热电偶传感器的应用与发展.

热电偶传感器的应用与发展.
热电偶传感器的应用与发展.

热电偶传感器的应用与发展

一、引文

1.工作原理

在大量的热工仪器中,热电偶作为温度传感器,得到了广泛使用。它是利用热电效应来进行工作的,其热电势率一般为几十到几μV/℃。所谓的热电效应,是指当受热物体中的电子(洞),因随着温度梯度由高温区往低温区移动时,所产生电流或电荷堆积的一种现象。热电偶是将两种不同成份的导体,两端经焊接,形成回路,直接测量端叫工作端(热端),接线端子端叫冷端。当热端和冷端存在温差时,就会在回路里产生热电流,接上显示仪表,仪表上就会指示所产生的热电动势的对应温度值。电动势随温度升高而增长。

由于热电偶直接和被测对象接触,不受中间介质的影响,因而测量精度高,并且可以在-200~+1600℃范围内进行连续测量,甚至有些特殊热电偶,如钨-铼,可测量高达+2800℃的高温,且构造简单,使用方便。但是,热电偶只产生毫伏(mV)级输出,且需冷接点补偿(CJC)技术,延长时需补偿导线。

2.补偿原理

利用热电偶传感器测量温度时,冷端温度的影响是不可忽略的,且热电偶冷端暴露于作业环境中,可以认为冷端温度与作业环境温度一致。作业环境温度随季节气候变化而变化,因此冷端温度的测定是动态测定,冷端电势补偿是动态补偿。

在热电偶冷热端电势关系中,有如下公式存在:

E AB(t,0)=E AB(t,t n)+E AB(t n,0)

其中,t为实测温度;t n为冷端温度;E AB(t,0)为冷端温度为0℃时,热电偶电势输出;

E AB(t,t n)为冷端温度为t n℃时,热电偶电势输出;E AB(t n,0)为冷端补偿电势。上式中,E AB(t,t n)可直接从热电偶输出中检测到,只要获取冷端温度t n,就可以由分度表换算出E AB(t n,0),进而求出E AB(t,0)。于是完成了冷端电势补偿,并可换算出实测温度t 。

图1 热电偶原理图

3.结构与分类

工业热电偶作为测量温度的传感器,通常和显示仪表、记录仪表和电子调节器配套使用,它可以直接测量各种生产过程中0~1800℃范围的液体、蒸汽和气体介质以及固体表面的温度。

装配式热电偶是由感温元件(热电偶芯)、不锈钢保护管、接线盒以及各种用途的固定装置组成。

铠装式热电偶比装配式热电偶具有外径小、可任意弯曲、抗震性强等特点。适宜安装在装配式热电偶无法安装的场合,它的外保护管采用不同材料的不锈钢管(适合不同使用温度的需要),内充满高密度氧化物质绝缘体,非常适合安装在环境恶劣的场合。

隔爆式热电偶通常用于生产现场伴有各种易燃、易爆等化学气体。如果使用普通热电偶极易引起环境气体爆炸,因此在这种场合必须使用隔爆热电偶,隔爆热电偶适用在dⅡBT1—6及dⅡCT1—6温度组别区间内具有爆炸性气体的危险场所内。

热电偶的主要种类区别在其热电偶芯(两根偶丝)的材质不同而不同,它所输出的电动势也不同,热电偶主要有以下几种:

说明:表中“t”为实测温度;代号后加“K”字即为铠装式热电偶。

图2 电偶的温度特性与赛贝克系数走向

图2给出了8种常用热电偶电压-温度曲线。铁、铂、铑、铜、阿留迈合金(镍铝合金)、克露美尔合金(镍铬合金)和康铜(铜镍合金)最为常用。如图2所示,E型热电偶最灵敏,对给定温度变化能产生最大输出电压,而B型测温范围最宽,K型线性最佳。

二、研究现状与前景

1.研究现状

热电偶传感器种类繁多,结构多样,测量范围宽,因此在工程测温上使用极为广泛。铂铑10 - 铂热电偶以其使用温度高、稳定性好,在IPTS- 68 温标中作为温标的内插仪器。随着科学技术的进步,人们发现由于内在缺陷,铂铑10 - 铂热电偶的测量精度不能超过±0.2 ℃,并且偏离热力学温度也比较大,因此在新温标ITS - 90 中,铂铑10 - 铂热电偶不再是温标的内插仪器。但是热电偶在测温领域中的发展并没有因此而停止,对热电偶新材料和新结构的研究更加深入,并取得了可喜的进展。

在人们开始对铂铑10 - 铂热电偶进行研究时就发现,在实际应用中铂铑10 - 铂热电偶测量温度值与温差热电势的关系不是单一的函数关系,而与热电偶丝所处环境的温度梯度有关。换句话说如果将热电偶的测温端和参考端都放在恒温器中,改变热电偶测温端和参考端之间温场的分布,测量所得到的温差热电势也随之改变。我们把这种现象叫做热电偶的不均匀现象。产生这种现象的原因主要有两个,一是热电偶丝材存在着应力,应力使得热电偶丝材金属的热电特性改变,通过足够时间的退火可以消除此项的影响;二是热电偶丝材成分

的不均匀,这个问题是在热电偶丝材的制造过程中产生的,因为多数热电偶的材料是采用合金材料,在材料的熔炼配置过程中,很难使得生产出来的热电偶丝每一段的成分都一样,并且在制造成型后,更无法改变它的成分的均匀性。

要从根本上解决热电偶不均匀性带来问题,必须从热电偶的材料入手,各国目前都着手研究使用纯金属材料来制作热电偶。因为纯金属制成的热电偶材料可从根本上解决因材料不均匀而引起的热电偶不均匀问题。目前金/铂热电偶,铂/钯热电偶是各国研究的热点。

除了在热电偶材料上改进外,人们对热电偶的传统结构也进行了探索。传统的热电偶在结构上将热电偶电极的两种金属材料直接焊接在一起而构成测温端,使用双孔绝缘管(通常为氧化铝)将其隔离,人们发现在将热电偶放入较高温度时,由于构成热电偶两极的金属材料的热膨胀系数不同,而双孔绝缘管又将热电偶两极卡住,这样使得热电偶的测温端产生了机械应力,这些机构应力势必产生附加热电势。为了消除机械应力的影响,人们在热电偶的测温端做了改进,在热电偶的测温端不将正负电极直接焊接上,而用应力消除圈将热电偶的正负电极连接起来,这样在热电偶测温时由其两极金属材料的热膨胀系数差异而产生的机械应力将得到基本消除。

2.发展方向

国内外的许多研究机构和制造商,根据工业过程自动化的检测和控制要求,不断设计和制造出许多新的热电偶,目前的发展趋势大致如下:

