线线角,线面角,二面角的几何法

线线角,线面角,二面角的几何法
线线角,线面角,二面角的几何法

新高考一轮复习之立体几何线线角、线面角、面面角的几何解法

一、异面直线所成角

解题口诀:一平二构三边四余弦

一平:异面直线通过平行线平移至相交

二构:构造三角形

三边:计算三角形的三边长(注意是否为特殊三角形)

四余弦:利用余弦定理求角(注意异面直线的夹角范围为00(0,90],所以余弦值应该为正的)

练习题:

1、在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为( )

A B C D 2、在正方体1111ABCD A B C D -中,O 为AC 的中点,则异面直线1AD 与1OC 所成角的余弦值为( )

A 、12

B C D 3、在四面体ABCD 中,若2AB CD ==,,,E F G 分别是,,BC BD AC 中点,若

FF =AB CD 与所成角为( )

A 、030

B 、045

C 、060

D 、0120

4、在长方体1111ABCD A B C D -中,12AB BC AA ==,则异面直线1A B 与1B C 所成的角的余弦值为( )

A B 、15

C D

5、已知直三棱柱111ABC A B C -中,0120ABC ∠=,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为( )

A 、3

B 、15

C 、10

D 、3 6、如图,在三棱锥A BCD -中,3AB AC BD CD ====,2AD BC ==,点M N 、分别为,AD BC 的中点,则异面直线,AN CM 所成的角的余弦值是

答案:78

二、线面角(线面角的难点在于找出垂线以及计算边长)

题型一:能证明出垂线的

解题步骤:

①先找斜足

②过斜线上一点作平面的垂线,交点为垂足(线面垂直,需要证明) ③连接斜足和垂足,称为斜线的射影,射影和斜线所成的角即为线面角 基础例题:

1、正方体中,(1)求1BD 和底面ABCD 所成的角

(2)求1BD 和面11AA D D 所成的角

A B

C

D 1A 1B 1C 1D

2、空间四边形ABCD 中,AC BC ⊥, PA ⊥平面ABC ,2AC BC ==,4PA =

(1)求PB 与平面PAC 所成的角 (2)求PC 和平面PAB 所成的角

练习题:

1、(2018年全国1卷理科)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把?DFC 折起,使点C 到达点P 的位置,且PF ⊥BF .

(1)证明:平面PEF ⊥平面ABFD ;

(2)求DP 与平面ABFD 所成角的正弦值.

A B C P

题型二:不能证明垂线时,考虑等体积法求点到线的距离(该种题型较难,往往选择空间向量法)

1、如图,三棱锥P ABC -中,PA PC =,AB BC =,00120,90APC ABC ∠=∠= 3AC PB =

(1)求证:AC PB ⊥

(2)求直线AC PAB 与平面所成角的正弦值

空间几何二面角的求法(方法有很多种,但常用两种定义法和三垂线法)

(1)定义法

从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。

解题指导:直接在二面角的棱上取一点(特殊点),分别在两个半平面内作棱的垂线,得出平面角,用定义法时,要认真观察图形的特性;

例1、 如图,已知二面角α-а-β等于120°,PA ⊥α,A ∈α,PB ⊥β,B ∈β. 求∠APB 的大小.

例2、在四棱锥P-ABCD 中,ABCD 是正方形,PA ⊥平面ABCD ,PA=AB=a ,求二面角B-PC-D 的大小。

3、(2017年全国一卷理科)如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=.

(1)证明:平面PAB ⊥平面PAD ;

(2)若PA =PD =AB =DC ,90APD ∠=,求二面角A -PB -C 的余

弦值.

P O B

A

(2)三垂线法(定义法的衍生)重点

例题:

1、(2019年全国一卷理科)如图,直四棱柱ABCD ﹣A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.

(1)证明:MN ∥平面C 1DE ;

(2)求二面角A ﹣MA 1﹣N 的正弦值.

2、如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,//AD BC ,090ADC ∠=,平面PAD ABCD ⊥底面,Q 为AD 的中点,且2,1,3PA PD AD BC CD =====

(1)求证:PQB PAD ⊥平面平面

(2)若M 是棱PC 上的一点,且满足3PM MC =,求二面角M BQ C --的大小

线面角的求法总结

线面角的求法总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

线面角的三种求法 1.直接法 :平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。 例1 ( 如图1 )四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点,求(1)BC 与平面SAB 所成的角。 (2)SC 与平面ABC 所成的角。 解:(1) ∵SC ⊥SB,SC ⊥SA, B M H S C A 图1 ∴SC ⊥平面SAB 故 SB 是斜线BC 在平面SAB 上的射影, ∴∠SBC 是直线BC 与平面SAB 所成的角为60°。 (2) 连结SM,CM ,则SM ⊥AB, 又∵SC ⊥AB,∴AB ⊥平面SCM, ∴面ABC ⊥面SCM 过S 作SH ⊥CM 于H, 则SH ⊥平面ABC ∴CH 即为 SC 在面ABC 内的射影。 ∠SCH 为SC 与平面ABC 所成的角。 sin ∠SCH=SH /SC ∴SC 与平面ABC 所成的角的正弦值为√7/7 (“垂线”是相对的,SC 是面 SAB 的垂线,又是面 ABC 的斜线. 作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。) 2. 利用公式sin θ=h /ι

其中θ是斜线与平面所成的角, h 是 垂线段的长,ι是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。 例2 ( 如图2) 长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角。 解:设点 B 到AB 1C 1D 的距离为h, ∵V B ﹣AB 1C 1=V A ﹣BB 1C 1∴1/3 S △AB 1C 1·h= 1/3 S △BB 1C 1·AB ,易得h=12/5 设AB 与 面 A B 1C 1D 所成的角为θ,则sin θ=h /AB=4/5 A 1 C 1 D 1 H 4 C 1 2 3 B A D 图2 ∴AB 与面AB 1C 1D 所成的角为arcsin 4/5 3. 利用公式cos θ=cos θ1·cos θ2 (如图3) 若 OA 为平面的一条斜线,O 为斜足,OB 为OA 在面α内的射影,OC 为面α内的一条直线,其中θ为OA 与OC 所成的角, B α O A C 图3

