从铅阳极泥中提高金银回收初探

从铅阳极泥中提高金银回收初探
从铅阳极泥中提高金银回收初探

从铅阳极泥中提高金银回收初探

王钧扬1

,吕少祥

2

(1.中南大学;2.水口山第四冶炼厂,湖南 长沙 410012)

摘要:讨论了采用传统流程处理铅阳极泥使金银回收率低的原因。从提取工艺、技术操作、主体设

备及技术管理等方面提出了提高金银回收率的途径。关键词:铅阳极泥;传统流程;回收

1 前言

铅阳极泥是铅阳极电解过程中的必然产物,其中

含有一定量的稀散金属和贵金属,是提取金银的重要原料。当今,从阳极泥中提取金银一般采用以火法为主体的传统流程(图1)。该流程具有投资省、技术成熟、生产规模伸缩性大等优点。但此流程存在着生产过程复杂、金银回收率低、劳动环境较差等缺点。本文通过对上述流程处理阳极泥的主要工序,逐一进行搜索,以查找金银回收率低的原因,并提出解决这一问题的思路

图1 处理铅阳极泥传统流程

2 金银合金的熔炼

金银合金的熔炼包括贵铅还原熔炼和氧化精炼两个作业过程。2.1 贵铅还原熔炼

贵铅还原熔炼的主要目的,是在高温、还原气氛条

件下将铅阳极泥中的氧化铅还原为金属铅。铅在沉淀

过程中能很好地溶解金银形成的贵铅而与杂质分离。大部分杂质造渣除去或进入烟尘。为提高还原熔炼过程金银的回收率,试述如下。2.1.1 降低熔渣含金银

还原熔炼后期的炉渣的粘度、比重较大,含金银较高,怎样降低这部分渣含金银量,对提高金银的回收率极为重要。

炉渣是阳极泥中原来存在的和在熔炼过程中生成的氧化物与加进去的熔剂在高温下形成的共熔体。炉渣成分的选择对于降低渣所含金银意义重大,要使炉渣熔点既不要低于贵铅熔点,也不要高于造渣反应所需温度;炉渣的比重、粘度要小;对贵金属的溶解能力要低。

为降低渣含金银,熔炼过程中应做到以下几点:必须严格控制好已定配料比,防止炉渣成分的波动;平稳控制炉温,保证高温沉清分离时间达4h 以上,放渣操作时应防止炉渣夹带贵铅,采取慢—快—慢的方式放渣,放渣末期勤取样观察,发现贵铅流出,及时停止放渣。2.1.2 合理处理熔炼产物

还原熔炼的主要产物有贵铅、炉渣和烟尘。贵铅所含金银在很大范围内波动,一般Au +Ag =35%~45%,送氧化精炼,除去杂质,以提高其金银含量,产出金银合金。产出的炉渣有含金银高的干渣与含金银低的稀渣。为了合理利用产物,减少金银损失,干渣、含金银高的烟尘返回与阳极泥混合配料,进行还原熔炼。稀渣因含铅较高,送铅冶炼厂作高锑物料搭配使用,并回收其中的金银。产出的低金银烟尘送玻璃厂作玻璃助剂原料。2.1.3 减少金银在炉底衬砖中的损失

熔炼贵铅的炉子有反射炉、回转炉等。因回转炉操作较方便,劳动条件较好,炉子寿命较长,金银损失于炉衬的量较少,所以目前多采用回转炉。

炉子高温熔炼一段时间后,炉衬被损坏,需要更换。炉衬的更换有两种方式,一种是将整个炉衬全部更换,另一种是用支承架保护原有炉底,仅将需要更换

1

1

的炉底砖更换。后者优于前者,因为后者可减少熔炼时进炉底砖中的金银量。

改进新炉子的使用方法也是降低金银渗透到耐火砖中的措施之一。过去对新炉子烘烤之后,直接进铅阳极泥和熔剂,熔炼产出的贵铅由于比重大、渗透能力强,致使部分金银进入耐火砖中,因而增加了金银损失。生产实践表明,改用烤炉后先进稀渣,即可减少金银进入耐火砖中的量。因稀渣含金银低、含铅高,其中的铅、锑、铋等大量贱金属渗透到耐火砖中,从而减少了金银进入砖中的量。

2.1.4 减少金银的挥发损失

减少熔炼过程中金银的挥发损失,可从两方面着手:一是在投料时以多次少量为宜,待前次加入的炉料熔化后,再补加下次的炉料,这样可加速料的熔炼,缩短铅阳极泥处理时间,从而减少了金银的挥发损失。二是放渣后,不要急于放贵铅,对贵铅进行初步氧化,除去贵铅中部分砷、锑等易挥发的杂质,有利于缩短后续氧化精炼时间,从而也减少了金银的挥发损失。

2.2 贵铅氧化精炼

贵铅氧化精炼在分银炉中进行。此过程是在高于主体金属(铅)氧化物熔点的温度下,往贵铅熔池表面鼓风并加入氧化剂,使铅和其他杂质氧化,形成比重轻、流动性好、不溶解金银的浮渣而与金银分离,得到含金银95%以上的合金。以下拟就贵铅氧化精炼过程和提高金银直收率问题予以浅述。

2.2.1 降低渣含金银

贵铅氧化精炼产出的各期炉渣,由于它们所含某种杂质多少不同,而且都含有一定数量的金银,故不应该废弃,而应分别处理,回收其中的有价金属。

降低渣中金银含量最重要的一点,就是要创造条件提高金银微粒在熔渣中的沉降速度。这可用斯托克斯公式予以说明:

V=2

9

?

r2金(ρ金-ρ渣)

η

?g

式中:V—沉降速度,m?s-1;r金—金属微粒半径,m; g—重力加速度,9.8m?s-2;ρ金、ρ渣—金属和熔渣的密度,kg?m3-;η渣—熔渣的粘度,Pa?S。

由上式看出,金属在熔渣中的沉降速度随金属微粒半径、密度的增大以及熔渣密度、粘度的减小而增大。某厂年产氧化渣400t,平均含Au0.023%~0. 05%,Ag1.16%~5.58%。该厂生产实践表明,采用升高温度,加入还原剂,使化合态银转变为单质银,银微粒半径、密度随之增大,而熔渣的密度和粘度随之减

小,因而银的沉降分离效果显著,氧化渣含银由4.61%降至1.46%。

2.2.2 降低金银的挥发损失

贵铅的氧化精炼,是借助鼓入贵铅熔池的压缩空气和熔池表面的空气来实现的。贵铅中的铅、锑、砷、锡、铁、铋等杂质生成的氧化物造渣或挥发除去。但铜、硒、碲是较难氧化的杂质,必须在高温、强氧化剂作用下才能实现氧化。常用的氧化剂为硝石,但硝石在高温下极易快速分解,致使硝石与熔渣中杂质金属作用时间短,清除杂质效果差,“清合金”周期长达10~15h以上,导致金银挥发损失增多。生产实践证实,改用工业氧代替硝石,过程操作温度可降低300℃左右,“清合金”周期缩短5~7h,大大减少了金银挥发进入烟尘的量。这一操作控制的温度为950℃,吹氧速度1瓶?h-1。得金银合金含Au+Ag>97.5%,Cu<1.5%,Bi <0.03%,Te<0.06%,产品质量符合要求。

2.2.3 减少金银损失于衬砖中的量

贵铅氧化精炼在分银炉中进行。由于精炼是在高温、强氧化性气氛条件下进行,所以炉衬易损坏,更换次数多,造成炉衬砖中金银损失增加。如前所述,为解决此问题,每次使用新炉时,改直接处理贵铅为先处理一定量的含金银低的氧化铋渣,待其熔化后高温沉淀几小时,可使炉衬中金银渗透损失减少。

3 电解精炼

用电解法分离金银合金,不仅能分离金银,除去杂质,还能直接产出纯度较高的电金、电银。由图1看出,电解分两步进行:第一步,电解提银,获得电银,金则进入阳极泥中;第二步,电解提金,获得电金。

3.1 银电解精炼

银电解精炼,以金银合金作阳极,以银片或不锈钢片作阴极,以硝酸、硝酸银的水溶液作电解液,在电解槽中通以直流电,进行电解。减少电解过程中银的损失,可从下述几点着手。

3.1.1 确保析出银粉质量

如果银粉含杂质较高,经熔铸后的银锭则不符合产品质量要求,重新处理过程中势必造成银的损失。因此,确保银粉质量事关重要。银电解过程中,危害最大的杂质是铜、铋、锑。但阳极中锑一般含量不高,不致造成危害;铋在电解过程中容易形成碱式盐沉淀,污染电银,但阳极中铋的含量一般也较少;铜则成为电解最有害的杂质。