1)产品结构铠装化

铠装热电偶具有寿命长、可弯曲、热响应时间小、耐震动等的优点,倍受用户青睐。它将逐步地代替过去用绝缘瓷珠穿丝的装配结构型式。

2)产品结构安装套管化

由于热电偶检测元件实现了铠装化,因此可以做到整机与套管分离成两部分,用户可以预先将套管安装在工业过程设备上,热电偶可以在不停机的情况下安装或拆卸,设备中的介质不泄漏,既可靠又安全。

3)检测、信号转换和现场显示一体化

随着电子产品的小型化,原来作为直流4~20mA或1~5V标准信号传输的热电偶系列的温度变送器也已小型化,可以安装在现场的热电偶接线盒内与热电偶成为一体,且只需用两根普通导线连接而不必使用较为昂贵的补偿导线。检测、信号转换和显示成为一体的带转换器、带显示的热电偶则可满足现场显示的需要。

近年来,现场总线已广泛应用于许多自动化控制领域,带智能型转换器的热电偶也已面世。它采用二线制4~20mA或数字化输,通过手持终端操作器接在4~20mA任意位置,实现数字信号通讯的现场或远距离重调。它还具有PID的控制功能。在这种情况下,4~20mA作为控制输出,过程变量是测量的温度值,,设置则可由操作者直接或使用一个可组态的设置操作器来调整,其输出信号可接到执行单元;同时信号的数字部分提供过程变量、输出、设置和其他转换参数或PID参数。

三、应用分析

1.应用实例

铠装热电偶具有能弯曲、耐高压、热响应时间快和坚固耐用等许多优点,它和工业用装配式热电偶一样,作为测量温度的变送器,通常和显示仪表、记录仪表和电子调节器配套使用,同时亦可作为装配式热电偶的感温元件。它可以直接测量名种生产过程中从 0~800℃范围内的液体、蒸汽和气体介质以及固体表面的温度。

图3 铠装热电偶

铠装热电偶的结构是由导体、高绝缘氧化镁、外套1Cr18Ni9Ti不锈钢保护管,经多次一体拉制而成。铠装热电偶产品主要由接线盒、接线端子和铠装热电偶组成基本结构,并配以各种安装固定装置组成。

铠装热电偶分绝缘式和接壳式两种。

基本技术指标:

注 :1、t为被测温度的绝对值

2、T型分度号产品需与厂方协商订货

2.接口电路

由于热电偶只产生毫伏级输出,考虑到单片机的采样要求,要对输出信号采取线性放大。采用下图所示的放大电路可将输出放大100倍。

图4 热电偶放大电路

为了维持热电偶传感器系统的精度,参考接点必须处于严格定义的温度。在实际应用中,当环境参考温度发生变化时,必须引入补偿。

图5 冷端补偿电路

采用电子冷端补偿是非常有效的做法。如图所示,R1为上拉电阻,一方面产生了偏置,有效改善运放的输入失调,另一方面起“断偶报警”作用,因当热电偶长期使用老化开裂后呈开路形式,有R1将输入拉高,超越了正常输入范围,同时为防止对电势的影响,通常R1不小于20M。R2、C1组成一阶低通滤波器。VR1用于调整0输入时的静态偏差,而R4、VR2与R3决定同相放大器的环路放大倍数(选择同相形式可充分利用同相器的高阻抗特性)。输出电压的比例因子取决于电路中R5、VR3、R6的分压比。对照热电偶的温度系数,适当调整VR3,便可实现冷端受环境温度变化的完全补偿。

四、参考文献

[1] 百度百科,词条“热电偶”、“热电效应”;

[2] 百度文库,《热电偶型号》;

[3] 马西秦主编,自动检测技术,机械工业出版社,2008.9;

[4] 郑玮、向明东、陈伟昕,热电偶精密测温技术的发展方向,《现代测量与实验室管理》

2002 年第4 期;

[5] 游伯坤,热电偶与热电阻的新发展,中国仪电报,1999212201第4版;

[6] 陈浩、邓忠华、余红梅,热电偶测温系统原理及应用,《制造业自动化》,第26 卷第9

期,2004.9;

[7] 吴志祥,实用温度测量技术,《常州工学院学报》,VOL.16 NO.4,2003.10;

[8] 张庆玲,热电偶传感器测温系统的设计应用,《西北轻工业学院学报》,VOL.18,2000.3;

[9] 张成文、苍松,智能温度监测系统,《佳木斯大学学报》,VOL.18 NO.1,2000.3;

[10] 王魁汉、樊世川、崔传孟、周玮、李鹏,工业用新型温度传感器的开发与应用,《工

业加热》,1999年第3期。

热电偶特性及其应用研究实验报告

实验报告 热电偶特性及其应用研究 姓名: 学号: 班级:

热电偶特性及其应用研究 一、实验目的 1.了解电位差计的构造、工作原理及使用方法; 2.了解温差电偶的测温原理和基本参数; 3.测量铜—康铜热电偶的温差系数。 二、实验原理 1.电位差计的补偿原理 为了能精确测得电动势的大小,可采用图2.10.2所示的线路。其中是电动势可调节的电源。调节,使检流计指针指零,这就表示回路中两电源的电动势、方向相反,大小相等。故数值上有(2.10.1) 这时我们称电路得到补偿。在补偿条件下,如果的数值已知,则即可求出。据此原理构成的测量电动势和电位差的仪器称为电位差计。 2.实际电位差计的工作原理 使用时,首先使工作电流标准化,即根据标准电池的电动势调节工作电流I。将开关K2合在S位置,调节可变电阻,使得检流计指针指零。这时工作电流I 在段的电压降等于标准电池的电动势,即(2.10.2) 再将开关K2合向X位置,调节电阻Rx,再次使检流计指针指零,此时有