线线角,线面角,二面角的一些题目

B 1 D 1 A D C 1 B C A 1线线角与线面角习题 一、复习目标 1.理解异面直线所成角的概念,并掌握求异面直线所成角的常用方法. 2.理解直线与平面所成角的概念,并掌握求线面角常用方法. 3.掌握求角的计算题步骤是“一作、二证、三计算”,思想方法是将空间图形转化为平面图形即“降维”的思想方法. 二、课前预习 1.在空间四边形ABCD 中,AD=BC=2, E 、F 分别为AB 、CD 的中点且EF=3,AD 、BC 所成的角为 . 2.如图,在长方体ABCD-A 1B 1C 1D 1中 ,B 1C 和C 1D 与底面所成的角分别为60ο 和45ο,则异面直线B 1C 和C 1D 所成角的余弦值为 ( ) (A). 46 (B).36 (C).6 2 (D).63 3.平面α与直线a 所成的角为3 π ,则直线a 与平面α内所有直线所成的角的取值范围是 . 4.如图,ABCD 是正方形,PD ⊥平面ABCD,PD=AD,则PA 与BD 所成的角的度数为 (A).30ο (B).45ο (C).60ο (D).90ο 5.有一个三角尺ABC,∠A=30ο, ∠C=90ο,BC 是贴于桌面上, 当三角尺与桌面成45ο 角时,AB 边与桌面所成角的正弦值 是 . 三、典型例题 例1.(96·全国) 如图,正方形ABCD 所在平面与正方形 ABEF 所在平面成60ο角,求异面直线AD 与BF 所成角的余弦值. 备课说明:1.求异面直线所成的角常作出所成角的平面图形.作法有: ①平移法:在异面直线的一条上选择“特殊点”,作另一条直线平行线 或利用中位线.②补形法:把空间图形补成熟悉的几何体,其目的在于容 易发现两条异面直线的关系.2.解立几计算题要先作出所求的角,并 要 有严格的推理论证过程,还要有合理的步骤. A C B D B P C D A C B F E

线线角、线面角、二面角知识点及练习

线线角、线面角、面面角专题 一、异面直线所成的角 1.已知两条异面直线,a b ,经过空间任意一点O 作直线//,//a a b b '',我们把a '与b '所成的锐角(或直角)叫异面直线,a b 所成的角。 2.角的取值范围:090θ<≤?; 垂直时,异面直线当b a ,900=θ。 例1.如图, 在直三棱柱111ABC A B C -中,13,4,5,4AC BC AB AA ==== ,点D 为AB 的中点异面直线1AC 与1B C 所成角的余弦值 二、直线与平面所成的角 1. 定义:平面的一条斜线和它在平面上的射影所成的锐角, 叫这条斜线和这个平面所成的角 2.角的取值范围:? ? ≤≤900θ。 _1 _A

例2. 如图、四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中 点,求(1)BC 与平面SAB 所成的角。 (2)SC 与平面ABC 所成的角的正切值。 一、 二面角: 1. 从一条直线出发的两个半平面所组成的图形叫做二 面角。这条直线叫做二面角的棱,这两个半平面叫做二面角的面。 2. 二面角的取值范围:? ? ≤≤1800θ 两个平面垂直:直二面角。 B M H S C A

3.作二面角的平面角的常用方法有六种: 1.定义法 :在棱上取一点O ,然后在两个平面内分别作过棱上O 点的垂线。 2.三垂线定理法:先找到一个平面的垂线,再过垂足作棱的垂线,连结两个垂足即得二面角的平面角。 3.向量法:分别作出两个半平面的法向量,由向量夹角公式求得。二面角就是该夹角或其补角。 二面角一般都是在两个平面的相交线上,取恰当的点,经常是端点和中点。 例3.如图,E 为正方体ABCD -A 1B 1C 1D 1的棱CC 1的中点,求 (1)二面角111D C A D --所成的角的余弦值 (2)平面AB 1E 和底面C C BB 11所成锐角的正切值. A 1 D 1 B 1 C 1 E D B C A

线面所成角的求法

★线面所成角的求法:[。勺 1?作图一一证明一一计算 求角的关键在于找出平面的垂线及斜线的射影。一般地通过斜线上某个特殊点 作出平面的垂线来找角。角的计算一般是把已知条件归结到同一个或归结到几个有 关的三角形中,从而把空间的计算转变为平面图形内的解直角三角形或斜三角形的 边长相等,则AB i 与侧面ACC i A i 所成角的正弦值等于 A 亞 B 血 C 边 A. 4 B. 4 C. 2 4.如图,在长方体 ABCD — A i B i C i D i 中,AB = BC = 2, 7 僅― A a 问题。 A i D

n 与BC i所成的角为2,则BC i与平面BB I D I D所成角的正弦值为()代£B? C.^5 D¥ 5..正四棱锥S-ABCD中,0为顶点在底面上的射影,P为侧棱SD的中点,且SO =0D,则直线BC与平面PAC所成的角是 _____________ . 6. 如图,已知点P在正万体ABC B A B‘ C D的对角线BD上,/ PDA F60° . (1)求DP与CC所成角的大小; ⑵求DP与平面AA D D所成角的大小. 1 7. 已知三棱锥P-ABC中,PA丄平面ABC, AB丄AC,PA= AC= qAB, N为 AB上一点,AB = 4AN,M,S分别为PB、BC的中点. “ (1)证明:CM丄SN; ⑵求SN与平面CMN所成角的大小. ' ; 8 如图,在五棱锥P-ABCDE中,PA丄平面ABCDE,AB - // CD, AC// ED,AE // BC,/ ABC = 45°, AB = 2迈,BC = 2AE = 4,三角形FAB 是等腰三角形. (1)求证:平面PCD丄平面PAC; ⑵求直线PB与平面PCD所成角的大小; (3)求四棱锥P-ACDE的体积.