阳极中的铜含量较高,电化溶解后会使电解液中银含量下降,含铜量升高。当溶液中铜浓度达到一定程度时,由于阴极浓差极化结果,将使铜与银一道析出。阳极含铜对电银质量的影响如图2所示。由图2

21

看出,随着阳极含铜量的增加,从阳极中溶出的银量减

少,而从电解液中沉积的银量增高。这样,电解液中的银离子逐渐贫化,铜在阴极析出会增多,电银质量因此下降。因此,提高阳极质量,降低其含铜量,甚为重要

图2 阳极含铜对电解液含银的影响

此外,电解过程中,可能有Cu 2++e =Cu +

和2Cu +=Cu 2+

+Cu 的反应发生,产生了铜粉,也因此降低了电银质量。

某厂生产实践表明,当控制电解液杂质含量(mol ?l -1)为:Cu <5.51×10-1,Bi <4.78×10-3,Pb <4.83×10-3,Te <2.35×10-4时,为保证析出银粉质量,采用

低酸、低银电解液电解,电解液含HNO 37.94×10-2

mol ?l 21,Ag (5.56~7.41)×10-1mol ?l -1,可得到质量符合要求的电银。所谓低酸度,是在电解液中铋不水解生成碱式盐沉淀为前提,抑制电化活性与银接近的杂质(铜、铋、锑)溶于电解液的速度;低银浓度是在电解液中Cu ΠAg <1Π2的条件下,减少银在电解液中的积压。3.1.2 改进净液方式

电解一定时间后,电解液中的杂质积累到可以在阴极上析出之前,必须进行净化。电解液中的铅、锑、铋过高时,可以加入一些硫酸,使铅离子以PbSO 4沉淀,铋、锑则呈碱式或氢氧化物沉淀。脱铜可采用结晶-分解法。沉铅、脱铜作业分别进行时,沉铅产出的PbSO 4沉淀物夹带有大量的电解液,造成了银的流失。

温度298K 时,PbSO 4的溶度积Ksp =1.16×10-8

,计算

出其溶解度仅为4×10-5mol ?l -1

。根据PbSO 4的溶解度极低这一特点,可将上述两作业同时进行,即在电解液浓缩时往槽内加放适量硫酸,PbSO 4沉淀残渣留于分解渣中而被除去,因而减少了银在渣中的夹带损失。3.1.3 改进废水处理工艺

银电解废水一般含银(4.63~9.27)×10-2

mol ?l -1

,必须采用适宜的处理工艺,以回收其中的银。

银电解废水处理可采用加食盐沉淀方法,回收其中的银。但此方法效果不稳定,且产出的氯化银进行火法熔炼时也会造成银的损失。国内某厂采用浓缩—净化—返回电解的工艺流程,实现了银的闭路循环,提高了银的回收率。3.2 金电解精炼

金电解精炼,以粗金作阳极,以纯金片作阴极,以金的氯化络合物水溶液和游离盐酸作电解液。电解液中铜的浓度一般较高,有可能在阴极析出,影响电金质量。生产实践表明,阳极中的铜应控制在2%以下。

阳极中最有害的杂质是银。银可以电化溶解,与盐酸极易生成AgCl ,它难溶于电解液。当银的数量较多时,则附着在阳极表面上,造成阳极钝化,使电解精炼难以进行。

为了解决银的危害,金电解时,往电解液中输入直流电的同时,也输入交流电,形成非对称性的脉动电流。某厂采用这种交、直流重叠电解法生产,不但实现了电解温度自动调节,低温电解,要求阳极品位低(含

Au88%~95%),电解液含金低(含Au1.39mol ?l -1

),阳极自动净化等一系列优点,而且阳极板制作过程中金的损失减少,电解时金粉的形成量降低,电解后得到的阳极泥含金也低(含Au50%~60%),从而提高了电解精炼时金的直收率。4 金银的铸锭

金、银的铸锭在坩埚炉中进行,熔铸温度分别高达1200~1300℃和1100~1200℃。浇铸时要特别小心,防止金属液外溅,造成金、银损失。另外,金、银在空气中熔融时能溶解一定的氧量,这种吸气性随温度的升高而降低。而在金、银冷却时,这些气体放出,造成金、银的损失。为此,某厂采取在过热温度下铸锭金、银的方法,并同时采用了结构简单、投资省、收尘效率高、运转费用低的冲击式水浴收尘器,收集铸锭炉烟尘,从而提高了金、银铸锭过程中的回收率。5 结语

采用传统流程处理铅阳极泥,金银主要损失于渣料、烟尘、衬砖中以及不合格产品造成的损失。减少金、银损失应从改进工艺、加强技术操作、改进炉子的修砌和使用方式、科学的生产管理等方面寻求最佳对策。

参考文献:

[1]余继燮主编.贵金属冶金学,冶金工业出版社.1985.

(责任编辑Π张邦安)

3

1

阳极泥处理工艺

铜陵有色金属集团公司50万吨 阳极泥处理选择流程的主要依据是阳极泥的化学成分和生产规模的大小。 目前,国内外阳极泥处理工艺主要有三大类:一是全湿法工艺流程,以美国Outfort公司为代表。流程为“铜阳极泥一加压浸出铜、碲一氯化浸出硒、金一碱浸分铅一氨浸分银一金银电解”;二是以湿法为主,火法、湿法相结合的(半)湿法工艺流程,为国内目前大多数厂家所采用。主干流程为“铜阳极泥一硫酸化焙烧蒸硒一稀酸分铜一氯化分金一亚钠分银一金银电解”;三是以火法为主,湿法,火法相结合的火法流程,以波立登公司和奥托昆普公司为代表,主干流程为“铜阳极泥一加压浸出铜、碲一火法熔炼、吹炼一银电解一银阳极泥处理金”,在熔炼、吹炼的设备上,波立登公司仅用1台卡尔多炉来完成,奥托昆普公司则为选用贵铅熔炼炉和转炉两台炉子来完成。 湿法处理铜阳极泥工艺流程如图1所示。 铜阳极泥经预处理脱铜产低铜泥,低铜泥进入回转窑中进行硫酸化焙烧蒸硒,硒蒸气被水吸收还原产粗硒;蒸硒渣低酸分铜,预处理液和分铜液合并,用碱中和产出碱式碳酸铜;碱式碳酸铜返回铜系统;分铜渣碱浸分碲;分碲液用硫酸中和产铅碲渣、分碲渣氯化分金,分金液用二氧化硫还原产粗金粉;分金渣用亚硫酸钠分银;分银液用甲醛还原产粗银粉;分银渣含少量金银可销售至铅冶炼厂回收铅、锡和少量的金银;粗金粉、粗银粉分别电解产电金、电银。此阳极泥处理工艺中,分碲工序在上述原料成分的情况下,由于碲含量较低,经济上无利可图,所以不回收。 年处理2500t阳极泥 亚硫酸钠 1200 甲醛 125 碳酸钠 704.69 硝酸 l1.33 硫酸 3500 盐酸 3.1 氢氧化钠 2200 液体二氧化硫 200

铜阳极泥处理的除杂装置

铜阳极泥处理的除杂装置 一、除杂装置概要 在铜冶炼企业中,生产出来的冰铜是一种中间产品,冰铜经过阳极炉或转炉冶炼,得到另外的铜冶炼的中间产品粗铜,铜冶炼企业通常处理粗铜的方法是采用电解方法,通过粗铜电解,得到电解铜,既阴极铜,在粗铜电解过程中大量的杂质元素,有价金属,如:铜、铅、锡、金、银、铂、钯、硒、碲等贵金属和稀有金属,都以铜电解阳极泥的形式沉淀富集,为了综合回收这些有价金属,保证资源的合理应用,对于这种铜阳极泥的后续处理,一般首先采用的方法是进行焙烧,然后浸出,本文研究的就是关于铜阳极泥处理的浸出过程的除杂装置,既用于铜阳极泥处理的除杂装置,其中,包括浆化槽、软管泵、滚筒筛、沙石料斗、阳极泥储槽,所述软管泵通过管道分别与浆化槽、滚筒筛连接,在所述滚筒筛中设置有用于喷水的喷淋水管,所述沙石料斗设置在所述滚筒筛的下方,并通过管道连接于阳极泥储槽,用于将沙石料斗中与沙石分离的铜阳极泥输送至阳极泥储槽。 二、装置的主要特点 1、一种铜阳极泥除杂装置,包括浆化槽、软管泵、滚筒筛、沙石料斗、阳极泥储槽,所述软管泵通过管道分别与浆化槽、滚筒筛连接,在滚筒筛中设置有用于喷水的喷淋水管,