这里的电流I就是前面经过标准化的工作电流。也就是说,在电流标准化的基础上,在电阻为Rx的位置上可以直接标出与对应的电动势(电压)值,这样就可以直接进行电动势(电压)的读数测量。 3. 温差电偶的测温原理 把两种不同的金属或不同成分的合金两端彼此焊接成一闭合回路,如图所示。 若两接点保持在不同的温度t和t0,则回路中产生温差电动势。温差电动势的大小除了和组成热电偶的材料有关外,唯一决定于两接点的温度函数的差。一般地讲,电动势和温差的关系可以近似地表示成 这里t是热端温度,t0是冷端温度,c称为温差系数,其大小决定于组成电偶的材料。 三、实验所用仪器及使用方法 1.仪器:UJ31型电位差计、标准电池、光点检流计、稳压电源、温差电偶、冰筒、水银温度计、烧杯、控温实验仪等。 2.使用方法 UJ31型电位差计: (1)将K2置于“断”,K0置于“×1”档(或“×10”档,视被测量值而定),分别接上标准电池、检流计、工作电源。被测电动势(或电压)接于“未知1”或“未知2”。 (2)根据温度修正公式计算出标准电池的电动势Es的值,调节Rs的示值与其相等。将K2旋至“标准”档,按下K1(粗)按钮,调节Rn1、Rn2、Rn3,使检流计指针指零,再按下K1(细)按钮,用Rn3精确调节至检流计指针指零。 (3)将K2旋至“未知1”(或“未知2”)位置,按下K1(粗)按钮,调节读数转盘Ⅰ、Ⅱ、Ⅲ,使检流计指针指零,再按K1(细)按钮,细调读数转盘III使 检流计指针精确指零。此时被测电动势(或电压)Ex等于读数转盘Ⅰ、Ⅱ、Ⅲ上 的示值乘以相应的倍率之和。 标准电池: 实验中使用饱和标准电池的20℃时的电动势E =1.0186V。则温度为t℃时 20 的电动势可由下式近似得到 控温实验仪: 轻按“SET”按钮开始设置温度。此时轻按“位移”按钮,改变调节焦点位置;轻按“下调”按钮,减小焦点处数字;轻按上调按钮时,增大焦点处数字。再次轻按“SET”按钮,并设置加热电流后开始加热。

传感器原理与应用习题_第7章热电式传感器

《传感器原理与应用》及《传感器与测量技术》习题集与部分参考答案 教材:传感器技术(第3版)贾伯年主编,及其他参考书 第7章热电式传感器 7-1 热电式传感器有哪几类?它们各有什么特点? 答:热电式传感器是一种将温度变化转换为电量变化的装置。它可分为两大类:热电阻传感器和热电偶传感器。 热电阻传感器的特点:(1)高温度系数、高电阻率。(2)化学、物理性能稳定。(3)良好的输出特性。(4).良好的工艺性,以便于批量生产、降低成本。 热电偶传感器的特点:(1)结构简单(2)制造方便(3)测温范围宽(4)热惯性小(5)准确度高(6)输出信号便于远传 7-2 常用的热电阻有哪几种?适用范围如何? 答:铂、铜为应用最广的热电阻材料。铂容易提纯,在高温和氧化性介质中化学、物理性能稳定,制成的铂电阻输出-输入特性接近线性,测量精度高。铜在-50~150℃范围内铜电阻化学、物理性能稳定,输出-输入特性接近线性,价格低廉。当温度高于100℃时易被氧化,因此适用于温度较低和没有侵蚀性的介质中工作。 7-3 热敏电阻与热电阻相比较有什么优缺点?用热敏电阻进行线性温度测量时必须注意什么问题? 7-4 利用热电偶测温必须具备哪两个条件? 答:(1)用两种不同材料作热电极(2)热电偶两端的温度不能相同 7-5 什么是中间导体定律和连接导体定律?它们在利用热电偶测温时有什么实际意义? 答:中间导体定律:导体A、B组成的热电偶,当引入第三导体时,只要保持第三导体两端温度相同,则第三导体对回路总热电势无影响。利用这个定律可以将第三导体换成毫伏表,只要保证两个接点温度一致,就可以完成热电势的测量而不影响热电偶的输出。 连接导体定律:回路的总电势等于热电偶电势E AB(T,T0)与连接导线电势E A’B’(Tn,T0)的代数和。连接导体定律是工业上运用补偿导线进行温度测量的理论基础。 7-6 什么是中间温度定律和参考电极定律?它们各有什么实际意义? 答:E AB(T,Tn,T0)=E AB(T,Tn)+E AB(Tn,T0) 这是中间温度定律表达式,即回路的总热电势等于E AB(T,Tn)与E AB(Tn,T0)的代数和。Tn为中间温度。中间温度定律为制定分度表奠定了理论基础。 7-7 镍络-镍硅热电偶测得介质温度800℃,若参考端温度为25℃,问介质的实际温度为多少? 答:t=介质温度+k*参考温度(800+1*25=825) 7-8 热电式传感器除了用来测量温度外,是否还能用来测量其他量?举例说明之。 7-9 实验室备有铂铑-铂热电偶、铂电阻器和半导体热敏电阻器,今欲测量某设备外壳的温度。已知其温度约为300~400℃,要求精度达±2℃,问应选用哪一种?为什么?

热电偶传感器的应用与发展.

热电偶传感器的应用与发展 一、引文 1.工作原理 在大量的热工仪器中,热电偶作为温度传感器,得到了广泛使用。它是利用热电效应来进行工作的,其热电势率一般为几十到几μV/℃。所谓的热电效应,是指当受热物体中的电子(洞),因随着温度梯度由高温区往低温区移动时,所产生电流或电荷堆积的一种现象。热电偶是将两种不同成份的导体,两端经焊接,形成回路,直接测量端叫工作端(热端),接线端子端叫冷端。当热端和冷端存在温差时,就会在回路里产生热电流,接上显示仪表,仪表上就会指示所产生的热电动势的对应温度值。电动势随温度升高而增长。 由于热电偶直接和被测对象接触,不受中间介质的影响,因而测量精度高,并且可以在-200~+1600℃范围内进行连续测量,甚至有些特殊热电偶,如钨-铼,可测量高达+2800℃的高温,且构造简单,使用方便。但是,热电偶只产生毫伏(mV)级输出,且需冷接点补偿(CJC)技术,延长时需补偿导线。 2.补偿原理 利用热电偶传感器测量温度时,冷端温度的影响是不可忽略的,且热电偶冷端暴露于作业环境中,可以认为冷端温度与作业环境温度一致。作业环境温度随季节气候变化而变化,因此冷端温度的测定是动态测定,冷端电势补偿是动态补偿。 在热电偶冷热端电势关系中,有如下公式存在: E AB(t,0)=E AB(t,t n)+E AB(t n,0) 其中,t为实测温度;t n为冷端温度;E AB(t,0)为冷端温度为0℃时,热电偶电势输出; E AB(t,t n)为冷端温度为t n℃时,热电偶电势输出;E AB(t n,0)为冷端补偿电势。上式中,E AB(t,t n)可直接从热电偶输出中检测到,只要获取冷端温度t n,就可以由分度表换算出E AB(t n,0),进而求出E AB(t,0)。于是完成了冷端电势补偿,并可换算出实测温度t 。