线线角,线面角,二面角的几何法

新高考一轮复习之立体几何线线角、线面角、面面角的几何解法 一、异面直线所成角 解题口诀:一平二构三边四余弦 一平:异面直线通过平行线平移至相交 二构:构造三角形 三边:计算三角形的三边长(注意是否为特殊三角形) 四余弦:利用余弦定理求角(注意异面直线的夹角范围为00(0,90],所以余弦值应该为正的) 练习题: 1、在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为( ) A B C D 2、在正方体1111ABCD A B C D -中,O 为AC 的中点,则异面直线1AD 与1OC 所成角的余弦值为( ) A 、12 B C D 3、在四面体ABCD 中,若2AB CD ==,,,E F G 分别是,,BC BD AC 中点,若 FF =AB CD 与所成角为( ) A 、030 B 、045 C 、060 D 、0120 4、在长方体1111ABCD A B C D -中,12AB BC AA ==,则异面直线1A B 与1B C 所成的角的余弦值为( ) A B 、15 C D

5、已知直三棱柱111ABC A B C -中,0120ABC ∠=,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为( ) A 、3 B 、15 C 、10 D 、3 6、如图,在三棱锥A BCD -中,3AB AC BD CD ====,2AD BC ==,点M N 、分别为,AD BC 的中点,则异面直线,AN CM 所成的角的余弦值是 答案:78 二、线面角(线面角的难点在于找出垂线以及计算边长) 题型一:能证明出垂线的 解题步骤: ①先找斜足 ②过斜线上一点作平面的垂线,交点为垂足(线面垂直,需要证明) ③连接斜足和垂足,称为斜线的射影,射影和斜线所成的角即为线面角 基础例题: 1、正方体中,(1)求1BD 和底面ABCD 所成的角 (2)求1BD 和面11AA D D 所成的角 A B C D 1A 1B 1C 1D

空间中线线角,线面角,面面角成法原理和求法思路

D B A C α 空间中的夹角 福建屏南一中 李家有 QQ52331550 空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角。 1、异面直线所成的角 (1)异面直线所成的角的范围是2 , 0(π 。求两条异面直线所成的角的大小一般方法是通过平行移动 直线,把异面问题转化为共面问题来解决。 具体步骤如下: ①利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选择在特殊的位置上; ②证明作出的角即为所求的角; ③利用解三角形来求角。简称为“作,证,求” 2、线面夹角 直线与平面所成的角的范围是]2 , 0[π 。求直线和平面所成的角用的是射影转化法。 具体步骤如下:(若线面平行,线在面内,线面垂直,则不用此法,因为角度不用问你也知道) ①找过斜线上一点与平面垂直的直线; ②连结垂足和斜足,得出斜线在平面的射影,确定出所求的角; ③把该角置于三角形中计算。 也是简称为“作,证,求” 注:斜线和平面所成的角,是它和平面内任何一条直线所成的一切角中的最小角,即若θ为线面角,β为斜线与平面内任何一条直线所成的角, 则有θβ≤;(这个证明,需要用到正弦函数的单调性,请跳过。在右图的解释为 BAD CAD ∠>∠) ) 2.1确定点的射影位置有以下几种方法: ①斜线上任意一点在平面上的射影必在斜线在平面的射影上; ②如果一个角所在的平面外一点到角的两边距离相等,那么这一点在平面上的射影在这个角的平分线上; 已知:如图,BAC ∠在一个平面α内, ,,PN AC PM AB PN PM ⊥⊥且=(就是点P 到角 两边的距离相等)过P 作PO α⊥(说明点O 为P 点在面α内的射影) 求证:OAN OAM ∠∠= (OAN OAM ∠∠=,所以AO 为BAC ∠的角平分线,所以点O 会在BAC ∠的角平分线上) 证明:PA =PA ,PN =PM , 90PNA PMA ∠∠?== PNA PMA ∴???(斜边直角边定理) AN AM ∴= ① (PO NO MO PN PM α⊥? ?=?? 斜线长相等推射影长相等) =

线面角的求法总结

线面角的三种求法 1.直接法 :平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。 例1 ( 如图1 )四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点,求(1)BC 与平面SAB 所成的角。 (2)SC 与平面ABC 所成的角。 解:(1) ∵SC ⊥SB,SC ⊥SA, B M H S C A 图1 ∴SC ⊥平面SAB 故 SB 是斜线BC 在平面SAB 上的射影, ∴∠SBC 是直线BC 与平面SAB 所成的角为60°。 (2) 连结SM,CM ,则SM ⊥AB, 又∵SC ⊥AB,∴AB ⊥平面SCM, ∴面ABC ⊥面SCM 过S 作SH ⊥CM 于H, 则SH ⊥平面ABC ∴CH 即为 SC 在面ABC 内的射影。 ∠SCH 为SC 与平面ABC 所成的角。 sin ∠SCH=SH /SC ∴SC 与平面ABC 所成的角的正弦值为√7/7 (“垂线”是相对的,SC 是面 SAB 的垂线,又是面 ABC 的斜线. 作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。) 2. 利用公式sin θ=h /ι 其中θ是斜线与平面所成的角, h 是 垂线段的长,ι是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。 例2 ( 如图2) 长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角。 解:设点 B 到AB 1C 1D 的距离为h, ∵V B ﹣AB 1C 1=V A ﹣BB 1C 1∴1/3 S △AB 1C 1·h= 1/3 S △BB 1C 1·AB ,易得h=12/5 设AB 与 面 A B 1C 1D 所成的角为θ ,则sin θ =h /AB=4/5