沙石料斗设置在所述滚筒筛的下方,并通过管道连接于阳极泥储槽,用于将沙石料斗中与沙石分离的铜阳极泥输送至阳极泥储槽。 2、铜阳极泥处理的除杂装置,其特点是滚筒筛中设置有双层筛网。 3、铜阳极泥处理的除杂装置,其特点在于双层筛网的孔径为40目。 4、铜阳极泥除杂装置,其特点是喷淋水管设置有多个,分别设置在滚筒筛的中部及尾部。 5、铜阳极泥处理的除杂装置,滚筒筛倾斜设置。一种铜阳极泥除杂装置 三、装置的基本目的 在铜电解过程中,一些附着于铜阳极板上的杂质(如脱模剂)会进入到铜阳极泥中,影响金属回收率指标,所以需要对铜阳极泥进行除杂预处理。铜阳极泥的处理装置,是属于设备领域,尤其涉及一种铜阳极泥除杂装置。铜阳极泥中含有部分沙石等杂物,目前,对铜阳极泥除杂预处理的工艺通常采用的方法为将铜阳极泥浆化后用平筛进行过滤分离,但这种方法存在分离不彻底、分离的沙石中贵金属含量高等缺陷,造成了贵金属损失,同时铜阳极泥中沙石等杂物也对设备造成较为严重的影响,降低了除杂预处理的工作效率。 因此,现有技术还有待于改进和发展。鉴于现有技术的

从铅阳极泥中提高金银回收初探

从铅阳极泥中提高金银回收初探 王钧扬1 ,吕少祥 2 (1.中南大学;2.水口山第四冶炼厂,湖南 长沙 410012) 摘要:讨论了采用传统流程处理铅阳极泥使金银回收率低的原因。从提取工艺、技术操作、主体设 备及技术管理等方面提出了提高金银回收率的途径。关键词:铅阳极泥;传统流程;回收 1 前言 铅阳极泥是铅阳极电解过程中的必然产物,其中 含有一定量的稀散金属和贵金属,是提取金银的重要原料。当今,从阳极泥中提取金银一般采用以火法为主体的传统流程(图1)。该流程具有投资省、技术成熟、生产规模伸缩性大等优点。但此流程存在着生产过程复杂、金银回收率低、劳动环境较差等缺点。本文通过对上述流程处理阳极泥的主要工序,逐一进行搜索,以查找金银回收率低的原因,并提出解决这一问题的思路 。 图1 处理铅阳极泥传统流程 2 金银合金的熔炼 金银合金的熔炼包括贵铅还原熔炼和氧化精炼两个作业过程。2.1 贵铅还原熔炼 贵铅还原熔炼的主要目的,是在高温、还原气氛条 件下将铅阳极泥中的氧化铅还原为金属铅。铅在沉淀 过程中能很好地溶解金银形成的贵铅而与杂质分离。大部分杂质造渣除去或进入烟尘。为提高还原熔炼过程金银的回收率,试述如下。2.1.1 降低熔渣含金银 还原熔炼后期的炉渣的粘度、比重较大,含金银较高,怎样降低这部分渣含金银量,对提高金银的回收率极为重要。 炉渣是阳极泥中原来存在的和在熔炼过程中生成的氧化物与加进去的熔剂在高温下形成的共熔体。炉渣成分的选择对于降低渣所含金银意义重大,要使炉渣熔点既不要低于贵铅熔点,也不要高于造渣反应所需温度;炉渣的比重、粘度要小;对贵金属的溶解能力要低。 为降低渣含金银,熔炼过程中应做到以下几点:必须严格控制好已定配料比,防止炉渣成分的波动;平稳控制炉温,保证高温沉清分离时间达4h 以上,放渣操作时应防止炉渣夹带贵铅,采取慢—快—慢的方式放渣,放渣末期勤取样观察,发现贵铅流出,及时停止放渣。2.1.2 合理处理熔炼产物 还原熔炼的主要产物有贵铅、炉渣和烟尘。贵铅所含金银在很大范围内波动,一般Au +Ag =35%~45%,送氧化精炼,除去杂质,以提高其金银含量,产出金银合金。产出的炉渣有含金银高的干渣与含金银低的稀渣。为了合理利用产物,减少金银损失,干渣、含金银高的烟尘返回与阳极泥混合配料,进行还原熔炼。稀渣因含铅较高,送铅冶炼厂作高锑物料搭配使用,并回收其中的金银。产出的低金银烟尘送玻璃厂作玻璃助剂原料。2.1.3 减少金银在炉底衬砖中的损失 熔炼贵铅的炉子有反射炉、回转炉等。因回转炉操作较方便,劳动条件较好,炉子寿命较长,金银损失于炉衬的量较少,所以目前多采用回转炉。 炉子高温熔炼一段时间后,炉衬被损坏,需要更换。炉衬的更换有两种方式,一种是将整个炉衬全部更换,另一种是用支承架保护原有炉底,仅将需要更换 1 1

阳极泥

阳极泥 性泥状物。一般为灰色,粒度约为100~200目。其中各个组分多以金属、硫化物、硒碲化合物、氧化物、单质硫和碱式盐形态存在。 液固比 单位体积(多指水)对应的质量,也可以直观认为是水里加入某种物质后的溶液密度。 多被利用来快速求浓度。液固比与重量百分浓度的关系为: 液固比 = 液体重量 / 固体重量 = (100 - 浓度)/ 浓度 重量百分浓度等于液固比的倒数,乘以100% 液固比(liquid–solid ratio) 矿浆中水溶液质量与固体物料质量的比值。是湿法冶金浸出过程一个重要的技术经济参数。在一定的浸出剂浓度下,大的液固比可降低矿浆的粘稠度和浸出液中有价金属离子浓度,有利于提高固液相之间的传质速度,从而有可能提高浸出率。但液固比过大会导致浸出和液固分离设备负荷或浸出剂的损耗增加,在经济上未必有利。因此,最佳的液固比值,往往需要通过试验研究确定。

从铜阳极泥中加压酸浸预处理回收铜的新方法,属于铜电解过程综合回收有价金属的湿法冶金方法领域,其步骤为:(1)将铜阳极泥调浆;(2)筛去阳极泥中大颗粒的沙粒类;(3)将筛过的阳极泥用70g/l~300g/l酸度的硫酸调浆;(4)调浆后将料加入高压釜中,控制温度100℃~160℃,(5)通入压缩空气、富氧压缩空气或工业纯氧,(6)调整压力为0.5~1.2MPa,直接进行酸浸,反应60~90min后出料;(7)渣液进行分离,得到含铜低于0.5%的脱铜渣。本发明工艺流程简单,所需设备少,过程强化,在较短的时间内,快速实现铜阳极泥的浸出脱铜,铜的回收率高,脱铜渣含铜很低;阳极泥中其它有价金属走向合理、集中,有利于综合回收。

阳极泥处理车间工艺描述

阳极泥处理车间工艺说明 本说明仅作为工艺参考使用,设备选型及型号参数以设备订货条件为准。 7.3.1 原料、辅助材料和产品 (1)原料: 阳极泥来自于电解车间,处理量:160.56t/a(干量),含水25%,经汽车或叉车运送至本车间。阳极泥的主要化学成分见表7-12。 表7-12 阳极泥的主要化学成分 (2)辅助材料: 辅助材料的规格及用量见表7-13。 表7-13 辅助材料的规格及用量 (3)产品及副产品: (一)产品 1