温度传感器的选用

温度传感器的选用 摘要:在各种各样的测量技术中,温度的测量可能是最为常见的一种,因为许多的应用领域,掌握温度的确切数值,了解温度与实际状态之间的差异等,都具有极为重要的意义。就以测量为例,在力的测量,压力,流量,位置及电平高低等测量的过程中,为了提高测量精度,通常都会要求对温度进行监视。可以说,各种的物理量都是温度的函数,要得到精确的测定结果,必须针对温度的变化,作出精确的校正。 关键字:温度传感器热电偶热电阻集成电路 引言: 工业上常用的温度传感器有四类:即热电偶、热电阻RTD、热敏电阻及集成电路温 度传感器;每一类温度传感器有自己独特的温度测量围,有自己适用的温度环境;没有一种温度传感器可以通用于所有的用途:热电偶的可测温度围最宽,而热电阻的测量线性度最优,热敏电阻的测量精度最高。 1、热电偶 热电偶由二根不同的金属线材,将它们一端焊接在一起构成;参考端温度(也称冷补偿端)用来消除铁-铜相联及康铜-铜联接端所贡献的误差;而两种不同金属的焊接端放置于需 要测量温度的目标上。 两种材料这样联接后会在未焊接的一端产生一个电压,电压数值是所有联接端温度的函数,热电偶无需电压或电流激励。实际应用时,如果试图提供电压或电流激励反而会将误差 引进系统。 鉴于热电偶的电压产生于两种不同线材的开路端,其与外界的接口似乎可通过直接测量两导线之间的电压实现;如果热电偶的的两端头不是联接至另外金属,通常是铜,那末事情 真会简单至此。 但热电偶需与另外一种金属联接这一事实,实际上又建立了新的一对热电偶,在系统中引入了极大的误差,消除此误差的唯一办法是检测参考端的温度,以硬件或硬件-软件相结 合的方式将这一联接所贡献的误差减掉,纯硬件消除技术由于线性化校正的因素,比软件-硬件相结合技术受限制更大。一般情况下,参考端温度的精确检测用热电阻RTD,热敏电 阻或是集成电路温度传感器进行。原则上说,热电偶可由任意的两种不同金属构建而成,但在实践中,构成热电偶的两种金属组合已经标准化,因为标准组合的线性度及所产生的电压与温度的关系更趋理想。 表3与图2是常用的热电偶E,J,T,K,N,S,B R的特性。

热电偶传感器习题及答案

第九章热电偶传感器 一、单项选择题 1)正常人的体温为37C,则此时的华氏温度约为______,热力学温度约为______。 A. 32F,100K B. 99F,236K C .99F,310K D. 37F,310K 2)_____的数值越大,热电偶的输出热电势就越大。 A. 热端直径 B. 热端和冷端的温度 C. 热端和冷端的温差 D. 热电极的电导率 3)测量钢水的温度,最好选择______热电偶;测量钢退火炉的温度,最好选择_____热电偶;测量汽轮机高压蒸气(200C左右)的温度,且希望灵敏度高一些,选择______热电偶为宜。 A. R B. B C. S D. K E .E 4)测量CPU散热片的温度应选用______型的热电偶;测量锅炉烟道中的烟气温度,应选用______型的热电偶;测量100m深的岩石钻孔中的温度,应选用______型的热电偶。 A. 普通 B.铠装 C. 薄膜 D. 热电堆 5)在热电偶测温回路中经常使用补偿导线的最主要的目的是______。 A. 补偿热电偶冷端热电势的损失 B. 起冷端温度补偿作用 C. 将热电偶冷端延长到远离高温区的地方 D. 提高灵敏度 二、分析与问答 1、简述热电偶与热电阻的测量原理的异同。 2、设一热电偶工作时产生的热电动势可表示为E AB (t , t ),其中A、B、t、t 各代表什么意义? t 在实际应用时常应为多少? 3、用热电偶测温时,为什么要进行冷端补偿?冷端补偿的方法有哪几种? 三、计算题 1、用一K型热电偶测量温度,已知冷端温度为40℃,用高精度毫伏表测得此时 的热电动势为,求被测的温度大小? 2、用一K型热电偶测钢水温度,形式如图示。已知A、B分别为镍铬、镍硅材料 制成,A`、B`为延长导线。问: 1)满足哪些条件时,此热电偶才能正常工作? 2)A、B开路是否影响装置正常工作?原因? 3)采用A`、B`的好处? 4)若已知t 01=t 02 =40℃,电压表示数为,则钢水温度为多少? 5)此种测温方法的理论依据是什么? 3、试说明下面各图中分别是测量哪些被测温度量? 习题答案:

热电阻传感器

热电传感器 热电阻传感器的介绍 专业:生物医学工程 班级:生物1201 组员:刘少杰刘小斌日期:2015.9.18

新技术革命的到来,世界开始进入信息时代。在利用信息的过程中,首先要解决的就是要获取准确可靠的信息,而传感器是获取自然和生产领域中信息的主要途径与手段。传感器早已渗透到诸如工业生产、宇宙开发、海洋探测、环境保护、资源调查、医学诊断、生物工程、甚至文物保护等等极其之泛的领域。可以毫不夸张地说,从茫茫的太空,到浩瀚的海洋,以至各种复杂的工程系统,几乎每一个现代化项目,都离不开各种各样的传感器。 热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。热电阻传感器主要是利用电阻值随温度变化而变化这一特性来测量温度及与温度有关的参数。在温度检测精度要求比较高的场合,这种传感器比较适用。目前较为广泛的热电阻材料为铂、铜、镍等,它们具有电阻温度系数大、线性好、性能稳定、使用温度范围宽、加工容易等特点。用于测量-200℃~+500℃范围内的温度。 温度测量系统应用广泛,涉及到各行各业的各个方面,在各种不同的领域中都占有重要的位置。从降低开放成本扩大适用范围、系统运行的稳定性、可靠性出发,设计一种以Pt100铂热电阻为温度信号采集元件的传感器温度测量系统。才测量系统不但可以测量室内的温度,还可以测量液体等的温度,在实际应用中,该系统运行稳定、可靠,电路设计简单实用。热电阻传感器工作原理 在金属中,载流子为自由电子,当温度升高时,虽然自由电子数目基本不变(当温度变化范围不是很大时),但每个自由电子的动能将增加,因而在一定的电场作用下,要使这些杂乱无章的电子作定向运动就会遇到更大的阻力,导致金属电阻值随温度的升高而增加。热电阻就要是利用电阻随温度升高而增大这一特性来测量温度的。 热敏电阻是一种新型的半导体测温元件。半导体中参加导电的是载流子,由于半导体中载流子的数目远比金属中的自由电子数目少得多,所以它的电阻率大。随温度的升高,半导体中更多的价电子受热激发跃迁到较高能级而产生新的电子—空穴对,因而参加到电的载流子数目增加了,半导体的电阻率也就降低了(电导率增加)。因为载流子数目随温度上升按指数规律增加,所以半导体的电阻率也就随温度上升按指数规律下降。热敏电阻正是利用半导体这种载流子数随温度变化而变化的特性制成的一种温度敏感元件。当温度变化1℃时,某些半导体热敏电阻的阻值变化将达到