线线角和线面角

线线角和线面角 [重点]:确定点、斜线在平面内的射影。 [知识要点]: 一、线线角 1、定义:设a、b是异面直线,过空间一点O引a′//a,b′//b,则a′、b′所成的锐角(或直角),叫做异面直线a、b所成的角. 2、范围:(0,] 3. 向量知识: 对异面直线AB和CD (1); (2) 向量和的夹角<,>(或者说其补角)等于异面直线AB 和CD的夹角; (3) 二、线面角 1、定义:平面的一条斜线和它在这个平面内的射影所成的锐角,斜线和平面所成角的范围是(0,). 2、直线在平面内或直线与平面平行,它们所成角是零角; 直线垂直平面它们所成角为, 3、范围: [0,]。 4、射影定理:斜线长定理:从平面外一点向这个平面所引的垂线段和斜线段中: (1)射影相等的两条斜线段相等,射影较长的斜线段也较长; (2)相等的斜线段的射影相等,较长的斜线段的射影也较长; (3)垂线段比任何一条斜线段都短。

5、最小角定理:平面的一条斜线与平面所成的角,是这条直线和平面内过斜足的直线所成的一切角中最小的角。 6、向量知识 (法向量法)与平面的斜线共线的向量和这个平面的一个法向量的夹角<,>(或者说其补角)是这条斜线与该平面夹角的余角. [例题分析与解答] 例1.如图所示,在棱长为a的正方体ABCD-A1B1C1D1中,求:异面直线BA1与AC所成的角. 分析:利用,求出向量的夹角,再根据异面直线BA1,AC所成角的范围确定异面直线所成角. 解:∵,, ∴ ∵AB⊥BC,BB1⊥AB,BB1⊥BC, ∴ ∴ 又 ∴ ∴ 所以异面直线BA1与AC所成的角为60°. 点评:求异面直线所成角的关键是求异面直线上两向量的数量积,而要求两向量的数量积,必须会把所求向量用空间的一组基向量来表示. 例2.如图(1),ABCD是一直角梯形,AD⊥AB,AD//BC,AB=BC=a, AD=2a,且PA⊥平面ABCD,PD与平面ABCD成30°角.

求线面角的三种常见思路方法

求线面角的三种常见思路方法 舒云水 本文以 2009年湖南卷理 18 题为例,介绍求线面角的三种常见思路方法,并对这三种方法作比较分析﹒ 如图 1,在正三棱柱ABC A1B1C1中,AB 2AA1,点 D是A1B1的中点,点 E 在A1C1上,且DE⊥ AE. (I)证明:平面ADE 平面ACC1A1 ; ( II )求直线 AD和平面ABC1所成角的正弦值. (Ⅰ)证明略.下面主要谈(Ⅱ)小题的解法﹒思路 1:直接作出线面角求解﹒ 分析:因为本题几何图形是特殊的几何体——正三棱柱,点 D 在特殊位置上——线段A1B1的中点,所以本题比较容易作出线面角﹒如图 2,取AB的中点F ,连结DF ,DC1 , C1F ,则面DFC1 面ABC1,过D作DH C1F于H ,则DH 面ABC1 ,连结AH,则HAD是AD和平面ABC1 所成的角﹒

解法 1 如图 2,设 F 是 AB 的中点,连结 DF , DC 1 , C 1F .由正 三棱柱 ABC A 1B 1C 1的性质及 D 是A 1B 1的中点知, A 1B 1 ⊥ C 1D ,A 1B 1⊥ DF . 又C 1D DF D ,所以 A 1B 1 ⊥平面C 1DF . 而 AB ∥ A 1B 1, 所以 AB⊥平面C 1DF .又 AB 平面ABC 1 ,故 平面 ABC 1 ⊥平面C 1DF . 过点 D 作DH 垂直C 1F 于点 H , 则 DH ⊥ 平面 ABC 1 . 连结 AH ,则 HAD 是直线 AD 和平面 ABC 1 所成的角. 由已知 AB 2AA 1,不妨设 AA 1 2,则 AB 2,DF 2, DC 1 3, 所以 sin HAD D A H D 15 思路 2:用等体积法求出点 D 到面 ABC 1的距离h ,A h D 为所求线 面 C 1F 5, AD AA 12 A 1D 2 3, DF ·DC 1 2 3 30 DH C 1F 55 即直线 AD 和平面 ABC 1所成角的正弦值为 10 .

线面角的计算方法

教师姓名 余永奇 学生姓名 洪 懿 上课时间 2014.11.15 辅导学科 数学 学生年级 高二 教材版本 人教版 课题名称 线面角,二面角的计算方法(文科) 本次学生 课时计划 第(10)课时 共(60)课时 教学目标 线面角的计算方法 教学重点 线面角的计算方法 教学难点 线面角的计算方法 教师活动 学生活动 上次作业完成情况(%) 一.检查作业完成情况,并讲解作业中存在的问题 二.回顾上次课辅导内容 三.知识回顾,整体认识 1、本章知识回顾 (1)空间点、线、面间的位置关系; (2)直线、平面平行的判定及性质; (3)直线、平面垂直的判定及性质。 2、本章知识结构框图 (二)整合知识,发展思维 1、刻画平面的三个公理是立体几何公理体系的基石,是研究空间图形问题,进行逻辑推理的基础。 公理1——判定直线是否在平面内的依据; 公理2——提供确定平面最基本的依据; 公理3——判定两个平面交线位置的依据; 公理4——判定空间直线之间平行的依据。 2、空间问题解决的重要思想方法:化空间问题为平面问题; 3、空间平行、垂直之间的转化与联系: 平面(公理1、公理2、公理3、公理4) 空间直线、平面的位置关系 直线与直线的位置关系 直线与平面的位置关系 平面与平面的位置关系 直线与直线平行 直线与平面平行 平面与平面平行