金锭,产量为1.43t/a,含Au 99.99%,产品质量符合GB/T4134-2003 1号金国家标准;外售。银锭,产量为0.52t/a,含Ag 99.99%,产品质量符合GB/T4135-2002 1号银国家标准;外售。(二)副产品 ①分银渣,产量为92.32t/a(干量),渣含水30%,主要化学成分详见金属平衡表,送铜火法熔炼系统处理。 ②铂钯精矿,产量为0.33t/a(干量),渣含水30%,主要化学成分详见金属平衡表,堆存。 ③硫酸铜溶液,产量为963.60 m3/a(含Cu 14.3g/l),主要化学成分详见金属平衡表,送电解车间。 7.3.2 工艺流程选择 目前,铜阳极泥处理工艺主要有三种:(1)全湿法工艺流程,以美国OUTFORT公司为代表,流程为加压浸出铜、碲—氯化浸出金、硒—碱浸分铅—氨浸分银—金银电解;(2)以湿法为主,火法、湿法相结合的流程,为目前中小规模阳极泥生产厂家普遍采用,主流程为硫酸化焙烧蒸硒—稀酸分铜—氯化分金—亚硫酸钠分银—金还原--银电解;(3)以火法为主,湿法、火法相结合的工艺流程。以波立登(现已并入奥图泰)公司为代表,主流程为加压浸出铜、碲—火法熔炼、吹炼—银电解—银阳极泥处理提金。 阳极泥处理流程的选择主要依据是阳极泥的化学成分和生产规模的大小。阳极泥中各元素的赋存状态较复杂,其中以金属状态存在的有铂族金属、金、大部分铜和少量银;硒、碲、大部分银、少量铜和金则以金属硒化物及碲化物形式存在,其余金属则大多数为氧化物、复杂氧化物或砷酸盐、锑酸盐。从技术上看,采用以上三种工艺均可。但是,第一种工艺操作复杂,设备费用高,投资大,生产成本高;第三种工艺仅适用于20万t/a以上规模的铜冶炼厂产阳极泥量。 根据本项目的阳极泥处理规模,采用第二种工艺(湿法工艺)较为合适。因此,本项目推荐选择湿法工艺流程,即硫酸化焙烧蒸硒—稀酸分铜—氯化分金—亚硫酸钠分银—金还原—银电解。 阳极泥处理车间的工艺流程及设备连接图详见附图Z0985-E331-3,Z0985-E331-6。 7.3.3 工艺过程描述 阳极泥处理主要包括以下工序:硫酸化焙烧、酸浸脱铜、水溶液氯化及铂钯置换、金粉铸锭、亚硫酸钠浸银及还原、银电解等。 2

铅阳极泥真空气化分离技术

龙源期刊网 https://www.360docs.net/doc/2618487393.html, 铅阳极泥真空气化分离技术 作者:孔祥峰伊家飞 来源:《科技视界》2019年第34期 【摘要】本文综述了近年来铅阳极泥火法、湿法、火法-湿法联合处理工艺的研究进展,介绍了火法工艺重要中间产物贵铅的处理方法,并对真空气化技术处理贵铅的最新进展进行了报道。 【关键字】铅阳极泥;贵铅;贵金属回收;真空气化 中图分类号: TF817;TF831;TF832 文献标识码: A 文章编号: 2095-2457(2019)34-0093-002 DOI:10.19694/https://www.360docs.net/doc/2618487393.html,ki.issn2095-2457.2019.34.040 1 铅阳极泥 铅阳极泥是粗铅电解精炼的副产物,产量约为粗铅的1.2-2.0%,富含贵金属金、银和稀散金属碲,是提取这类稀贵金属的主要原料,仅从中回收的银占全国银总产量的90%以上,经济效益显著[1]。 2 铅阳极泥的处理方法 2.1 火法 火法-电解回收稀贵金属是一种较为传统、成熟的处理工艺,适用于大规模处理贵金属品位较低的铅阳极泥。该工艺主要步骤为氧化-还原吹炼除砷锑、氧化吹炼除铋、氧化精炼除铜、加碱精炼分碲,电解精炼等[2]。此工艺的关键在于氧化-还原吹炼造“贵铅”,贵铅是回收金、银、碲等稀贵金属的重要原料。火法-电解工艺的局限在于:(1)工艺流程复杂,生产效率低,能源消耗量大,综合处理成本高;(2)贵金属损失大、直收率低,金、银在一次渣、二次渣、铜铋渣、碲渣中都有分布,需采用湿法回收,产生难处理的二次废水、废渣;(3)碲在流程的各个工序中都有分布,精碲产量不高;(4)产生大量高砷烟尘,砷在系统中不断循环累积,操作环境恶劣,环保问题突出。 2.2 湿法 湿法处理工艺主要有氯盐、三氯化铁等酸性浸出法和碱-酸联合浸出法。

从铜阳极泥中回收碲方案

铜阳极泥回收碲可行性报告 一、前言 碲属稀散元素,碲消费量的80%是在冶金工业中应用。钢和铜合金加入少量碲,能改善其切削加工性能并增加硬度;在白口铸铁中碲被用作碳化物稳定剂,使表面坚固耐磨;含少量碲的铅,可提高材料的耐蚀性、耐磨性和强度,用作海底电缆的护套;铅中加入碲能增加铅的硬度,用来制作电池极板和印刷铅字。碲可用作石油裂解催化剂的添加剂以及制取乙二醇的催化剂。氧化碲用作玻璃的着色剂。高纯碲可作温差电材料的合金组分。碲化铋为良好的制冷材料。碲和若干碲化物是半导体材料。碲也应用于电子计算机、通讯及宇航开发、能源、医药卫生所需新材料中。目前,碲以其在高科技工业、国防与尖端技术领域中所占有重要地位,越来越受到人们的重视。 碲在地壳中平均丰度值很低(6×10-6)。碲大部分伴生在铜、铅、金、银的矿物中,铜电解精炼过程中产生的阳极泥是现今提取碲的主要原料,80%的碲从中提取,所以碲的产量与铜的产量有直接的关系。工业生产的碲元素主要来源于铜电解精炼工艺中的阳极泥,通常含碲2%~10%, 绝大多数以Ag2Te、Cu2Te、Au2Te等形式存在。由于各铜冶炼厂采用的铜原料不同,铜阳极泥的碲含量有较大差异,高的可达5%~6%,低的仅0.5%~0.8%,甚至更低,但大多数含量在1%左右。 由于碲的化学性质比较特殊,具有较明显的两性特征,易分散,回收率较低。鉴于此,各厂家从经济效益考虑,在工艺流程选择上存在差异。目前,国内外阳极泥处理工艺主要有:湿法(碱浸法、高压酸浸、萃取法);半湿法;火法(苏打造渣、焙烧、熔炼)。这些方法在铜阳极泥回收碲应用中存在一些弊端,工业上没有被广泛采用。因此,造成阳极泥中碲被大量流失。 经公司综合车间及总工办多次与中南大学冶金学院联系,中南大学冶金学院相关教授几次现场与公司、车间技术人员交流与研讨,按照该院发明的“催化还原法回收碲”专利技术,技术可行,具有经济效益,而且更有利于

处理铅阳极泥的工艺改进

处理铅阳极泥的工艺改进 处理铅阳极泥的方法分为火法和湿法,这两种方法各有其优缺点。火法处理量大,生产稳定,原料适应性强,适合于大型企业,但投资大物料滞留时间长,资金占用多,直收率低,返渣多,有价金属回收过程复杂等〔1〕。湿法投资小,工艺设备简单,规模不受限制,生产周期短,但工艺适应性不强,试剂耗量大〔2〕。目前这两种方法都在工业生产上应用。作者认为,火法适于大规模处理铅阳极泥,湿法适于中小型规模处理铅阳级泥。我国沿海某冶炼厂是中小型企业,采用湿—火联合法处理铅阳极泥(图①),自生产以来,为企业金银及有价金属的综合回收作出了贡献,提高了综合经济效益。经过多年的生产实践,也发现了现行工艺存在的问题:①银直收率低(94%左右),②试剂消耗大,生产成本过高。为此有必要改进现行工艺。 原料组成及方案 从表①铅阳极泥成分分析可见属于高砷、低金阳极泥。采用现工艺处理铅阳极泥,在预处理工序中使用盐酸浸出Sb、Bi、Cu、As等有价金属,工艺条件为:盐酸浓度5mol/L,固:液=1∶4~6,反应温度70~80℃,反应时间3~4h。因该地区盐酸供应紧张且售价较高,至使生产成本过高。同时,为使Sb、Bi、Cu、As等浸出完全,采用了较高浓度的盐酸,由于浸出液中氯离子浓度高,导致浸出渣中一部分氯化银溶解损失,直收率降低。反应方程式为:AgCl+Cl-=AgCl2-。 铅阳极泥成分 成分Aug/t Ag% As% Pb% Cu% Bi% Sb% S% 含量34 8.28 9.39 35.35 6.81 7.85 26.53 0.84 为此需对现工艺进行改进,经研究可采用硫酸加氯化钠浸出以解决上述问题,冶炼厂本厂就生产硫酸,氯化钠在沿海地区价格便宜,用硫酸可使浸出液中的氯离子浓度大大降低,减少银的浸出损失。 结果与讨论 浸出工序是整个流程的首要环节,该工序的主要任务是将阳极泥中的Sb、Bi、Cu、As等有价金属浸出完全而Ag、Au、Pb等留在渣中,以便以下工序进一步分离提取,浸出分离的好坏将直接影响到其他工序的进行和各金属的回收率。针对浸出工序的影响因素,分别进行条件实验,考察各因素对As、Sb、Bi、Cu浸出指标的影响,以及新工艺对银回收的影响,同时确定最佳工艺条件。实验结果除特殊说明外均在该实验条件下进行,阳极泥100g,硫酸浓度3mol/L,氯化钠2mol/L,反应温度80℃,反应时间4h,氯酸钠用量15%,固∶液=1∶