热电偶传感器习题及答案

1、简述热电偶与热电阻的测量原理的异同。 答:(1). 相同点:都能测温度且只能直接测温度量 (2). 不同点:热电阻传感器原理为阻值大小变化对应温度变化,而热电偶传感器为热电动势大小变化对应温度变化 2、设一热电偶工作时产生的热电动势可表示为E AB(t , t0),其中A、B、t、t0各代 表什么意义t0在实际应用时常应为多少 答:A、B——两热电极 T——热端温度,即被测温度 t0————冷端温度 t0常应为0℃ 3、用热电偶测温时,为什么要进行冷端补偿冷端补偿的方法有哪几种 答:因工作现场常常缺乏使热电偶传感器的冷端保持在0℃的条件 4、热电偶在使用时为什么要连接补偿导线 答:因为在使用热电偶测温时,必须将热电偶的参考端温度保持恒定,但在现场使用时,热电偶参考端往往处于高温热源附近,必须将它远离热源,移动到温度较为稳定的场所,又因补偿导线在规定使用温度范围内具为与热电偶相同的温度—热电势关系,因而它可以起到延长热电偶的作用,所以热电偶在使用时要连接补偿导线 5、什么叫测温仪表的准确度等级 答:测温仪表的准确度等级是指测温仪表准确度的数字部分,也就是仪表的准确度去掉百分号。 6、什么是热电偶 答:热电偶是通过测量电势从而测量温度的一种感温元件,是由两种不同成分的导体焊接在一起构成的。当两端温度不同时,在回路中就会有热电势产生,将温度信号转变为电信号,再由显示仪表显示出来。 7、为什么要进行周期检定 答:各种计量器具由于在频繁的使用中会发生变化和磨损,失去原有的精度,从而影响量值的准确性。为使测量的数据准确,必须对各种计量器具进行周期检定。

8、利用热电偶测温具有什么特点 答:测量精度高;结构简单;动态响应快;可作远距离测量;测量范围广。 计算题 1、用一K型热电偶测量温度,已知冷端温度为40℃,用高精度毫伏表测得此时的热电动势为,求被测的温度大小 1、E AB(t0,t)= E AB(t0,t n)+ E AB(t n,t) 即E AB(0,t)= E AB(0,40℃)+ E AB(40℃,t)查表,得: E AB(0,40℃)= 所以:E AB(0,t)=+=(mV) 查表,得t=740℃ 2、用一K型热电偶测钢水温度,形式如图示。已知A、B分别为镍铬、镍硅材料制成,A`、B`为延长导线。问: 1)满足哪些条件时,此热电偶才能正常工作 t01=t02,t n1=t n2 2)A、B开路是否影响装置正常工作原因 不影响。因钢水导电且温度处处相同。 3)采用A`、B`的好处为了使冷端远离高温区,降低测量成本 4)若已知t01=t02=40℃,电压表示数为,则钢水温度为多少 由E AB(t,t0)= E AB(t,t n)+ E AB(t n,t0)得: E AB(t,t0)=+=(mV) 查表得t=950℃ 5)此种测温方法的理论依据是什么中间温度定律

热电阻的测温电路

Pt100热电阻的测温电路 [摘要] 热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。 热电阻传感器主要是利用电阻值随温度变化而变化这一特性来测量温度及与温度有关的参数。在温度检测精度要求比较高的场合,这种传感器比较适用。目前较为广泛的热电阻材料为铂、铜、镍等,它们具有电阻温度系数大、线性好、性能稳定、使用温度范围宽、加工容易等特点。用于测量-200℃~+500℃范围内的温度。 温度测量系统应用广泛,涉及到各行各业的各个方面,在各种不同的领域中都占有重要的位置。从降低开放成本扩大适用范围、系统运行的稳定性、可靠性出发,设计一种以Pt100铂热电阻为温度信号采集元件的传感器温度测量系统。才测量系统不但可以测量室内的温度,还可以测量液体等的温度,在实际应用中,该系统运行稳定、可靠,电路设计简单实用。 [关键字] 传感器 Pt100热电阻温度测量

目录 1 前言 (4) 1.1 传感器概况 (4) 1.2 设计目的 (7) 2 设计要求 (8) 2.1 设计内容 (8) 2.2 设计要求 (9) 3 原器件清单 (10) 4 Pt100热电阻的测温电路 (11) 4.1 总体电路图 (11) 4.2 工作原理 (11) 5 Pt100热电阻测温电路的原理及实现 (12) 5.1 测温电路的工作原理 (12) 5.2 测温电路的实现 (14) 5.3 测量结果及结果分析 (15) 6 制作过程及注意事项 (16) 6.1 制作过程 (16) 6.2 注意事项 (17) 7 总结 (18) 8 致谢 (19) 参考文献 (20)

热电偶测温原理及其应用

热电偶测温原理及其应用 重点 1、掌握热电偶测温原理 2、了解热电偶测量电路及其补偿方法 3、了解热电偶应用 一、热电偶简介 热电温度记录仪常以热电偶作为测温元件. 它广泛用来测量 -200 ℃ ~1300 ℃范围内的温度,特殊情况下,可测至2800 ℃的高温或 4K 的低温。 它具有结构简单,价格便宜,准确度高,测温范围广等特点。 由于热电偶将温度转化成电量进行检测,使温度的测量、控制、以及对温度信号的放大变换都很方便,适用于远距离测量和自动控制。 在接触式测温法中,热电温度计的应用最普遍。 二、热电偶测温原理

1.定义: 由两种导体组合而成,将温度转化为热电动势的传感器叫做热电偶。2. 测温原理 : 热电偶的测温原理基于热电效应。 将两种不同材料的导体 A 和 B 串接成一个闭合回路,当两个接点 1 和 2 的温度不同时,如果 T > T0(如上图 12-1热电效应),在回路中就会产生热电动势,在回路中产生一定大小的电流,此种现象称为热电效应。 热电动势记为 E AB,导体 A 、 B 称为热电极。接点 1 通常是焊接在一起的,测量时将它置于测温场所感受被测温度,故称为测量端(或工作端,热端)。 接点 2 要求温度恒定,称为参考端(或冷端)。 3.热电效应 导体 A 和 B 组成的热电偶闭合电路在两个接点处分别由e AB (T) 与e AB (T0 )两个接触电势,又因为 T > T0,在导体 A 和 B 中还各有一个温差电势。所以闭合回路总热电动势 E AB (T,T0 ) 应为接触电动势和温差电势的代数和,即: 4.闭合回路总热电动势