4、观察和推理是认识世界的两种重要手段,两者相辅相成,缺一不可。 典型例题: 线面夹角的计算 例1(2014浙江高考文科20题)如图,在四棱锥A-BCDE 中,平面ABC ⊥平面BCDE ,∠CDE=∠BED =90°,AB=CD=2, DE=BE=1,AC=2. (Ⅰ)证明: AC ⊥平面BCDE ; (Ⅱ)求直线AE 与平面ABC 所成的角的正切值. 例2(2013浙江,文20)如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,AB =BC =2,AD =CD =7,PA =3,∠ABC =120°,G 为线段PC 上的点. (1)证明:BD ⊥平面APC ; ( 43 3 ) (2)若G 为PC 的中点,求DG 与平面APC 所成的角的正切值;(3)若G 满足PC ⊥平面BGD ,求PG GC 的值.(3/2) 直线与直线垂直 直线与平面垂直 平面与平面垂直

线面角及二面角的求法

第9节线面角及二面角的求法 【基础知识】 求线面角、二面角的常用方法: (1) 线面角的求法,找出斜线在平面上的射影,关键是作垂线,找垂足,要把线面角转化到一个三角形中求解. (2) 二面角的大小求法,二面角的大小用它的平面角来度量. :] 【规律技巧】 平面角的作法常见的有①定义法;②垂面法?注意利用等腰、等边三角形的性质. 【典例讲解】 【例1】如图,在四棱锥 P-ABCD中,FA丄底面ABCD , AB⊥ AD , AC⊥ CD, ∠ ABC =60 ° , PA = AB = BC, E 是 PC 的中点. P (1)求PB和平面PAD所成的角的大小; ⑵证明:AE丄平面PCD ; ⑶求二面角 A — PD — C的正弦值. (1)解在四棱锥P — ABCD中, 因FA丄底面 ABCD , AB?平面 ABCD , 故PA⊥ AB.又AB⊥ AD , FA ∩ AD = A, 从而AB丄平面PAD, 故PB在平面PAD内的射影为FA, 从而∠ APB为PB和平面PAD所成的角. 在Rt△ PAB 中,AB= FA,故∠ APB = 45° 所以PB和平面PAD所成的角的大小为 45 ⑵证明在四棱锥P— ABCD中, 因FA丄底面 ABCD, CD?平面ABCD, 故CD丄FA.由条件 CD丄AC , PA ∩ AC= A , ??? CD丄平面PAC. 又 AE?平面 FAC,??? AE丄CD.

由FA= AB = BC,∠ ABC = 60° ,可得 AC = PA. ??? E 是 PC 的中点,???AE⊥ PC. 又PC∩ CD = C,综上得AE⊥平面PCD. 【变式探究】如图所示,在四棱锥P — ABCD中,底面ABCD是正方形,侧棱 PD丄底 面ABCD , PD = DC.E是PC的中点,作 EF丄PB交PB于点F. ⑴证明PA//平面EDB ; ⑵证明PB⊥平面EFD ; (3) 求二面角 C — PB— D的大小. ⑴证明如图所示,连接 AC, AC交BD于0,连接EO. ???底面ABCD是正方形, ?点0是AC的中点. 在厶PAC中,EO是中位线, ? PA // E0. 而E0?平面EDB且PA?平面EDB , ? PA //平面 EDB. 【针对训练】 1.如图,四棱锥 P — ABCD中,底面 ABCD为菱形,PA丄底面ABCD , AC = 2,2, FA =2, E 是PC 上的一点,PE= 2EC. (1)证明:PC⊥平面BED ; ⑵设二面角A — PB-C为90°,求PD与平面PBC所成角的大小.

线面角的三种求法

线面角的三种求法 河北 王学会 1.直接法 :平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。 例1 ( 如图1 )四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点,求(1)BC 与平面SAB 所成的角。 (2)SC 与平面ABC 所成的角。 解:(1) ∵SC ⊥SB,SC ⊥SA, B M H S C A 图1 ∴SC ⊥平面SAB 故 SB 是斜线BC 在平面SAB 上的射影, ∴∠SBC 是直线BC 与平面SAB 所成的角为60°。 (2) 连结SM,CM ,则SM ⊥AB, 又∵SC ⊥AB,∴AB ⊥平面SCM, ∴面ABC ⊥面SCM 过S 作SH ⊥CM 于H, 则SH ⊥平面ABC ∴CH 即为 SC 在面ABC 内的射影。 ∠SCH 为SC 与平面ABC 所成的角。 sin ∠SCH=SH /SC ∴SC 与平面ABC 所成的角的正弦值为√7/7 (“垂线”是相对的,SC 是面 SAB 的垂线,又是面 ABC 的斜线. 作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂

线,则得面的垂线。) 2. 利用公式sin θ=h /ι 其中θ是斜线与平面所成的角, h 是 垂线段的长,ι是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。 例2 ( 如图2) 长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角。 解:设点 B 到AB 1C 1D 的距离为h, ∵V B ﹣AB 1C 1=V A ﹣BB 1C 1∴1/3 S △AB 1C 1·h= 1/3 S △BB 1C 1 ·AB,易得h=12/5 设AB 与 面 A B 1C 1D 所成的角为θ,则sin θ=h /AB=4/5 A 1C 1D 1 H 4 C B 12 3B A D 图2 ∴AB 与面AB 1C 1D 所成的角为arcsin 4/5 3. 利用公式cos θ=cos θ1·cosθ2 (如图3) 若 OA 为平面的一条斜线,O 为斜足,OB 为OA 在面α内的射影,OC 为面α内的 一条直线,其中θ为OA 与OC 所成的角, B αO A C 图3 θ1为OA 与OB 所成的角,即线面角,θ2为OB 与OC 所成的角,那么 cos θ=cos θ1·cosθ2 (同学们可自己证明),它揭示了斜线和平面所成的角是这条斜线和这个平面内的直线所成的一切角中最小的角(常称为最小角定理) 例3(如图4) 已知直线OA,OB,OC 两两所成的角为60°, ,求直线OA 与 面OBC 所成