铅阳极泥氧压碱浸预处理脱砷工艺研究

第32卷第4期 2017年8月资源信息与工程 V〇i.32 ^4 AugusL 2017 铅阳极泥氧压碱浸预处理脱砷工艺研究 李增荣\陈永明2,周晓源3 (1.西部矿业集团有限公司,青海西宁810003; 2.中南大学,湖南长沙410083; 3.长沙有色冶金设计研究院有限公司,湖南长沙410011) 摘要:本文研究了氧压碱浸工艺浸出高砷铅阳极泥中的砷,详细考察了 NaOH浓度、浸出温度和氧分压对脱砷过 程的影响。在W;a(,H/W理论= 1.2、浸出温度160尤、氧分压1.2MPa的优化条件下,砷的脱除率达到95.65%,而铅和 锑的浸出率则分别为0.96%和0.33%。在综合扩大试验中砷平均脱除出率为94.90%,浸出渣含砷为0.5%,而铅和 锑的浸出率只有0.70%和0.22%,其他有价金属和贵金属浸出较少,工艺具有高的浸出选择性。 关键词:阳极泥;脱砷;碱浸;氧压浸出 中图分类号:TF8文献标识码:A文章编号:2096-2339(2017)04-0103-03 ■4 -i-<-— 1刖目 金属铅主要应用于生产铅蓄电池、合金、颜料、屏蔽材料等,2015年全球精铅产量为985.56万吨。随着优质铅资源的消耗,低品位和复杂铅矿开始作为炼铅原料大量使用,其中砷的含量普遍较高(>0.1%)。由于砷和铅在化学性质上的相似性,使得砷在冶炼过程中被还原进人粗铅,进而在电解精炼环节与贵金属金、银以及锑、铋、铜等一同形成砷阳极泥。为避免砷在后续阳极泥进一步提取过程中对造成不利影响,须对铅阳极泥进行脱砷处理。 自20世纪70年代初开始,国外普遍采用火法焙烧处理高砷多金属复杂物料,通过氧化挥发焙烧、还原焙烧或真空脱砷过程使原料中的砷以A s2O3形式分离。该工 艺成熟,过程简单,金属回收率较高,但火法焙烧法存在投资大、原料适应性差、砷烟尘污染大等不足。自20世 纪80年代以来,高砷多金属复杂物料的湿法处理工艺得到了广泛关注和深人研究,主要有酸性体系脱砷、碱性体系脱砷以及氯化体系脱砷,获得了砷的高浸出率,但酸性体系和氯化体系存在设备腐蚀大、浸出选择性差、砷分散的问题;碱性体系浸出率低、浸出液处理繁琐、杂质金属铅/锑浸出率大。后来还发展了火法-湿法联合工艺,主 要采用苏打/纯碱烧结后再水浸的工艺,优点是浸出率高,但试剂消耗大、成本高。在当前环保要求日益严格的形势下,砷产品的应用市场正在萎缩,砷产品的工业应用正被相关无毒产品代替,而近些年来更多研究集中在砷的固化处置方面,因此如何解决阳极泥中砷的脱除与环保处置是当前铅冶炼及相关冶炼企业亟待解决的问题。 本文主要考察高砷铅阳极泥的氧压浸出情况,使砷 尽可能多被浸出,获得低砷的阳极泥,从而为后续提贵金属工序提供优质的原料。工艺流程简单、成本低廉,易于 实现生产化生产。2原料及试剂 2.1实验原料 本试验所用高砷铅阳极泥产生于粗铅电解工段,由湖南某铅锌冶炼企业提供,经水洗和烘干后作X R F分 析,其主要化学组分列于表1。 表1铅阳极泥的化学组成/% 元素Pb As Sb Bi Cu A u1)Ag Se 含量17.077.55 41.30 8.51 3.54 40 6.19 0.043 1)单位为g/L 试验所用浸出剂为分析纯级烧碱(化学纯度> 99%),氧气为瓶装工业级氧气(O2>99.5%)。 2.2试验方法 采用单因素条件试验法详细考察N aO H用量、浸出温度 和氧分压对A s、P b浸出率的影响,以确定最佳工艺条件,并 在此优化条件下进行综合扩大试验。具体试验步骤为:按照 体积液固比量取一定体积的自来水,称取一定质量的分析纯 N aO H加人水中溶解完全,N aO H的理论加人量按反应⑴和(2)的化学计算系数计算,称取预定量铅阳极泥加人碱液进行混合调浆,将矿浆转人2 L高压反应釜(FY X D2型,大连通 产)后拧紧螺丝进行升温,温度恒定于预定值后通人一定分压的氧气开始计时。达到反应时间后,通人冷却水将矿浆温 度冷却至室温,依次关闭氧气瓶、减压阀和针型阀,打开出气 阀泄压后开启高压釜,进行液固分离,量取滤液体积并取样分析A s、P b含量,以此计算A s和P b的浸出率。 A s2O3+6NaO H+O2==2N a3AsO4+ 3H2O(1) Sb2O3+6N aOH+O2 ==2N a3SbO4+ 3H2O(2) 3结果及讨论 3.1 N a O H用量的影响 在氧分压1.0 M P a、液固比6 :1、温度160丈、时间2 h 作者简介:李増荣(1961-),男,青海湟源人,研究生,高级工程师,研究方向:冶炼化工 —103 —

金川集团股份有限公司贵金属冶炼厂铜阳极泥稀贵金属综合回收项目

金川集团股份有限公司贵金属冶炼厂 铜阳极泥稀贵金属综合回收项目 竣工环境保护验收意见 2017年12月13日,金川集团股份有限公司贵金属冶炼厂组织铜阳极泥稀贵金属综合回收项目竣工环境保护验收,参加验收会的单位包括,金昌市环保局;项目单位:金川集团股份有限公司贵金属冶炼厂、金川集团股份有限公司工程管理部;设计单位:中国恩菲工程技术有限公司;施工单位:金川集团工程建设有限公司;环境影响评价单位:西北矿业研究院;环境监理单位:兰州大学应用技术研究院有限责任公司;验收监测单位:平凉中兴环保科技有限公司;施工监理单位:金昌市诚信工程建设监理有限公司。并由4人组成专家组。 验收小组通过现场核查项目环保设施建设及运行情况、查阅资料、验收监测报告和听取项目建设方的工作报告及相关台账资料,并根据《建设项目环境保护管理条例》(国务院第682号令)相关规定。经讨论形成验收意见: 一、工程建设基本情况 (一)建设地点、规模、主要建设内容 铜阳极泥稀贵金属综合回收项目变更是在现有铜阳极泥处理金银硒工程基础上改造及其东侧空地新建相关生产厂房与设施,项目改扩建后,形成年处理铜阳极泥4000t(干基)、铅阳极泥600t(干基)、汽车尾气催化剂1000t(干基)、石油催化剂600t(干基),产金24.37吨、银591.13吨、二氧化硒63.61吨、精硒131.97吨、碲19.63吨的生产规模。 该项目工程包括:新建部分和利旧改造部分: ①新建部分:新建3000t/a铜阳极泥压力浸出-合金吹炼炉粗炼系统;配套新建一套金银合金板银电解系统;配套新建一套碲化铜渣量和精炼渣量相配套的碲精炼系统;新建全密闭铜阳极泥堆场及相关的公辅设施,变更后增加2#原