对于已选定的热电偶,当参考温度恒定时,总热电动势就变成测量端温度T 的单值函数,即E AB( T, T 0 )= f ( T ) 。这就是热电偶测量温度的基本原理。 在实际测温时,必须在热电偶闭合回路中引入连接导线和仪表。 三、有关热电偶测温的基本原则 由一种均质导体组成的闭合回路,不论导体的横截面积,长度以及温度分布如何均不产生热电动势。 如果热电偶的两根热电极由两种均质导体组成,那么,热电偶的热电动势仅与两接点的温度有关,与热电偶的温度分布无关; 如果热电极为非均质电极,并处于具有温度梯度的温场时,将产生附加电势,如果仅从热电偶的热电动势大小来判断温度的高低就会引起误差。 1、均质导体定则 : 2、中间导体定则: 在热电偶回路中接入第三种材料的导体,只要两端的温度相等,该导体接入就不会影响热电偶回路的总热电动势。

铂热电阻温度传感器测温电路

铂热电阻温度传感器测温电路 时间:2010-01-10 15:08:48 来源:深圳作者:徐明发 使用运算放大器和铂测温电阻温度检测电路 1,测温电阻转换电路 测温电阻是利用电阻值随温度变化的器件,在金属中,JIS规定了铂测温电阻、铜测温电阻的标准。而且,由0℃时的电阻值R0和t℃时的电阻值Rt之比(R t/R0)求温度t。在任意t℃时的电阻值R t为 R t=R0{1+a(t-t0)} (1) 这里,a是温度系数,铂为0.003916,铜为0.004250。 测温电阻的电阻值,在0℃用100Ω或50Ω。 铜测温电阻的温度系数不随温度变化,所以不需要线性补偿。但是缺点是能够使用的最高温度低,约为120℃。 铂测温电阻适合于±200℃左右比较低温的温度测定由于精度好,多被采用。但是,电阻温度系数稍有些非线性,所以需要进行线性补偿。 可是铂测温电阻的温度-电阻特性为饱和型,特性式为 R t=R0(1+AT+BT2)(2) 的高次式。 2,测温电阻的线性补偿 图1表示铂(P t)测温电阻的温度-电阻特性是饱和型,所以关于线性补偿不需要使用热电偶那样的折线逼近电路和高次函数发生电路,对高温度可用提高输出电平那样的电路来实现。 图2表示测温电阻转换器的基本电路。在这个电路中E为基准电压,输出电压E0电压可以用 (3) 表示。R4是测温电阻的电阻值。 在测温(R4)流过的电流,JIS规定为10,5,2mA。这在测量测温电阻的电阻值时,由于测量电流而产生I2R的焦尔热,成为测定误差,不可忽视,所以规定了测定电流的上限。 测定电流小,焦尔热的产生少,输出电压也小,所以还必须考虑下级的放大器精度。 可是,在(3)式中,如果将E、R1、R2、R3一定,则产生对应于R4=R t变化的输出电压E0。 选择R1=R2,R3=R4=100Ω,如果R4电流5mA左右,设E为10V,从下式 (4) R1为2.4Ω。但是,图2的基本电路为反相电路,所以产生负的输出电压。 在图3中对基本电路为的下一级设计了反相放大电路,并设计了在0℃为0V的零调整和增益调整的电位器。 基准电源E使用温度变化小的。在图3中,使用温度系数小的(±50ppm/℃)TL430。 这个电路没有进行线性补偿,所以对大范围的温度测量误差大,不实用。但是,测温电阻的温度-电阻特性,如上所示,有随温度上升变化达到饱和的特性,因此,利用正反馈可以进行线性补偿。 图4是使用正反馈进行线性补偿的电路,由于把约4%左右的电压进行正反馈,如图5所示那样,在0~500℃的测温范围内,可进行线性补偿到0.4℃以内的精度。 可是,在用微机管理温度这样的模拟信号场合,要用A-D转换器读出输出电压,进行数据处理。测温电阻的线性补偿可以用软件进行比较简单地处理。所以,在考虑系统整体时,需要考虑用硬件进行或用软件进行的问题。 图1 铂测温电阻的温度-电阻特性非线性图2 测温电阻的基本电路

热电阻应用.

热电式传感器应用 ——在热水器,冰箱,电饭锅等电器中的应用在我们的日常生活当中,温度控制时时刻刻都存在着。在热水器中打一杯热水,热水温度的控制就需要温度传感器;夏天冰箱里的食物清凉可口而且不易变质,冰箱里的温度控制也需要温度传感器;感冒发烧时测体温用的体温计也是需要温度传感器的帮忙;还有生活中其他的东西很多都需要温度控制,温度测量元件的帮助。 一、热电阻 既然,热电阻在我们生活中是如此的重要,我们首先要了解其工作原理。 热电阻,主要是利用电阻随温度升高而增大这一特性来测量温度的。热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热电阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。金属热电阻的感温元件有石英套管十字骨架结构,麻花骨架结构得杆式结构等。金属热电阻常用的感温材料种类较多,最常用的是铂丝。工业测量用金属热电阻材料除铂丝外,还有铜、镍、铁、铁—镍、钨、银等。薄膜热电阻是利用电子阴极溅射的方法制造,可实现工业化大批量生产。 其工作原理是,温度升高,金属内部原子晶格的振动加剧,从而使金属内部的自由电子通过金属导体时的阻碍增大,宏观上表现出电阻率变大,电阻值增加,我们称其为正温度系数,即电阻值与温度的变化趋势相同。 热电阻的结构和分类:按其结构类型来分,热电阻 有普通型、铠装型、薄膜型等。普通型热电阻由感温元 件(金属电阳丝)、支架、引线、保护套管及接线盒等基 本部分组成。为避免电感分量,热电阻丝常采用双线并 绕,制成无感电阻。 1、感温元件(金属电阻丝) 由于铂的电阻率较大,而且相对机械强度较大,通 常铂丝的直径在(0.03~0.07)mrn±0.005mm。可单层绕 制,若铂丝太细、电阻体可做得小,但强度低,若铂丝

热电偶传感器的应用与发展

HEFEI UNIVERSITY 热电偶式传感器的应用与发展 系别电子信息与电气工程系 班级 09自动化1班 学号09050750020905075014 0905075023 姓名王林吴红田坤 完成时间2011.11.25