线线角、线面角,二面角(高考立体几何法宝)

1 A 1 B 1 C 1 D A B C D E F G 线线角、线面角、二面角的求法 1.空间向量的直角坐标运算律: ⑴两个非零向量与垂直的充要条件是 1122330a b a b a b a b ⊥?++= ⑵两个非零向量与平行的充要条件是 a 2 b =±|a ||b | 2.向量的数量积公式 若a 与b 的夹角为θ(0≤θ≤π),且123(,,)a a a a =,123(,,)b b b b =,则 (1)点乘公式: a 2b =|a ||b | cos θ (2)模长公式:则2 12||a a a a a =?=++,2 ||b b b b =?=+(3)夹角公式:2 cos ||||a b a b a b a ??==?+ (4)两点间的距离公式:若111(,,)A x y z ,222(,,)B x y z ,则 2 | |(AB AB x ==,A B d = ①两条异面直线a 、b 间夹角0,2πα?? ∈ ??? 在直线a 上取两点A 、B ,在直线b 上取两点C 、D ,若直线a 与b 的夹角为θ,则cos |cos ,|AB CD θ=<>= 例1 (福建卷)如图,长方体ABCD —A 1B 1C 1D 1中,AA 1=AB =2,AD =1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,则异面直线A 1E 与GF 所成的角是( ) A .5 15arccos B . 4 π C .5 10 arccos D .2π (向量法,传统法)

P B C A 例 2 (2005年全国高考天津卷)如图,PA ⊥平面ABC ,90ACB ∠=?且 PA AC BC a ===,则异面直线PB 与AC 所成角的正切值等于_____. 解:(1)向量法 (2)割补法:将此多面体补成正方体'''DBCA D B C P -,PB 与AC 所成的角的大小即此正方体主对角线PB 与棱BD 所成角的大小,在Rt △PDB 中 ,即 t a n 2PD DBA DB ∠ = =. 点评:本题是将三棱柱补成正方体'''DBCA D B C P - ②直线a 与平面α所成的角0,2πθ?? ∈ ??? (重点讲述平行与垂直的证明) 可转化成用向量→ a 与平面α的法向量→ n 的夹角ω表示,由向量平移得:若 ππ(图);若ππ 平面α的法向量→ n 是向量的一个重要内容,是求直线与平面所成角、求点到平面距离的必备工具.求平面法向量的一般步骤: (1)找出(求出)平面内的两个不共线的向量的坐标111222(,,),(,,)a a b c b a b c == (2)设出平面的一个法向量为(,,)n x y z = (3)根据法向量的定义建立关于x,y,z 的方程组(0a << (4)解方程组,取其中的一组解,即得法向量。 图1- 图1- 图1- 1 D 1 B 1 C P D B C A

线线角_线面角_二面角的讲义

B 1D 1A D C 1 B C A 1 线线角与线面角 一、课前预习 1.在空间四边形ABCD 中,AD=BC=2, E 、F 分别为AB 、CD 的中点且EF=3,AD 、BC 所成的角为 . 2.如图,在长方体ABCD-A1B1C1D1中 ,B1C 和C1D 与底面所成的角分别为60ο和45ο,则异面直线B1C 和C1D 所成角的余弦值为 ( ) (A). 46 (B).36 (C).62 (D).63 3.平面α与直线a 所成的角为3π ,则直线a 与平面α所有直线所成的角的取值围是 . 4.如图,ABCD 是正方形,PD ⊥平面ABCD,PD=AD,则PA 与 BD 所成的角的度数为 (A).30ο (B).45ο (C).60ο (D).90ο 5.有一个三角尺ABC,∠A=30ο, ∠C=90ο,BC 是贴于桌面上, 当三角尺与桌面成45ο角时,AB 边与桌面所成角的正弦值 是 . 二、典型例题 例1.(96·全国) 如图,正方形ABCD 所在平面与正方形 ABEF 所在平面成60ο角,求异面直线AD 与BF 所成角的余弦值. 【备课说明:1.求异面直线所成的角常作出所成角的平A C B D B P C D A C B

面图形.作法有: ①平移法:在异面直线的一条上选择“特殊点”,作另一条直线平行线或利用中位线.②补形法:把空间图形补成熟悉的几何体,其目的在于容易发现两条异面直线的关系.2.解立几计算题要先作出所求的角,并要有严格的推理论证过程,还要有合理的步骤.】 例2.如图在正方体AC1中, (1) 求BC1与平面ACC1A1所成的角; (2) 求A1B1与平面A1C1B 所成的角. 备课说明:求直线与平面所成角的关键是找直线在 此平面上的射影,为此必须在这条直线上找一点作 平面的垂线. 作垂线的方法常采用:①利用平面垂直 的性质找平面的垂线.②点的射影在面的特殊位置. 例 3. 已知直三棱住ABC-A1B1C1,AB=AC, F 为棱BB1上一点,BF ∶FB1=2∶1, BF=BC=a 2. (1)若D 为BC 的中 点,E 为线段AD 上不同于A 、D 的任意一点,证明:EF ⊥FC1; (2)试问:若AB=a 2,在线段AD 上的E 点能否 使EF 与平面BB1C1C 成60ο角,为什么?证明你的结论. 备课说明:这是一道探索性命题,也是近年高考热点问题,解 决这类问题,常假设命题成立,再研究是否与已知条件矛盾, 从而判断命题是否成立. 一、知识与方法要点: 1.斜线与平面所成的角就是斜线与它在平面的射影的夹角。求斜线与平面所成的角关键是找到斜线在平面的射影,即确定过斜线上A D C 1D 1A 1B 1C B A 1C B A B 1D C 1E F