铜阳极泥微波处理回收铜和硒的技术方法

铜阳极泥微波处理回收铜和硒的技术方法 一,概述 铜阳极泥微波处理回收铜和硒的技术方法是湿法冶金技术方法,特别涉及一种采用微波处理从铜阳极泥中回收铜和硒的方法。具体是筛去铜阳极泥中颗粒直径大于5mm 的沙粒类杂质,然后加入浓度为 20~500g/L 的硫酸调浆,控制铜阳极泥浆料的重量浓度在1~30%,将铜阳极泥浆料臵于微波炉中,向铜阳极泥浆料中通入或加入氧化剂,调节微波频率为1500~3500MHz,微波加热功率为 120~700w,在常压下浸出反应 1~30min,铜阳极泥中的铜以 CuSO4形式浸出,硒以H2SeO3、 SeSO3等形式浸出。本发明方法缩短了铜阳极泥的处理时间,加大了处理量,提高了铜和硒的脱除率,使铜阳极泥中其他有价金属走向合理且集中,有利于综合回收,既降低了能耗,又不需要特殊的高压装备,同时具有较快的浸出速度。二,技术方法基本原理 铜阳极泥微波处理回收铜和硒的技术方法属于湿法冶金技术方法,是关于铜阳极泥微波处理回收铜和硒的技术方法,铜在电解精炼时,在直流电作用下阳极上的铜和电位较负的贱金属溶解进入溶液,而正电性金属,如金、银和铂族金属它们在阳极上不进行电化学溶解,而以极细的分散状态落入槽底成

为铜阳极泥。铜阳极泥含有大量的贵金属和稀有元素,是提取贵金属的重要原料。为了更好地富集稀贵金属元素,并有利于其他有价元素的回收,需要对阳极泥进行预处理,即将阳极泥中影响后续分离工艺显著的非贵金属元素先行解离出来。铜在铜阳极泥中占有极大的比例,而且它的存在对后续的贵金属分离有重大的影响,因此需要对其进行预处理回收,以降低后续工作的试剂耗量和缩短生产周期。硒在铜阳极泥中往往与金属等形成稳定的硒化物合金,各种硒化物由于性质十分稳定,使脱硒过程十分困难。对于铜阳极泥预处理脱铜和收硒,目前国内外采用较多的方法是硫酸盐化焙烧硫酸浸出法、氧化焙烧硫酸浸出法、常压空气搅拌硫酸直接浸出法等。火法工艺中,焙烧过程存在高能耗、操作环境差以及产生的环境污染等问题,至今仍是一个技术难题;而常压酸浸除铜过程可以不产生二氧化硫,但由于空气氧化法的反应温度不能很高(最高不超过 90℃),因此反应强度较弱、反应时间较长,需要24小时甚至更长时间完成脱铜任务,并且脱铜率和脱硒率低,脱铜率只有60~70% 左右而脱硒率更是小于 30%。为了解决常压酸浸除铜和脱硒过程中反应速度慢,效率低,耗时长的问题,高温加压酸浸工艺逐渐受到关注。高温加压法具有处理时间短,处理量大,浸出速度快等优点,但也存在着能耗高、设备要求高等缺点。而目的元素浸出率提高的同时,各种伴生元素的浸出率也同时提高,不利于其他元素的回收。

从铜阳极泥中综合回收硒

从铜阳极泥中综合回收硒 马光位201010303136 摘要:本文详细讨论了从铜阳极泥中综合回收重有色金属和稀、贵金属的 火法———电解,焙烧———湿法及全湿法等主要工艺流程;并简要分析比较了3类流程的技术、经济特点。 关键词:铜阳极泥;综合回收;贵金属;硒 1 引言 铜阳极泥由阳极铜在电解精炼过程中不溶于电解液的各种物质所组成,其成分及产率主要与铜阳极成分、铸锭质量及电解技术条件有关。阳极泥产率一般为012~1%,其主要成分(%)为:Cu10~35、Ag1~28、Au011~115、Se2~23、Te015~8、S2~10、Pb1~25、Ni011~15、Sb011~10、As011~5、Bi011~1,铂族金属微量(约70g/t),H2O25~40。阳极泥中各元素的赋存状态较复杂。其中以金属状态存在的有铂族金属、金、大部分铜和少量银;硒、碲、大部分银、少量铜和金则以金属硒化物及碲化物形式存在,如Ag2Se、Ag2Te、CuAgSe、Au2Te、AgAuTe 和Cu2Se;还有少量银和铜为AgCl、Cu2S和Cu2O;其余金属则大多数为氧化物、复杂氧化物或砷酸盐、锑酸盐。因此,阳极泥处理是根据所含各种金属及化合物的物理化学性质,选择适当的化学冶金方法以提取金、银、铜、硒、碲,并附带回收其余重金属和铂族元素。由于各电解铜厂的阳极泥组成和生产规模不同,各厂处理阳极泥的工艺流程也不同。但一般均包括下列主要部分:(1)分离回收铜、硒;(2)提取金、银;(3)从有关中间产物中回收其余有色重金属和稀、贵金属;(4)各种粗金属和化合物的精炼、提纯以产出所需纯度的最终产品。目前国内外应用最多的为火法———电解流程,其次为火法———湿法流程,最近还开始采用全湿法流程。 2 火法———电解流程 常用流程一般包括阳极泥硫酸盐化焙烧蒸硒,熔炼回收金、银和贵金属电解精炼3部分。 2.1.1盐化焙烧 铜阳极泥和浓硫酸(料、酸比为1∶0175~019)经浆化槽机械搅拌混匀后连续加入回转窑,加料速度决定于炉料含硒量。窑内温度由进料端的280~300℃逐渐提高至出料端的550~650℃,窑内负压为50~160Pa。窑中部为铜、镍、硒、碲和部分银的硫酸化反应,窑尾高温区则使生成的SeO2充分挥发。含有SeO2、SO2和SO3的混合烟气经窑头排气管用真空泵抽入吸收塔。SeO2被塔内水溶液吸收成为亚硒酸,并被烟气中的SO2还原为含硒9715~9815%的粗硒粉。后者可提纯至99199%的精硒产品。烧渣由回转窑出料端排出,送往浸出槽酸浸脱铜,常用浸出温度90℃。经洗涤过滤后浸出渣送贵铅炉处理。浸出液送往置换槽,加铜置换沉银,直到用盐酸检验时无明显白色氯化银沉淀为止。置换沉淀经洗涤过滤,得到的粗银粉含银90%以上,可送往分银炉处理;滤液含铜大于40g/L,则返回铜电解车间。 2.1.2还原熔炼和氧化精炼

铅阳极泥

铅阳极泥提银 2011-06-27 10:09:19| 分类:清洁生产|举报|字号订阅 铅阳极泥提银(extraction of silvei from lead anod slime) 从铅阳极泥中综合回收银、金及其他有价元素的过程,为;台金副产物提银的组成部分。铅阳极泥是粗铅电解精炼的产物,含有大量的锑、铅、铋、砷、银和少量金、铜等。其成分和产率随阳极成分、阳极铸造质量和电解条件不同而异,产率一般为阳极质量的1.2%~1.8%。世界主要炼铅厂的阳极泥成分列举于表1。铅阳极泥通常呈灰黑色,粒度为0.075~0.15mm,其物相组成列于表2。处理铅阳极泥的主要工艺有火法冶金法、湿法冶金法和选冶联合法等。

火法冶金法是处理铅阳极泥的传统工艺方法,过程主要由还原熔炼、氧化吹炼和电解精炼三部分组成,见图1。 还原熔炼阳极泥与熔剂(萤石、纯碱和铁屑)、还原剂(粉煤)在卧式转炉中熔炼,使部分杂质挥发或造渣,并将银和金富集到以铅、铋为主成分的贵铅中。还原熔炼的技术条件为:脱铜、硒后的铜阳极泥和铅阳极泥的配料比为1:10,加入为炉料质量3%的粉煤、1%~3%的铁屑、3%的纯碱及少量萤石,熔炼温度为1073~1423K。99.4%的银和99.3%的金被富集于贵铅中。