热电偶传感器应用与发展 摘要:目前,对于热电偶传感器的研究已经很透彻。在很多领域里,热电偶的应用是达到了举足轻重的程度,应用很广泛,效果也很理想。但是,其发展还有很大的空间,对于它的性能、用途以及使用范围还需进一步了解。鉴于热电偶的高速发展,本文主要对它的应用与发展进行阐述。 关键字:热电偶传感器测温应用发展 一、热电偶传感器的简介 热电偶传感器在许多方面都具备了一种理想温度传感器的条件,是一种典型的自发电传感器。在温度测量领域获得广泛应用。在《自动检测技术》、《传感器技术》等课教学中,热电偶传感器也是比较重要的内容,它涉及较多的理论与基本定律。在温度测量中,热电偶的应用极为广泛,它的优点是:结构简单、制造方便、测量范围广、精度高、惯性小和输出信号便于远传等等。热电偶是一个有源元件,测量时不需要外加电源。所以常被用作测量炉子、管道内的气体或液体的温度及固体的表面温度。 二、热电偶的工作原理及热电动势 两种不同材料的导体组合成为一个闭合回路(图1),当回路的两个接触点分别置于不同的温度场中时,回路就会产生一个电动势(图2),即为“热电动势”。 图1热电偶回路图2热电偶回路的电动势 热电动势有两部分组成:接触电动势,温差电动势。 (1)接触电动势公式:e AB(t)=U At-U Bt e AB(t0)=U At0-U Bt0 (2)差动电动势公式:e A(t,t0)=U At-U At0 e B(t,t0)=U Bt-U Bt0

热电阻和热电偶的区别及现场应用

热电阻和热电偶的区别 电站现场使用的热电偶一般是两线制的,而热电阻一般是三线制或者四线制的。 热电偶是一种测温度的传感器,与热电阻一样都是温度传感器,但是他和热电阻的区别主要在于: 一、信号的性质,热电阻本身是电阻。温度的变化,使电阻产生正的或者是负的阻值变化;而热电偶,是产生感应电压的变化,他随温度的改变而改变。 二、两种传感器检测的温度范围不一样,热阻一般检测0-150度温度范围,最高测量范围也可达600度左右(当然可以检测负温度). 常用的铂热电阻(Pt100、Pt10)、铜电阻Cu50(负50-150度)。热电偶可检测0-1000度的温度范围(甚至更高),热电偶常用的有铂铑——铂(分度号S,测量范围0-1300度)、镍铬——镍硅(分度号K,测量范围0-900度)、镍铬——康铜(分度号E,测量范围0-600度)、铂铑30——铂铑6(分度号B,测量范围0-1600度)。所以,前者一般用于较低温度检测,后者可应用于较高温度检测。 三、从材料上分,热阻是一种金属材料,具有温度敏感变化的金属材料,热电偶是双金属材料,即两种不同的金属,由于温度的变化,在两种不同的金属丝的两端产生电势差。 四、PLC对应的热电阻和热电偶的输入模块也是不一样的,这句话是没问题,但一般PLC都直接接入4~20mA信号,而热电阻和热电偶一般都带有变送器才接入PLC。要是接入DCS的话就不必用变送器了!

热电阻是RTD信号,热电欧是TC信号! 五、PLC也有热电阻模块和热电偶模块,可直接输入热电阻和热电偶信号。 六、热电偶有J、T、N、K、S等型号,有比电阻贵的,也有比电阻便宜的,但是算上补偿导线,综合造价热电偶就高了。 七、虽然都是接触式测温仪表,但它们的测温范围不同。热电偶使用在温度较高的环境,因它们在中,低温区时输出热电势很小(查表可以看一下),当电势小时,对抗干扰措施和二次表和要求很高,否则测量不准,还有,在较低的温度区域,冷端温度的变化和环境温度的变化所引起的相对误差就显得很突出,不易得到全补偿。这时在中低温度时,一般使用热电阻测温范围为200-500,甚至还可测更低的温度(如用碳电阻可测到1K左右的低温).现在正常使用铂热电阻Pt100,(也有Pt50,100和50代表热电阻在0度时的阻值,在旧分度号中用BA1,BA2来表示,BA1在0度时阻值为46欧姆,在工业上也有用铜电阻,分度号为CU50和CU100,但测温范围较小,在-50-150之间.在一些特殊场合还有铟电阻,锰电阻等) 2.热电偶测量温度的基本原理是热电效应,二次表是一个检伏计或为了提高精度时使用电子电位差计。电阻是基于导体和半导体的电阻值随温度而变化的特性而工作的,二次表是一个不平衡电桥. 3.由热电偶测温原理可知,只有在其冷端温度恒定时,被测温度才与热电势成单值函数关系.在实际使用中,就用一种热电特性与相应热电偶特性相似的廉价的连接导线(也称为补偿导线),使热电偶冷端引伸到温度相对恒定的地方(最好为0

关于热电偶在工业生产中的应用王耀雷

关于热电偶在工业生产中的应用 摘要 热电偶是温度测量仪表中常用的测温元件,它直接测量温度,并把温度信号转换成热电动势信号,通过电气仪表(二次仪表)转换成被测介质的温度。他的主要特点就是测温范围宽,性能比较稳定,同时结构简单,动态响应好,便于自动控制和集中控制。文章主要介绍了热电偶的种类,工作原理、应用现状、应用前景。 关键词:热电偶,原理,种类,应用,前景 一.热电偶的工作原理与分类 1. 热电偶的工作原理 任意两种材质不同的金属导体或半导体(称为热电偶丝材或热电极)A 和B 首尾连接成闭合回路, 只要两接点T1和T2 的温度不同, 就会产生热电势, 形成热电流, 这就是热电效应。而这种电动势称为热电势。热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度. 热电偶原理图 对于热电偶的热电势,应注意如下几个问题: (1)热电偶的热电势是热电偶工作端的两端温度函数的差,而不是热电偶冷端与工作端,两端温度差的函数; (2)热电偶所产生的热电势的大小,当热电偶的材料是均匀时,与热电偶的长度和

直径无关,只与热电偶材料的成份和两端的温差有关; (3)当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关;若热电偶冷端的温度保持一定,这进热电偶的热电势仅是工作端温度的单值函数。将两种不同材料的导体或半导体A 和B 焊接起来,构成一个闭合回路,如图所示。当导体A 和B 的两个执着点1 和2 之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 2.热电偶的计算方法 1、公式 当热电偶的冷端温度t0 0℃时,由于热端与冷端的温差随冷端的变化而变化,所以测得的热电势E AB(t,t0)与冷端为0℃时所测得的热电势E AB(t,0℃)不等。若冷端温度高于0℃,则E AB(t,t0)

