)2﹣=(30+x20)(﹣2,x2+800+60x=﹣y)20w﹣p=(2.,)(﹣2x+80)=(20+﹣20;﹣=22022+125015),2x+60x+800=﹣2(x﹣≤(3)当1≤x10,w=﹣1w有最大值=1200元,x∴当=10时,1,﹣,11≤x≤20w220=当2580元,有最大值=∴当x=11时,w2580,∵1200>1200元.∴第10天销售该商品获得的利润最大,最大利润是边形每条边上的点的mm边形(m≥3)不断向外扩展,每扩展一个正23.问题提出:将正边形的点数总共有多少个?个数(以下简称“点数”)就增加一个,则n个正m问题探究:为了解决上面的问题,我们将采取将一般问题特殊化的策略,先从简单和具体的情形入手:探究一:n个正三角形的点数总共有多少个?6个正三角形的点数总共有,2个正三角形的点数总共有1,13个;如图1﹣2﹣如图1个正三角形的点数总共有个正三角形的点数总共有3,310个;…;n﹣个;如图1个.探究二:n个正四边形的点数总共有多少个?如图2﹣1,1个正四边形的点数总共有4个;如图2﹣2,2个正四边形的点数总共有9个;,这两个三角形相同之处在于,ADC和△ABC,得到两个三角形△AC,连接3﹣2如图平行的边上依次减少一个CD边都有相同个数的点,即4个点,并且与BC、BC边与CD个点.因为这两个三角10个点,两个三角形就是210×点直至顶点A,每个三角形都有(个).163形在AC上有4个点重合,所以个正四边形的点数总共有2×10﹣4=(n,如图2﹣44个;+1……个正四边形的点数总共有n)25个正四边形的点数总共有2个.探究三:n个正五边形的点数总共有多少个?类比探究二的方法,求4个正五边形的点数总共有多少个?并叙述你的探究过程.n个正五边形的点数总共有(n+1)(3n+2)个.探究四:n个正六边形的点数总共有(n+1)(2n+1)个.问题解决:n个正m边形的点数总共有(n+1)[+1]个.实际应用:若99个正m边形的点数总共有39700个,求m的值.【分析】探究一:n个正三角形的点数总个数是前(n+1)个数的和;2个;)n个正四边形的点数总共有(n+14,9,16,25…,发现探究二:探究三:如图3﹣1,直接数点的个数为5个,如图3﹣2,连接AC,AD,得到三个三角形,每个三角形都有6个点,就是3×6=18个点,因为每两个三角形有3个点重合,所以,2个正五边形的点数总共有:3×6﹣2×3=12个;同理得如图3﹣3,3个正五边形的点数总共有:3×10﹣2×4=22个;如图3﹣4,4个正五边形的点数总共有:3×15﹣2×5=35个,确定规律得:n个正五边形的点数总共有:(n+1)(3n+2)个;4,得到'E'A,'D'A,'C'A,连接2﹣4个,如图6,直接数点的个数为1﹣3探究四:如图个三角形,每个三角形都有1+2+3=6个点,就是24个点,因为每两个三角形有3个点重合,所以,2个正五边形的点数总共有:4×6﹣3×3=15个;同理得点的个数依次为:28,45=5×9,…,(n+1)(2n+1)个;问题解决:根据以上规律可得结论;实际应用:将n=99代入问题解决的等式中解方程即可.【解答】解:探究一:如图1﹣1,1个正三角形的点数总共有3个,即3=1+2;如图1﹣2,2个正三角形的点数总共有6个,即6=1+2+3;如图1﹣3,3个正三角形的点数总共有10个,即10=1+2+3+4;…;)=个;+1+n+(nn个正三角形的点数总共有:1+2+3+…;故答案为:探究二:2;=1,1个正四边形的点数总共有4个,即42﹣如图2232个正四边形的点数总共有9个,即9=;2如图2﹣,,这两个三角形相同之处在于,ADC﹣3,连接AC,得到两个三角形△ABC和△如图2平行的边上依次减少一个边都有相同个数的点,即4个点,并且与BC、CD边与BCCD个点.