氧化吹炼在卧式转炉中,向贵铅熔体表面吹入压缩空气,使杂质按砷、锑、铅、铋、碲的顺序氧化、挥发,得到含银和金超过96%的合金。合金铸成阳极板,供电解精炼用。 电解精炼以金银合金板为阳极,不锈钢板作阴极,在硝酸银溶液中进行电解精炼(见银电解精炼),制取纯度99.99%的银。 工艺特点及改进火法冶金法经过长期生产实践,工艺日臻成熟,适应性强,能综合回收的元素多,特别是银和金的回收率高,为世界624大型冶炼厂所广泛采用。但它也存在能耗高、熔炼产出的烟气严重污染环境、需要集中大量阳极泥造成贵金属积压量大等缺点。为此出现了改用氧气顶吹转炉进行贵铅氧化吹炼的方法。转炉炉身旋转,物料反应速度快,生产周期短,炉子容量小,贵金属积压量少,排放烟气小,废气收尘装置安排紧凑。 湿法冶金法用浸出剂浸出铅阳极泥,使各成分相分离的方法。主要有两类工艺:一是使银和铅与其他杂质相分离,有盐酸一氯化钠浸出、水溶液氯化、控制电位氯化浸出等法;另一类是使贵金属与贱金属相分离,如甘油碱浸出。 盐酸一氯化钠浸出主要由含盐酸和’Na(:l的溶液浸出锑、铋、铜、砷,氯化分离金和氨浸出提银等过程组成(见图2)。含盐酸和NaCl溶液浸出条件为:铅阳极泥与浸出液之比为1:6,溶液中的[cl。]一5m0l/L,在343K温度下搅拌浸出2h,溶液终酸度控制在1.5m0l/L。金属的浸出率(%)为:锑98,铋99,铜97,砷98,铅13和银1.38。用水解法从浸出液中沉淀出含锑60%的锑渣,用中和法沉淀出含铋50%的铋渣。渣还原熔炼后分别得到粗锑和粗铋。浸出渣用含HzS0。、:Na(:1和Na(:10。溶液浸出金,条件为:溶液含H。S0。100g/L、NaCll80g/I_,,NaCIO3的用量为渣量的3.5%,在液固比6、358K温度下搅拌浸出2h。金浸出率为98%,98.9%银留在渣中。浸出液在323~333K温度下用亚硫酸钠还原金,得品位为98%的金粉,金的直接回收率为97%。含银渣用氨液浸出银,条件为:铅阳极泥氨浸渣t送生产三盐金粉水合肼滤液粗锑唔中图2铅阳极泥湿法处理工艺流程型盟旦竺一手溶液含氨12%~14%,在液固比10~11和常温下搅拌浸出2h,99%的银进入溶液,浸出渣中残留的银

铅阳极泥的氟硅酸浸出

世上无难事,只要肯攀登 铅阳极泥的氟硅酸浸出 鉴于铅阳极泥中的铅大多以PbO、PbCO3 和Pb(OH)2·2PbCO3 等氧化物状态存在,较易溶于氟硅酸中。特别是使用氟硅酸铅作电解液的工厂,浸出液可与电解液的净化合并进行,并用净化除铅后的废电解液来浸出阳极泥。也可将浸出液加入适量H2SO4 沉淀铅后返回电解过程使用。但H2SO4 的加入不可过量,以免S2-进入电解渡中生成PhS 危害电解作业。 铅阳极泥的浸出可用内衬塑料、橡胶或涂沥青的钢板槽或钢筋混凝土槽与木槽,搅拌桨可用黄铜制的或外套塑料与橡胶的钢制桨,采用压缩空气搅拌铅的溶解速度更快。浸出铅阳极泥的氟硅酸理论加入量与阳极泥中含铅量之比为 1∶1,但实际上由于Sb、As、Bi 等在阳极泥中也呈氧化状态,会部分溶解而加大氟硅酸的消耗,且浸液中还需保持一定量的游离酸,故实际作业中Pb∶ H2SiF6≈1∶3~4。在此条件下,阳极泥中铅的浸出率可达85%~90%。除铅渣的处理可根据其组分确定。通常浸渣含银高,可先用稀HNO3 浸出银,再向滤液中加入HCl 或NaCl 使其生成AgCl 沉淀。除银渣再用HCl 浸出锑、铜等,但HCl 浸出时,渣中的金会部分溶解进入浸液中,若如此则可在浸出后期加入少量生阳极泥或铁粉之类,经搅拌还原金后再过滤,并向滤液中加入石灰乳或碱液中和综合回收锑、铜等。经上述处理后渣量巳很少,可使用NaClO3 浸出其中的金,或将其熔炼成合质金出售或提纯。 根据王政德的报道,某厂铅阳极泥含(%):Sb47.52、Cu2.71、Pb12.18、Au0.039,采用HCl 直接浸出,在固液比1∶2、温度80℃、HCl 浓度3.5mol/L 的条件下浸出2h,Sb、Cu 的浸出率大于90%、Pb、Au 浸出率低于1%。浸渣使用氯酸钠浸出,在固液比1∶4、温度80℃、HCl1.0mol∕L,NaClO3 加入量为渣重的8.5%,经浸出3h,金的浸出率大于96%。

从阳极泥中回收金

书山有路勤为径,学海无涯苦作舟 从阳极泥中回收金 及从中回收金的意义铜、铅、镍、锌、锑等重有色金属矿石中常伴生有金银等贵金属。在选矿过程中,金银常伴生贵金属进入选矿成品即精矿中。精矿是冶炼的原料。冶炼的工艺方法一般是:火法冶炼—电解精精矿是冶炼的原料。冶炼的工艺方法一般是:火法冶炼—电解精炼。在火法冶炼过程中,金银等贵金属随主体金属(铜、铅、镍、锌、锑等)几乎全部进入相应半成品(如精铜、粗铅等)中。半成品电解精炼时,得到主体金属产品,同时金银等贵金属与主体金属分离并几乎全部进入阳极泥中,因此阳极泥中基本上富集了精矿中的所有金银等贵金属。精矿中含金一般为每吨几克,虽不算高,但对每天都要熔炼几百吨甚至上千吨精矿的冶炼厂来说,金的总量就相当可观了,因此从阳极泥中回收这些金也就很有意义了。目前我国黄金总产量的约四分之一是靠重有色金属回收的。 2.从阳极中回收金的原则阳极泥的成分非常复杂,不但含有金银等贵金属,而且含有其他伴生金属和稀有元素。在选择从阳极泥中提取金的方法时,必须考虑阳极泥的成分及生产规模等因素,做到生产流程及生产周期短、设备简单、金回收率及其他有价成分综合利用率高、对环境污染小。大型冶炼厂的阳极泥一般设专门车间处理,小型冶炼厂的阳极泥则集中交由专门的工厂处理。 3.铜阳极泥中金的回收从铜阳极泥中回收金,过去是用直接熔炼法或直接灰吹法,只回收其中的金银;随着技术的进步和对原料综合利用的重视,近年来国内外处理阳极泥的常规方法是火法—电解法。火法—电解法处理铜阳极泥,主要分三步:(1)熔炼前脱铜脱硒。目的是避免铜、硒在熔炼时形成冰铜及大量炉渣而造成金的流失,以及避免铜进入熔炼合金而降低合金质量,同时也是为了回收铜和硒。脱铜、脱硒可分别进行,也可同时进行,一般以同时进行较为方便。脱铜脱硒有直接酸浸、氧化焙烧—酸

脱除铅阳极泥中贱金属的预处理工艺选择

脱除铅阳极泥中贱金属的预处理工艺选择 提出碱性NaOH 体系分步氧化浸出和盐酸浸出相结合的工艺预处理铅阳极泥,在碱性分步氧化浸出过程中,实现As 的氧化溶解和Bi 等金属的氧化沉淀,然后用盐酸溶解碱性浸出渣中的Bi,使贵金属富集在盐酸浸出渣中。结果表明:无论碱性直接浸出或酸性直接浸出都不能有效分离铅阳极泥中的有价金属;改变烘烤温度、延 长空气氧化时间和改变碱性加压氧化浸出温度都不能实现有价金属的分步分离。当双氧水用量大于0.2 以后,碱性浸出过程As 的浸出率达到92%以上,碱性浸出渣盐酸浸出时,Bi 和Cu 的浸出率分别达到99.0%和97.0%,且残余的As 不溶解实现铅阳极泥中有价金属分步分离的目的。 铅阳极泥是粗铅电解精炼过程的副产物,主要含有Pb、As、Sb、Bi、Au 和Ag 等金属,是提取贵金属的重要原料。铅阳极泥首先经过预处理过程脱除部分贱金属,然后用火法熔炼或湿法溶解的方法富集并产出贵金属合金或粉末,最后经过精炼产出贵金属产品,主要包括预处理、火法熔炼、湿法溶解和贵金属提纯等 4 个部分,这些处理过程环环相扣,构成完整的阳极泥处理工艺,相对来说,预处理过程是决定铅阳极泥处理工艺优劣最为重要的环节。铅阳极泥预处理过程一方面是脱除Bi、Sb 和Cu等金属富集贵金属,另一方面是转化铅阳极泥中贵金属的赋存物相,常用的预处理方法有焙烧?盐酸浸出和控电位氯化浸出等,这些方法依然存在设备腐蚀严重、金属回收率低、贵金属溶解分散和环境污染等问题,相关研究主要集中于精细化控制和提高金属回收率等方面。近些年,铅阳极泥成分越来越复杂,尤其是As、Bi 和Cu 含量的增加,对铅阳极泥预处理方法特提出了更高要求,因此,开发合理和有效的预处理方法尤为迫切。借鉴相似领域的研究经验,碱性体系浸出方法被用来分离铅阳极泥中的贱金属,蔡练兵和杨跃新提出用空气氧化方式强化NaOH 体系铅阳极泥的浸出过程。熊宗国采用加压氧化的方式强化铅阳极泥的碱性脱砷过程,As 的浸出率可以达