热电阻传感器及其应用

论文题目:热电阻传感器及其应用 姓名:刘奕沛 班级:车辆工程091201 学号:200912070116

热电阻传感器及其应用 摘要:热电阻传感器适用于温度检测要求较高的场合。介绍了金属热电阻和热敏热电阻传感器的工作原理、分类、结构及应用。 关键词:传感器;热电阻;热敏 Abstract Thermal resistor sensor suitable for the occasion that requires high temperature detection. Introduce the operating principle,classification,structure and application about the metal thermal resistor and heat-sensitive resistance sensor. Key words sensor ;thermal resistor ; heat-sensitive 新技术革命的到来,世界开始进入信息时代。在利用信息的过程中,首先要解决 的就是要获取准确可靠的信息,而传感器是获取自然和生产领域中信息的主要途径与手段。传感器早已渗透到诸如工业生产、宇宙开发、海洋探测、环境保护、资源调查、医学诊断、生物工程、甚至文物保护等等极其之泛的领域。可以毫不夸张地说,从茫茫的太空,到浩瀚的海洋,以至各种复杂的工程系统,几乎每一个现代化项目,都离不开各种各样的传感器。 热电阻传感器主要是利用电阻值随温度变化而变化这一特性来测量温度及与温度有关的参数。在温度检测精度要求比较高的场合,这种传感器比较适用。热电阻传感器具有电阻温度系数大、线性好、性能稳定、使用温度范围宽、加工容易等特点。用于测量-200℃~+500℃范围内的温度。 1 工作原理 在金属中,载流子为自由电子,当温度升高时,虽然自由电子数目基本不变(当温度变化范围不是很大时),但每个自由电子的动能将增加,因而在一定的电场作用下,要使这些杂乱无章的电子作定向运动就会遇到更大的阻力,导致金属电阻值随温度的升高而增加。热电阻就要是利用电阻随温度升高而增大这一特性来测量温度的。 热敏电阻是一种新型的半导体测温元件。半导体中参加导电的是载流子,由于半导体中载流子的数目远比金属中的自由电子数目少得多,所以它的电阻率大。随温度的升高,半导体中更多的价电子受热激发跃迁到较高能级而产生新的电子—空穴对,因而参加到电的载流子数目增加了,半导体的电阻率也就降低了(电导率增加)。因为载流子数目随温度上升按指数规律增加,所以半导体的电阻率也就随温度上升按指数规律下降。热敏电阻正是利用半导体这种载流子数随温度变化而变化的特性制成的一种温度敏感元件。当温度变化1℃时,某些半导体热敏电阻的阻值变化将达到(3~ 6)%。在一定条件下,根据测量热敏电阻值的变化得到温度的变化。 2 分类

热电偶的应用与发展

热电偶的应用与发展 专业______________姓名______________学号______________

摘要:目前,对于热电偶传感器的研究已经很透彻。在很多领域里,热电偶的应用是达到了举足轻重的程度,应用很广泛,效果也很理想。但是,其发展还有很大的空间,对于它的性能、用途以及使用范围还需进一步了解。鉴于热电偶的高速发展,本文主要对它的应用与发展进行阐述。 At present, the research of thermocouple sensor has been very thorough. In many fields, the application of thermocouple is reached the degree of play a decisive role, the application is very wide, the effect is also very good. However, the development of space is still great, forits performance, and use range still need further understanding. In view of the rapid development of thermocouple, described in this paper, the application and development of it 关键字:热电偶传感器测温应用发展 1热电偶的工作原理 热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时, 回路中就会有电流通过,此时两端之间就存在Seebeck电动势——热电动势,这就是所谓的塞贝克效应。两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由端,自由端通常处于某个恒定的温度下。根据热电动势与温度的函数关系, 制成热电偶分度表; 分度表是自由端温度在0℃时的条件下得到的,不同的热电偶具有不同的分度表。在热电偶回路中接入第三种金属材料时, 只要该材料两个接点的温度相同, 热电偶所产生的热电势将保持不变,即不受第三种金属接入回路中的影响。因此, 在热电偶测温时, 可接入测量仪表, 测得热电动势后, 即可知道被测介质的温度。两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电势。热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。 2热电偶的种类及应用 常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。 (S型热电偶)铂铑10-铂热电偶铂铑10-铂热电偶(S型热电偶)为贵金属热电偶。偶丝直径规定为0.5mm,允许偏差-0.015mm,其正极(SP)的名义化学成分为铂铑合金,其中含铑为10%,含铂为90%,负极(SN)为纯铂,故俗称单铂铑热电偶。该热电偶长期最高使用温度为1300℃,短期最高使用温度为1600℃。 S型热电偶在热电偶系列中具有准确度最高,稳定性最好,测温温区宽,使用寿命长等优点。它的物理,化学性能良好,热电势稳定性及在高温下抗氧化性能好,适用于氧化性和惰性气氛中。由于S型热电偶具有优良的综合性能,符合国际使用温标的S型热电偶,长期以来曾作为国际温标的内插仪器,

热电阻传感器课程设计解读

东北石油大学 课程设计 2012年6 月25

任务书 课程传感器课程设计 题目热电阻测温系统设计 专业姓名学号 主要内容: 热电阻的特点是测量精度高,性能稳定。其中铂热电阻的测量精度最高。此次设计主要是利用铂热电阻的特性设计测温系统。常用电桥作热电阻的测量电路,其中可设计二线式、三线式、四线式电桥连接测量电路来高精度的测量温度。同时我们还可以利用A/D转换器将温度信号转换成电压或电流来实现温度测量。 基本要求: 1、按照实验原理:以获得被测量温度的两线制铂热电阻、一运算放大电路及一调零电阻;所述两线制铂热电阻包括一正端子、一负端子,所述运算放大电路的输入端接所述两线制铂热电阻的正端子,所述调零电阻的一端连接所述两线制铂热电阻的负端子,其另一端接入电路中;该放大器的输出电压和热电阻的电阻变化值成线性关系。 2、掌握传感器的工作原理、使用和选用方法,能根据要求选用和使用常用传感器。 主要参考资料: [1] 夏路易,石宗义.电路原理图设计教程[M].北京希望电子出版社,2002.15-18. [2] 陈杰,黄鸿.传感器与检测技术[M].北京:高等教育出版社,2002.30-35. [3] 张琳娜,刘武发.传感检测技术及应用[M].北京:中国计量出版社,1999.16-20. [4]袁希光.传感器手册[M].北京:北京国防工业出版社,1986.16. 完成期限2012.6.25—2012.6.29 指导教师 专业负责人 2012年6 月25 日

摘要 热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。 热电阻传感器主要是利用电阻值随温度变化而变化这一特性来测量温度及与温度有关的参数。在温度检测精度要求比较高的场合,这种传感器比较适用。目前较为广泛的热电阻材料为铂、铜、镍等,它们具有电阻温度系数大、线性好、性能稳定、使用温度范围宽、加工容易等特点。用于测量-200℃~+500℃范围内的温度。 温度测量系统应用广泛,涉及到各行各业的各个方面,在各种不同的领域中都占有重要的位置。从降低开放成本扩大适用范围、系统运行的稳定性、可靠性出发,设计一种以Pt100铂热电阻为温度信号采集元件的传感器温度测量系统。才测量系统不但可以测量室内的温度,还可以测量液体等的温度,在实际应用中,该系统运行稳定、可靠,电路设计简单实用。 关键词:传感器;Pt100热电阻;温度测量

相关文档
最新文档