定义法求线面角(人教A版)

定义法求线面角(人教A版) 一、单选题(共10道,每道10分) 1.如图,在棱长为2的正方体ABCD-A1B1C1D1中,E是BC1的中点,则直线DE与平面ABCD 所成角的正切值为( ) A. B. C. D. 2.如图,在正方体ABCD-A1B1C1D1中,直线A1B与平面A1B1CD所成角的余弦值是( ) A. B. C. D. 3.如图,已知△ABS是等边三角形,四边形ABCD是正方形,平面ABS⊥平面ABCD, 则直线SC与平面ABCD所成角的余弦值为( )

A. B. C. D. 4.如图,在正三棱柱ABC-A1B1C1中,侧棱长为,底面三角形的边长为1,则直线BC1与平面ACC1A1所成角的正切值是( ) A. B. C. D. 5.如图,在三棱锥P-ABC中,PA=PB=PC=BC,且∠BAC=90°,则直线PA与底面ABC所成的角为( )

A.30° B.45° C.60° D.90° 6.如图,在正方体ABCD-A1B1C1D1中,E是棱A1B1的中点,则直线AE与平面BDD1B1所成角的正弦值为( ) A. B. C. D. 7.如图,在四棱锥A-BCDE中,AC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,则直线AE与平面ABC所成角的正切值为( )

A. B. C. D. 8.如图,已知正三棱柱ABC-A1B1C1的所有棱长都相等,D是A1C1的中点, 则直线AD与平面B1DC所成角的正弦值为( ) A. B. C. D. 9.如图,在四棱锥P-ABCD中,底面为直角梯形,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC,若M,N分别是PC,PB的中点,则CD与平面ADMN所成角的正弦值为( ) A. B. C. D.

线线角_线面角_二面角一些题目

B 1D 1A D C 1B C A 1线线角与线面角习题 一、复习目标 1.理解异面直线所成角的概念,并掌握求异面直线所成角的常用方法. 2.理解直线与平面所成角的概念,并掌握求线面角常用方法. 3.掌握求角的计算题步骤是“一作、二证、三计算”,思想方法是将空间图形转化为平面图形即“降维”的思想方法. 二、课前预习 1.在空间四边形ABCD 中,AD=BC=2, E 、F 分别为AB 、CD 的中点且EF=3,AD 、BC 所成的角为 . 2.如图,在长方体ABCD-A 1B 1C 1D 1中 ,B 1C 和C 1D 与底面所成的角分别为60ο和45ο,则异面直 线B 1C 和C 1D 所成角的余弦值为 ( ) (A). 46 (B).36 (C).62 (D).63 3.平面α与直线a 所成的角为3 π,则直线a 与平面α内所有直线所成的角的取值范围是 . 4.如图,ABCD 是正方形,PD ⊥平面ABCD,PD=AD,则PA 与BD 所成的角的度数为 (A).30ο (B).45ο (C).60ο (D).90ο 5.有一个三角尺ABC,∠A=30ο, ∠C=90ο,BC 是贴于桌面上, 当三角尺与桌面成45ο角时,AB 边与桌面所成角的正弦值 是 . 三、典型例题 例1.(96·全国) 如图,正方形ABCD 所在平面与正方形 ABEF 所在平面成60ο角,求异面直线AD 与BF 所成角的余弦值. 备课说明:1.求异面直线所成的角常作出所成角的平面图形.作法有: ①平移法:在异面直线的一条上选择“特殊点”,作另一条直线平行线 或利用中位线.②补形法:把空间图形补成熟悉的几何体,其目的在于容 易发现两条异面直线的关系.2.解立几计算题要先作出所求的角,并要 有严格的推理论证过程,还要有合理的步骤. 例2.如图在正方体AC 1中, (1) 求BC 1与平面ACC 1A 1所成的角; (2) 求A 1B 1与平面A 1C 1B 所成的角. 备课说明:求直线与平面所成角的关键是找直线在此平面上的射影,为此必须在这条直线上找一点作平面的垂线. 作垂线的方法常采用:①利用 平面垂直的性质找平面的垂线.②点的射影在面内的特殊位置. 例3. 已知直三棱住ABC-A 1B 1C 1,AB=AC, F 为棱BB 1上一点,BF ∶FB 1=2∶1, BF=BC=a 2. (1)若D 为BC 的中点,E 为线段AD 上不同于A 、D 的任意一点,证明:EF ⊥FC 1; (2)试问:若AB=a 2,在线段AD 上的E 点能否使EF 与平面BB 1C 1C 成60ο角,为什么?证明你的结论. 备课说明:这是一道探索性命题,也是近年高考热点问题,解 决这类问题,常假设命题成立,再研究是否与已知条件矛盾, 从而判断命题是否成立. 四、反馈练习 1设集合A 、B 、C 分别表示异面直线所成的角、平面的斜线与平面所成的角、直线与平面所成的角的取值范围,则 (A)A=B=C (B)A=B ?C (C)A ?B ?C (D) B ?A ?C. 2两条直线a ,b 与平面α所成的角相等,则直线a ,b 的位置关系是 (A)平行 (B)相交 (C)异面 (D) 以上均有可能. 3设棱长为1的正方体ABCD-A 1B 1C 1D 1中,M 、N 分别为AA 1和BB 1的中点,则直线CM 和D 1N 所成角的正弦值为 . A C B A D C 1D 1A 1B 1C B A 1C B A B 1D C 1E F D B P C D A C B F E