酸浸出处理电解铜阳极泥的方法

酸浸出处理电解铜阳极泥的方法 一,方法概要 酸浸出处理电解铜阳极泥的方法,属于有色金属湿法冶金及资源再生回收技术领域。其以阳极泥为原料,经硝酸浸出后由精密过滤设备过滤,得到含银铜的硝酸溶液,含银铜的硝酸溶液经过两段旋流电解脱银,得到银粉经收集后用纯水洗涤、干燥,脱银贫液继续进入旋流电解系统,进行电解脱铜,得到阴极铜。处理方法能够做到金属的高效回收,变废为宝,实现资源的循环再利用;酸浸出处理电解铜阳极泥的方法技术能够选择性的对金属进行电解沉积,更好的提纯银铜;较高的电流密度及电流效率,试剂消耗少,降低了生产成本,提高企业效益;同时溶液闭路循环,没有有害气体的排放,符合现下循环经济、环境保护的理念。 二,方法的基本技术原理 酸浸出处理电解铜阳极泥的方法属于有色金属湿法冶金及资源再生回收技术,具体是介绍利用旋流酸浸出处理电解铜阳极泥的方法。铜电解精炼过程中产出的阳极泥,因含有大量的贵金属和稀有元素而成为提取贵金属的重要物料。从阳极泥中提取贵金属,主要有火法和湿法两种方法;火法流程的特点是工艺成熟、过程易于操作控制、对物料的适应性强,且适于大规模集中生产,但因其操作环境差、污染严重、生产周期长、有价金属得不到综合利用等诸多问题而面临挑战,尤其对中小企业来说,投资大、设备利用率低。与

传统火法流程相比,湿法流程具有金银直收率高、流程短、能耗低、生产周期短、综合利用经济效益好及有利于环境保护等诸多优点。目前湿法处理阳极泥工艺中,需要利用沉淀剂或萃取剂对金属进行分离,试剂用量大、工艺繁琐,增加了企业的经济损失,因此,研究从阳极泥中选择性回收银和铜的方法是处理阳极泥过程中的重要课题.针对现有技术存在的问题,目的在于设计提供一种利用旋流电解处理阳极泥的方法的技术方案,该方法工艺流程短、操作简便、高效环保、成本低廉,并且可以小型化,适用于一般或小型企业处理阳极泥。 三,方法的技术要点 1.酸浸出处理电解铜阳极泥的方法,其技术要点在于以阳极泥为原料,经硝酸浸出后由精密过滤设备过滤,得到含银铜的硝酸溶液,含银铜的硝酸溶液经过两段旋流电解脱银,得到银粉经收集后用纯水洗涤、干燥,脱银贫液继续进入旋流电解系统,进行电解脱铜,得到阴极铜。 2.利用旋流电解处理阳极泥,其要点在于具体包括以下工艺步骤: 1)将阳极泥用硝酸进行浸出,硝酸和阳极泥的液固比为3 ~ 7: 1,硝酸浓度为 200 ~ 250g/L,浸出温度为 65 ~ 90℃,浸出时间为 2 ~ 4h ; 2)将步骤 1)中得到的银铜浸出液用精密过滤器进行精密过滤处理,除去杂质,滤渣返回步骤 1)中与原料混合,滤液备用;3)将步骤 2)中得到的滤液作为电解前液,进入密闭式旋流电解槽内一段电解脱银,析出银粉,得到银粉和脱银后液; 4)将步骤 3)得到的脱银后液继续进行二段旋流电解脱银,

铜阳极泥的资源化处理方法与相关技术

图片简介: 本技术介绍了一种铜阳极泥的资源化处理方法。将阳极泥用热水和硫酸溶液洗涤,酸洗渣加入盐酸,高压氯气浸出,得到浸出滤液和浸出滤渣,将浸出滤渣通入氢气还原后经过高压压块后电解精炼,得到银板;得到的浸出滤液采用阴离子交换树脂吸附金,然后过滤,得到吸附后溶液和载金树脂,再采用硫脲溶液洗脱,得到含金溶液,通过电积法得到金粉;吸附后溶液加入氨水,调节溶液的pH值,过滤得到第一滤液和第一滤渣,第一滤液加入盐酸调节溶液的pH值,过滤,滤渣在还原性气氛下煅烧得到钯粉;第一滤渣加入硫酸溶解,采用3,5二异丙基水杨酸萃取分离贱金属。本技术工艺简单,工艺流程短,金银钯的回收率高,且回收了其中的镍、铜、铁等有价金属。 技术要求 1.一种铜阳极泥的资源化处理方法,其特征在于,为以下步骤: 1)将阳极泥加入热水搅拌浆化洗涤,然后进行固液分离,得到洗涤渣和洗涤液,得到的洗涤液经过铜萃取剂3-5级萃取,使得萃余液中的铜离子含量低于100mg/L,采用稀硫酸溶液反萃得到反萃液返回做铜电解液,萃余液加入铝粉,搅拌反应30-60min,使得溶液中的铜离子含量20mg/L,然后过滤,滤液加入氨水,调节溶液的pH值为4-6,然后过滤,得到的滤液经过浓缩结晶得到工业纯硫酸镍晶体; 2)将洗涤渣加入硫酸溶液,在温度为40-60℃搅拌1-2h,然后过滤得到酸洗渣和酸洗液;

3)得到的酸洗渣加入盐酸,搅拌浆化后放入到高压反应釜内,在温度为150-200℃,通入氯气维持压力为3-6个大气压,搅拌反应1-2h,然后降温泄压后过滤,得到浸出滤液和浸出滤渣,将浸出滤渣通入氢气,在温度为300-700℃下反应2-4h,产生的废气经过喷淋吸收返回浸出酸洗渣,得到的还原料经过高压压块后电解精炼,得到银板; 4)将步骤(3)得到的浸出滤液采用阴离子交换树脂吸附AuCl4-,然后过滤,得到吸附后溶液和载金树脂,再采用硫脲溶液洗脱,得到含金溶液,通过电积法得到金粉; 5)吸附后溶液在温度为35-55℃下加入氨水,调节溶液的pH值为8.5-10,然后搅拌30-60min,过滤,得到第一滤液和第一滤渣,第一滤液在温度为15-30℃下加入盐酸调节溶液的pH值为1-1.5,然后搅拌10-20min,过滤,滤渣在还原性气氛下煅烧得到钯粉; 6)第一滤渣加入硫酸溶解,然后加入酸碱调节剂调节溶液的pH值为1.3-1.8,采用3,5-二异丙基水杨酸萃取铁离子,然后盐酸反萃,得到氯化铁溶液,加入磷酸二氢铵,搅拌反应得到磷酸铁,萃取铁后的萃余液加入酸碱调节剂调节溶液的pH值为3.5-4,然后再加入3,5-二异丙基水杨酸萃取铜离子,采用1-1.5mol/L的硫酸反萃得到硫酸铜溶液,返回做铜电解液,将萃取铜后的萃余液加入酸碱调节剂调节溶液的pH值为5-5.5,然后再加入3,5-二异丙基水杨酸萃取镍离子,采用1-1.5mol/L的硫酸反萃得到硫酸镍溶液,得到的硫酸镍溶液经过浓缩结晶得到工业纯硫酸镍晶体。 2.根据权利要求1所述的一种铜阳极泥的资源化处理方法,其特征在于:所述步骤(1)中洗涤液萃取铜过程,采用逆流萃取,萃取过程维持水相的pH值为1.5-2.5,稀硫酸溶液的浓度为1-1.5mol/L,稀硫酸溶液反萃过程反萃级数为2-4级,加入铝粉置换后得到的铜粉返回熔炼制备成铜阳极板。 3.根据权利要求1所述的一种铜阳极泥的资源化处理方法,其特征在于:所述步骤(2)中硫酸溶液的浓度为1-2mol/L,得到的酸洗液与步骤(5)得到的第一滤渣混合后处理。 4.根据权利要求1所述的一种铜阳极泥的资源化处理方法,其特征在于:所述步骤(3)中酸洗渣与加入的盐酸的重量比为1:4-8,盐酸的浓度为3-6mol/L。 5.根据权利要求1所述的一种铜阳极泥的资源化处理方法,其特征在于:所述步骤(4)中阴离子交换树脂为哌啶型阴离子交换树脂,硫脲溶液的质量浓度为3-8%。

相关文档
最新文档