因为这两个三角10个点,两个三角形就是2×10点直至顶点A,每个三角形都有16(个)16,即个正四边形的点数总共有4个点重合,所以32×10﹣4=上有形在AC2;=4,这两个三角形相同之处在于,和△﹣4,连接AC,得到两个三角形△ABCADC 如图2平行的边上依次减少一个5CD个点,并且与BC、边与BCCD边都有相同个数的点,即个点.因为这两个三角×1515点直至顶点A,每个三角形都有个点,两个三角形就是225(个)=﹣×个正四边形的点数总共有个点重合,所以上有形在AC54215525,即2;5=22个;n+1)+2n+1=(2∴n个正四边形的点数总共有﹣(×n+1)=n2,(n);+1故答案为:25探究三:=;5,1个正五边形的点数总共有5个,即如图3﹣1如图3﹣2,连接AC,AD,得到三个三角形,每个三角形都有6个点,就是3×6=18个点,因为每两个三角形有3个点重合,所以,2个正五边形的点数总共有:3×6﹣2×3=;=12个,即12如图3﹣3,连接A'C',A'D',得到三个三角形,每个三角形都有10个点,就是3×10=30个点,因为每两个三角形有4个点重合,所以,3个正五边形的点数总共有:3×10﹣=;22×4=22个,即2如图3﹣4,连接AC,AD,得到三个三角形,每个三角形都有15个点,就是3×15=45个点,因为每两个三角形有5个点重合,所以,4个正五边形的点数总共有:3×15﹣2=35;×5=35个,即…+2)个;n+1n个正五边形的点数总共有:(n)(3同理得:)n(+1(故答案为:n)3+2;探究四:如图4﹣1,1个正六边形的点数总共有6个,即6=2×3;如图4﹣2,连接A'C',A'D',A'E',得到4个三角形,每个三角形都有6个点,就是4×6=24个点,因为每两个三角形有3个点重合,所以,2个正六边形的点数总共有:4×6﹣3×3=15个,即15=3×5;如图4﹣3,连接AC,AD,AE,得到4个三角形,每个三角形都有10个点,就是4×10=40个点,因为每两个三角形有4个点重合,所以,3个正六边形的点数总共有:4×10﹣3×4=28个,即28=4×7;…同理得:4个六五边形的点数总共有:5×9=45个;n个正六边形的点数总共有:(n+1)(2n+1)个;故答案为:(n+1)(2n+1);问题解决:(n+1+1))个;∵n个正三角形的点数总共有:(nn个正四边形的点数总共有:(n+1)(n+1)个;(n+1)个;n个正五边形的点数总共有:(n+1)n个正六边形的点数总共有:(n+1)(2n+1)个;…[个;n(+1)+1]∴n个正m边形的点数总共有:[;+1故答案为:(n)+1]实际应用:,39700)=99+1=由规律得:n99时,()(99×+1.=解得:m10是E,点cm4=BC,cm3=AB,O相交于点BD,AC中,对角线ABCD.如图,在矩形24.BC上一点,且CE=1cm.点P由点C出发,沿CD方向向点D匀速运动,速度为1cm/s;匀速运动,速度为cm/s,点P,出发,沿AD方向向点DQ同时出发,PQ由点点QA交BD于F,连接PE,QB,设运动时间为t(s)(0<t<3).(1)当t为何值时,PE∥BD?2),求y与t的面积为y(cm之间的函数关系式.(2)设△FQD(3)是否存在某一时刻t,使得四边形BQPE的周长最小.若存在,求出此四边形BQPE的面积;若不存在,请说明理由.=时,PE∥)当BD,由此构建方程即可解决问题.【分析】(1(2)作FH⊥DQ.首先证明QF ∥OA,△QDF是等腰三角形,求出FH即可解决问题.(3)如图2中,作B关于直线AD的对称点B′,点E关于直线CD的对称点E′,连接B′E′交AD于Q,交CD于P,连接BQ,PE.此时BQ+QP+PE+BE的值最小.。