《直线与平面所成角复习课——线面角的三种常见求法》教案

直线与平面所成角复习课(2) ——线面角的三种常见求法一、教学内容解析 新课标立体几何内容较大纲教材变化大,三垂线及其逆定理作为阅读教材,对于有关线、面的垂直的求解方式方法带来很大的改变,对求解二面角及线面角的方式方法也带来很大的改变。对我校大部分学生而言,二面角求解要求属于了解层次,斜线与平面角所成的角属于理解与掌握层次,“求解线面角”变成我校学生学习立体几何有关角的计算最难的一个问题。特别是教材中对线在平面上的射影这一概念比较弱化,点面距离的概念在教材中已经退化,我校学生学习线面角主要方法就是定义法。那如何化解难点,使学生能够有条不紊的找出线面角并求解,成为这堂课的重中之重。 二、教学目标设置 1、知识与技能:正确认识直线与平面所成角的概念,能够利用面面垂直的性质找出已知平面的垂线从而找出线面角,能够利用向量法和等体积法帮助求解线面角。 2、过程与方法: (1)空间想象能力:认识直线与平面的位置关系,遵循从实图和简单的几何体入手,逐步培养学生的几何直观和空间想象能力。 (2)转化的思想方法:在二维与三维空间的转化及线面角与线线角的转化过程中,体现出转化的思想方法。 (3)逻辑思维与运算能力:通过对线面角大小的求解,加强算中有证,以证助算,以培养学生的逻辑思维能力及运算能力。 3、情感、态度与价值观:体验概念的形成过程,培养创新意识和数学应用意识,提高学习数学的兴趣。 三、学生学情分析 我班学生“偏文”,尤其是女生的空间想象能力很弱,拿到立体几何题恨不得道道用向量法求解,因而忽视了定义法的重要性。学生在寻找线面角的过程中往往毫无头绪无从下手,缺少应有的逻辑推理能力和空间想象能力,不喜欢或不擅长添加复杂的辅助线帮助找角和证明。本节课旨在打开他们的解题思路,将求解过程规范化,有序化,从而能够进一步提高他们求解立体几何有关角的计算能力。 四、教学策略分析 由于这是一节复习课,所以我选择在前一节课留给他们一道简单而又经典的线面角问题,让他们自由发挥,各尽所能。然后,我挑选几位同学的做法,就他们的解题思路予以细节上的纠正和方法的总结。再之后,留给他们大段的思考整理时间,并给予一道类似但难度有所上升的题目交给他们再次求解,要求尽量用三种方法解答出来。整节课堂基本由学生们自己回忆,自己思考,自己讨论和总结。当然,线面角的方法复习并不是一蹴而就的,还需要不断地润色和努力。 五、教学过程 前情提要:

线线角_线面角_二面角的讲义

金牌教育 二面角大小的求法 二面角的类型和求法可用框图展现如下: 一、定义法: 直接在二面角的棱上取一点(特殊点),分别在两个半平面内作棱的垂线,得出平面角,用定义法时,要认真观察图形的特性; 例、 如图,已知二面角α-а-β等于120°,PA ⊥α,A ∈α,PB ⊥β,B ∈β. 求∠APB 的大小. 例、在四棱锥P-ABCD 中,ABCD 是正方形,PA ⊥平面ABCD ,PA=AB=a ,求二面角B-PC-D 的大小。 二、三垂线定理法: 已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角; 例、在四棱锥P-ABCD 中,ABCD 是平行四边形,PA ⊥平面ABCD ,PA=AB=a ,∠ABC=30°, 求二面角P-BC-A 的大小。 例、如图,ABCD-A 1B 1C 1D 1是长方体,侧棱 AA 1长为1,边长为2,E 是棱BC 的中点,求面C 1DE 与面CDE 所成二面角的正切值. 例、ΔABC 中,∠A=90°,AB=4,AC=3,平面ABC 外一点P 在平面ABC 内的射影是AB 中点M ,二面角P —AC —B 的大小为45°。求(1)二面角P —BC —A 的大小;(2)二面角C —PB —A 的大小 A B C D A 1 B 1 C 1 D 1 E O

金牌教育 例、如图4,平面α⊥平面 β,α∩β=l ,A ∈α,B ∈β,点A 在直线l 上的射影为A 1,点B 在l 的射影为B 1,已知AB=2,AA 1=1,BB 1 =2,求:二面角A 1-AB -B 1的大小. 三、垂面法: 已知二面角内一点到两个面的垂线时,过两垂线作平面与两个半平面的交线所成的角即为平面角,由此可知,二面角的平面角所在的平面与棱垂直; 例、空间的点P 到二面角βα--l 的面α、β及棱l 的距离分别为4、 3、3 39 2,求二面角βα--l 的大小. 四、射影法:(面积法) 利用面积射影公式S 射=S 原cos θ,其中θ为平面角的大小,此方法不必在图形中画出平面角; 例、在四棱锥P-ABCD 中,ABCD 为正方形,PA⊥平面ABCD ,PA =AB =a ,求平面PBA 与平面PDC 所成二面角的 例、如图,设M 为正方 体ABCD-A 1B 1C 1D 1的棱CC 1的中点,求平 面BMD 1与底面ABCD 所成的二面角的大小。 五、平移或延长(展)线(面)法 对于一类没有给出棱的二面角,应先延伸两个半平面,使之相交出现棱,然后再选用上 述方法(尤其要考虑射影法)。 中,ABCD 为正方形,PA PA =PDC 所成二面角的大小。 P β α l C B A 图4 B 1 A α β A 1 B L E F

相关文档
最新文档